Exact solution of Schrodinger equation for modified Kratzer's molecular potential with the

合集下载

类氦离子schrodinger方程直接求解的精确势谐方法

类氦离子schrodinger方程直接求解的精确势谐方法

类氦离子schrodinger方程直接求解的精确势谐方法类氦离子是由两个电子和一个氦核组成的三体系统,其精确解析解是无法求得的。

然而,通过使用精确势谐方法,我们可以得到类氦离子的近似解。

精确势谐方法是一种基于势能函数的展开式的方法,它将势能函数展开为一组谐函数的线性组合。

在类氦离子的情况下,我们可以将势能函数表示为:V(r1,r2) = -2/r1 - 2/r2 + 1/r12其中,r1和r2是两个电子与氦核之间的距离,r12是两个电子之间的距离。

通过将势能函数展开为谐函数的线性组合,我们可以得到类氦离子的Schrodinger方程的精确解。

具体来说,我们可以将Schrodinger方程表示为:HΨ = EΨ其中,H是哈密顿算符,Ψ是波函数,E是能量。

通过将波函数表示为一组谐函数的线性组合,我们可以得到:Ψ(r1,r2) = ΣCnmψnm(r1,r2)其中,Cnm是系数,ψnm是谐函数。

将波函数代入Schrodinger方程,我们可以得到:ΣCnm(Hψnm) = EΣCnmψnm通过将哈密顿算符表示为谐函数的线性组合,我们可以得到:Hψnm = Enmψnm其中,Enm是能量。

将能量代入Schrodinger方程,我们可以得到:ΣCnmEnmψnm = EΣCnmψnm这是一个矩阵方程,我们可以通过对矩阵进行对角化来求解能量和系数。

通过这种方法,我们可以得到类氦离子的精确解。

总之,精确势谐方法是一种有效的求解类氦离子Schrodinger方程的方法。

通过将势能函数展开为谐函数的线性组合,我们可以得到精确解。

虽然这种方法需要计算大量的系数,但是它可以提供非常精确的结果。

因此,它在量子化学中得到了广泛的应用。

Complete solution of the Schrodinger equation for the time-dependent linear potential

Complete solution of the Schrodinger equation for the time-dependent linear potential
The complete solutions of the Schr¨odinger equation for a particle with time-dependent mass moving in a time-dependent linear potential are presented. One solution is based on the wave function of the plane wave, and the other is with the form of the Airy function. A comparison is made between the present solution and former ones to show the completeness of the present solution.
Consider the Schr¨odinger equation for a particle with time-dependent mass moving in a time-dependent linear potential, which can be described by the Schr¨odinger equation in the unit of h¯ = 1,
The purpose of the present paper is to undertake a completely analytical solution for the problem above along the idea in [15,16] by means of a simple algebra, named ’time-space transformation method’ [17]. With the timespace transformation method, in [17], we transformed the Schr¨odinger equation with TDHO into that with time independent harmonic oscillator. But here we will try to transform a Schr¨odinger equation with time-dependent linear potential into that of a free particle. According to [15,16], there are only two solutions with nonspreading properties for the quantum treatment of a free particle. One solution is based on the wave function of the plane wave, and the other is with the form of the Airy function. However, as far as we know, no one has reported these two solutions simultaneously in treating the Hamiltonian with time-dependent linear potential. Therefore, in what follows, we will consider a more general case than in Ref.[14,15], i.e., a particle with time-dependent mass moving in the time-dependent linear potential. It can be found that the solution in Ref.[14] is merely a particular case for

用动力系统方法研究一类时间分数阶扩散方程的精确解

用动力系统方法研究一类时间分数阶扩散方程的精确解

Advances in Applied Mathematics 应用数学进展, 2023, 12(6), 2896-2903 Published Online June 2023 in Hans. https:///journal/aam https:///10.12677/aam.2023.126291用动力系统方法研究一类时间分数阶扩散方程的精确解黎超玲重庆师范大学数学科学学院,重庆收稿日期:2023年5月25日;录用日期:2023年6月19日;发布日期:2023年6月27日摘要随着时代的发展,分数阶微分模型的应用越来越广泛,故对其研究非常有必要。

本文在Riemann-Liouville 分数阶导数的定义下利用半固定式变量分离法与动力系统理论相结合的方法,研究了一类时间分数阶扩散方程的精确解,获得了方程的一系列精确解,通过解的坐标演化图直观地展示了在不同参数条件下的扩散现象。

关键词时间分数阶扩散方程,Riemann-Liouville 分数阶导数,半固定式变量分离法,动力系统方法,精确解Exact Solutions of a Class of Time-Fractional Diffusion Equation by Dynamic System MethodChaoling LiSchool of Mathematical Sciences, Chongqing Normal University, ChongqingReceived: May 25th , 2023; accepted: Jun. 19th , 2023; published: Jun. 27th , 2023AbstractWith the development of the times, the application of fractional differential model is more and more extensive, so it is very necessary to study it. In this paper, under the definition of Riemann-Liouville fractional derivative, the exact solution of a class of time fractional diffusion equations is studied by combining semi-fixed variable separation method with dynamic system theory, and a series of exact solutions of the equations are obtained. The diffusion phenomenon under different parameter con-ditions is intuitively displayed through the coordinate evolution diagram of the solutions.黎超玲KeywordsTime Fractional Diffusion Equation, Riemann-Liouville Fractional Derivative, Semi-Fixed Variable Separation Method, Dynamical System Method, Exact SolutionsCopyright © 2023 by author(s) and Hans Publishers Inc.This work is licensed under the Creative Commons Attribution International License (CC BY 4.0)./licenses/by/4.0/1. 引言分数阶微积分和整数阶微积分都起源于同一个时代,即Leibniz 时代。

张永德教授量子力学讲义 第十一章

张永德教授量子力学讲义 第十一章

第三部分 开放体系问题第十一章含时问题与量子跃迁本章讨论量子力学中的时间相关现象。

它们包括:含时问题求解的一般讨论、含时微扰论、量子跃迁也即辐射的发射和吸收问题。

如果说,以前各章主要研究量子力学中的稳态问题,本章则专门讨论非稳态问题。

根据第五章中有关叙述,由于我们所处时空结构的时间轴固有的均匀性,孤立量子体系的Hamilton量必定不显含时间,从而遵守不显含时间的Schrödinger方程。

因此,这里含时Schrödinger方程所表述的量子体系必定不是孤立的量子体系,而是某个更大的可以看作孤立系的一部分,是这个孤立系的一个子体系。

当这个子体系和孤立系的其他部分存在着能量、动量、角动量、甚至电荷或粒子的交换时,便导致针对这个子体系的各类含时问题。

在了解本章(以及下一章)内容的时候,有时需要注意这一点。

§11.1 含时Schrödinger方程求解的一般讨论1, 时间相关问题的一般分析量子力学中,时间相关问题可以分为两类:i, 体系的Hamilton量不依赖于时间。

这时,要么是散射或行进问题,要么是初始条件或边界条件的变化使问题成为与时间相关的现象。

“行进问题”例如,中子以一定的自旋取向进入一均匀磁场并穿出,这是一个自旋沿磁场方向进动的时间相关问题;258259“初始条件问题”比如,波包的自由演化,这是一个与时间相关的波包弥散问题。

更一般地说,初态引起的含时问题可以表述为:由于Hamilton 量中的某种相互作用导致体系初态的不稳定。

例如Hamilton 量中的弱相互作用导致初态粒子的β衰变等;最后,“边界条件变动”也能使问题成为一个与时间相关的现象。

例如阱壁位置随时间变动或振荡的势阱问题等。

ii, 体系的Hamilton 量依赖于时间。

这比如,频率调制的谐振子问题或是时间相关受迫谐振子问题,交变外电磁场下原子中电子的状态跃迁问题等等。

如果问题允许有精确的、解析的解,就称相应的Hamilton 量H 为可积的,相应系统为可积体系。

带非定域项schrodinger方程的jost解

带非定域项schrodinger方程的jost解

带非定域项schrodinger方程的jost解在量子力学中,Schrödinger方程是研究量子系统的一个常用方程。

对于一维系统,Schrödinger方程可以写成如下形式:\[H\psi(x) = E\psi(x)\]其中H是系统的哈密顿算符,ψ(x)是波函数,E是能量。

通常情况下,Schrödinger方程是一个定域的方程,即和位置x有关系的项是局部的。

然而,在一些情况下,Schrödinger方程可以包含非定域项,即和位置x有关系的项是非局部的。

这种情况下的Schrödinger方程被称为带非定域项的Schrödinger方程。

\[H\psi(x) = E\psi(x) + V(x)F[\psi](x)\]其中V(x)是定域势能项,F[\psi](x)是非定域项,可能包含了波函数ψ在整个空间上的积分或导数等。

在研究带非定域项的Schrödinger方程时,一个重要的概念是Jost 解。

Jost解是一种特殊的解,它们具有一些特殊的性质。

Jost解可以通过一个无穷级数的形式来表示:\[\psi(x) = \sum_{n=0}^{\infty}a_ne^{ikx}\]其中k是一个实数,a_n是系数。

对于带非定域项的Schrödinger方程,Jost解可以写成如下形式:\[\psi(x) = \sum_{n=0}^{\infty}a_ne^{ikx} + \int dkF[k]\phi(k)e^{ikx}\]其中F[k]是一个与波矢k相关的函数,用来描述非定域项的影响。

φ(k)是一个与波矢k相关的函数,它是另外一个方程的特解,该方程不包含非定域项。

这个方程通常被称为约化方程。

Jost解的一个重要性质是它们满足正交归一条件。

即,Jost解的内积满足如下关系:\[\int dx \psi^*(x)\psi(x) = 1\]根据这个性质,可以推导出Jost解的系数a_n满足一组正交归一条件:\[\int dx \psi_n^*(x)\psi_m(x) = \delta_{nm}\]其中δ_nm是Kronecker delta符号,当n=m时为1,否则为0。

schordinger方程

schordinger方程

薛定谔方程(Schrödinger equation),又称薛定谔波动方程(Schrodinger wave equation),是由奥地利物理学家薛定谔提出的量子力学中的一个基本方程,也是量子力学的一个基本假定。

它是将物质波的概念和波动方程相结合建立的二阶偏微分方程,可描述微观粒子的运动,每个微观系统都有一个相应的薛定谔方程式,通过解方程可得到波函数的具体形式以及对应的能量,从而了解微观系统的性质。

在量子力学中,粒子以概率的方式出现,具有不确定性,宏观尺度下失效可忽略不计。

Exact solution to the Schr{o}dinger equation for the quantum rigid body

Exact solution to the Schr{o}dinger equation for the quantum rigid body
K,ℓx ℓy ℓm ψK,ℓx ℓy (ρ)YK,ℓ (Ω). x ℓy
There is huge degeneracy of the hyperspherical basis, and the matrix elements of the potential have to be calculated between different hyperspherical harmonic states [10], because the interaction in the three-body problem is not hyperspherically symmetric. The quantum rigid body (top) can be thought of as the simplest quantum three-body problem where the internal motion is frozen. To solve exactly the Schr¨ odinger equation for the rigid body is the first step for solving exactly the quantum three-body problems. Wigner first studied the exact solution for the quantum rigid body (see P.214 in [17]) from the group theory. He characterized the position of the rigid body by the three Euler angles α, β , γ of the rotation which brings the rigid body from its normal position into the position in question, and obtained the exact solution for the quantum rigid body, which is nothing but the Wigner D -function. For the quantum

Exact Solutions of the Time Dependent Schroedinger Equation in One Space Dimension

Exact Solutions of the Time Dependent Schroedinger Equation in One Space Dimension

a r X i v :q u a n t -p h /0211040v 1 8 N o v 2002Exact Solutions of the Time Dependent Schr¨o dinger Equation in One SpaceDimension.B.HamprechtInstitut fr Theoretische Physik,Freie Universitt Berlin,Arnimallee 14,D-14195Berlin,Germanye-mails:bodo.hamprecht@physik.fu-berlin.de(May 16th,1997)A closed expression for the harmonic oscillator wave function after the passage of a linear signal with arbitrary time dependence is derived.Transition probabilities are simple to express in terms of Laguerre polynomials.Spontaneous transitions are neglected.The exact result is of some interest for the physics of short laser pulses,since it may serve as an accuracy test for numerical methods.I.CONSTRUCTION OF THE PROPAGATORWe consider the Schr¨o dinger Equation:− 2∂x 2+mω2∂t(1.1)The driving force j (t )is supposed to be real and of finite duration.The propagator of the above equation is well known [1].Ψ(x,t,y )=α2πi sin ωt exp i 2cos ωt −xy+xx 0+yy 02α2 2 (1.2)where:x 0=−G,y 0=G cos ωt −F sin ωt,chi =G 2cos ωt −(F G +2H )sin ωt,α=(1.3)G (t )=tdt ′j (t ′)sin ωt ′,F (t )=tdt ′j (t ′)cos ωt ′H (t )=12+iB (t )αx −C (t )dtA =iω(1−A 2)dαd√τA,B and C have to be solutions of (1.5)with a singularity at t =0:1A(t)=−i cotωtB(t)=−G(t)αsinωtC(t)=log(2πi sinωt)−iα2y2cotωt−i 2y+G +2i√2α2+i ωt m+1m!2−iH√√√2 (−ir∗)n|a n|2=R nα22 dy(3.1) The integral evaluates to:Ψ(x,t)=4 πexp −α2x 0=−i(F +iG )e −iωt2α2 2+1α2p =−(F cos ωt +G sin ωt )(3.3)IV.APPENDIXWe evaluate equation (2.1),using the generating function for the Hermite polynomials.If γm,n is the coefficient of w m z n in the Taylor expansion of:J =α∞−∞Ψ(x,t,y )e 2(wx +zy )α−w2−z 2−x 2+y2n !m !2γm,n (4.1)Now:J =12πi sin t∞ −∞exp −X T AX +2P T X −Q α2dX = 2i sin tdetAexp P T A −1P −Q(4.2)where:X =αxy P =w −iG2α(F −G cot ωt ) A =12cot ωti2sin ωt12cot ωtQ =w 2+z 2+iα2 2HWe find:det A =−ie iωtα−iwF +iG4α2 2(4.4)Therefore:a m,n =2n +mexp−F 2+G 2+4iHαm −k F −iGk !(m −k )!(n −k )!Extracting common factors from the sum and replacing k by m −k in the summation,we obtain:a n.m =√4α2 2 −i F −iG2α n −m m k =0−F 2+G 2k !(m −k )!(n −m +k )!The finite sum in this expression defines a Laguerre polynomial.Therefore:a n.m = n !exp −|r |2α22(−ir ∗)n −m L (n −m )m (|r |2)(4.5)3where:r=F+iG2α=12αtdt′j(t′)e iωt′which proves equation(2.2).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(8)

m′ m
2

Therefore, the energy eigenvalues and corresponding wave functions for the potential V (y ) as En and φn (y ) become ˜n = En E and 1 φ n (y ) m(x) (10)

(2)
+ (f ′ ) V (f (x))
1 d2 f ′′ m′ − − − 2 dx2 m 2f ′
2
1 m′′ d m′ − ′ + (α − 1) dx 2 m m

2
m′ − m
f ′′ f′ (3)

ψ (x) = (f ′ )2 E ψ (x), 2
where the prime denotes differentiation with respect to x. On the other hand the one dimensional Schr¨ odinger equation with position dependent mass can be written as − 1 dψ (x) 1 d ˜ (x)ψ (x) = Eψ ˜ (x), +V 2 dx M (x) dx (4)
Exact solution of Schr¨ odinger equation for modified Kratzer’s molecular potential with the position-dependent mass
arXiv:0712.0268v1 [quant-ph] 3 Dec 2007
.
(9)
ψn (x) =
(11)
3
Applications
We solve Schr¨ odinger equation exactly for two potentials the rotationally corrected Morse potential[30] and the modified Kratzer molecular potential[31]. We consider three kinds of the position dependent mass distributions. Two of them are used before[19], and the third one is the exponentially decreasing mass distribution with a free parameter q.
Ramazan Sever 1, Cevdet Tezcan
1
2
Middle East Technical University,Department of Physics, 06531 Ankara, Turkey
2 Faculty
of Engineering, Ba¸ skent University, Ba˜ glıca Campus, Ankara, Turkey
Comparing Eqs. (3) and (5), we get the following identities f ′′ m′ m′ − = 2f ′ m 2m and
′′ ′2 ′ ˜ (x) − E ˜ = f [V (f (x)) − E ] − 1 m − m V m 2m m m
(6)
1
1
Introduction
Solutions of Schr¨ odinger equation for a given potential with any angular momentum have much attention in chemical physics systems. Energy eigenvalues and the corresponding eigenfunctions provide a complete information about the diatomic molecules. Morse and Kratzer potentials [1,2] are one of the well-known diatomic potentials. The method used in the Schr¨ odinger equation for vibration-rotation states are mostly based on the wave function expansion and exact solution for a single state with some restrictions on the coupling constants [3-7]. On the other hand solutions of the position-dependent effective-mass Schr¨ odinger equation are very interesting chemical potential problem. They have also found important applications in the fields of material science and condensed matter physics such as semiconductors[8], quantum well and quantum dots[9], 3 H , clusters[10], quantum liquids[11], graded alloys and semiconductor heterostructures]12,13]. Recently, number of exact solutions on these topics increased[14-31]. Various methods are used in the calculations. The point canonical transformations (PCT) is one of these methods providing exact solutions of energy eigenvalues and corresponding eigenfunctions [24-27]. It is also used for solving the Schr¨ odinger equation with position-dependent effective mass for some potentials [8-13]. In the present work, we solve two different potentials with the three mass distributions. The point canonical transformation is taken in the more general form introducing a free parameter. This general form of the transformation will provide us a set of solutions for different values of free parameter. In this work, the exact solution of Schr¨ odinger equation is obtained or the modified Kratzer type of molecular potential [31] and the corrected Morse potential [32]. The contents of the paper is as follows. In section 2, we present briefly the solution of the Schr¨ odinger by using point canonical transformation. In section 3, we introduce some applications for the specific mass distributions. Results are discussed in section 4.
3
3.1
Modified Kratzer Potential
2
y − ye , (12) y where De is the dissociation energy and ye is the equilibrium internuclear separation. Energy spectrum and the wave functions are V (r ) = De h ¯ 4µDe ye 2µ h ¯2
f ′′ f′
(7)
From Eq. (6), one gets f ′ = m1/2 Substituting f ′ into Eq. (7), the new potential can be obtained as
′′ ˜ (x) = V (f (x)) − 1 m − 7 V 8m m 4
February 2, 2008
Abstract Exact solutions of Schr¨ odinger equation are obtained for the modified Kratzer and the corrected Morse potentials with the position-dependent effective mass. The bound state energy eigenvalues and the corresponding eigenfunctions are calculated for any angular momentum for target potentials. Various forms of point canonical transformations are applied. PACS numbers: 03.65.-w; 03.65.Ge; 12.39.Fd Keywords: Morse potential, Kratzer potential, Position-dependent mass, Point canonical transformation, Effective mass Schr¨ odinger equation.
相关文档
最新文档