高一数学复习题
高一数学必修一函数经典题型复习

1集合题型1:集合的概念,集合的表示1.下列各项中,不可以组成集合的是( ) A .所有的正数 B .等于2的数 C .接近于0的数 D .不等于0的偶数 2.下列四个集合中,是空集的是( )A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-= C .}0|{2≤x x D .},01|{2R x x x x ∈=+- 3.下列表示图形中的阴影部分的是( )A .()()A CB CB .()()AB A CC .()()A B B CD .()A B C4.下面有四个命题:(1)集合N 中最小的数是1;(2)若a -不属于N ,则a 属于N ; (3)若,,N b N a ∈∈则b a +的最小值为2;(4)x x 212=+的解可表示为{}1,1; 其中正确命题的个数为( )A .0个B .1个C .2个D .3个题型2:集合的运算例1.若集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为( D )A .1B .1-C .1或1-D .1或1-或0例2. 已知{25}A x x =-≤≤,{121}B x m x m =+≤≤-,B A ⊆,求m 的取值范围。
解:当121m m +>-,即2m <时,,B φ=满足B A ⊆,即2m <;当121m m +=-,即2m =时,{}3,B =满足B A ⊆,即2m =;当121m m +<-,即2m >时,由B A ⊆,得12215m m +≥-⎧⎨-≤⎩即23m <≤;∴3≤m变式:1.设222{40},{2(1)10}A x x x B x x a x a =+==+++-=,其中x R ∈,如果AB B =,求实数a 的取值范围。
A BC2.集合{}22|190A x x ax a =-+-=,{}2|560B x x x =-+=,{}2|280C x x x =+-= 满足,AB φ≠,,AC φ=求实数a 的值。
高一数学复习考点题型专题讲解14 单调性与最大(小)值

高一数学复习考点题型专题讲解第14讲 单调性与最大(小)值一、单选题1.下列四个函数在(),0∞-是增函数的为( )A .()24f x x =+B .()12f x x =-C .()21f x x x =--+D .()32f x x=- 【答案】D【分析】根据各个函数的性质逐个判断即可【解析】对A ,()24f x x =+二次函数开口向上,对称轴为y 轴,在(),0∞-是减函数,故A 不对.对B ,()12f x x =-为一次函数,0k <,在(),0∞-是减函数,故B 不对.对C ,()21f x x x =--+,二次函数,开口向下,对称轴为12x =-,在1,2⎛⎫-∞- ⎪⎝⎭是增函数,故C 不对.对D ,()32f x x=-为反比例类型,0k <,在(),0∞-是增函数,故D 对. 故选:D2.函数1()f x x=的单调递减区间是( )A .(,0),(0,)-∞+∞B .(0,)+∞C .(,0)(0,)-∞+∞D .(,0)-∞ 【答案】A【分析】根据反比例函数的性质得解;【解析】解:因为1()f x x=定义域为(,0)(0,)-∞+∞,函数在(,0)-∞和(0,)+∞上单调递减, 故函数的单调递减区间为(,0)-∞和(0,)+∞; 故选:A3.定义域为R 的函数()f x 满足:对任意的12,R x x ∈,有1212()(()())0x x f x f x -⋅->,则有( )A .(2)(1)(3)f f f -<<B .(1)(2)(3)f f f <-<C .(3)(2)(1)f f f <-<D .(3)(1)(2)f f f <<- 【答案】A【分析】利用函数的单调性,判断选项即可.【解析】定义域在R 上的函数()f x 满足:对任意的1x ,2x R ∈,有1212()(()())0x x f x f x -⋅->, 可得函数()f x 是定义域在R 上的增函数, 所以(2)f f -<(1)f <(3). 故选:A .4.若函数()f x 的图象如图所示,则其单调递减区间是( )A .[]4,1--,[]1,4B .[]1,1-C .[]4,4-D .[]22-,【答案】B【分析】利用图象判断函数单调性的方法直接写出函数()f x 单调递减区间. 【解析】观察函数()f x 的图象,可知函数()f x 的单调递减区间为[]1,1-. 故选:B5.若函数()f x 在[],a b 上是增函数,对于任意的1x ,[]2,x a b ∈(12x x ≠),则下列结论不正确的是( )A .()()12120f x f x x x ->-B .()()()12120x x f x f x -->⎡⎤⎣⎦C .()()()()12f a f x f x f b ≤<≤D .()()12f x f x ≠ 【答案】C【分析】根据函数单调性的等价条件进行判断即可.【解析】解:由函数的单调性定义知,若函数()f x 在给定的区间上是增函数,则12x x -,与()()12f x f x -同号,由此可知,选项A ,B ,D 都正确. 若12x x >,则()()12f x f x >,故选项C 不正确. 故选:C.6.若()f x 是R 上的严格增函数,令()()13F x f x =++,则()F x 是R 上的( ) A .严格增函数B .严格减函数C .先是严格减函数后是严格增函数D .先是严格增函数后是严格减函数 【答案】A【分析】由函数的单调性的定义判断可得选项.【解析】解:因为()f x 是R 上的严格增函数,所以由复合函数单调性法则可得,()+1f x 也是R 上的严格增函数,所以()()13F x f x =++是R 上的严格增函数.故选:A.7.若函数()()2318f x x mx m =-+∈R 在()0,3上不单调,则m 的取值范围为( )A .02m ≤≤B .02m <<C .0m ≤D .2m ≥ 【答案】B【分析】要想在()0,3上不单调,则对称轴在()0,3内【解析】()()2318f x x mx m =-+∈R 的对称轴为32mx =,则要想在()0,3上不单调,则()30,32m∈,解得:()0,2m ∈ 故选:B8.若函数2()21f x x mx =+-在区间(1,)-+∞上是增函数,则实数m 的取值范围是( ) A .(,4]-∞-B .[4,)+∞C .[2,)+∞D .(,2]-∞- 【答案】B【分析】根据二次函数的性质可知,(1,),4m ⎡⎫-+∞⊆-+∞⎪⎢⎣⎭,即可解出.【解析】依题意可知,(1,),4m ⎡⎫-+∞⊆-+∞⎪⎢⎣⎭,所以14m-≤-,解得4m ≥. 故选:B .9.函数s ) A .3,2⎛⎤-∞ ⎥⎝⎦B .3,2⎡⎫-+∞⎪⎢⎣⎭C .[)0,+∞D .(],3-∞-【答案】D【分析】首先求出函数的定义域,再由二次函数的性质以及复合函数的单调性即可求解.【解析】由230x x +≥得3x ≤-或0x ≥,即函数s (][),30,-∞-⋃+∞,又二次函数23t x x =+的图象的对称轴方程为32x =-,所以函数23t x x =+(x ∈(][),30,-∞-⋃+∞)在区间(],3-∞-上单调递减,在区间[)0,+∞上单调递增,又函数0)y t =≥为增函数,所以s (],3-∞-. 故选:D10.函数()41f x x x =++在区间1,22⎡⎤-⎢⎥⎣⎦上的最大值为( )A .103B .152C .3D .4 【答案】B【分析】利用换元法以及对勾函数的单调性求解即可.【解析】设1t x =+,则问题转化为求函数()41g t t t =+-在区间1,32⎡⎤⎢⎥⎣⎦上的最大值.根据对勾函数的性质,得函数()g t 在区间1,22⎡⎤⎢⎥⎣⎦上单调递减,在区间[]2,3上单调递增,所以()()max 1151015max ,3max ,2232g t g g ⎧⎫⎛⎫⎧⎫===⎨⎬⎨⎬ ⎪⎝⎭⎩⎭⎩⎭.故选:B11.已知函数()f x 在[]0,1上单调递减,则实数a 的取值范围是( )A .(](,01,2022)-∞⋃B .(](,00,2022)-∞⋃C .(,0)(1,)-∞⋃+∞D .()(),00,1-∞⋃ 【答案】A【分析】利用换元法以及复合函数的单调性的法则进行处理.【解析】当a =0时,()f x =.当a >0时,设2022t ax =-,则函数y =2022t ax =-在区间[]0,1上单调递减,要使函数()f x =在[]0,1上单调递减,则10? 20220a a ->⎧⎨-≥⎩,解得12022a <≤.当a <0时,2022t ax =-在区间[]0,1上为增函数,要使函数()f x =在[]0,1上单调递减,则10?202200a a -<⎧⎨-⨯≥⎩,解得a <0.综上,a 的取值范围为(](,01,2022)-∞⋃.故B ,C ,D 错误. 故选:A.12.若函数()()2,12225,1a x ax x f x a x x ⎧-+≥⎪=⎨⎪+-<⎩在R 上单调递增,则实数的取值范围为( )A .81,5⎛⎫- ⎪⎝⎭B .81,5⎛⎤- ⎥⎝⎦C .(]1,2-D .()1,2-【答案】B【分析】根据分段函数、二次函数、一次函数的单调性可建立不等式求解.【解析】由题意122201232a a aa ⎧≤⎪⎪+>⎨⎪⎪-≥-⎩,解得815a -<≤,故选:B二、多选题13.(多选)下列函数中,满足“1x ∀,()20x ∞∈+,,都有1212()()0f x f x x x -<-”的有( )A .()1f x x =-B .()31f x x =-+C .()243f x x x =++D .()2f x x=【答案】BD【解析】由题设条件可得()f x 应为()0,∞+上的增函数,逐项判断后可得正确的选项. 【解析】因为1x ∀,()20,x ∈+∞,都有1212()()0f x f x x x -<-,故()f x 应为()0,∞+上的减函数.对于A ,当1x > ,()1f x x =-,则()f x 在()1,+∞上为增函数,故A 错误. 对于B ,()31f x x =-+在()0,∞+上为减函数,故B 正确.对于C ,对称轴20x =-<,故()243f x x x =++在()0,∞+上为增函数,故C 错误.对于D ,()2f x x=在()0,∞+上为减函数,故D 正确. 故选:BD .14.(多选)若函数1y ax =+在[]1,2上的最大值与最小值的差为2,则实数a 的值可以是( )A .2B .2-C .1D .0 【答案】AB【分析】根据一次函数的单调性分0a >和0a <两种情况分别求解最大值和最小值,列出方程得解.【解析】依题意,当0a >时,1y ax =+在2x =取得最大值,在1x =取得最小值,所以()2112a a +-+=,即2a =;当0a <时,1y ax =+在1x =取得最大值,在2x =取得最小值,所以()1212a a +-+=,即2a =-.故选AB .【点睛】本题考查一次函数的单调性和最值求解,属于基础题.15.(多选)已知函数()()22101x x f x x x -+=≥+,则( )A .()f x 最小值为12B .()f x 在[]0,1上是增函数C .()f x 的最大值为1D .()f x 无最大值 【答案】AC【分析】分0x =和0x ≠两种情况,把函数转化为()111f x x x=-+,利用对勾函数的性质和基本不等式求函数的最值与值域即可.【解析】()2221111x x xf x x x -+==-++, 当0x =时,()1f x =;当0x >时,()111f x x x=-+,此时()f x 在()0,1是减函数,在[)1,+∞上是增函数, 所以()()min 112f x f ==,故A 正确,B 错误; 当0x >时,12x x+≥,当且仅当1x =时取等号,所以11012x x<≤+,所以11112x x≤-<1+,此时()112f x ≤<,又0x =时,()1f x =,所以()f x 的值域为1,12⎡⎤⎢⎥⎣⎦,故C 正确,D 错误.故选:AC . 16.设函数()21,21,ax x af x x ax x a-<⎧=⎨-+≥⎩,()f x 存在最小值时,实数a 的值可能是( ) A .2B .-1C .0D .1 【答案】BC【分析】分0a =,0a >和0a <三种情况讨论,结合二次函数的性质,从而可得出答案.【解析】解:当x a ≥时,()()222211f x x ax x a a =-+=--+,所以当x a ≥时,()()2min 1f x f a a ==-+,若0a =,则()21,01,0x f x x x -<⎧=⎨+≥⎩,所以此时()min 1f x =-,即()f x 存在最小值, 若0a >,则当x a <时,()1f x ax =-,无最小值, 若0a <,则当x a <时,()1f x ax =-为减函数, 则要使()f x 存在最小值时,则22110a a a ⎧-+≤-⎨<⎩,解得1a ≤-,综上0a =或1a ≤-. 故选:BC.三、填空题17.若函数()22f x x x =-,则()1f 、()1f -、f 之间的大小关系为______.【答案】()()11f f f <<-##()()11f f f ->>【分析】结合二次函数开口和对称轴,判断自变量与对称轴距离,进而判断大小.【解析】因为()()22211f x x x x =---=,因为()f x 开口向上,所以()1f 最小,又()1110,1--=∈,所以()1f f->,所以()()11f f f <<-.故答案为:()()11f f f <<-18.已知函数()23f x x =-,[]1,2x ∈-,实数a ,b 满足()()10f a f b +-=,则()1a b -的最大值为______.【答案】94##214##2.25【分析】依题意可得4a b +=,再根据函数的定义域求出a ,b 的取值范围,则()239124a b a ⎛⎫- ⎪⎭-=-+⎝,[]1,2a ∈,根据二次函数的性质计算可得.【解析】解:∵函数()23f x x =-,[]1,2x ∈-,实数a ,b 满足()()10f a f b +-=, ∴()232130a b -+--=,可得4a b +=,[]1,2a ∈-,[]0,3b ∈,又4b a =-,∴[]1,2a ∈,则()()2391324a b a a a -=-=--⎫ ⎪⎭+⎛⎝,[]1,2a ∈, 所以当32a =时,()max 914a b ⎡⎤⎣⎦-=,即32a =,52b =时,()1a b -取得最大值94. 故答案为:9419.已知函数()3f x x a =-+的增区间是[)2,+∞,则实数a 的值为___________. 【答案】6【分析】去绝对值将()3f x x a =-+转化为分段函数,再根据单调性求解a 的值即可.【解析】因为函数()3,33,3a x a x f x a x a x ⎧-+≤⎪⎪=⎨⎪->⎪⎩,故当3a x ≤时,()f x 单调递减,当3a x >时,()f x 单调递增. 因为函数()3f x x a =-+的增区间是[)2,+∞, 所以23a =,所以6a =. 故答案为:6.20.已知∈a R ,函数()4f x x a a x=+-+在区间[1,4]上的最大值是5,则a 的取值范围是__________【答案】9-,2⎛⎤∞ ⎥⎝⎦【解析】[][]41,4,4,5x x x ∈+∈,分类讨论: ①当5a ≥时,()442f x a x a a x x x=--+=--, 函数的最大值9245,2a a -=∴=,舍去;②当4a ≤时,()445f x x a a x xx=+-+=+≤,此时命题成立; ③当45a <<时,(){}max max 4,5f x a a a a =-+-+⎡⎤⎣⎦,则:4545a a a a a a ⎧-+≥-+⎪⎨-+=⎪⎩或4555a a a aa a ⎧-+<-+⎪⎨-+=⎪⎩,解得:92a =或92a < 综上可得,实数a 的取值范围是9,2⎛⎤-∞ ⎥⎝⎦.【名师点睛】本题利用基本不等式,由[]1,4x ∈,得[]44,5x x+∈,通过对解析式中绝对值符号的处理,进行有效的分类讨论:①5a ≥;②4a ≤;③45a <<,问题的难点在于对分界点的确认及讨论上,属于难题.解题时,应仔细对各种情况逐一进行讨论.四、解答题21.指出下列函数的单调区间: (1)13y x =-; (2)12y x=+; (3)21y x =+; (4)21y x x =-+-.【答案】(1)单调递减区间为()-∞+∞,,没有单调递增区间;(2)单调递减区间为()0-∞,和()0+∞,,没有单调递增区间;(3)单调递减区间为()0-∞,,单调递增区间为()0+∞,;(4)单调递减区间为12⎛⎫+∞ ⎪⎝⎭,,单调递增区间为12⎛⎫-∞ ⎪⎝⎭,. 【分析】(1)根据一次函数的单调性,由30-<,可得出函数的单调区间; (2)根据反比例函数的单调性可得出函数的单调区间; (3)由二次函数的图象和其对称轴可得出函数的单调区间; (4)由二次函数的图象和其对称轴可得出函数的单调区间.【解析】解:(1)函数13y x =-的定义域为()-∞+∞,,因为30-<,所以13y x =-在()-∞+∞,上单调递减,所以13y x =-单调递减区间为()-∞+∞,,没有单调递增区间; (2)函数12y x=+的定义域为()()00-∞∞,,+,因反比例函数1y x=在()0-∞,和()0+∞,上单调递减,所以12y x=+单调递减区间为()0-∞,和()0+∞,,没有单调递增区间; (3)因为函数21y x =+的定义域为()-∞+∞,,它的图象是开口向上的抛物线,对称轴为0x =,所以21y x =+的单调递减区间为()0-∞,,单调递增区间为()0+∞,; (4)函数21y x x =-+-的定义域为()-∞+∞,,它的图象是开口向下的抛物线,对称轴为12x =,所以21y x x =-+-的单调递减区间为12⎛⎫+∞ ⎪⎝⎭,,单调递增区间为12⎛⎫-∞ ⎪⎝⎭,. 22.(1)在定义域[],a b 上单调递减的函数()f x ,最大值是多少? (2)若()f x 在[],a u 上单调递减而在[],u b 上单调递增,最小值是多少? 【答案】(1)()()max f x f a =;(2)()()min f x f u =. 【分析】(1)根据单调递减函数的性质进行求解即可;(2)根据函数的单调性进行求解即可.【解析】(1)因为()f x 是定义域[],a b 上单调递减的函数, 所以()()max f x f a =;(2)因为()f x 在[],a u 上单调递减而在[],u b 上单调递增, 所以()()min f x f u =.23.设a 为实数,已知函数()y f x =在定义域R 上是减函数,且(1)(2)f a f a +>,求a 的取值范围. 【答案】()1,+∞【分析】直接根据函数的单调性可得12a a +<,从而可得出答案.【解析】解:因为函数()y f x =在定义域R 上是减函数,且(1)(2)f a f a +>, 所以12a a +<,解得1a >, 所以a 的取值范围()1,+∞. 24.已知函数f (x )=12x x ++,证明函数在(-2,+∞)上单调递增. 【答案】证明见解析.【分析】∀x 1,x 2∈(-2,+∞),利用作差法和0比可得函数值大小进而可证得. 【解析】证明:∀x 1,x 2∈(-2,+∞),且x 1>x 2>-2, f (x )=11122x x x +=-++ 则f (x 1)-f (x 2)=212x -+112x + =1212-(2)(2)x x x x ++,因为x 1>x 2>-2,所以x 1-x 2>0,x 1+2>0,x 2+2>0,所以1212-(2)(2)x x x x ++>0,所以f (x 1)>f (x 2),所以f (x )在(-2,+∞)上单调递增.25.设函数()f x 的定义域为()4,5-,如果()f x 在()4,0-上是减函数,在()0,5上也是减函数,能不能断定它在()4,5-上是减函数?如果()f x 在()4,0-上是增函数,在[)0,5上也是增函数,能不能断定它在()4,5-上是增函数? 【答案】见解析【分析】根据反例可判断两个结论的正误.【解析】取()3,405,05x x f x x x -+-<≤⎧=⎨-<<⎩,则()f x 在()4,-0上是减函数,在()0,5上也是减函数, 但()()0.2 3.2,0.01 4.99f f -==,()()0.20.01f f -<, 因此不能断定()f x 在()4,5-上是减函数. 若取()5,403,05x x f x x x +-<<⎧=⎨+≤<⎩,则()f x 在()4,-0上是增函数,在[)0,5上也是增函数,但()()0.2 4.8,0.01 3.01f f -==,()()0.20.01f f ->, 因此不能断定()f x 在()4,5-上是增函数.26.已知函数f (x )=[](],0,24,2,4x x x x ⎧∈⎪⎨∈⎪⎩;(1)在图中画出函数f (x )的大致图象.(2)写出函数f (x )的单调递减区间. 【答案】(1)答案见解析;(2)[2,4].【分析】(1)根据分段函数的解析式可画出图象; (2)根据图象观察可得答案.【解析】(1)函数f (x )的大致图象如图所示.(2)由函数f (x )的图象得出,函数的单调递减区间为[2,4].27.函数()f x ,()(),,x a b b c ∈⋃的图像如图所示,有三位同学对此函数的单调性作出如下的判断:甲说函数()f x 在定义域上是增函数;乙说函数()f x 在定义域上不是增函数,但有增区间;丙说函数()f x 的增区间有两个,分别为(),a b 和(),b c .请你判断他们的说法是否正确. 【答案】甲的说法是错误的;乙的说法是正确的,丙的说法是正确的.【分析】根据函数图象,应用数形结合的思想直接判断甲、乙、丙说法的正误. 【解析】甲的说法是不正确的,乙的说法是正确的,丙的说法是正确的.若取120x b x c <<<<(如上图),则12y y >,与甲的说法矛盾, 故甲的说法是错误的;由甲的说法的错误可知:乙的说法是正确的,这两个增区间分别是(),a b 和(),b c , ∴丙的说法是正确的.28.画出函数2()1f x x x =-++(11x -剟)的图象,并根据图象回答下列问题: (1)当12112x x -<剟时,比较()1f x 与()2f x 的大小; (2)是否存在0[1,1]x ∈-,使得()0 2f x =-? 【答案】(1)()1f x <()2f x ;(2)不存在.【分析】(1)根据图象得到函数的单调性,即得解; (2)根据函数的最小值判断得解. 【解析】(1)函数的图象如图所示,当12112x x -<剟时,由于函数单调递增,所以()1f x <()2f x ; (2)由图得当1x =-时,函数取到最小值1-, 所以不存在0[1,1]x ∈-,使得()0 2f x =-.29.若二次函数满足f (x +1)-f (x )=2x 且f (0)=1. (1)求f (x )的解析式;(2)若在区间[-1,1]上不等式f (x )>2x +m 恒成立,求实数m 的取值范围. 【答案】(1)f (x )=x 2-x +1;(2)m <-1.【分析】(1)设f (x )=ax 2+bx +c (a ≠0),则由f (0)=1可求出c ,由f (x +1)-f (x )=2x 可求出,a b ,从而可求出函数的解析式,(2)将问题转化为x 2-3x +1-m >0在[-1,1]上恒成立,构造函数g (x )=x 2-3x +1-m ,然后利用二次函数的性质求出其最小值,使其最小值大于零即可求出实数m 的取值范围【解析】(1)设f (x )=ax 2+bx +c (a ≠0),由f (0)=1, ∴c =1,∴f (x )=ax 2+bx +1. ∵f (x +1)-f (x )=2x ,∴2ax +a +b =2x ,∴220a a b =⎧⎨+=⎩,∴11a b =⎧⎨=-⎩,∴f (x )=x 2-x +1.(2)由题意:x 2-x +1>2x +m 在[-1,1]上恒成立,即x 2-3x +1-m >0在[-1,1]上恒成立.令g (x )=x 2-3x +1-m =3()2x -2-54-m ,其对称轴为x =32, ∴g (x )在区间[-1,1]上是减函数,∴g (x )min =g (1)=1-3+1-m >0, ∴m <-1.30.已知函数()()a f x x a R x=+∈(1)当1a =,证明函数在()0,1上单调递减;(2)当1,32x ⎡⎤∈⎢⎥⎣⎦时,()371,12f x ⎡⎤∈⎢⎥⎣⎦,求a 的值. 【答案】(1)证明见解析 (2)14a =【分析】(1)利用证明函数单调性的定义()12,0,1x x ∀∈,由1201x x <<<,()()120f x f x ->,可证明函数在()0,1上单调递减.(2)通过讨论参数a ,分别求出0a =,0a <,0a >时()f x 的值即可. (1)证明:若1a =,则()1f x x x=+()12,0,1x x ∀∈,1201x x <<<()()12121212121111f x f x x x x x x x x x -=+--=-+- ()()1212211212121x x x x x x x x x x x x ---=-+= 当()120,1x x ∈时,1201x x <<,所以()()12121210x x x x x x -->所以,函数在()0,1上单调递减. (2)①当0a =时,()f x x =,不满足条件;②当0a <时,易知函数()f x 在定义域内单调递增,则满足:112f ⎛⎫= ⎪⎝⎭,()37312f =联立()11237312f f ⎧⎛⎫= ⎪⎪⎪⎝⎭⎨⎪=⎪⎩,即11122373312a a ⎧+=⎪⎪⎨⎪+=⎪⎩解得14136a a ⎧=⎪⎪⎨⎪=⎪⎩,不满足条件;③当0a >时,令120x x <<<()()()()121212121212x x a a af x f x x x x x x x x x --=+--=- 所以()()12f x f x >,函数在(上单调递减;同理可证,函数在)+∞上单调递增, 所以,函数()f x最小值应在x =当102<时,函数()f x 在1,32x ⎡⎤∈⎢⎥⎣⎦的最小值为12f ⎛⎫⎪⎝⎭,所以112f ⎛⎫= ⎪⎝⎭,解得14a =,符合条件;当3<函数()f x 在1,32x ⎡⎤∈⎢⎥⎣⎦的最小值为()3f ,所以()31f =,解得6a =-,不符合条件;当132≤时,函数()f x 在1,32x ⎡⎤∈⎢⎥⎣⎦的最小值为f,所以1f =,解得:14a =,不符合条件; 综上,14a =.31.已知函数()f x 的定义域是(0,)+∞,对定义域的任意12,x x 都有1212()()()f x x f x f x =+,且当1x >时,()0f x >,(4)1f =;(1)求证:1()()f x f x =-;(2)试判断()f x 在(0,)+∞的单调性并用定义证明你的结论; (3)解不等式1(1)(1)2f x f x -++<- 【答案】(1)证明见解析 (2)增函数;证明见解析(3)【分析】(1)使用赋值法,先令121x x ==求得(1)f ,然后再令121,x x x x==可证;(2)先设120x x >>,然后用21x 代换1212()()()f x x f x f x =+中的2x ,结合1x >时,()0f x >可证;(3)先用赋值法求得11()22f =-,然后将不等式转化为21(1)()2f x f -<,利用单调性去掉函数符号,结合定义域可解. (1)令121x x ==,得(1)(1)(1)f f f =+,解得(1)0f = 再令121,x x x x ==,则1()()(1)0f x f f x+== 所以1()()f x f x =- (2)()f x 在(0,)+∞上为增函数,证明如下:设120x x >>,则121x x >,因为1x >时,()0f x > 所以11221()()()0xf x f f x x +=>由(1)知221()()f x f x =- 所以1221()()()f x f f x x >-= 所以()f x 在(0,)+∞上为增函数.(3)因为(4)1f =,所以(2)(2)(4)1f f f +==,得1(2)2f =, 又因为11(2)()22f f =-=, 所以11()22f =-, 所以1(1)(1)2f x f x -++<-⇔21(1)()21010f x f x x ⎧-<⎪⎪->⎨⎪+>⎪⎩由上可知,()f x 是定义在(0,)+∞上为增函数所以,原不等式⇔21121010x x x ⎧-<⎪⎪->⎨⎪+>⎪⎩,解得1x <<. 32.已知函数ty x x=+有如下性质:若常数0t >,则该函数在(上单调递减,在)+∞上单调递增.(1)已知()2412321--=+x x f x x ,[]0,1x ∈,利用上述性质,求函数()f x 的单调区间和值域; (2)对于(1)中的函数()f x 和函数()2g x x a =--,[]0,1x ∈,若对任意[]10,1x ∈,总存在[]20,1x ∈,使得()()21g x f x =成立,求实数a 的值.【答案】(1)()f x 的单调递减区间为10,2⎡⎤⎢⎥⎣⎦,单调递增区间为1,12⎡⎤⎢⎥⎣⎦,值域为[]4,3--. (2)32a =【分析】(1)令21t x =+,[]1,3t ∈,将()f x 化为()48h t t t =+-,由对勾函数的单调性可得()f x 的单调区间和值域(2)由题意可得()f x 的值域是()g x 的值域的子集,结合(1)的值域和一次函数的单调性可得()g x 的值域,可得a 的不等式,解不等式可得所求范围 (1)()2412342182121x x y f x x x x --===++-++. 设21u x =+,[]0,1x ∈,则48y u u =+-,[]1,3u ∈.由已知性质,得当12u ≤≤,即102x ≤≤时,()f x 单调递减,所以()f x 的单调递减区间为10,2⎡⎤⎢⎥⎣⎦; 当23u ≤≤,即112x ≤≤时,()f x 单调递增,所以()f x 的单调递增区间为1,12⎡⎤⎢⎥⎣⎦. 由()03f =-,142f ⎛⎫=- ⎪⎝⎭,()1113f =-,得()f x 的值域为[]4,3--. (2)因为()2g x x a =--在[]0,1上单调递减, 所以()[]12,2g x a a ∈---.由题意,得()f x 的值域是()g x 的值域的子集, 所以12423a a --≤-⎧⎨-≥-⎩,所以32a =.。
高一上数学集合综合复习题

高一上数学集合综合复习题一、单项选择题1.下列四个关系中,正确的是( )A.∅∈{a}B.a ⊆{a}C.{a}∈{a,b,c}D.a ∈{a,b}2.“x >6”是“x >9”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.若全集U ={1,2,3,4,5,6},子集A ={1,3},B ={2,3,4,5},则A∪∪UB =( )A.{1,6}B.{1,3}C.{1,3,6}D.{1,3,4,6}4.下列表示错误的是( )A.-2∪RB.3∈NC.12∪QD.π∈Q5.下列说法正确的是()A.0∈∅B.{0}=∅C.∅⊆{0}D.{0}∈∅6.若集合A={x|x2=16},B={-4,4},则A与B的关系是()A.A∈BB.A/⊂BC.A=BD.无法确定7.设全集U={0,1,2,3,4,5,6,7,8,9},A={1,2,3,4,x},且UA={0,6,7,8,9},则x等于()A.5B.0或5C.6D.08.若不等式|x|<2和x2-2x-3<0的解集分别为A,B,则A∪B等于()A.(-2,3)B.(-2,1)C.(-1,2)D.(-2,2)9.用描述法表示集合M={-1,0,1,2}为()A.M={x|x>-1}B.M={x|-2<x<3,x∪Z}C.M={x|x<2}D.M={x|-1<x<2}10.集合{x-1,x2-1,2}中的x不能取的值是()A.2B.3C.4D.511.集合{(x,y)|x=1,y=0)表示()A.1和0的集合B.点(1,0)的集合C.直线x=1上所有点的集合D.y=0的所有点的集合12.U={1,2,3,4,5},A={3,4,5},则U A=()A.{3,4,5}B.{1,2}C.{1或2}D.{1,2,3,4,5}13.已知集合A={-1,0,1},集合B={x|x<3,x∈N},则A∩B等于()A.{-1,0,1,2}B.{-1,1,2,3}C.{0,1,2}D.{0,1}14.设全集U=R,A={x|2x-4>0},则∁UA等于()A.{x|x>2}B.{x|x≥2}C.{x|x<2}D.{x|x≤2}15.已知集合A={x|2x+px+q=0}且-2∪A,1∪A,则p,q的值分别为()A.1,2B.1,-2C.D.{-1,4}16.“a=2”是“直线ax+2y-1=0与x+(a-1)y+2=0互相平行”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件17.“a+b=2”是“a,b是方程x2-2x-15=0的两根”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件18.集合M={x|x<3.14},则下面式子正确的是()A.e∈AB.e∉AC.e⊆AD.{e}⊇A19.设集合A={(x,y)|2x+y=6},B={(x,y)|x+3y=3},则A∩B等于()A.{(3,0)}B.{-3,0}C.{(-3,0)}D.{3,0}20.已知集合S={a,b,c}中的三个元素是△ABC的三边长,则△ABC一定不是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形二、填空题21.设全集U=R,集合A={x|x≤-3},则UA=.22.集合中元素的三个特性是、、.23.已知集合A={2,3,4,5},A∩B={2},A∪B={2,3,4,5,6},则B=.24.给定集合A 、B ,定义一种运算⊗,A ⊗B ={m |m =x -y ,x∪A ,y∪B},若A ={4,5},B ={1,2},则A ⊗B 构成的集合是 .25.用列举法表示集合A =6|2x x ∈⎧⎫∈⎨⎬-⎩⎭Z N = .26.若集合A ={x|x2-x -6=0},B ={x|x2+2x =0},则A∪B = .27.试写出|x|>x 的一个充要条件: .28.“x =2”是“x2-4=0”的 条件.三、解答题29.已知集合A ={2,4,6},且6-a∪A ,求a 的值.30.求命题“集合{x |ax2+4x +2=0}只含有一个元素”的充要条件.31.用适当的方法表示下列集合:(1)方程x2+x -6=0的解集;(2)方程组⎩⎪⎨⎪⎧4x +3y =25,3x -4y =0的解集; (3)不大于3的正实数构成的集合.32.用列举法表示下列集合:(1)A ={||1|2*}x x x N -<∈;(2)B =.33.若集合A ={x|x2-2x -8<0},B ={x|x -m <0},且A∩B =,求实数m 的取值范围.答案一、单项选择题1.D{(,)|1,,}x y y x x N y N =-∈∈∅2.B 【解析】∪x>6不能推出x>9,而x>9必然推出x>6,∪选B.3.C4.D5.C 【解析】∅是任意集合的子集.6.C7.A8.A 【提示】A :-2<x<2,B :(x -3)(x +1)<0,解得-1<x<3,∴A ∪B :-2<x<3.9.B 【提示】由集合中描述法的概念知M ={x|-2<x <3,x∪Z},故选B.10.B11.B12.B 【提示】U A 的元素由U 中不属于A 的元素组成,U A ={1,2},故答案选B.13.D14.D15.B 【提示】分别将-2,1代入集合中的方程组得42010p q p q -+=⎧⎨++=⎩,解方程组得p =1,q =-2,故答案选B.16.A17.B 【提示】方程x2-2x -15=0的两根为5和-3,即a +b =2,但a +b =2推不出a ,b 为方程x2-2x -15=0的两个根,故为必要不充分条件.18.A19.A 【提示】联立⎩⎪⎨⎪⎧2x +y =6,x +3y =3, 解得⎩⎪⎨⎪⎧x =3,y =0, 故选A.20.D二、填空题21.{x|x>-3}22.确定性、无序性、互异性【提示】集合元素的基本特性.23.{2,6}24.{2,3,4}25.{-3,-6,6,3,2,1}26.{3,-2,0}27.x<028.充分不必要【提示】 当x2-4=0时,x =2或x =-2.三、解答题29.解:∪6-a∪A ,∴a 的值为4,2,0.30.解:对于方程ax2+4x +2=0,当a =0时,4x +2=0,x =-12,即{x |ax2+4x +2=0}=12⎧⎫-⎨⎬⎩⎭;当a≠0时,{x |ax2+4x +2=0}只有一个元素,即方程ax2+4x +2=0只有一个解,则Δ=42-4×2×a =16-8a =0,即a =2,综上,集合{x |ax2+4x +2=0}只含有一个元素的充要条件为a =0或a =2.31.(1){-3,2} (2){(4,3)} (3){x|0<x≤3}32.解:(1)A ={1,2}.(2)B ={(0,1),(1,0)}33.解:由题意知A=(-2,4),B={x|x<m},又∪A∩B= ,∴m≤-2.。
高一必修一数学期末复习题及答案

高一数学期末复习(必修一)一、选择题:本大题10小题,每小题5分,满分50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、已知全集I ={0,1,2,3,4},集合{1,2,3}M =,{0,3,4}N =,则()I C M N 等于 ( )A.{0,4}B.{3,4}C.{1,2}D. ∅2、设集合2{650}M x x x =-+=,2{50}N x x x =-=,则M N 等于( )A.{0}B.{0,5}C.{0,1,5}D.{0,-1,-5}3、计算:9823log log ⋅=( )A 12B 10C 8D 64、函数2(01)x y a a a =+>≠且图象一定过点 ( ) X|k | b| 1 . c|o |mA (0,1)B (0,3)C (1,0)D (3,0)5、“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…用S 1、S 2分别表示乌龟和兔子所行的路程,t 为时间,则与故事情节相吻合是 ( )6、函数y =的定义域是( )A {x |x >0}B {x |x ≥1}C {x |x ≤1}D {x |0<x ≤1}7、把函数x1y -=的图象向左平移1个单位,再向上平移2个单位后,所得函数的解析式应为 ( ) A 1x 3x 2y --=B 1x 1x 2y ---=C 1x 1x 2y ++=D 1x 3x 2y ++-= 8、设x x e 1e )x (g 1x 1x lg )x (f +=-+=,,则 ( ) A f(x)与g(x)都是奇函数 B f(x)是奇函数,g(x)是偶函数C f(x)与g(x)都是偶函数D f(x)是偶函数,g(x)是奇函数9、使得函数2x 21x ln )x (f -+=有零点的一个区间是 ( ) A (0,1) B (1,2) C (2,3) D (3,4)10、若0.52a =,πlog 3b =,2log 0.5c =,则( )A a b c >>B b a c >>C c a b >>D b c a >> 二、填空题:本大题共4小题,每小题5分,满分20分11、函数5()2log (3)f x x =++在区间[-2,2]上的值域是______12、计算:2391- ⎪⎭⎫ ⎝⎛+3264=______ 13、函数212log (45)y x x =--的递减区间为______14、函数122x )x (f x -+=的定义域是______ 三、解答题 :共5小题,满分80分。
高一数学期末复习资料(1-5)总复习题(共5套)

期末复习资料之一 必修1 复习题一、选择题1、 下列函数中,在区间()0,+∞不是增函数的是( ) A.xy 2= B. x y lg = C. 3x y = D. 1y x=2、函数y =log 2x +3(x≥1)的值域是( )A.[)+∞,2B.(3,+∞)C.[)+∞,3D.(-∞,+∞)3、若{|2},{|xM y y P y y ====,则M∩P ( )A.{|1}y y >B. {|1}y y ≥C. {|0}y y >D. {|0}y y ≥ 4、对数式2log (5)a b a -=-中,实数a 的取值范围是( )A.a>5,或a<2B.2<a<5C.2<a<3,或3<a<5D.3<a<45、 已知xax f -=)( )10(≠>a a 且,且)3()2(->-f f ,则a 的取值范围是( )A. 0>aB. 1>aC. 1<aD. 10<<a6、函数y =(a 2-1)x在(-∞,+∞)上是减函数,则a 的取值范围是( ) A.|a |>1 B.|a |>2C.a>2D.1<|a |<26、函数)1(log 221-=x y 的定义域为( )A 、[)(]2,11,2 -- B 、)2,1()1,2( -- C 、[)(]2,11,2 -- D 、)2,1()1,2( --8、值域是(0,+∞)的函数是( )A 、125xy -=B 、113xy -⎛⎫= ⎪⎝⎭C、yD9、函数|log |)(21x x f =的单调递增区间是A 、]21,0( B 、]1,0( C 、(0,+∞) D 、),1[+∞10、图中曲线分别表示l g a y o x =,l g b y o x =,l g c y o x =,l g d y o x =的图象,,,,a b c d 的关系是( )A 、0<a<b<1<d<cB 、0<b<a<1<c<dC 、0<d<c<1<a<bD 、0<c<d<1<a<b11、函数f(x)=log 31(5-4x-x 2)的单调减区间为( )A.(-∞,-2)B.[-2,+∞]C.(-5,-2)D.[-2,1]12、a=log 0.50.6,b=log 20.5,c=log 35,则( )A.a <b <cB.b <a <cC.a <c <bD.c <a <b13、已知)2(log ax y a -=在[0,1]上是x 的减函数,则a 的取值范围是( )A.(0,1)B.(1,2)C.(0,2)D.[2,+∞]14、设函数1lg )1()(+=x x f x f ,则f(10)值为( )A .1 B.-1 C.10 D.101 二、填空题 15、函数)1(log 21-=x y 的定义域为 16、.函数y =2||1x -的值域为________ 17、将(61)0,2,log 221,log 0.523由小到大排顺序:x18. 设函数()()()()4242xx f x x f x ⎧≥⎪=⎨<+⎪⎩,则()2log 3f =19、计算机的成本不断降低,如果每隔5年计算机的价格降低31,现在价格为8100元的计算机,15年后的价格可降为20、函数),2[log +∞=在x y a 上恒有|y|>1,则a 的取值范围是 。
高一数学试题库

高一数学试题库一、选择题1. 根据函数f(x) = x^2 + 3x - 4,求f(2)的值。
a) -3b) -2c) 1d) 82. 已知三角形ABC中,角A的余角的两倍等于角B的补角,且角C为直角。
若AB = 5 cm,BC = 12 cm,则AC的长度为多少?a) 13 cmb) 17 cmc) 19 cmd) 25 cm3. 若a + b = 7,a^2 + b^2 = 25,则a^3 + b^3的值为多少?a) 52b) 180c) 252d) 302二、填空题1. 若a,b均为正整数,且a + b = 10,则a和b的乘积的最大值为___________。
2. 在等差数列-3, 0, 3, 6, ..., 597中,求共有___________项。
3. 若a,b,c满足2a + b + c = 8,a + 3b + 6c = 26,则a + 2b + 3c的值为___________。
三、解答题1. 某商品原价为200元,现在打折促销,打八折出售。
若小明使用100元买下该商品后还找到了零钱,假设找零钱最少,请问找零多少元?2. 若函数f(x) = 3x - 5与g(x) = 2x + k有且只有一个公共解,求k的值。
3. 求方程x^2 - 7x + 12 = 0的两个根之和和两个根的乘积。
四、应用题1. 甲、乙、丙三人共抓了100只鸟,甲抓的鸟数是乙的一半,乙抓的鸟数是丙的一半。
如果甲、乙、丙三人每人抓了多少只鸟?2. 电脑游戏厅有多个游戏机器,其中1/3的游戏机器是街机,其余的都是电玩。
若电玩机器的台数是街机的4倍,求电脑游戏厅共有多少台游戏机器?3. 甲、乙两人合作种植兰花,甲的工作效率是乙的1.5倍,如果两人合作12天后完成了任务,甲独立完成任务需要多少天?以上为高一数学试题库的一部分,希望可以帮助到你的学习和复习。
请根据题目要求进行选择、填空或解答,并核对你的答案。
祝你学业进步!。
高一数学上册期末复习题及详细解答

高一数学期末复习测试题一姓名: 班级:一、选择题: 本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、若),1,3(),2,1(-==b a 则=-b a 2 ( )A 、 )3,5(B 、 )1,5(C 、 )3,1(-D 、 )3,5(-- 2.在单位圆中,面积为1的扇形所对的圆心角为( )弧度。
A 、 1B 、 2C 、3 D. 43、如图是函数f (x)sin(x )=+ϕ一个周期内的图像,则ϕ可能等于 ( ) A 、 56π B 、C 、 6π- D 、6π 4.化简结果是( )A B 、 C 、-5、 已知函数f (x)sin(x )cos(x )=+ϕ++ϕ为奇函数,则ϕ的一个取值为( ) A 、0 B 、2πC 、4π- D 、π6.把函数742++=x x y 的图像按向量a 经过一次平移以后得到2x y =的图像,则a 是A 、 )3,2(-B 、 )3,2(-C 、 )3,2(--D 、 )3,2(7.设),6,2(),3,4(21--P P 且P 在21P P 的延长线上,=则点P 的坐标是A 、)15,8(-B 、 (0,3)C 、)415,21(- D 、)23,1( 8.函数44f (x)sin(x)sin(x)ππ=+-是( )A 、周期为2π的奇函数B 、周期为2π的偶函数C 、周期为π的奇函数D 、周期为π的偶函数 9. 若为则ABC AB BC AB ∆=+•,02( )A 、直角三角形B 、钝角三角形C 、锐角三角形D 、等腰直角三角形 10.稳定房价是我国今年实施宏观调控的重点,国家最近出台的一系列政策已对各地的房地产市场产生了影响,温州市某房地产介绍所对本市一楼群在今年的房价作了统计与预测:发现每个季度的平均单价y (每平方面积的价格,单位为元)与第x 季度之间近似满足:y 500sin(x )9500(0)=ω+ϕ+ω>,已知第一、二季度平均单价如右表所示: 则此楼群在第三季度的平均单价大约是( )元A 、 10000B 、 9500C 、9000D 、8500二、填空题:本大题共6小题,每小题4分,满分24分.把答案填在题中横线上. 11、已知113a (,2sin ),b (cos ,),a 322=α=α且∥b ,则锐角α的值为 ; 12、m,n a 2m a n,|a |=⊥=设是两个单位向量,向量-n ,则 ; 13、函数y cos 2x 4cos x,x [,]32ππ=-∈-的值域是 ; 14、在三角形ABC 中,设a =AB ,b =AC ,点D 在线段BC 上,且DC BD 3=,则AD 用b ,a 表示为 ;15、已知偶函数f (x)2sin(x )(0,0)=ω+ϕω><ϕ<π的最小正周期是π,则f(x)的单调递减区间为 ; 16、下列命题:①若c a c b b a =⋅=⋅,则 ②若a 与b 是共线向量,b 与c 是共线向量,则a 与c 是共线向量:-=+,则0=⋅b a ④若a 与b 是单位向量,则1=⋅b a 其中真命题的序号为 。
高一上期数学(必修1+必修4)期末复习培优专题卷附详解

高一上期数学(必修1+必修4)期末复习培优专题卷附详解高一上学期数学(必修1+必修4)期末复培优专题卷一.选择题1.已知定义域为实数集的函数f(x)的图像经过点(1,1),且对任意实数x1<x2,都有f(x1)≤f(x2),则不等式的解集为()。
A。
(-∞,1)∪(1,+∞) B。
(-∞,+∞)C。
(1,+∞) D。
(-∞,1)2.对任意x∈[0,2π],任意y∈(-∞,+∞),不等式-2cosx≥asinx-x恒成立,则实数a的取值范围是()。
A。
[-3,3] B。
[-2,3] C。
[-2,2] D。
[-3,2]3.定义在实数集上的偶函数f(x)满足f(2-x)=f(x),且当x∈[1,2]时,f(x)=lnx-x+1,若函数g(x)=f(x)+mx有7个零点,则实数m的取值范围为()。
A。
(-∞,-1/2) B。
(-∞,0)C。
(-1,+∞) D。
(0,+∞)4.定义在实数集上的函数y=f(x)为减函数,且函数y=f (x-1)的图像关于点(1,0)对称,若f(x-2x)+f(2b-b)≤0,且-2≤x≤2,则x-b的取值范围是()。
A。
[-2,0] B。
[-2,2] C。
[0,2] D。
[0,4]5.设函数f(x)=x^2-2x+1,当x∈[-1,1]时,恒有f(x+a)<f(x),则实数a的取值范围是()。
A。
(-∞,-1) B。
(-1,+∞)C。
(-∞,1) D。
(-∞,-2)6.定义域为实数集的函数f(x)满足f(x+2)=2f(x),当x∈[0,2)时,f(x)=x^2-x,若当x∈[-4,-2)时,不等式f(x)≥-t+2恒成立,则实数t的取值范围是()。
A。
[2,3] B。
[1,3] C。
[1,4] D。
[2,4]7.已知函数f(x)的定义域为D,若对于∀a,b,c∈D,f(a),f(b),f(c)分别为某个三角形的三边长,则称f (x)为“三角形函数”.给出下列四个函数:①f(x)=lg(x+1)(x>0);②f(x)=4-cosx;③f(x)=|sinx|;④f(x)=|x|+1.其中为“三角形函数”的个数是()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学复习题一、选择题1.已知在△ABC 中,sin A ∶sin B ∶sin C =3∶5∶7,那么这个三角形的最大角是 ( ) A .135° B .90° C .120° D .150° 2.海上有A 、B 两个小岛相距10 nmile ,从A 岛望B 岛和C 岛成60°的视角,从B 岛望A 岛和C 岛成75°角的视角,则B 、C 间的距离是 ( )A.5 2 nmileB.10 3 nmileC. 1036 nmile D.5 6 nmile3.等差数列{}n a 中,10120S =,那么110a a += ( ) A. 12 B. 24 C. 36 D. 484.某工厂的年产值第二年比第一年的增长率为p 1,第三年比第二年的增长率是p 2,而这两年中的年平均增长率为p ,在p 1+p 2为定值的情况下,p 的最大值是 ( ) A.21p pB.221p p + C.221ppD.)1)(1(21p p ++5.已知不等式250ax x b -+>的解集是{|32}x x -<<-,则不等式250bx x a -+>的解是( )A 32x x <->-或B 12x <-或13x >- C 1123x -<<- D 32x -<<- 6.直角三角形三边成等比数列,公比为q ,则2q 的值为 ( )A .2 B.215- C.215+ D.215± 7.如果点p (5,b )在平行直线6810x y -+=和 3450x y -+= 之间,则 b 应取值的整数值为( )A. 5B. -5C. 4 D . -48.变量x , y 满足约束条件⎪⎩⎪⎨⎧≤-+≥≤+-07102y x x y x 则x y 的取值范围为 ( )A .[6,59] B .),6[]59,(+∞-∞C .[3,6]D .),6[]3,(+∞-∞9.正项等比数列{a n }的首项a 1=2-5,其前11项的几何平均数为25,若前11项中抽取一项后的几何平均数仍是25,则抽去一项的项数为 ( ) A.6 B.7 C.9 D.11 10.设点⎩⎨⎧-+≤+≥≥),(20,0),(b a b a y x y x b a 内,则点在区域所在的区域的面积为 ( )A 、1B 、2C 、4D 、8二、填空题11.ΔABC 中,若C A C B A sin sin sin sin sin 222=+-那么角B=___________ 12.不等式1-x ax<1的解集为{x |x <1或x >2},那么a 的值为__________. 13.两个等差数列{}n a 和{}n b 的前n 项和分别为n S 和n T ,若337++=n n T S n n ,则88ab = . 14.已知直线l 经过点(12,2),其横截距与纵截距分别为a 、b (a 、b 均为正数),则使a +b ≥c 恒成立的c 的取值范围为________.15. 如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E ,F ,且EF =22,则下列结论中错误的是________. ①AC ⊥BE②EF ∥平面ABCD③三棱锥A -BEF 的体积为定值 ④异面直线AE ,BF 所成的角为定值 三、解答题(共6道大题) 16.已知数列{}n a 是等差数列,且12a =,12312a a a ++=.C(1)求数列{}n a 的通项公式及前n 项和n S ; (2)求123101111S S S S ++++的值.17.已知方程2(cos )cos 0x b B x a A -+=的两根之积等于两根之和,其中a 、b 为ABC ∆的两边,A 、B 为两内角,试判断这个三角形的形状。
18如图,公园有一块边长为2的等边△ABC 的边角地,现修成草坪,图中DE 把草坪分成面积相等的两部分,D 在AB 上,E 在AC 上.(1)设AD =x (x≥0),ED =y ,求用x 表示y 的函数关系式;(2)如果DE 是灌溉水管,为节约成本,希望它最短,DE 的位置应在哪里?如果DE 是参观线路,则希望它最长,DE 的位置又应在哪里?请予证明19.解关于x 的不等式2)1(--x x a >1(a ≠1)20.央视为改版后的《非常6+1》栏目播放两套宣传片.其中宣传片甲播映时间为3分30秒,广告时间为30秒,收视观众为60万,宣传片乙播映时间为1分钟,广告时间为1分钟,收视观众为20万.广告公司规定每周至少有3.5分钟广告,而电视台每周只能为该栏目宣传片提供不多于16分钟的节目时间.电视台每周应播映两套宣传片各多少次,才能使得收视观众最多?21.已知数列3021,,,a a a ,其中1021,,,a a a 是首项为1,公差为1的等差数列;201110,,,a a a 是公差为d 的等差数列;302120,,,a a a 是公差为2d 的等差数列(0≠d ). (1)若4020=a ,求d ;(2)试写出30a 关于d 的关系式,并求102030a a a ++的取值范围;(3)续写已知数列,使得403130,,,a a a 是公差为3d 的等差数列,……,依次类推,把已知数列推广为无穷数列. 提出同(2)类似的问题((2)应当作为特例),并进行研究,你能得到什么样的结论?参考答案:一、选择题 1、 C2.D 提示:由题意A=600,B=750,C=450,由正弦定理0060sin 45sin 10BC=,∴BC=5 6 . 3、B4、B 提示:设第一年产值为a ,则第三年产值为a (1+p 1)(1+p 2)=a (1+p )2.∴1+p =)1)(1(21p p ++≤2)1()1(21p p +++=1+221p p +。
∴p ≤221p p +。
5、C6、D7.C 提示:由图像知直线3450x y -+=在直线6810x y -+=左上方,要使点p (5,b )在平行直线6810x y -+=和 3450x y -+= 之间,需点p (5,b )同时满足6810x y -+<和3450x y -+>,解得3158b <<,故整数值为4。
8.A 9.A 提示:(a 111·q1+2+…+10)111=25⇒q 55=2110⇒q =4.抽取一项后,(a 101·q x )101=25⇒q x =2100⇒x =50。
抽出的项的q 的指数为5,故是第6项。
10.二、填空题 11、3π 12、21提示:原不等式等价于[(a -1)x +1](x -1)<0,所以x =2是方程(a -1)x +1=0的根. 13、6 提示:88a b =15151511518822T S b b a a b a =++==6. 14、(-∞,92]设直线方程为x a +y b =1,∴12a +2b =1,a +b =(a +b )·(12a +2b )=52+b 2a +2a b ≥92,故c ≤92.15、④三、解答题 16、解:(1)由题意知:1232312a a a a ++== ,24a =,212d a a =-=数列{}n a 的通项公式为:1(1)22(1)2n a a n d n n =+-=+-= 数列{}n a 的前n 项和为:1()(22)(1)22n n n a a n n S n n ++===+。
(2)1111(1)1n S n n n n ==-++∴123101111S S S S ++++1111111(1)()()()223341011=-+-+-++- =1-111=101117、解: 法一(化边) 由题意得:x 1+x 2= bcosB, x 1.x 2=a cosA,∴bcosB=a cosA,由余弦定理得:b ac b c a 2222-+=a bca cb 2222-+,∴2a c 2-4a -b 2c 2+b 4=0⇒c 2(2a -b 2)=( 2a +b 2)( 2a -b 2),∴(2a -b 2)(c 2-2a - b 2)=0⇒2a -b 2=0或c 2-2a - b 2=0,∴a =b 或2a +b 2=c 2。
所以ABC ∆为等腰三角形或直角三角形。
法二(化角) 由题意得:x 1+x 2= bcosB, x 1.x 2=a cosA, ∴bcosB=a cosA,由正弦定理得:sinBcosB=sinAcosA,∴sin2B=sin2A,即2A=2B 或2A=π-2B, ∴A=B 或A+B=2π,∴ ABC ∆为等腰三角形或直角三角形。
18.【解】(1)在△ADE 中,y 2=x 2+AE 2-2x·AE·cos60°⇒y 2=x 2+AE 2-x·AE,① 又S △ADE =21 S △ABC =23a 2=21x·AE·sin60°⇒x·AE =2.②②代入①得y 2=x 2+22()x-2(y >0), ∴y 1≤x≤2)。
.6分(2)如果DE 是水管y =当且仅当x 2=24x ,即x =2时“=”成立,故DE ∥BC ,且DE =2. 如果DE 是参观线路,记f (x )=x 2+24x,可知函数在[1,2]上递减,在[2,2]上递增,故f (x ) max =f (1)=f (2)=5. ∴y max =即DE 为AB 中线或AC 中线时,DE 最长. 19.解 原不等式可化为 :2)2()1(--+-x a x a >0,①当a >1时,原不等式与(x -12--a a )(x -2)>0同解由于2111211a a a -=-<<-- ∴原不等式的解为(-∞,12--a a )∪(2,+∞) ②当a <1时,原不等式与(x -12--a a )(x -2) <0同解由于21111a a a -=---, 若a <0,211211a a a -=-<--,解集为(12--a a ,2);若a =0时,211211a a a -=-=--,解集为∅; 若0<a <1,211211a a a -=->--,解集为(2,12--a a )综上所述 当a >1时解集为(-∞,12--a a )∪(2,+∞);当0<a <1时,解集为(2,12--a a );当a =0时,解集为∅;当a <0时,解集为(12--a a ,2) 20、解:设公司在甲电视台和乙电视台做广告的时间分别为x 分钟和y 分钟,总收益为z 元,由题意得3005002009000000.x y x y x y +⎧⎪+⎨⎪⎩≤,≤,≥,≥ 目标函数为30002000z x y =+.二元一次不等式组等价于3005290000.x y x y x y +⎧⎪+⎨⎪⎩≤,≤,≥,≥作出二元一次不等式组所表示的平面区域,即可行域. 如图:作直线:300020000l x y +=, 即320x y +=平移直线l ,从图中可知,当直线l 过M 点时,目标函数取得最大值. 联立30052900.x y x y +=⎧⎨+=⎩,解得100200x y ==,.∴点M 的坐标为(100200),. max 30002000700000z x y ∴=+=(元)答:该公司在甲电视台做100分钟广告,在乙电视台做200分钟广告,公司的收益最大,最大收益是70万元. 21、解:(1)3,401010.102010=∴=+==d d a a . (2)())0(11010222030≠++=+=d d d d a a ,()22210203010202010103210[2(1)]a a a a a a d d d d ++=+++=++=++当),0()0,(∞+∞-∈ d 时,[)10203020,a a a ++∈+∞.(3)所给数列可推广为无穷数列{}n a ,其中1021,,,a a a 是首项为1,公差为1的等差数列,当1≥n 时,数列)1(1011010,,,++n n n a a a 是公差为n d 的等差数列.研究的问题可以是:试写出102010(1)n a a a ++++ 关于d 的关系式,并求102010(1)n a a a ++++ 的取值范围. 研究的结论可以是:由()32310203040102030301010432a a a a a a a a d d d d +++=++++=+++,依次类推可得12102010(1)1(1)10[],1,10(1)1(1)5(1)(2), 1.n n n n d d d a a a n nd d d d n n d ++⎧+--≠⎪⎡⎤+++=++++=--⎨⎣⎦⎪++=⎩因为1102010(1)10(1)nn n S a a a n nd d ++⎡⎤=+++=++++⎣⎦ ,21110(1)n n dS n d nd d ++⎡⎤=++++⎣⎦当1d ≠时,211(1)10(1)()n n d S n d d d ++⎡⎤-=+-+++⎣⎦11(1)(1)10(1)1n n d d d S n d ++⎡⎤--=+-⎢⎥-⎣⎦,即1121(1)10[],11(1)n n n d d S d d d +++-=-≠--; 当1d ≠时,[]1(1)(2)10(1)1105(1)(2)2n n n S n n n n +++=++++=⋅=++ . 当0>d 时,102010(1)n a a a ++++ 的取值范围为(1010,)n ++∞.。