考研线性代数核心知识点和易错点总结

合集下载

线性代数易错点及重点知识点

线性代数易错点及重点知识点

线性代数易错及重点知识点 翔翔总结,不晓得大家看得懂不324712432的余子式是327134722412,而不是23271 上三角和下三角行列式都是a1a2a3.....an=A反三角行列式为A*(-1)^n(n-1)/2行列式的一行的代数余子式分别乘以另一行元素,值为零。

正反三角行列式如果不记得公式了,可以通过上下换行的形式变成正三角行列式。

克莱姆法则D=22211211a a a a ,D1=222121a b a b D2=22211211a a a a x1=D1/D 同理x2=D2/D 范德蒙法则:行列式的值=(x n -x n-1)(x n -x n-2)……(x n -x 1)(x n-1-x n-2……)(x 2-x 1)若一个线性方程组有非零解,则它的行列式式值等于零。

行列式中行叫c ,列叫r写行列式变换过程中要在等号上写变换方法,如c2-c3.不然老师看不懂步骤,无法给分 化三角行列式先化第一列,在化第二列,按顺序来化,这样才不会出现问题。

n 维向量分横向量和列向量。

写向量时一定要记得在上面加箭头任意一个n 维向量都能由n 个n 维单位向量线性表示如果b1=k1a1+k2a2+k3a3,线性表示不一定要求k1,k2,k3不全为零。

如果一个向量a 线性相关,则a=0由一个非零向量构成的向量组一定线性无关。

即a ≠0则a 这个向量组线性无关。

含有零向量的向量组一定线性相关例a1=(1,1)a2=(2,3)求这两个向量组是否线性相关解:k1a1+k2a2=0 k1(1,1)+k2(2,3)=0K1+2k2=0 k1+3k2=0 3121≠0所以k 全是零解,所以线性无关 a3=a1+a2,则a1,a2,a3线性相关一个向量组中的一个向量可由其他向量线性表示,那么这个向量组线性相关,能线性表示不一定要k 不全为零,但是线性相关一定要不全为零两个向量线性相关除非他们对应分量成比例。

线性代数知识重难点和常考题型汇总

线性代数知识重难点和常考题型汇总

②、

a11 a21

a12
a22

a1 n a2 n



x1
x2



b1
b2


Ax
b
(向量方程,
A为mn
矩阵, m
个方程, n 个未知数)
am1
am 2

amn xm
bm
⑦、 r( AB) min(r( A), r(B)) ;(※)⑧、如果 A 是 m n 矩阵, B 是 n s 矩阵,且 AB 0 ,则:(※) Ⅰ、 B 的列向量全部是齐次方程组 AX 0 解(转置运算后的结论); 3
Ⅱ、 r( A) r(B) n ⑨、若 A 、 B 均为 n 阶方阵,则 r( AB) r( A) r(B) n ;
③、 a1
a2



an


x1
x2



(全部按列分块,其中



b1 b2




);



xn
bn
④、 a1 x1 a2 x2 an xn (线性表出)
⑤、有解的充要条件: r( A) r( A, ) n ( n 为未知数的个数或维数)
③、某行(列)的元素乘以该行(列)元素的代数余子式为 A ;
3,代数余子式和余子式的关系:
M ij (1)i j Aij
Aij (1)i j M ij
4,设 n 行列式 D :
n ( n 1)

考研数学一大纲重点内容回顾线性代数部分知识点汇总

考研数学一大纲重点内容回顾线性代数部分知识点汇总

考研数学一大纲重点内容回顾线性代数部分知识点汇总线性代数是考研数学一科目中非常重要的一部分。

在考试中,线性代数占据了相当大的比重,因此熟练掌握线性代数的知识点是非常重要的。

本文将回顾考研数学一大纲中线性代数部分的重点知识点,帮助考生在备考中能够有针对性地进行复习,并为考试发挥出最佳水平做准备。

知识点1:向量空间向量空间是线性代数中最基础的概念之一。

考生需要掌握向量空间的定义、性质和基本运算法则。

此外,需要掌握向量空间的子空间、线性相关性和线性无关性等概念。

知识点2:矩阵与行列式矩阵和行列式也是考研数学一线性代数部分的重要内容。

考生需要掌握矩阵的运算法则,包括矩阵的加法、乘法和转置等运算。

同时,需要了解矩阵的秩以及矩阵可逆的条件。

在行列式方面,需要熟悉行列式的性质,以及行列式的计算方法和展开式。

知识点3:线性方程组线性方程组是线性代数中的一个重要应用,也是考研数学一中的常见考点。

考生需要掌握线性方程组的解法,包括消元法、矩阵法和特征值法等。

同时,还需要了解线性方程组解的存在唯一性条件,以及齐次线性方程组和非齐次线性方程组的关系。

知识点4:特征值和特征向量特征值和特征向量是线性代数中的重要概念,也是考研数学一中的热点内容。

考生需要了解特征值和特征向量的定义、性质和计算方法。

同时,需要掌握矩阵的对角化和相似对角化的相关知识。

知识点5:线性变换线性变换是线性代数的核心内容之一。

考生需要了解线性变换的定义和性质,以及线性变换的矩阵表达式和几何意义。

此外,还需要了解线性变换的基矩阵和过渡矩阵的计算方法。

知识点6:内积空间内积空间是线性代数中的高级内容,也是考研数学一中的难点。

考生需要了解内积空间的定义和性质,以及内积空间的标准正交基和正交投影的相关知识。

同时,还需要了解内积空间的正交补和正交矩阵的概念和计算方法。

综上所述,考研数学一大纲重点内容回顾线性代数部分的知识点汇总包括了向量空间、矩阵与行列式、线性方程组、特征值和特征向量、线性变换以及内积空间等内容。

考研数学线性代数复习要点

考研数学线性代数复习要点

考研数学线性代数复习要点对于考研数学中的线性代数部分,掌握好复习要点至关重要。

线性代数在考研数学中占据着重要的地位,其特点是概念多、定理多、符号多、运算规律多,并且前后知识的联系紧密。

以下是为大家梳理的线性代数复习要点。

一、行列式行列式是线性代数中的基础概念,其计算方法和性质是必须要熟练掌握的。

1、行列式的定义要理解行列式的定义,特别是二阶和三阶行列式的计算方法。

对于高阶行列式,可以通过行列式的性质将其化为上三角行列式或下三角行列式来计算。

2、行列式的性质熟练掌握行列式的性质,如行列式转置值不变、两行(列)互换行列式变号、某行(列)乘以常数加到另一行(列)行列式不变等。

这些性质在行列式的计算中经常用到。

3、行列式按行(列)展开定理掌握行列式按行(列)展开定理,能够将高阶行列式降阶计算。

二、矩阵矩阵是线性代数的核心内容之一,需要重点掌握。

1、矩阵的运算包括矩阵的加法、数乘、乘法、转置等运算。

要特别注意矩阵乘法的规则和性质,以及矩阵乘法不满足交换律这一特点。

2、矩阵的逆理解逆矩阵的定义和存在条件,掌握求逆矩阵的方法,如伴随矩阵法和初等变换法。

3、矩阵的秩掌握矩阵秩的定义和求法,了解矩阵秩的性质。

矩阵的秩在判断线性方程组解的情况等方面有重要应用。

4、分块矩阵了解分块矩阵的概念和运算规则,能够灵活运用分块矩阵解决一些复杂的矩阵问题。

三、向量向量是线性代数中的重要概念,与线性方程组和矩阵的秩密切相关。

1、向量的线性表示理解向量线性表示的概念,掌握判断向量能否由一组向量线性表示的方法。

2、向量组的线性相关性掌握向量组线性相关和线性无关的定义和判定方法,这是线性代数中的重点和难点。

3、向量组的秩理解向量组的秩的概念,掌握求向量组秩的方法。

4、向量空间了解向量空间的基本概念,如基、维数等。

四、线性方程组线性方程组是线性代数的核心内容之一,在考研中经常出现。

1、线性方程组的解掌握线性方程组有解、无解和有唯一解、无穷多解的判定条件。

考研数学线性代数重点整理

考研数学线性代数重点整理

考研数学线性代数重点整理一、矢量空间矢量空间是线性代数的基础概念,它描述了一组对象(称为矢量)的性质及其之间的运算规则。

以下是矢量空间的一些重要性质和定义:1. 定义:矢量空间是满足以下8个条件的集合V,其中两个运算(加法和乘法)满足特定的性质。

2. 加法:对于任意的矢量u和v,它们的和u+v也是V中的一个矢量。

3. 加法交换律:对于任意的矢量u和v,有u+v = v+u。

4. 加法结合律:对于任意的矢量u、v和w,有(u+v)+w = u+(v+w)。

5. 加法单位元:存在一个称为零矢量的特殊矢量0,对于任意的矢量v,有v+0 = 0+v = v。

6. 加法逆元:对于任意的矢量v,存在一个称为负矢量的特殊矢量-u,使得v+(-u) = (-u)+v = 0。

7. 乘法定义:对于任意的矢量v和实数c,cv也是V中的一个矢量。

8. 乘法分配律:对于任意的矢量v和实数c和d,有c(dv) = (cd)v。

9. 乘法单位元:对于任意的矢量v,有1v = v。

二、矩阵与线性方程组矩阵是线性代数中另一个重要的概念,它可以用来表示线性方程组和线性变换。

以下是与矩阵和线性方程组相关的一些重要内容:1. 矩阵定义:将数按矩形排列成的矩形数表称为矩阵,其中行数和列数分别称为矩阵的行数和列数。

2. 矩阵运算:矩阵之间可以进行加法和乘法的运算,具体规则如下:- 矩阵加法:对应位置元素相加。

- 矩阵乘法:设A是一个m×n矩阵,B是一个n×p矩阵,那么它们的乘积AB是一个m×p矩阵,乘法规则为A的行乘以B的列。

3. 线性方程组:线性方程组是一组线性方程的集合,矩阵可以用来表示和求解线性方程组。

对于一个m×n矩阵A、一个n×1矩阵X和一个m×1矩阵B,线性方程组可以表示为AX=B。

4. 线性方程组的解:根据矩阵的性质,可以通过高斯消元法、矩阵求逆等方法求解线性方程组。

考研数学三必背知识点:线性代数

考研数学三必背知识点:线性代数

线性代数必考知识点一、行列式1、逆序数一个排列n i i i i ,,,321若有类似21i i >时,我们称21i i 组成一个逆序。

一个排列中逆序总的个数之和称为逆序数,记为)(21n i i i τ 2、行列式性质(1) 行列式行列互换,其值不变,即TAA =(2) 行列式两行或两列互换,其值反号。

(3) 行列式某行或某列乘以k 等于行列式乘以k 。

(4) 行列式某行货某列乘以k 加到另一行或列上,行列式值不变。

(5) 行列式两行或两列对应成比例,则行列式为零。

(6) 行列式某行或某列元素为零,则行列式为零。

(7) 上、下三角行列式其值为主对角线上元素乘积。

(8) 行列式值等于对应矩阵所有特征值的乘积,即n A λλλ 21= (9) 齐次线性方程组0=Ax有非零解n A r A <⇔=⇔)(03、行列式行列展开定理 (1) 余子式ijji ijA M +-=)1( (2) 代数余子式ijji ijMA +-=)1(4、三阶行列式展开公式332112322311312213322113312312332211333231232221131211a a a a a a a a a a a a a a a a a a a a a a a a a a a ---++=二、矩阵1、矩阵运算(1) 矩阵加减法即是将对应元素进行加减。

(2) 矩阵乘法是将对应行与对应列元素相乘再相加。

(3) 矩阵除法是乘以逆矩阵。

(4) 矩阵加减法满足交换律、结合律,乘法满足结合律、分配率。

(5)n阶方阵一般可以有1*,,,-AA A A T 四大基本矩阵运算2、矩阵的行列式(1) A k kA A A n T ==, (2) A B B A BA AB === 3、矩阵转置(1) T T T T T T T T T T A B AB kA kA B A B A A A ==+=+=)(,)(,)(,)( (2) **11)()(,)()(T T T T A A A A ==--4、伴随矩阵(1) *1*****11*2****1*)(,)(,)()(,)(,,AkkA A B AB AA A AA E A A A AA A A A n n -----=======(2)1)(0)(1)(1)()()(***-<⇔=-=⇔==⇔=n A r A r n A r A r nA r n A r5、逆矩阵 (1)1111*111111*1)(,1)(,,)(,,1-----------=======ABAB A AA AAA AE A AAAA AA(2) 分块矩阵的逆矩阵 ①111---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭AO A O OB O B (主对角分块)② 111OA O BB O AO ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭(副对角分块) ③11111AC A A C BO B OB-----⎛⎫-⎛⎫= ⎪ ⎪⎝⎭⎝⎭(拉普拉斯)④ 11111A O A O C B B C A B -----⎛⎫⎛⎫= ⎪⎪-⎝⎭⎝⎭(拉普拉斯)6、矩阵初等变换(1) 交换矩阵两行或两列(2) 矩阵某行或某列乘以k(3) 矩阵某行或某列乘以k 并加到另一行或列 (4) 矩阵初等变换的实质是矩阵与初等矩阵相乘 ① 矩阵初等行变换=矩阵左乘初等矩阵 ② 矩阵初等列变换=矩阵右乘初等矩阵7、矩阵其他考点(1) 行列矩阵相乘:α为行矩阵),,(21n a a a ,β为列矩阵),,(21n b b b , 则βααβααβαβββαβαβαβα1)()()()())(()(-===k k(2) 矩阵n A 的求法:若A 可对角化,则有Λ=-AP P 1,于是1-Λ=P P A n n (3) 若n B r m A r ==)(,)(,则有m A r B A r =≤+)()(且n B r B A r =≤+)()(三、向量1、向量运算:βαβαλβαλβααββαk k k ±=±±±=±±±=±)(),()(,2、线性表示对于向量组s ααα ,,21和向量β,若存在一组数s k k k ,,21使得s s k k k αααβ+++= 2211 (1) 若s s k k k αααβ+++= 2211有唯一解,则β能由向量组s ααα ,,21唯一线性表示。

线性代数考研知识点总结

线性代数考研知识点总结

线性代数考研知识点总结线性代数是数学的一个重要分支,它研究向量空间及其上的线性变换。

在计算机科学、物理学、工程学等领域中,线性代数都有着广泛的应用。

在考研中,线性代数是一个必考的科目,以下是线性代数考研的一些重要知识点总结。

1. 向量空间:向量空间是线性代数的基础概念,它包括一组向量和一些满足特定条件的运算规则。

向量空间中的向量可以进行加法和数乘运算,满足交换律、结合律和分配律。

2. 向量的线性相关性和线性无关性:如果向量可以通过线性组合表示为另一组向量的形式,那么这组向量就是线性相关的;如果向量不满足线性相关的条件,那么它们就是线性无关的。

3. 矩阵:矩阵是线性代数中的另一个重要概念,它是一个由数字排列成的矩形阵列。

矩阵可以用于表示线性变换、解线性方程组等。

常见的矩阵类型有方阵、对称矩阵、对角矩阵、单位矩阵等。

4. 行列式:行列式是一个用于刻画矩阵性质的重要工具。

行列式可以用来计算线性变换的缩放因子,判断矩阵是否可逆,以及计算矩阵的逆等。

5. 矩阵的相似和对角化:两个矩阵A和B,如果存在一个非奇异矩阵P,使得PAP^(-1)=B,那么矩阵A和B就是相似的。

相似的矩阵有着相同的特征值和特征向量。

对角化是指将一个矩阵通过相似变换变成对角矩阵的过程。

6. 线性变换:线性变换是指一个向量空间到另一个向量空间的映射,它满足线性性质。

线性变换可以用矩阵表示,相应的矩阵称为线性变换的矩阵表示。

线性变换可以进行合成、求逆等操作。

7. 内积空间:内积空间是一个带有内积运算的向量空间。

内积运算满足对称性、线性性、正定性等性质。

内积空间可以用来定义向量的长度、夹角、正交性等概念。

8. 特征值和特征向量:对于一个线性变换,如果存在一个非零向量使得线性变换作用在该向量上等于该向量的某个常数倍,那么这个常数就是该线性变换的特征值,而对应的非零向量就是特征向量。

特征值和特征向量可以用来分析矩阵的性质,求解线性方程组等。

9. 奇异值分解:奇异值分解是矩阵分解的一种常用方法,它将一个矩阵分解为三个矩阵的乘积,其中一个矩阵是正交矩阵,另两个矩阵是对角矩阵。

考研线代知识点总结

考研线代知识点总结

考研线代知识点总结摘要:一、考研线性代数知识点概述二、矩阵与线性方程组三、向量空间与线性变换四、特征值与特征向量五、二次型与矩阵的对称性六、复习与拓展建议正文:一、考研线性代数知识点概述考研线性代数作为数学一门重要学科,主要包括矩阵、线性方程组、向量空间、线性变换、特征值与特征向量、二次型与矩阵的对称性等内容。

这些知识点在考研数学中占有很大比重,因此,对于线性代数的掌握程度直接影响到考研成绩。

本文将对这些知识点进行总结,以帮助考生更好地复习和掌握线性代数。

二、矩阵与线性方程组1.矩阵的运算:加法、减法、数乘、矩阵乘法、逆矩阵、行列式等。

2.线性方程组的解法:高斯消元法、克莱姆法则、齐次线性方程组、非齐次线性方程组等。

3.矩阵的秩、行阶梯形式、简化阶梯形式等。

三、向量空间与线性变换1.向量空间的概念、基、维数、向量模等。

2.线性变换的概念、性质、矩阵表示、不变量等。

四、特征值与特征向量1.特征值、特征向量的概念及求解方法。

2.矩阵的对角化、相似矩阵等。

五、二次型与矩阵的对称性1.二次型的概念、标准型、正定二次型、负定二次型、半正定二次型、半负定二次型等。

2.矩阵的对称性:对称矩阵、反对称矩阵、正交矩阵、对称分量等。

六、复习与拓展建议1.熟练掌握考研线性代数大纲要求的知识点,做到深入理解、熟练应用。

2.针对自己的薄弱环节进行有针对性的练习,提高解题能力。

3.学习线性代数相关的拓展知识,如奇异值分解、广义逆矩阵、线性空间论等。

4.注重理论联系实际,熟练运用线性代数知识解决实际问题。

总之,考研线性代数知识点繁多,要想在考试中取得好成绩,就需要扎实掌握这些知识点,并不断提高自己的解题能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考研线性代数核心知识点和易错点总结
————————————————————————————————作者:————————————————————————————————日期:
2018考研线性代数核心知识点和易错
点总结
通过7-9月这三个月时间的复习,大家应该做到把所学的知识系统化综合化,尤其是考研数学中的线性代数。

在考研数学中线性代数只占分值的22%,所占比例虽然不高,但是对每位考研学子来说同样重要。

线性代数部分的内容相对容易,从历年真题分析可知考试的时候出题的套路也比较固定。

但是线性代数的知识点比较琐碎,记忆量大而且容易混淆的地方较多;另外这门学科的知识点之间的联系性也比较强,这种联系不仅指各个章节之间的相互联系,更重要的是不同章节中的各种性质、定理、判定法则之间也有着相互推导和前后印证的关系。

因此,在复习线性代数的时候,要求考生做到“融会贯通”,即不仅要找到不同知识点之间的内在联系,还要掌握不同知识点之间的顺承关系。

为了使广大考生在暑期强化阶段更好地复习线性代数这门学科,下面为大家总结了本门课程的核心考点和易错考点,希望对大家的复习能有所帮助!
一、核心考点
1、行列式
本章的核心考点是行列式的计算,包括数值型行列式的计算和抽象型行列式的计算,其中数值型行列式的计算又分为低阶行列式和高阶行列式两种类型。

对于低阶的数值型行列式来说,主要的处理方法是:找1,化0,展开,即首先找行列式中最简单的元素,利用行列式的性质将最简单元素所在的行或者列的其他元素均化为0,然后再利用行列式的展开定理对目标行列式进行降阶,最后利用已知公式求得目标行列式的值。

对于高阶的数值型行列式来说,它的处理方法有两种:一是三角化;二是展开。

所谓的三角化就是利用行列式的性质将目标行列式化成上三角行列式或者下三角行列式,三角化的主要思想就是化零,即利用行列式中各元素之间的关系通过行列式的性质化出较多的零,它是解决“爪型”行列式和“对角线型”行列式的主要方法。

而所谓的展开就是利用行列式的展开定理对目标行列式进行降阶,一般解决的是递推形式的行列式,而它的关键点则是找出与的结构。

对于数值型行列式来说,考试直接考查的题目相对较少,它总是伴随着线性方程组或者特征值与特征向量等的相关知识出题的。

对行列式的考查多以抽象型行列式的形式出现,这一部分的考题综合性很强,与后续章节的联系比较紧密,除了要用到行列式常见的性质以外,更需要结合矩阵的运算,综合特征值特征向量等相关考点,对考生能力要求较高,需要考生有扎实的基础,对线性代数整个学科进行过细致而全面的复习。

抽象行列式的计算常见的方法有三种:一是利用行列式的性质;二是使用矩阵运算;三是结合特征值与特征向量。

2、矩阵
矩阵是线性代数的核心内容,它是后续章节知识的基础,矩阵的概念、运算及其相关理论贯穿着整个线性代数这门学科。

这部分的考点较多,重点是矩阵的运算,尤其是逆矩阵、矩阵的初等变换和矩阵的秩是重中之重的核心考点。

考试题目中经常涉及到伴随矩阵的定义、性质、行列式、可逆阵的逆矩阵、矩阵的秩及包含伴随矩阵的矩阵方程等。

另外,这几年还经常出现与初等变换与初等矩阵相关的命题。

本章常见题型有:计算方阵的幂、与伴随矩阵相关的命题、与初等变换相关的命题、有关逆矩阵的计算与证明、解矩阵方程等。

3、向量
本章的核心考点是向量组的线性相关性的判断,它也是线性代数的重点,同时也是考研的重点。

2014年的考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,在做此处题目的时候要学会与线性表出、向量组的秩及线性方程组等相关知识联
系,从各个方面加强对向量组线性相关性的理解。

此章常见的考试题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题(数一要求)。

4、线性方程组
考研数学重点考查的章节,从历年真题来看,方程组出题的频率较高,几乎每年都有考题。

本章的核心考点有:解的判定与解的结构、齐次线性方程组基础解系的求解与证明、齐次(非齐次)线性方程组的求解(含对参数取值的讨论)。

主要的题型有:线性方程组的求解、方程组解向量的判别及解的性质、齐次线性方程组的基础解系、非齐次线性方程组的通解结构、两个方程组的公共解、同解问题等。

本章节常与向量章节联系在一起出题,二者属于同一问题的不同描述,在考题中经常是交替出现的。

5、特征值与特征向量
考研数学重点考查的章节,线性代数的核心内容,题多分值大,共有三部分重点内容:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化。

核心题型有:数值型矩阵的特征值和特征向量的计算、抽象型矩阵特征值和特征向量的求法、判定矩阵的相似对角化、由特征值或特征向量反求矩阵A、有关实对称矩阵的问题。

本章节与二次型联系也很紧密。

6、二次型
这部分需要掌握两点:一是用正交变换法和配方法化二次型为标准形,核心是正交变换法。

但是需要注意的是对于出现多重特征值时,解方程组所得的对应的特征向量不一定是正交的,这时需要对所得到的向量组进行施密特正交化,然后再规范化。

二是二次型正定性的判断,核心考点是二次型正定性的判定方法。

二、易错考点
以上是为大家总结的考研线性代数各章节的核心考点和易错考点,希望对大家的复习能有所帮助,最后祝每位考生都能考生自己理想的学府!。

相关文档
最新文档