2017考研数学备考必读:线性代数的重要知识点汇总
数学专业考研复习资料线性代数重点知识点整理

数学专业考研复习资料线性代数重点知识点整理数学专业考研复习资料:线性代数重点知识点整理一、向量与矩阵1. 向量的定义和性质- 向量的表示与运算- 单位向量和零向量- 向量的线性相关性2. 矩阵的定义和性质- 矩阵的基本运算- 矩阵的转置和逆矩阵- 矩阵的秩和行列式二、线性方程组1. 线性方程组的概念- 线性方程组的解和解的存在唯一性- 齐次线性方程组和非齐次线性方程组2. 线性方程组的解法- 列主元消元法- 矩阵的初等变换和阶梯形矩阵 - 高斯消元法和高斯约当法三、线性空间和子空间1. 线性空间的定义和性质- 线性空间的子空间和直和- 基和维数的概念- 线性空间的同构与等价2. 子空间的性质与判定- 线性子空间的交与和- 维数公式和秩-零化定理- 子空间的降维与升维四、线性变换和特征值1. 线性变换的定义和性质- 线性变换的表示和运算- 线性变换的核与像- 线性变换的矩阵表示和判定2. 特征值和特征向量- 特征方程和特征值的求解 - 特征空间和特征子空间- 相似矩阵和对角化矩阵五、内积空间和正交变换1. 内积的定义和性质- 内积的基本性质和判定- 正交向量和正交子空间- 构造内积空间2. 正交变换和正交矩阵- 正交变换的性质和表示- 正交矩阵的特点和运算- 正交矩阵的对角化和特征值六、二次型和正定矩阵1. 二次型的定义和性质- 二次型的标准形和规范形 - 二次型的正定性和负定性- 二次型的规约和降维2. 正定矩阵的定义和性质- 正定矩阵的判定和运算- 正定矩阵的特征值和特征向量- 正定矩阵及其应用总结:线性代数是数学专业考研中的重要内容之一。
通过对向量与矩阵、线性方程组、线性空间和子空间、线性变换和特征值、内积空间和正交变换、二次型和正定矩阵等知识点的学习和掌握,能够为考研复习提供有力的理论基础和解题方法。
在复习过程中,需要注重概念的理解、性质的掌握以及应用题的练习,同时注意归纳总结和思维方法的培养。
线性代数知识点全归纳

线性代数知识点全归纳线性代数是数学的一个重要分支,研究向量空间及其上的线性映射。
它广泛应用于物理、工程、计算机科学等领域。
下面将对线性代数的主要知识点进行全面归纳。
1.矩阵及其运算:矩阵是线性代数的基本概念之一,由若干行和列组成的方阵。
常见的矩阵运算有加法、减法、数乘、矩阵乘法和转置等。
2.向量及其运算:向量是一个有序数组,具有大小和方向。
常见的向量运算有加法、减法、数乘、点乘和叉乘等。
3.线性方程组:线性方程组是线性代数的核心内容之一、包括齐次线性方程组和非齐次线性方程组。
解线性方程组的方法有高斯消元法、克莱姆法则和矩阵求逆等。
4.向量空间与线性变换:向量空间是线性代数的基本概念之一,包含零向量、加法和数乘运算。
线性变换是一种保持向量空间结构的映射。
5.基与维度:基是向量空间的一组线性无关向量,可以由基线性组合得到向量空间中的任意向量。
维度是向量空间中基的数量。
6.线性相关与线性无关:向量组中的向量线性相关指存在非零的线性组合,其系数不全为零。
如果向量组中的向量线性无关,则任何线性组合的系数都为零。
7.线性变换与矩阵:线性变换可以用矩阵表示,矩阵的列向量表示线性变换作用于基向量上后的结果。
矩阵乘法可以将多个线性变换组合为一个线性变换。
8.特征值与特征向量:对于一个线性变换,如果存在一个非零向量,使得它在该线性变换下只发生伸缩而不发生旋转,那么这个向量称为该线性变换的特征向量,对应的伸缩比例为特征值。
9.二次型与正定矩阵:二次型是线性代数中的重要概念,是一个关于变量的二次函数。
正定矩阵是指二次型在所有非零向量上的取值都大于零。
10.内积与正交性:内积是向量空间中的一种运算,它满足线性性、对称性和正定性。
正交性是指两个向量的内积为零,表示两个向量互相垂直。
11.正交变换与正交矩阵:正交变换是指保持向量长度和向量之间夹角的变换。
正交矩阵是一种特殊的方阵,它的行向量和列向量两两正交,并且长度为112.奇异值分解与特征值分解:奇异值分解将一个矩阵分解为三个矩阵的乘积,其中一个是正交矩阵,另外两个是对角矩阵。
考研数学线性代数重点整理

考研数学线性代数重点整理一、矢量空间矢量空间是线性代数的基础概念,它描述了一组对象(称为矢量)的性质及其之间的运算规则。
以下是矢量空间的一些重要性质和定义:1. 定义:矢量空间是满足以下8个条件的集合V,其中两个运算(加法和乘法)满足特定的性质。
2. 加法:对于任意的矢量u和v,它们的和u+v也是V中的一个矢量。
3. 加法交换律:对于任意的矢量u和v,有u+v = v+u。
4. 加法结合律:对于任意的矢量u、v和w,有(u+v)+w = u+(v+w)。
5. 加法单位元:存在一个称为零矢量的特殊矢量0,对于任意的矢量v,有v+0 = 0+v = v。
6. 加法逆元:对于任意的矢量v,存在一个称为负矢量的特殊矢量-u,使得v+(-u) = (-u)+v = 0。
7. 乘法定义:对于任意的矢量v和实数c,cv也是V中的一个矢量。
8. 乘法分配律:对于任意的矢量v和实数c和d,有c(dv) = (cd)v。
9. 乘法单位元:对于任意的矢量v,有1v = v。
二、矩阵与线性方程组矩阵是线性代数中另一个重要的概念,它可以用来表示线性方程组和线性变换。
以下是与矩阵和线性方程组相关的一些重要内容:1. 矩阵定义:将数按矩形排列成的矩形数表称为矩阵,其中行数和列数分别称为矩阵的行数和列数。
2. 矩阵运算:矩阵之间可以进行加法和乘法的运算,具体规则如下:- 矩阵加法:对应位置元素相加。
- 矩阵乘法:设A是一个m×n矩阵,B是一个n×p矩阵,那么它们的乘积AB是一个m×p矩阵,乘法规则为A的行乘以B的列。
3. 线性方程组:线性方程组是一组线性方程的集合,矩阵可以用来表示和求解线性方程组。
对于一个m×n矩阵A、一个n×1矩阵X和一个m×1矩阵B,线性方程组可以表示为AX=B。
4. 线性方程组的解:根据矩阵的性质,可以通过高斯消元法、矩阵求逆等方法求解线性方程组。
线性代数重点总结

线性代数重点总结线性代数是现代数学领域的重要分支,它研究线性方程组、向量空间、线性映射等代数结构和它们之间的关系。
在应用数学、工程学、计算机科学等领域中,线性代数起着举足轻重的作用。
本文将以1500字左右的篇幅,对线性代数的重点内容进行总结,旨在为读者提供一份简明扼要、重点突出的学习指南。
第一部分:线性方程组与矩阵1.1 线性方程组的定义及解的存在唯一性线性方程组由多个线性方程组成,它的解是使得方程组中所有方程都成立的解集。
如果线性方程组有解,且解是唯一的,那么称线性方程组是可解且解唯一的。
1.2 线性方程组的矩阵形式将线性方程组用矩阵和向量表示可以简化计算过程。
线性方程组的系数矩阵A、未知数向量X和常数向量B之间满足AX=B的关系。
1.3 线性方程组的消元法高斯消元法和高斯-约当消元法是求解线性方程组的常用方法。
通过对矩阵进行初等行变换,将线性方程组转化为更简化的形式,从而求出解。
1.4 矩阵的运算矩阵的加法、减法和数乘是常见的矩阵运算。
此外,还有矩阵的乘法、转置和逆矩阵等运算。
1.5 矩阵的特征值与特征向量特征值和特征向量描述了矩阵的特征性质。
特征值是方程Ax=λx 的解,其中A是方阵,λ是特征值,x是非零向量。
特征向量则是对应于特征值的非零向量。
第二部分:向量空间与线性映射2.1 向量空间的定义与性质向量空间是具有线性结构的集合。
它满足加法封闭性、数乘封闭性、零向量存在性、加法逆元存在性等性质。
2.2 线性独立与线性相关向量空间中的向量集合线性相关指存在非零向量使得线性组合等于零向量。
线性独立则是指不存在非零向量使得线性组合等于零向量。
2.3 矩阵的秩与行列式矩阵的秩是指矩阵的极大线性无关行(列)数。
行列式是一个与矩阵相关的数值。
2.4 线性变换和线性映射线性变换是定义在向量空间上的函数,它保持向量空间的线性结构。
线性映射是指保持向量空间的线性结构和运算的函数。
第三部分:特殊的矩阵3.1 对称矩阵与正定矩阵对称矩阵是指矩阵的转置与自身相等。
完整版线性代数知识点总结

完整版线性代数知识点总结线性代数是数学的一个分支,研究向量空间及其上的线性变换。
它在各个领域中都有广泛的应用,包括物理学、计算机科学、工程学等。
以下是线性代数的一些重要知识点总结:1.向量和向量空间:向量是有方向和大小的量,可以用来表示力、速度、位移等。
向量空间是向量的集合,具有加法和标量乘法运算,同时满足一定的性质。
2.线性方程组和矩阵:线性方程组是一组线性方程的集合,研究其解的性质和求解方法。
矩阵是一个由数构成的矩形数组,可以用来表示线性方程组中的系数和常数。
3.矩阵的运算:包括矩阵的加法、减法和乘法运算。
矩阵乘法是一种重要的运算,可以用来表示线性变换和复合变换。
4.行列式和特征值:行列式是一个标量,表示矩阵的一些性质,如可逆性和面积/体积的变换。
特征值是矩阵对应的线性变换中特殊的值,表示该变换在一些方向上的伸缩程度。
5.向量的内积和正交性:向量的内积是一种二元运算,可以用来表示向量之间的夹角和长度。
正交向量是指内积为零的向量,可以用来表示正交补空间等概念。
6.向量的投影和正交分解:向量的投影是一个向量在另一个向量上的投影,可以用来表示向量的分解。
正交分解是将一个向量分解为与另一个向量正交和平行的两个向量之和。
7.线性变换和线性映射:线性变换是指保持向量加法和标量乘法运算的变换。
线性映射是向量空间之间的函数,具有保持线性运算的性质。
8.特征值和特征向量:特征值和特征向量是线性变换或矩阵中一个重要的概念,用于描述变换的性质和方向。
9.正交矩阵和对称矩阵:正交矩阵是一个方阵,其列向量组成的矩阵是正交的。
对称矩阵是一个方阵,其转置等于自身。
10.奇异值分解:奇异值分解(SVD)是一种矩阵的分解方法,用来将一个矩阵分解为三个矩阵的乘积。
SVD在数据压缩、图像处理和机器学习等领域有广泛的应用。
11.最小二乘法:最小二乘法是一种数学优化方法,用来找到一条曲线或超平面,使得这些数据点到该曲线或超平面的距离平方和最小。
2017考研数学二线代重要知识点总结

2017考研数学二线代重要知识点总结下面是小编整理的考研数学二《线性代数》中的一些重要知识点,主要分为六个章节来介绍,希望能够为考试科目考研数学二的各位考生指点迷津。
线性代数
第一章行列式行列式的运算
计算抽象矩阵的行列式
第二章矩阵矩阵的运算
求矩阵高次幂等
矩阵的初等变换、初等矩阵
与初等变换有关的命题
第三章向量
向量组的线性相关及无关的有关性质及判别法向量组的线性相关性
线性组合与线性表示
判定向量能否由向量组线性表示
第四章线性方程组
齐次线性方程组的基础解系和通解的求法
求齐次线性方程组的基础解系、通解
第五章矩阵的特征值和特征向量
实对称矩阵特征值和特征向量的性质,化为相似对角阵的方法有关实对称矩阵的问题
相似变换、相似矩阵的概念及性质相似矩阵的判定及逆问题
第六章二次型二次型的概念求二次型的矩阵和秩
合同变换与合同矩阵的概念判定合同矩阵
学习不是一口吃成个胖子,要的是一步一步稳扎稳打,复习数学也是个慢热的过程,同学们必须要有恒心和毅力。
切不可急躁冒进以至于适得其反。
培根说过“过于求速是做事上最大的危险之一。
”希望同学们能够根据以上题型稳扎稳打将考研数学复习好。
2017考研数学:线性代数必考公式与定理

2017考研数学:线性代数必考公式与定理()12121211121,,...,2122212,,...,12 (1)..................n nnn i i i ni i ni i i i n n nna a a a a a a a a a a a τ=-∑基本性质性质一:如果一个行列式的某一行全为0,则行列式的值等于0.性质二:如果一个行列式的某两行元素对应成比例,则行列式的值等于0.性质三:将行列式的任意两行互换位置后,行列式改变符号。
性质四:将行列式的某一行乘以一个常数k 后,行列式的值变为原来的k 倍。
性质五:将行列式的一行的k 倍加到另一行上,行列式的值不变。
性质六:如果行列式某一行的所有元素都可以写成两个元素的和,则该行列式可以写成两个行列式的和,这两个行列式的这一行分别为对应两个加数,其余行与原行列式相等。
即111211112111121212222122221222112212121212..........................................................................................n n nn n n i i i i in ini i in i i n n nnn n nn a a a a a a a a a a a a a a a a a a a b a b a b a a a b b a a a a a a =++++12..................in n n nnb a a a性质七:将行列式的行和列互换后,行列式的值不变,也即111211121121222122221212..........................................n n nn n n nnnn nna a a a a a a a a a a a a a a a a a =。
线性代数知识点归纳

线性代数知识点归纳线性代数是一门研究向量、向量空间、线性变换以及有限维线性方程组的数学分支。
它广泛应用于各个领域,如物理、计算机科学、工程学等。
线性代数的核心概念和工具包括行列式、矩阵、向量组以及线性方程组等。
下面将详细介绍线性代数的相关知识点。
一、行列式1.1 行列式的概念:行列式是一个函数,它从n×n阶方阵到实数(或复数)的映射。
行列式记作|A|,其中A是一个n×n的方阵。
1.2 逆序数:在n×n阶方阵A中,将行列式中元素a_ij与a_ji互换,所得到的新的行列式称为原行列式的逆序数。
1.3 余子式:在n×n阶方阵A中,将第i行第j列的元素a_ij删去,剩下的(n-1)×(n-1)阶方阵的行列式称为原行列式的余子式,记作M_ij。
1.4 代数余子式:在n×n阶方阵A中,将第i行第j列的元素a_ij替换为它的相反数,然后计算得到的新的行列式,称为原行列式的代数余子式,记作A_ij。
1.5 行列式的性质:行列式具有以下性质:(1)交换行列式中任意两个元素的位置,行列式的值变号。
(2)行列式中某一行(列)的元素乘以常数k,行列式的值也乘以k。
(3)行列式中某一行(列)的元素与另一行(列)的元素相加,行列式的值不变。
(4)行列式某一行(列)的元素与另一行(列)的元素相减,行列式的值变号。
1.6 行列式的计算方法:行列式的计算方法有:降阶法、按行(列)展开法、克拉默法则等。
二、矩阵2.1 矩阵的概念:矩阵是一个由数组元素构成的矩形阵列,矩阵中的元素称为矩阵的项。
矩阵记作A,其中A是一个m×n的矩阵,A_ij表示矩阵A中第i行第j列的元素。
2.2 矩阵的线性运算:矩阵的线性运算包括加法、减法、数乘等。
2.3 矩阵的乘法:两个矩阵A和B的乘法,记作A×B,要求A是一个m×n的矩阵,B是一个n×p的矩阵。
矩阵的乘法满足交换律、结合律和分配律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为学生引路,为学员服务
第 1 页 共 1 页 2017考研数学备考必读:线性代数的重
要知识点汇总
线性代数 一、行列式 1.行列式的概念和基本性质 2.行列式按行(列)展开定理 二、矩阵 1.矩阵的线性运算、乘法运算 2.方阵的幂 3方阵乘积的行列式 4.矩阵的转置 5.逆矩阵的概念和性质,矩阵可逆的充分必要条件 6.伴随矩阵 7.矩阵的初等变换,初等矩阵,矩阵的等价
8.矩阵的秩 9.分块矩阵及其运算 三、向量 1.向量的线性组合与线性表示 2.向量组的线性相关与线性无关 3.向量组的极大线性无关组 4.等价向量组 5.向量组的秩 6.向量组的秩与矩阵的秩之间的关系 7.向量的内积 8.线性无关向量组的的正交规范化方法 四、线性方程组 1.线性方程组的克莱姆(Cramer)法则 2.齐次线性方程组有非零解的充分必要条件 3.非齐次线性方程组有解的充分必要条件 4.线性方程组解的性质和解的结构 5.齐次线性方程组的基础解系和通解 6.非齐次线性方程组的通解 五、矩阵的特征值和特征向量 1.矩阵的特征值和特征向量的概念、性质 2.相似矩阵的概念及性质 3.矩阵可相似对角化的充分必要条件及相似对角矩阵 4.实对称矩阵的特征值、特征向量及其相似对角矩阵 六、二次型 1.合同变换与合同矩阵 2.二次型的秩,二次型的标准形和规范形 3.用正交变换和配方法化二次型为标准形
4.二次型及其矩阵的正定性◇。