2015-2016学年江苏省南京市玄武区八年级(下)期末数学试卷

合集下载

八下数学试卷(答案可以不用打印)

八下数学试卷(答案可以不用打印)

江苏省南京市鼓楼区2015-2016学年八年级(下)期末数学试卷班级姓名一、选择题:本大题共6小题,共12分1.计算的结果是()A.4B.±4C.2D.﹣42.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.如果把分式中的x和y都扩大为原来的2倍,那么分式的值()A.扩大为原来的4倍B.扩大为原来的2倍C.不变D.缩小为原来的4.2015年南京市有47857名初中毕业生参加升学考试,为了了解这47857名考生的数学成绩,从中抽取2000名考生的数学成绩进行统计,在这个问题中样本是()A.47857名考生B.抽取的2000名考生C.47857名考生的数学成绩D.抽取的2000名考生的数学成绩5.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.当气球内的气压大于120kPa时,气球将爆炸.为了安全起见,气球的体积应()A.不小于m3B.小于m3C.不小于m3D.小于m36.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B.从一副扑克牌中任意抽取一张,这张牌是“红色的”C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”D.只一个质地均匀的正六面体骰子,落地时面朝上的点数是6二、填空题:每小题2分,共20分7.使式子有意义的x取值范围是______.8.计算﹣的结果为______.9.比较下列实数的大小:______.10.已知一个菱形的边长为5,其中一条对角线长为8,则这个菱形的面积为______.11.已知点A(2,y1)、B(m,y2)是反比例函数y=的图象上的两点,且y1<y2.写出满足条件的m的一个值,m可以是______.12.在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个,先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,若此时“摸出黑球”为必然事件,则m的值是______.13.如图,在▱ABCD中,∠A=70°,将▱ABCD绕点B顺时针旋转到▱A1BC1D1的位置,此时C1D1恰好经过点C,则∠ABA1=______°.14.如图,为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD,B与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,给出如下的判断:①四边形ABCD为平行四边形;②BD的长度增大;③四边形ABCD的面积不变;④四边形ABCD的周长不变.其中正确的序号是______.15.计算(1﹣﹣﹣)(+++)﹣(1﹣﹣﹣﹣)(++)的结果是______.16.在直角坐标系中,点A、B的坐标分别为(﹣2,4)、(﹣5,2),点M、N分别是x 轴、y轴上的点,若以点A、B、M、N为顶点的四边形是平行四边形,则点M的横坐标的所有可能的值是______.三、解答题:共68分17.(12分)计算:(1)(2﹣3)×(2)+3﹣+(3)﹣(4)÷.18.解方程:(1)x2﹣6x+2=0(用配方法)(2)=﹣2.19.化简1﹣÷,并直接写出a为何整数时,该代数式的值也为整数.20.如图,线段AB绕点O顺时针旋转一定的角度得到线段A1B1(点A的对应点为A1).(1)请用直尺和圆规作出旋转中心O(不写作法,保留作图痕迹);(2)连接OA、OA1、OB、OB1,并根据旋转的性质用符号语言写出2条不同类型的正确结论.21.八年级的同学们即将步入初三,某主题班会小组为了了解本校八年级同学对初三的第一印象,打算抽样调查40位同学.(1)有同学提议:“八年级1班的人数刚好是40人,不如我们直接调查1班所有同学吧”,他的建议合理吗?请说明理由;(2)他们用问卷随机调查了40位同学(每人只能选一项),并统计如下:第一印象满怀期待忧喜交加想想都累放过我吧其他划记请选择一种统计图将上表中的数据描述出来;(3)若本校八年级共有500名学生,请估计对初三第一印象是“忧喜交加”的同学人数.22.如图,反比例函数y1=(x>0)与正比例函数y2=mx和y3=nx分别交于A,B两点.已知A、B两点的横坐标分别为1和2.过点B作BC垂直x轴于点C,△OBC的面积为2.(1)当y2>y1时,x的取值范围是______;(2)求出y1和y3的关系式;(3)直接写出不等式组的解集______.23.观察下列各式:①==2;②==3;③==4.(1)根据你发现的规律填空:=______=______;(2)猜想(n≥2,n为自然数)等于什么,并通过计算证实你的猜想.24.某中学组织学生去离学校15千米的农场,先遣队比大队提前20分钟出发,先遣队的速度是大队速度的1.2倍,结果先遣队比大队早到0.5小时,先遣队和大队的速度各是多少?25.几位同学尝试用矩形纸条ABCD(如图1)折出常见的中心对称图形.(1)如图2,小明将矩形纸条先对折,使AB和DC重合,展开后得折痕EF,再折出四边形ABEF和CDEF的对角线,它们的对角线分别相交于点G,H,最后将纸片展平,则四边形EGFH的形状一定是______.(2)如图3,小华将矩形纸片沿EF翻折,使点C,D分别落在矩形外部的点C′,D′处,FC′与AD交于点G,延长D′G交BC于点H,求证:四边形EGFH是菱形.(3)如图4,小美将矩形纸条两端向中间翻折,使得点A ,C 落在矩形内部的点A ′,C ′处,点B ,D 落在矩形外部的点B ′,D ′处,折痕分别为EF ,GH ,且点H ,C ′,A ′,F 在同一条直线上,试判断四边形EFGH 的形状,并说明理由.26.如图,在平面直角坐标系第一象限中,当m ,n 为正整数时:将反比例函数y n =图象上横坐标为m 的点叫做“双曲格点”,记作A [m ,n],例如,点A [3,2]表示y 2=图象上横坐标为3的点,故点A [3,2]的坐标为(3,).把y n =的图象沿着y 轴平移或以平行于x 轴的直线为对称轴进行翻折,将得到的函数图象叫做它的“派生曲线”,例如,图中的曲线f 是y 1=图象的一条“派生曲线”.(1)①“双曲格点”A [2,1]的坐标为______;②若线段A [4,3]A [4,n]的长为1,则n=______.(2)若“双曲格点”A [m ,2],A [m+4,m]的纵坐标之和为1,求线段A [m ,2],A [m+4,m]的长;(3)图中的曲线f 是y 1=图象的一条“派生曲线”,且经过点A [2,3],则f 的函数表达式为y=______;(4)已知y 3=图象的“派生曲线”g 经过“双曲格点”A [3,3],且不与y 3=的图象重合,试在图中画出g 的位置(先描点,再连线)2015-2016学年江苏省南京市鼓楼区八年级(下)期末数学试卷参考答案一、选择题:本大题共6小题,共12分1.计算的结果是()A.4B.±4C.2D.﹣4【考点】二次根式的性质与化简.【分析】直接利用二次根式的性质化简求出答案.【解答】解:==4.故选:A.【点评】此题主要考查了二次根式的性质与化简,正确应用二次根式的性质是解题关键.2.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【解答】解:A、不是轴对称图形,也不是中心对称图形;B、不是轴对称图形,是中心对称图形;C、是轴对称图形,不是中心对称图形;D、是轴对称图形,也是中心对称图形.故选:D.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.如果把分式中的x和y都扩大为原来的2倍,那么分式的值()A.扩大为原来的4倍B.扩大为原来的2倍C.不变D.缩小为原来的【考点】分式的基本性质.【分析】根据x,y都扩大2倍,即可得出分子扩大4倍,分母扩大2倍,由此即可得出结论.【解答】解:∵x,y都扩大为原来2倍,∴分子xy扩大4倍,分母x+y扩大2倍,∴分式扩大2倍.故选B.【点评】本题考查了分式的基本性质,解题的关键是根据x、y的变化找出分子分母的变化.本题属于基础题,难度不大,解决该题型题目时,根据分式的基本性质找出分式的变化是关键.4.2015年南京市有47857名初中毕业生参加升学考试,为了了解这47857名考生的数学成绩,从中抽取2000名考生的数学成绩进行统计,在这个问题中样本是()A.47857名考生B.抽取的2000名考生C.47857名考生的数学成绩D.抽取的2000名考生的数学成绩【考点】总体、个体、样本、样本容量.【分析】根据样本的定义:从总体中取出的一部分个体叫做这个总体的一个样本进行解答即可.【解答】解:这个问题中样本是所抽取的2000名考生的数学成绩,故选D.【点评】本题考查了总体、个体、样本和样本容量:我们把所要考察的对象的全体叫做总体;把组成总体的每一个考察对象叫做个体;从总体中取出的一部分个体叫做这个总体的一个样本;一个样本包括的个体数量叫做样本容量.5.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.当气球内的气压大于120kPa时,气球将爆炸.为了安全起见,气球的体积应()A.不小于m3B.小于m3C.不小于m3D.小于m3【考点】反比例函数的应用.【分析】根据题意可知温度不变时,气球内气体的气压P(kPa)是气体体积V(m3)的反比例函数,且过点(1.6,60)故P•V=96;故当P≤120,可判断V≥.【解答】解:设球内气体的气压P(kPa)和气体体积V(m3)的关系式为P=,∵图象过点(1.6,60)∴k=96即P=在第一象限内,P随V的增大而减小,∴当P≤120时,V=≥.故选:C.【点评】根据图象上的已知点的坐标,利用待定系数法求出函数解析式.6.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B.从一副扑克牌中任意抽取一张,这张牌是“红色的”C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”D.只一个质地均匀的正六面体骰子,落地时面朝上的点数是6【考点】利用频率估计概率;频数(率)分布折线图.【分析】根据统计图可知,试验结果在0.16附近波动,即其概率P≈0.16,计算四个选项的概率,约为0.16者即为正确答案.【解答】解:A、从一装有2个白球和1个红球的袋子中任取一球,取到白球的概率是≈0.67>0.16,故此选项错误;B、从一副扑克牌中任意抽取一张,这张牌是“红色的概率=≈0.24>0.16,故此选项错误;C、掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率==0.5>0.16,故此选项错误;D、掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率=≈0.16故此选项正确,故选D.【点评】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.二、填空题:每小题2分,共20分7.使式子有意义的x取值范围是x≥﹣1.【考点】二次根式有意义的条件.【分析】本题主要考查自变量的取值范围,函数关系中主要有二次根式.根据二次根式的意义,被开方数是非负数.【解答】解:根据题意得:x+1≥0,解得x≥﹣1.故答案为:x≥﹣1.【点评】本题考查二次根式有意义的条件,比较简单,注意掌握二次根式的意义,被开方数是非负数.8.计算﹣的结果为2.【考点】二次根式的加减法.【分析】首先把代数式中的二次根式进行化简,再合并同类二次根式即可.【解答】解:原式=5﹣3=2,故答案为:2.【点评】此题主要考查了二次根式的减法,关键是掌握计算法则:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.9.比较下列实数的大小:>.【考点】实数大小比较;二次根式的性质与化简.【分析】把根号外的因式平方后移入根号内,比较结果的大小,即可求出答案.【解答】解:==,2==,∵>,∴3>2,故答案为:>.【点评】本题考查了实数的大小比较和二次根式的性质等知识点,关键是求出3=、2=,注意:当a≥0时,a=,题型较好,难度适中.10.已知一个菱形的边长为5,其中一条对角线长为8,则这个菱形的面积为24.【考点】菱形的性质.【分析】首先根据题意画出图形,由一个菱形的边长为5,其中一条对角线长为8,可利用勾股定理,求得另一菱形的长,继而求得答案.【解答】解:如图,∵菱形ABCD中,BD=8,AB=5,∴AC⊥BD,OB=BD=4,∴OA==3,∴AC=2OA=6,∴这个菱形的面积为:AC•BD=×6×8=24.故答案为:24.【点评】此题考查了菱形的性质以及勾股定理.注意菱形的面积等于其对角线积的一半.11.已知点A(2,y1)、B(m,y2)是反比例函数y=的图象上的两点,且y1<y2.写出满足条件的m的一个值,m可以是1.【考点】反比例函数图象上点的坐标特征.【分析】由于y=在一、三象限,根据题意判定A、B在第一象限,根据反比例函数的性质即可求解.【解答】解:由于y=在一、三象限,y随x的增大而减小,若满足y1<y2,点A(2,y1)在第一象限,B(m,y2)在第一象限,若满足y1<y2,则m满足的条件是0<m<2;故答案为1.【点评】本题考查了反比例函数图象上点的坐标特征,要学会比较图象上任意两点函数的大小.12.在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个,先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,若此时“摸出黑球”为必然事件,则m的值是4.【考点】随机事件.【分析】“摸出黑球”为必然事件,则袋子中都是黑球,据此即可求解.【解答】解:m=4.故答案是:4.【点评】本题考查了必然事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.13.如图,在▱ABCD中,∠A=70°,将▱ABCD绕点B顺时针旋转到▱A1BC1D1的位置,此时C1D1恰好经过点C,则∠ABA1=40°.【考点】旋转的性质;平行四边形的性质.【分析】由旋转的性质可知:▱ABCD全等于▱A1BC1D1,所以BC=BC1,所以∠BCC1=∠C1,又因为旋转角∠∠ABA1=∠CBC1,根据等腰三角形的性质计算即可.【解答】解:∵▱ABCD绕顶点B顺时针旋转到▱A1BC1D1,∴BC=BC1,∴∠BCC1=∠C1,∵∠A=70°,∴∠C=∠C1=70°,∴∠BCC1=∠C1,∴∠CBC1=180°﹣2×70°=40°,∴∠ABA1=40°,故答案为:40.【点评】本题考查了平行四边形的性质、旋转的性质、等腰三角形的判定和性质以及三角形的内角和定理,解题的关键是证明三角形CBC1是等腰三角形.14.如图,为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD,B与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,给出如下的判断:①四边形ABCD为平行四边形;②BD的长度增大;③四边形ABCD的面积不变;④四边形ABCD的周长不变.其中正确的序号是①②④.【考点】平行四边形的判定.【分析】①正确.根据平行四边形的判定方法即可判断.②正确.观察图象即可判断.③错误.面积是变小了.④正确.根据平行四边形性质即可判断.【解答】解:∵两组对边的长度分别相等,∴四边形ABCD是平行四边形,故①正确,∵向右扭动框架,∴BD的长度变大,故②正确,∵平行四边形ABCD的底不变,高变小了,∴平行四边形ABCD的面积变小,故③错误,∵平行四边形ABCD的四条边不变,∴四边形ABCD的周长不变,故④正确.故答案为①②④【点评】本题考查平行四边形的判定和性质、平行四边形的周长、面积等知识,解题的关键是熟练应用这些知识解决问题,属于中考常考题型.15.计算(1﹣﹣﹣)(+++)﹣(1﹣﹣﹣﹣)(++)的结果是1.【考点】二次根式的混合运算.【分析】设++=t,则原式=(1﹣t)(t+)﹣(1﹣t﹣)•t,然后展开后合并即可.【解答】解:设++=t,原式=(1﹣t)(t+)﹣(1﹣t﹣)•t=t+﹣t2﹣t﹣t+t2+t=1.故答案为1.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.注意利用换元的思想解决问题.16.在直角坐标系中,点A、B的坐标分别为(﹣2,4)、(﹣5,2),点M、N分别是x 轴、y轴上的点,若以点A、B、M、N为顶点的四边形是平行四边形,则点M的横坐标的所有可能的值是﹣7,﹣3,3.【考点】平行四边形的性质;坐标与图形性质.【分析】根据“一组对边相等且平行的四边形是平行四边形”,画出图形,得出点M的横坐标即可.【解答】解:如图所示:当AB平行且等于N1M1时,四边形ABM1N1是平行四边形;当AB平行且等于N2M2时,四边形ABN2M2是平行四边形;当AB为对角线时,四边形AN3BM3是平行四边形.故符合题意的有3个点,点M的横坐标分别为﹣7,﹣3,3.故答案为:﹣7,﹣3,3.【点评】此题考查了平行四边形的性质;结合AB的长分别确定M,N的位置是解决问题的关键.三、解答题:共68分17.(12分)(2016春•南京期末)计算:(1)(2﹣3)×(2)+3﹣+(3)﹣(4)÷.【考点】二次根式的混合运算;分式的混合运算.【分析】(1)先化简,再进行二次根式的乘法运算;(2)先化简二次根式,再合并同类二次根式即可;(3)先通分,再进行分式的加减运算即可;(4)先把分母因式分解,再约分即可.【解答】解:(1)原式=(4﹣)×=3×=9;(2)原式=2+﹣+=+=;(3)原式==1;(4)原式=•==.【点评】本题考查了二次根式的混合运算以及分式的混合运算,掌握二次根式的化简和分式的通分和约分是解题的关键.18.解分式方程:【考点】解分式方程.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1))x2﹣6x+9=7,(x﹣3)2=7,x﹣3=±,所以x1=3+,x2=3﹣.(2)去分母得:1﹣x=﹣1﹣2x+4,移项合并得:x=2,经检验x=2是增根,分式方程无解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.19.化简1﹣÷,并直接写出a为何整数时,该代数式的值也为整数.【考点】分式的化简求值.【分析】先对原式化简,通过观察即可得到a为何整数时,该代数式的值也为整数.【解答】解:1﹣÷=1﹣=1﹣=,当a=﹣3时,该代数式的值也为整数.【点评】本题考查分式的化简求值,解题的关键是明确分式化简求值的方法.20.如图,线段AB绕点O顺时针旋转一定的角度得到线段A1B1(点A的对应点为A1).(1)请用直尺和圆规作出旋转中心O(不写作法,保留作图痕迹);(2)连接OA、OA1、OB、OB1,并根据旋转的性质用符号语言写出2条不同类型的正确结论.【考点】作图-旋转变换.【分析】(1)连接AA1、BB1,再分别作AA1、BB1中垂线,两中垂线交点即为点O;(2)根据旋转的性质可知,对应角都相等都等于旋转角,对应点到旋转中心距离相等,据此可知.【解答】解:(1)如图,点O即为所求;(2)OA=OA1、∠AOA1=∠BOB1.【点评】本题主要考查旋转变换的作图,熟练掌握旋转变换的性质:①对应点到旋转中心的距离相等(意味着:旋转中心在对应点所连线段的垂直平分线上),②对应点与旋转中心所连线段的夹角等于旋转角,③旋转前、后的图形全等.21.22.(1)当y2>y1时,x的取值范围是x>1;(2)求出y1和y3的关系式;(3)直接写出不等式组的解集1<x<2.【考点】反比例函数与一次函数的交点问题.【分析】(1)根据反比例函数和正比例函数的图象可以直接写出y2>y1时,x的取值范围,(2)根据△OBC的面积为2求出B点的坐标和k的值,进而求出n的值,(3)观察不等式组,mx>,就是y2>y1,>nx,就是y1>y3,结合图象即可得到答案.【解答】解:(1)若y2>y1,只要在图象上找出正比例函数y2的图象在正比例函数图象上部x的取值范围,结合图形可得x>1,(2)∵△OBC的面积为2,∴点B坐标为(2,2),将B(2,2)代入y1=,得:k=4,将B(2,2)代入y3=nx,得:n=1,∴y1=,y3=x,(3)观察不等式组,mx>,就是y2>y1,>nx,就是y1>y3,结合图形可得:1<x<2【点评】本题主要考查反比例函数与一次函数的交点问题的知识点,解答本题的关键是利用好△OBC的面积为2条件求出B点的坐标和k的值,本题难度一般.23.观察下列各式:①==2;②==3;③==4.(1)根据你发现的规律填空:==5;(2)猜想(n≥2,n为自然数)等于什么,并通过计算证实你的猜想.【考点】二次根式的性质与化简.【分析】(1)根据已知3个等式的规律解答即可;(2)先将被开方数通分,再根据二次根式的性质化简即可.【解答】解:(1)∵①==2,②==3,③==4,∴==5,故答案为:,5;(2)猜想:=n,验证如下:当n≥2,n为自然数时,原式===n.【点评】本题主要考查数字的变化规律及二次根式的性质与化简,熟练掌握二次根式的性质是解题的关键.24.某中学组织学生去离学校15千米的农场,先遣队比大队提前20分钟出发,先遣队的速度是大队速度的1.2倍,结果先遣队比大队早到0.5小时,先遣队和大队的速度各是多少?【考点】分式方程的应用.【分析】设大队的速度是x千米/小时,则先遣队的速度1.2x千米/小时,根据“先遣队比大队提前20分钟出发,结果先遣队比大队早到0.5小时”列方程解出即可,注意把20分钟化为小时.【解答】解:设大队的速度是x千米/小时,则先遣队的速度1.2x千米/小时,根据题意得:﹣=﹣,解得:x=15,经检验x=15是原方程的解,1.2x=1.2×15=18,答:大队的速度是15千米/小时,则先遣队的速度18千米/小时.【点评】本题是分式方程的应用,属于行程问题;有两个队:先遣队和大队;路程都是15千米;时间:相差20分钟+0.5小时;速度:先遣队的速度是大队速度的1.2倍;根据速度设未知数,根据时间列方程,要进行检验.25.几位同学尝试用矩形纸条ABCD(如图1)折出常见的中心对称图形.(1)如图2,小明将矩形纸条先对折,使AB和DC重合,展开后得折痕EF,再折出四边形ABEF和CDEF的对角线,它们的对角线分别相交于点G,H,最后将纸片展平,则四边形EGFH的形状一定是菱形.(2)如图3,小华将矩形纸片沿EF翻折,使点C,D分别落在矩形外部的点C′,D′处,FC′与AD交于点G,延长D′G交BC于点H,求证:四边形EGFH是菱形.(3)如图4,小美将矩形纸条两端向中间翻折,使得点A,C落在矩形内部的点A′,C′处,点B,D落在矩形外部的点B′,D′处,折痕分别为EF,GH,且点H,C′,A′,F在同一条直线上,试判断四边形EFGH的形状,并说明理由.【考点】四边形综合题.【分析】(1)由折叠的性质,易证得四边形AECF与四边形BFDE是平行四边形,继而可证得四边形EGFH是平行四边形,又由折叠的性质,证得∠AFE=∠DFE,即可得四边形EGFH 的形状一定是菱形;(2)易得四边形EGFH是平行四边形,又由折叠的性质得:∠CFE=∠GFE,继而证得GE=GF,则可得四边形EGFH是菱形;(3)首先由矩形ABCD中,AD∥BC,可得∠AHF=∠CFH,由折叠的性质得:∠GHF=∠AHF,∠EFH=∠CFH,继而证得GH∥EF,继而可证得四边形EFGH是平行四边形.【解答】(1)菱形.理由:∵小明将矩形纸条先对折,使AB和DC重合,展开后得折痕EF,∴AB∥BC,AE=ED=BF=CF,∴四边形AECF与四边形BFDE是平行四边形,∴AF∥CE,BE∥DF,∴四边形EGFH是平行四边形,∵EF⊥AD,AE=DE,∴AF=DF,∴∠EFG=∠EFH,∵∠FEG=∠EFH,∴∠EFG=∠FEG,∴EG=FG,∴四边形EGFH是菱形;故答案为:菱形;(2)证明:∵矩形ABCD中,AD∥BC,∴EG∥FH,EH∥FG,∴四边形EGFH是平行四边形,∵AD∥BC,∴∠AEF=∠CFE,由折叠的性质得:∠CFE=∠GFE,∴∠AEF=∠GFE,∴GE=GF,∴▱EGFH是菱形;(3)解:平行四边形.理由:∵矩形ABCD中,AD∥BC,∴∠AHF=∠CFH,由折叠的性质得:∠GHF=∠AHF,∠EFH=∠CFH,∴∠GHF=∠EFH,∴GH∥EF,∵EH∥FG,∴四边形EFGH是平行四边形.【点评】此题属于四边形的综合题.考查了矩形的性质、菱形的判定、平行四边形的判定以及折叠的性质.注意掌握折叠前后图形的对应关系是解此题的关键.26.【解答】解:(1)①∵A [2,1]表示y 2=图象上横坐标为2的点,∴A [2,1]的坐标为(2,).②由题意|﹣|=1,∵n 是正整数,∴n=7,故答案为(2,),7.(2)由题意A [m ,2]的坐标为(m ,)A [m+4,m]的坐标为(m +4,),∴+=1,解得m=4,经检验,m=4是分式方程的解.∴A [4,2]的坐标为(4,)A [8,4]的坐标为(8,),∴线段A [m ,2]A [m+4,m]的长为8﹣4=4.(3)∵曲线f 是y 1=图象的一条“派生曲线”,且经过点A [2,3],∴曲线f 是y 1=图象的向上平移所得,设向上平移a 个单位,∴曲线f 解析式为y=+a ,把(2,)代入得到,a=1,∴f 的函数表达式为y=+1.(4)∵y 3=图象的“派生曲线”g 经过“双曲格点”A [3,3],且不与y 3=的图象重合,∴y 3=图象的“派生曲线”g 是由y=沿直线y=1翻折得到,∴y3=图象的“派生曲线”g经过A[2,1],A[4,3],∴y3=图象的“派生曲线”g的图象如图所示,【点评】本题考查反比例函数综合题,解题的关键是理解题意,学会用方程的思想思考问题,属于中考创新题目.。

苏科版 2015--2016学年度第二学期初二数学期末试卷及答案

苏科版 2015--2016学年度第二学期初二数学期末试卷及答案

B. “抛一枚硬币正面朝上的 概率是 0.5”表示每抛硬币 2 次就有 1 次出现正面朝上 C. “彩票中奖的概率是 1%”表示买 100 张彩票一定会中奖 D. “抛一枚正方体骰 子朝上面的数为奇数的概率是 0.5”表示如果这个骰子抛很多很 多次,那么平均每 2 次就有 1 次出现朝上面的数为奇数 9. 如图, AB=4, 射线 BM 和 AB 互相垂直, 点 D 是 AB 上的一个动点,
k 14.点(2,3)关于 y 轴的对称点在反比例函数 y= 图像上,则 k=___________. x A G B D
(第 16 题)
D M A C
D
C E B
C
y
B
A C O D
(第 18 题)
B
(第பைடு நூலகம்17 题)
x
15. 已知菱形的周长为 40cm, 两 条对角线之比为 3∶4, 则菱形的面积为___________ cm2 . 16.如图,△ABC 中,如果 AB=AC,AD⊥BC 于点 D,M 为 AC 中点,AD 与 BM 交于点 G,那么 S△GDM:S△GAB 的值为___________. 17.如图.边长为 1 的两个正方形互相重合,按住其中一个不动,将另一个绕顶点 A 顺时针 旋转 45 ° ,则这两个正方形重叠部分的面积是 . k 18.如图,A 是反比例函数 y= 图像上一点,C 是线段 OA 上一点,且 OC:OA=1:3 x 作 CD⊥x 轴, 垂足为点 D, 延长 DC 交反比例函数图像于点 B, S△ABC=8, 则 k 的___________. 三、解答题(本大题共 8 题,共 64 分. ) 19.(本题满分 8 分) 化简: (1) (2 12-3 1 )× 6; 3 (2) x 1 - . x2-4 2x-4

玄武区八下期末数学试卷

玄武区八下期末数学试卷

1. 若a,b,c是等差数列,且a+b+c=0,则a^2+b^2+c^2的值为()A. 0B. 1C. 2D. 32. 在直角坐标系中,点A(2,3),点B(-1,-2),则线段AB的中点坐标为()A. (0.5,0.5)B. (1,1)C. (1.5,1.5)D. (2,2)3. 已知函数f(x) = 2x + 1,若f(2a-1) = 7,则a的值为()A. 3B. 2C. 4D. 14. 若等比数列的前三项分别为2,4,8,则该数列的公比为()A. 2B. 3C. 4D. 65. 在等腰三角形ABC中,AB=AC,若∠BAC=50°,则∠ABC的度数为()A. 40°B. 50°C. 60°D. 70°6. 已知一元二次方程x^2 - 4x + 3 = 0,其两个根分别为x1和x2,则x1+x2的值为()A. 4B. -4C. 2D. -27. 在△ABC中,∠A=45°,∠B=30°,则∠C的度数为()A. 75°B. 105°C. 135°D. 165°8. 若等差数列{an}的前n项和为Sn,且S5=20,S10=60,则数列{an}的公差d为()A. 1B. 2C. 3D. 49. 已知函数f(x) = x^2 - 4x + 3,若f(x) = 0的解为x1和x2,则x1•x2的值为()A. 3B. 4C. 5D. 610. 在等腰三角形ABC中,AB=AC,若∠BAC=80°,则△ABC的周长为()A. 80B. 90C. 100D. 12011. 若x^2 - 5x + 6 = 0,则x的值为_________。

12. 在直角坐标系中,点P(-2,3),点Q(4,-1),则线段PQ的长度为_________。

13. 函数f(x) = 3x - 2的图象与x轴的交点坐标为_________。

玄武区初二数学试卷及答案

玄武区初二数学试卷及答案

一、选择题(每题4分,共40分)1. 下列各数中,有理数是()A. √2B. πC. 0.1010010001…(无限循环小数)D. -√32. 已知a、b是实数,且a + b = 0,则下列等式中正确的是()A. a^2 = b^2B. a^2 = -b^2C. a^2 = b^2 + 1D. a^2 = b^2 - 13. 在直角坐标系中,点P(2,3)关于x轴的对称点是()A.(2,-3)B.(-2,3)C.(2,-3)D.(-2,-3)4. 下列函数中,定义域为全体实数的是()A. y = √xB. y = 1/xC. y = x^2D. y = |x|5. 已知等腰三角形ABC中,AB = AC,AD是底边BC的中线,则∠ADB的度数是()A. 45°B. 60°C. 90°D. 30°6. 下列各组数中,能组成等差数列的是()A. 2,5,8,11B. 3,6,9,12C. 1,3,5,7D. 4,8,12,167. 已知一元二次方程x^2 - 5x + 6 = 0的解为x1和x2,则x1 + x2的值为()A. 5B. 6C. 7D. 88. 在等腰直角三角形ABC中,若∠C = 90°,则下列说法正确的是()A. AB = ACB. BC = ACC. AB = BCD. AB^2 = AC^29. 下列图形中,属于轴对称图形的是()A. 矩形B. 正方形C. 圆D. 以上都是10. 已知函数y = 2x - 3,当x = 4时,y的值为()A. 5B. 7C. 9D. 11二、填空题(每题5分,共50分)11. 已知x^2 - 3x + 2 = 0,则x的值为________。

12. 在直角坐标系中,点A(-2,3)到原点O的距离是________。

13. 函数y = 3x - 2的图象经过点(1,y),则y的值为________。

玄武区初二下数学试卷

玄武区初二下数学试卷

一、选择题(每题4分,共20分)1. 下列各数中,是负数的是()A. -5B. 0C. 5D. -3.142. 下列各数中,是正数的是()A. -3B. 0C. -2.5D. 1.53. 下列各数中,是整数的是()A. 3.14B. -0.5C. 5D. -1/34. 下列各数中,是分数的是()A. 2B. -1C. 3/4D. 05. 下列各数中,是实数的是()A. 3/4B. -2C. 1.5D. √(-1)二、填空题(每题4分,共20分)6. (3/4)×(-2)= _______7. (-5)÷(-3)= _______8. 2.5 - 1.2 = _______9. 0.8 + 0.3 = _______10. 1/2 + 3/4 = _______三、解答题(每题10分,共30分)11. (1)计算下列各式的值:(a)5 - 3.2 + 2.8(b)-4 + 2 - (-1)(c)3/4 × 2 - 1/2(2)解下列方程:(a)2x - 3 = 7(b)5 - 3x = 2(c)3x + 4 = 1912. (1)计算下列各式的值:(a)(3/4) × (2/3) × (4/5)(b)(-1/2) ÷ (-3/4) × (-2/5)(c)(3/4) + (2/3) - (1/6)(2)解下列方程组:(a)x + 2y = 52x - y = 3(b)2x + 3y = 11x - y = 2四、应用题(每题10分,共20分)13. 学校举办了一场运动会,初二(1)班和初二(2)班分别参加了4个项目的比赛。

初二(1)班在4个项目中获得了3个第一名和1个第二名,初二(2)班在4个项目中获得了2个第一名和2个第二名。

请计算两个班级获得第一名的比例。

14. 小明去书店买书,书店的折扣是每满100元减去20元。

小明买了3本书,每本书的价格分别是40元、60元和80元。

2015~2016学年苏科版初二数学第二学期期末测试卷 有答案

2015~2016学年苏科版初二数学第二学期期末测试卷 有答案

2015~2016学年第二学期初二数学期末试卷一.选择题(共10小题,每小题3分,共30分) 1.(2015•重庆)下列调查中,最适宜采用全面调查方式(普查)的是……………………( ) A .对重庆市中学生每天学习所用时间的调查;B .对全国中学生心理健康现状的调查; C .对某班学生进行6月5日是“世界环境日”知晓情况的调查; D .对重庆市初中学生课外阅读量的调查;2.下列标识中,既是轴对称图形,又是中心对称图形的是…………………………( )A .B .C .D .3.分式的值为0,则…………………………………………………………( )A . x=﹣2B . x=±2C . x=2D . x=0 4.若反比例函数图象经过点(﹣1,6),则此函数图象也经过的点是………………( ) A .(6,1) B . (3,2) C . (2,3) D . (﹣3,2)5.( )A B C D 6.下列等式一定成立的是……………………………………………………………( )A =B =;C 3±;D .;7.(2015•巴中)下列说法中正确的是………………………………………………( ) A .“打开电视,正在播放新闻节目”是必然事件B .“抛一枚硬币,正面向上的概率为12”表示每抛两次就有一次正面朝上; C .“抛一枚均匀的正方体骰子,朝上的点数是6的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数是6”这一事件发生的频率稳定在16附近;D .为了解某种节能灯的使用寿命,选择全面调查; 8.函数y=kx+1与函数ky x=在同一坐标系中的大致图象是……………………( )A .B .C .D .9.如图,正比例函数1y 与反比例函数2y 相交于点E (﹣1,2),若1y >2y >0,则x 的取值范围是( )A . x <﹣1;B . ﹣1<x <0;C . x >1;D . 0<x <1;10.如图,已知四边形OABC 是菱形,CD ⊥x 轴,垂足为D ,函数4y x=的图象经过点C ,且与AB 交于点E .若OD=2,则△OCE 的面积为………………………………………………( ) A .2B .4C.D.二.填空题(共8小题,每小题3分,共24分) 111= ;12.一个口袋中装有4个白色球,1个红色球,7个黄色球,搅匀后随机从袋中摸出1个球是黄色球的概率是 . 13.若双曲线21k y x-=的图象经过第二、四象限,则k 的取值范围是 . 14()210n +=,则m n -的值为 . 15.若关于x 的方程2111x m x x ++=--产生增根,则m = . 16.如图,▱ABCD 的对角线AC ,BD 相交于点O ,点E ,F 分别是线段AO ,BO 的中点.若AC+BD=24厘米,△OAB 的周长是18厘米,则EF= 厘米. 17.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,∠AOB=120°,CE ∥BD ,DE ∥AC ,若AD=4,则四边形CODE 的周长 .18.如图,已知点A 是双曲线y =3x在第一象限上的一动点,连接AO ,以OA 为一边作等腰直角三角形AOB (∠AOB =90°),点B 在第四象限,随着点A 的运动,点B 的位置也不断的变化,但始终在一函数图像上运动,则这个函数关系式为 .第10题图第9题图 第17题图第16题图第18题图三.解答题(共10小题,共76分) 19.计算:(1) (2)22111121x x x x x x x ++⎛⎫+÷ ⎪---+⎝⎭;20.解方程: (1)=(2)= ﹣3.21.先化简,再求值:221a b a b a b⎛⎫-÷⎪--⎝⎭,其中1a ,1b =.22.如图,平行四边形ABCD 中,EF 过AC 的中点O ,与边AD 、BC 分别相交于点E 、F . (1)试判断四边形AECF 的形状,并说明理由.(2)若EF ⊥AC ,试判断四边形AECF 的形状,并说明理由.(3)请添加一个EF 与AC 满足的条件,使四边形AECF 是矩形,并说明理由.23. 如图,平行四边形ABCD 放置在平面直角坐标系A (-2,0)、B (6,0),D (0,3),反比例函数的图象经过点C .(1)求点C 的坐标和反比例函数的解析式;(2)将四边形ABCD 向上平移m 个单位后,使点B 恰好落在双曲线上,求m 的值.24.(2015•岳阳)某校以“我最喜爱的体育运动”为主题对全校学生进行随机抽样调查,调查的运动项目有:篮球、羽毛球、乒乓球、跳绳及其它项目(每位同学仅选一项).根据调(1)频数分布表中的m= ,n= ; (2)在扇形统计图中,“乒乓球”所在的扇形的圆心角的度数为 ;(3)从选择“篮球”选项的30名学生中,随机抽取3名学生作为代表进行投篮测试,则其中某位学生被选中的概率是 .25.如图,已知反比例函数1ky x=和一次函数2y ax b =+的图象相交于点A 和点D ,且点A 的横坐标为1,点D 的纵坐标为-1.过点A 作AB ⊥x 轴于点B ,△AOB 的面积为1. (1)求反比例函数和一次函数的解析式.(2)若一次函数2y ax b =+的图象与x 轴相交于点C ,求∠ACO 的度数. (3)结合图象直接写出:当12y y >时,x 的取值范围.26.(2015•济南)济南与北京两地相距480km ,乘坐高铁列车比乘坐普通快车能提前4h 到达,已知高铁列车的平均行驶速度是普通快车的3倍,求高铁列车的平均行驶速度.27.如图1,在平面直角坐标系中,等腰Rt △AOB 的斜边OB 在x 轴上,直线y=3x-4经过等腰Rt △AOB 的直角顶点A ,交y 轴于C 点,双曲线ky x=(x >0)也恰好经过点A . (1)求k 的值;(2)如图2,过O 点作OD ⊥AC 于D 点,求22CD AD -的值;(3)如图3,点P 为x 轴上一动点.在(1)中的双曲线上是否存在一点Q ,使得△PAQ 是以点A 为直角顶点的等腰三角形.若存在,求出点P 、点Q 的坐标,若不存在,请说明理由.28. 如图,已知四边形ABCD 是平行四边形,AC 为对角线,∠DAC=30°,∠ACD=90°,AD=8,点M 为AC 的中点,动点E 从点C 出发以每秒1个单位的速度运动到点B 停止,连接EM 并延长交AD 于点F ,设点E 的运动时间为t 秒. (1)求四边形ABCD 的面积;(2)当∠EMC=90°时,判断四边形DCEF的形状,并说明理由;(3)连接BM,点E在运动过程中是否能使△BEM为等腰三角形?如果能,求出t;如果不能,请说明理由.参考答案一、选择题:1.C ;2.A;3.C;4.C;5.D;6.B;7.C;8.A;9.A;10.C;二、填空题:1;12. 712;13. 12k <;14.2;15.2;16.3;17.16;18. 3y x=; 三、解答题:19.(13;(2)1x -; 20.(1)3x =-;(2)2x =;21. a b +=22. 解:(1)四边形AECF 的形状是平行四边形,理由是:∵平行四边形ABCD ,∴AD ∥BC ,∴∠DAO=∠ACF ,∠AEO=∠CFO , ∵EF 过AC 的中点O ,∴OA=OC ,在△AEO 和△CFO 中∠EAO =∠OCF ,∠AEO =∠CFO ,OA =OC ,∴△AEO ≌△CFO , ∴OE=OF ,∵OA=CO ,∴四边形AECF 是平行四边形, (2)四边形AECF 是菱形,理由是:由(1)知四边形AECF 是平行四边形, ∵EF ⊥AC ;∴四边形AECF 是菱形. (3)添加条件:EF=AC ,理由是:由(1)知四边形AECF 是平行四边形, ∵EF=AC ,∴四边形AECF 是矩形.23.(1)C (8,3),24y x=;(2)4m =;24.(1)24,0.3;(2)108°;(3)110;25.(1)12y x=,21y x =+;(2)45°;(3)2x <- 或01x <<;26.240; 27. 解:(1)过点A 分别作AM ⊥y 轴于M 点,AN ⊥x 轴于N 点,△AOB 是等腰直角三角形,∴AM=AN .∴可设点A 的坐标为(a ,a ),点A 在直线y=3x-4上,∴a=3a-4, 解得a=2,则点A 的坐标为(2,2).将点A (2,2)代入反比例函数的解析式为ky x=,求得k=4.则反比例函数的解析式为4y x =.(2)点A 的坐标为(2,2),在Rt △AMO 中,222AO AM MO =+=4+4=8. ∵直线AC 的解析式为y=3x-4,则点C 的坐标为(0,-4),OC=4.在Rt △COD 中,222OC OD CD =+(1);在Rt △AOD 中,222AO AD OD =+(2); (1)-(2),得2222CD AD OC OA -=-=16-8=8.(3)双曲线上是存在一点Q (4,1),使得△PAQ 是等腰直角三角形.过B 作BQ ⊥x 轴交双曲线于Q 点,连接AQ ,过A 点作AP ⊥AQ 交x 轴于P 点,则△APQ 为所求作的等腰直角三角形.在△AOP 与△ABQ 中,∠OAB-∠PAB=∠PAQ-∠PAB ,∴∠OAP=∠BAQ ,AO=BA ,∠AOP=∠ABQ=45°,∴△AOP ≌△ABQ (ASA ),∴AP=AQ ,∴△APQ 是所求的等腰直角三角形.∵B (4,0),点Q 在双曲线4y x=上,∴Q (4,1),则OP=BQ=1.则点P 、Q 的坐标分别为(1,0)、(4,1).28. 解:(1)(2)如图1,当∠EMC=90°时,四边形DCEF 是菱形.∵∠EMC=∠ACD=90°,∴DC ∥EF .∵BC ∥AD ,∴四边形DCEF 是平行四边形,∠BCA=∠DAC .由(1)可知:CD=4,AC=∵点M 为AC 的中点,∴CM= Rt △EMC 中,∠CME=90°,∠BCA=30°.∴CE=2ME ,可得(()2222ME +=,解得:ME=2.∴CE=2ME=4.∴CE=DC .又∵四边形DCEF 是平行四边形, ∴四边形DCEF 是菱形.(3)点E 在运动过程中能使△BEM 为等腰三角形.理由:如图2,过点B 作BG ⊥AD 与点G ,过点E 作EH ⊥AD 于点H ,连接DM . ∵DC ∥AB ,∠ACD=90°,∴∠CAB=90°.∴∠BAG=180°-30°-90°=60°.∴∠ABG=30°.∴AG=12AB=2,BG=∵点E 的运动速度为每秒1个单位,运动时间为t 秒, ∴CE=t ,BE=8-t .在△CEM 和△AFM 中∠BCM =∠MAF,MC =AM,∠CME =∠AMF,∴△CEM ≌△AFM .∴ME=MF ,CE=AF=t .∴HF=HG-AF-AG=BE-AF-AG=8-t-2-t=6-2t .∵EH=BG= Rt △EHF 中,ME=12=∵M 为平行四边形ABCD 对角线AC 的中点,∴D ,M ,B 共线,且DM=BM .∵在Rt △DBG 中,DG=AD+AG=10,BG=BM=12⨯=要使△BEM 为等腰三角形,应分以下三种情况:当EB=EM 时,有()()221812624t t ⎡⎤-=+-⎣⎦,解得:t=5.2.当EB=BM 时,有8-t=t=8-当EM=BM 时,由题意可知点E 与点B 重合,此时点B 、E 、M 不构成三角形.综上所述,当t=5.2或t=8-时,△BEM 为等腰三角形.。

江苏省南京玄武区2016-2017学年八年级下学期期末数学试卷试题及答案(有解析)

江苏省南京玄武区2016-2017学年八年级下学期期末数学试卷试题及答案(有解析)

玄武区2016~2017学年第二学期期末学情调研试卷八年级数学注意事项:1.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证明号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水铅笔字填写在答题卡及本试卷上.3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上)1.下列图形中,既是轴对称图形又是中心对称图形的是().A.B.C.D.【答案】A【解析】把一个图形沿某条直线折叠,若两部分能完全重合,那么这个图形为轴对称图形;若一个图形绕某一点旋转80︒后能与自身重合,那么这个图形的中心对称图形.综合两个知识点,本题选A.2.如果把分式2xx y+中的x和y都扩大3倍,那么分式的值().A.扩大为原来的3倍B.缩小为原来的13倍C.缩小为原来的16倍D.不变【答案】D【解析】把x和y都扩大3倍后,原式为3232333()x xx y x y⋅⋅=++,约分后仍为原式,分式值不变,故选D.3.某课外兴趣小组为了了解所在地区老年人的健康状况,分别作了四种不同的抽样调查,你认为抽样比较合理的是().A.在公园调查了1000名老年人的健康状况B.调查了10名老年邻居的健康状况C.在医院调查了1000名老年人的健康状况D.利用派出所的户籍网随机调查了该地区10%的老年人健康状况【答案】D【解析】抽样调查中,样本必须具有广泛性和代表性,A、C不具代表性,B不具广泛性,故选C.4.下列事件中,属于确定事件的个数是().(1)打开电视,正在播放广告.(2)投掷一枚普通的骰子,掷得的点数小于10.(3)射击运动员射击一次,命中10环.(4)在一个只装有红球的袋子中摸出白球.A.1B.2C.3D.4【答案】B【解析】(1)为随机事件.(2)为不可能事件.(3)为随机事件.(4)为不可能事件,故确定事件为(2)(4),选B .5.下列计算错误的是( ). A3= B.2(13=-C3π=-D.(5--=【答案】C3π-,因为3π0-<,所以原式π3=-,故C 错误,选C . 6.如图,AD 是ABC △是角平分线,E 、F 分别是边AB 、AC 的中点,连接DE 、DF ,要使四边形AEDF 是菱形还需要添加一个条件,这个条件不可能...是( ). F E DCBAA .AD BC ⊥B .AB AC =C .AD BC =D .BD DC =【答案】C【解析】本题考察菱形后判定,由E 、F 分别为AB 、AC 的中点,可得两条中位线,进而让得四边形AEDF 为平行四边形,再得邻也相等即可证得菱形,若AB AC =即可实现.根据等腰三角形三线合一,A 、B 、D 都能证得AB AC =,故选C .二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡...相应位置....上) 7.使式子12x x -+有意义的x 的取值范围是__________.【答案】2x ≠-【解析】分式有意义,则分母不能为0,20x +≠,2x ≠-. 8.分式2ab ,21a b ,3abc的最简公分母是__________. 【答案】2a bc【解析】找最简公分母的技巧为,系数是最小公倍数,字母为所以出现的字母,字母指数为出现的最高次,故本题答案为2a bc . 9__________.=== 10.下图是某射手在相同条件下进行射击训练的结果统计图,该射手击中靶心的概率的估计值为__________.(精确到0.01)击中靶心的频率射击次数300010008005003002001000.5800.5900.6000.6100.6200.6300.6400.650【答案】0.60【解析】等可能时间中,实验次数越多,频率越准确,通过图表可知,射击300次时,击中靶心的概率在0.600上下,根据精确到0.01,本题答案为0.60. 11.已知点1(3,)A y 、2(,)B m y 在反比例函数6y x=的图像上,且12y y >.写出满足条件的m 的一个值,m 可以是__________. 【答案】6【解析】∵点1(3,)A y ,2(,)B m y 在6y x=的图像上, ∴1623y ==,2b y m=. ∵12y y =.∴2b m>, 解得0m <或3m >, ∴本题取值范围内的任意值均可.12.若m 221m m ++的值是__________. 【答案】2【解析】由题m 1.414≈,所以1m . ∵2221(1)m m m ++=+,代入1m , 原式2(611)2=-+=.13.一次函数y kx b =+与反比例函数my n =中,若x 与y 的部分对应值如下表:则不等式kx b x>+的解集是__________.【答案】4x <-或01x <<【解析】由表可知y kx b =+与my x=交于点(4,1)--和点(1,4),用描点法可得出二者的大致图像.若mkx b x>+,则反比例函数图像在一次函数图像上方,由函数图像可知解集为4x <-01x <<.14.课本上,在画6y x =图像之前,通过讨论函数表达式中x ,y 的符号特征以及取值范围,猜想出6y x=的图像在第一、三象限.据此经验,猜想函数21y x=的图像在第__________象限.【答案】一、二 【解析】0x >时,210y x =>.此时,函数在第一象限. 0x <时,210y x =>.此时,函数在第二象限. 15.如图,矩形ABCD 中,4AB =,6BC =,E 是BC 上一点(不与B 、C 重合),点P 在边CD 上运动,M 、N 分别是AE 、PE 的中点,线段MN 长度的最大值是__________.M NA BCDEP【解析】∵M 为AE 中点,N 为EP 中点, ∴MN 为AEP △的中位线,∴12MN AP =. 若要MN 最大,则小AP 最大.∵P 在CO 上运动,当P 运动至点C 时PA 最大, 此时PA CA =是矩形ABCD的对角线,AC ,∴max 12MN =⨯16.如图,将ABC △绕点B 逆时针旋转60︒得DBE △,连接CD ,若5A B A C ==,6BC =,则CD =__________.ABCDE【答案】4+【解析】连接CE ,设BE 、CD 交于点D .O566521E DCBA由旋转得6BE BE ==, ∵60CBE ∠=︒, ∴CBE △为等边三角形, ∴CE CB =,∵BDE △中,DE DB =, ∴DEC △和DBC △中, DE DB EC BC DC DC =⎧⎪=⎨⎪=⎩. ∴DEC △≌(SSS)DBC △, ∴12∠=∠.又∵DEO △和DBO △中, 12DE DB DO DO =⎧⎪∠=∠⎨⎪=⎩, ∴DEO △≌(SAS)DNO △. ∴90DOE DOB ∠=∠=︒, ∴等腰BDE △中,O 为BE 中点,∴132OE BE ==,∴Rt DOE △中,4DO , Rt COE △中,CO∴4DC DO CO =+=+三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)计算:(1)⎛ ⎝(2(0)x ⎛> ⎝.【解析】(1)原式====(2)原式263=⨯==-18.(8分)解方程: (1)31133x x x=+--. (2)2620x x -+=(用配方法). 【解析】(1)两边同乘以3x -得, 3(3)1x x =--, 2x =-,检验:2x =-时,30x -≠. ∴2x =-是原方程的解. (2)26970x x -+-, 2(3)7x -=,3x -=∴13x =2x =.19.(8分)先化简,再求值:221111x x x ⎛⎫+÷⎪-+⎝⎭,其中x 是一元二次方程2220x x --=的正数解. 【解析】原式22211x x x x +=⋅- 11x =-, 化简方程得,2(1)3x -=,解方程得,11x =21x =取正数解,则将1x =原式=20.(8分)某气球内充满了一定量的气体,当温度不变时,气球内气体的气压(kPa)P 是气体体积3(m )V 的反比例函数,其图像如图所示. (1)求该反比例函数的表达式.(2)当气体体积为31m 时,气球内气体的气压是多少?(3)当气球内的气压大于200kPa 时,气球将爆炸,为确保气球不爆炸,气球内气体的体积应不小于多少?P/m 3【答案】(1)96(0)P V V =>(2)96kPa (3)312m 25 【解析】(1)设kP V=,将(0.8,120)A 代入,得0.812096k =⨯=,∴该反比例表达式为96(0)P V V =>.(2)令1V =代入96P V=,可得96P =,即气球内气体气压是96kPa .(3)令200P ≤,当200P =时,由96P V =可知,此时1225V =.由图像可知200P ≤时,1225V ≥,即:气球内气体的体积应不小于312m 25.21.(6分)在读书月活动中,学校准备购买一批课外读物,为使课外读书满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.其他艺术科普30%文学35%扇形统计图请你根据统计图提供的信息,解答下列问题: (1)本次调查中,一共调查了__________名同学. (2)条形统计图中,m =__________,n =__________.(3)扇形统计图中,艺术类读物所在扇形的圆心角是__________.(4)学校计划购买课外读物5000册,请根据样本数据,估计学校购买其他类读物多少册比较合理? 【答案】(1)200(2)40,60,(3)72︒(4)750 【解析】(1)200 ∵7035%200÷=(名). (2)40,60,∵20030%60n =⨯=(名), 20070603040m =---=(名).(3)72︒ ∵40m =(名).圆心度数为4036072200︒⨯=︒. (4)其他占比为30320020=, 所以大约购买3500075020⨯=(本).22.(8分)已知:关于x 的方程222(2)220xh k x k k --+--=. (1)若这个方程有实数根,求k 的取值范围. (2)若此方程有一个根是1,求k 的值. 【答案】(1)3k ≤(2)1k =或3 【解析】(1)由题意可知:[]222(2)4(22)0k k k ----≥,224(44)4880k k k k -+-++≥, 8240k -+≥,解得:3k ≤.(2)令1x =,则212(2)220k k k --+--=, 2124220k k k -++--=, (1)(3)0k k --=.解得:1k =或3.23.(8分)图甲、图乙是两张形状和大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,线段AC 的两个端点均在小正方形的顶点上.(1)如图甲,点P 、M 在小正方形的顶点上,在图甲中作出点P 关于点M 的对称点Q ,连接AQ 、QC 、CP 、PA ,则四边形AQCP 的周长为__________.(2)在图乙中画出一个以线段AC 为对角线,面积为6的矩形ABCD ,且点B 和点D 均在小正方形的顶点上.(图2)(图1)CAPMCA【答案】(1)【解析】(1)如图所示:画出可知四边形AQCPQPAC(2)D BA C24.(8分)如图,四边形ABCD 为矩形,O 为AC 中点,过点O 作AC 的垂线分别交AD 、BC 于点E 、F ,连接AF 、CE .(1)求证:四边形AFCE 是菱形. (2)若8AC =,6EF =,求BF 的长.OABCDEF【解析】(1)∵O 为AC 中点,EF AC ⊥, ∴EF 为AC 的垂直平分线, ∴EA EC =,FA FC =,∴EAC ECA ∠=∠,FAC FCA ∠=∠.FEDCBAO∵AE CF ∥, ∴EAC FCA ∠=∠, ∴FAC ECA ∠=∠, ∴AF CE ∥,∴四边形AFCE 平行四边形. 又∵EA EC =,∴平行四边形AFCE 是菱形. (2)易知3DE =,4OA =, ∴5AE CF ==, 设BF x =,在Rt ABF △中,222AB AF BF =-,在Rt ABC △中,222AB AC BC =-. ∴222258(5)x x -=-+,解得75x =, ∴75BF =.25.(7分)某学习要添置一批圆珠笔和签字笔,计划用200元购买圆珠笔,用280元购买签字笔.已知一支签字笔比一支圆珠笔贵1元.该学校购买的圆珠笔和签字笔的数量能相同吗?(1)根据题意,甲和乙两同学先假设该学校购买的圆珠笔和签字笔的数量能相同,并分别列出的方程如下:2002801x x =+;2802001y y -=,根据两位同学所列的方程,请你分别指出未知数x ,y 表示的意义:x 表示__________;y 表示__________.(2)任选其中一个方程说明该学校购买的圆珠笔和签字笔的数量能否相同. 【解析】(1)x 表示圆珠笔的单价;y 表示所购圆珠笔的数量.(2)202801x x =+, 取分母得200(1)280x x +=, 解方程得52x =, 检验2Sx =为方程的解,符合题意. 即:该校购买的圆珠笔和签字笔的数量能相同.26.(10分)如图,矩形AOCB 的顶点B 在反比例函数(0ky k x=>,0)x >的图像上,且3AB =,8BC =.若动点E 从A 开始沿AB 向B 以每秒1个单位长度的速度运动,同时动点F 从B 开始沿BC 向C 以每秒2个单位长度的速度运动,当其中一个动点到达端点时,另一个动点随之停止运动,设运动时间为t 秒.(1)求反比例函数的表达式.(2)当1t =时,在y 轴上是否存在点D ,使DEF △的周长最小?若存在,请求出DEF △的周长最小值;若不存在,请说明理由.(3)在双曲线上是否存在一点M ,使以点B 、E 、F 、M 为顶点的四边形是平行四边形?若存在,请直接写出满足条件t 的值;若不存在,请说明理由.【解析】(1)由题可知点B 的坐标为(3,8),且点B 在ky x=上. ∴3824k =⨯=,∴反比例函数的表达式为:24y x=. (2)1t =时,(1,8)E ,(3,6)F,则EF =取E 关于y 轴的对称1(1,8)2E '-,连接EF ',E F '=2DEF C DE DF EF DE DF G E F ''=++=++△≥,∴min DEF C =△此时点D 为E F '与y 轴交点,∵(1,8)E '-,(3,6)F ,设E F ':y kx b =+,836k b k b -+=⎧⎨+=⎩, 解得12152k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴115:22E F y x '=+, ∴此时150,2D ⎛⎫⎪⎝⎭,即:y 轴上存在点150,2D ⎛⎫⎪⎝⎭,使DEF △的图长数小,且最小值为(3)存在,若四变形BEM F 为平行四边形,则有三种可能,已知(,8)E t e ,(3,82)F t -,03f <≤. ①BE FM ∥,此时M 在F 右侧,24,8282M t t ⎛⎫-⎪-⎝⎭, 又∵BE FM =, ∴243382t t-=--,210120t t -+=,解得15t =25t =.②BF EM ∥,此时M 在E 正上方,24,Mt t t ⎛⎫ ⎪⎝⎭,∵ME BF =, ∴2482t t-=,24120t t +-=, 解得12t =,26t =-(舍).③EF BM ∥,易知点M 一定不在反比例函数上, 故综上:2t =或5 27.(9分)(1)问题北京如图甲,90ADC B ∠=∠=︒,DE AB ⊥,垂足为E ,且AD CD =,5DE =,求四边形ABCD 的面积.EDCBA请直接写出四边形ABCD 的面积为__________. (2)类比迁移如图乙,P 为等边ABC △外一点,1BP =,3CP =,且120BPC ∠=︒,求四边形ABPC 的面积.ABCP(3)拓展延伸如图丙,在五边形ABCDE 中,4BC =,4CD AB +=,6AE DE ==,AE AB ⊥,DE CD ⊥,求五边形ABCDE的面积.AB CDE【解析】(1)由题可知2=525ABCD DEBFS S ==正方形四边形.【注意有文字】 (2)如图,延长PC 至D ,取1CD =,连接AD .PCD BA∵等边ABC △中,60BAC ∠=︒. ∵120BOC ∠=︒, ∴120BPC ∠=︒, ∴180BPC BAC ∠+∠=︒,∴四边形ABPC 中,360180180ABP ACP ∠+∠=︒-︒=︒, ∴180ABP ACD ACP ∠=∠=︒-∠, 又∵AB AC =,BP CD =, ∴ABP △≌(SAS)ACD △, ∴AP AP =,BAP CAP ∠=∠. ∵60BAP PAC BAC ∠+∠=∠=︒, ∴60CAD PAC ∠+∠=︒,∴APD △为等边三角形且314PD PC CD =+=+=,∴2=4A ABPC DP S S ==四边形△.【注意有文字】 (3)如图,延长CD 至DF AB =,连接EF 、BE 、CE .EDCB A∵AB DF =,AE DE =,90BAE FDE ∠=∠=︒, ∴ABE △≌(SAS)DFE △, ∴EB EF =. ∵CD aB BC +=, ∴CD DF CF BC +==, ∴EBC △≌(SSS)EFS △,∴12246242BCFE ECF ABCDE S S S ===⨯⨯⨯=边四边形形五△.【注意有文字】。

玄武区初二期末数学试卷

玄武区初二期末数学试卷

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √16B. πC. 0.1010010001…(循环小数)D. √-12. 若a、b是方程x²-5x+6=0的两个根,则a+b的值是()A. 2B. 3C. 4D. 53. 下列函数中,有最小值的是()A. y=x²B. y=x³C. y=x²+2xD. y=|x|4. 在平面直角坐标系中,点A(2,3)关于y轴的对称点是()A.(-2,3)B.(2,-3)C.(-2,-3)D.(2,3)5. 下列图形中,既是轴对称图形又是中心对称图形的是()A. 正方形B. 等边三角形C. 平行四边形D. 梯形6. 已知a,b是方程x²-2x+1=0的两个根,则a²+2a的值是()A. 1B. 2C. 3D. 47. 若等差数列{an}的第一项为2,公差为3,则第10项an的值为()A. 29B. 30C. 31D. 328. 下列命题中,正确的是()A. 若a>b,则a²>b²B. 若a>b,则ac>bcC. 若a²>b²,则a>bD. 若a²>b²,则a>b或a<b9. 下列各式中,能表示圆的方程的是()A. x²+y²=1B. x²+y²=4C. x²+y²=9D. x²+y²=1610. 下列函数中,是奇函数的是()A. y=x²B. y=x³C. y=x²+2xD. y=|x|二、填空题(每题3分,共30分)11. 若x=2是方程x²-5x+c=0的一个根,则c的值为______。

12. 若sinα=0.6,则cosα的值是______。

13. 在△ABC中,∠A=60°,∠B=45°,则∠C的度数是______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年江苏省南京市玄武区八年级(下)期末数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.(2分)使分式有意义,则x的取值范围是()A.x≠1 B.x=1 C.x≤1 D.x≥13.(2分)下列说法中,正确的是()A.“打开电视,正在播放河南新闻节目”是必然事件B.某种彩票中奖概率为10%是指买十张一定有一张中奖C.神舟飞船发射前需要对零部件进行抽样调查D.了解某种节能灯的使用寿命适合抽样调查4.(2分)若A(1,y1),B(2,y2)两点都在反比例函数y=的图象上,则y1与y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.无法确定5.(2分)下列各式计算正确的是()A.+=B.2﹣=C.=×D.÷=6.(2分)如图,P为正方形ABCD的对角线BD上任一点,过点P作PE⊥BC于点E,PF⊥CD于点F,连接EF.给出以下4个结论:①△FPD是等腰直角三角形;②AP=EF;③AD=PD;④∠PFE=∠BAP.其中,所有正确的结论是()A.①②B.①④C.①②④D.①③④二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)要使有意义,则x的取值范围是.8.(2分)若分式的值为零,则x=.9.(2分)计算﹣的结果是.10.(2分)已知反比例函数的图象经过点(m,2)和(﹣2,3),则m的值为.11.(2分)如图,转盘被平均分成8个区域,每个区域分别标注数字1、2、3,4、5、6、7、8,任意转动转盘一次,当转盘停止转动时,对于下列事件:①指针落在标有5的区域;②指针落在标有10的区域;③指针落在标有奇数的区域;④指针落在能被3整除的区域.其中,发生可能性最大的事件是.(填写序号)12.(2分)已知菱形的面积是5,它的两条对角线的长分别为x、y(x>0,y>0),则y与x的函数表达式为.13.(2分)如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24cm,△OAB的周长是18cm,则EF=cm.14.(2分)已知等式=﹣,对任意正整数n都成立.计算:++++…+=.15.(2分)如图,矩形OABC的顶点A、C的坐标分别为(4,0)、(0,2),对角线的交点为P,反比例函数y=(k>0)的图象经过点P,与边BA、BC分别交于点D、E,连接OD、OE、DE,则△ODE的面积为.16.(2分)设函数y=x﹣2与y=的图象的交点坐标为(m,n),则﹣的值为.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)解分式方程:=.18.(8分)计算:(1)•(a≥0);(2)×(2﹣3).19.(8分)先化简[﹣]÷,然后从﹣1,0,1,2中选取一个你认为合适的数作为x的值代入求值.20.(8分)在一个不透明的盒子里装有黑、白两种颜色的球共40只,这些球除颜色外其余完全相同.小颖做摸球实验,搅匀后,她从盒子里随机摸出一只球记下颜色后,再把球放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n10020030050080010003000摸到白球的次数m651241783024815991803摸到白球的频率0.650.620.5930.6040.6010.5990.601(1)请估计:当n很大时,摸到白球的频率将会接近;(精确到0.1)(2)若从盒子里随机摸出一只球,则摸到白球的概率的估计值为;(3)试估算盒子里黑、白两种颜色的球各有多少只?21.(8分)某校为了开设武术、舞蹈、剪纸等三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成如图两幅统计图,请你结合图中信息解答问题.(1)将条形统计图补充完整;(2)本次抽样调查的样本容量是;(3)已知该校有1200名学生,请你根据样本估计全校学生中喜欢剪纸的人数.22.(8分)小明到眼镜店调查了近视眼镜镜片的度数和镜片焦距的关系,发现镜片的度数y(度)是镜片焦距x(厘米)(x>0)的反比例函数,调查数据如表:眼镜片度数y(度)40062580010001250…镜片焦距x(厘米)251612.5108…(1)求y与x的函数表达式;(2)若小明所戴近视眼镜镜片的度数为500度,求该镜片的焦距.23.(8分)著名数学家斐波那契曾研究一列数,被称为斐波那契数列(按照一定顺序排列的一列数称为数列),这个数列的第n个数为[()n﹣()n](n为正整数),例如这个数列的第8个数可以表示为[()8﹣()8].根据以上材料,写出并计算:(1)这个数列的第1个数;(2)这个数列的第2个数.24.(8分)如图,在▱ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F.(1)求证:四边形ABEF是菱形;(2)若AB=5,BF=8,AD=,则▱ABCD的面积是.25.(8分)“五一”期间,某商铺经营某种旅游纪念品.该商铺第一次批发购进该纪念品共花费3 000元,很快全部售完.接着,该商铺第二次批发购进该纪念品共花费9000元.已知第二次所购进该纪念品的数量是第一次的2倍还多300个,第二次的进价比第一次的进价提高了20%.(1)求第一次购进该纪念品的进价是多少元?(2)若该纪念品的两次售价均为9元/个,两次所购纪念品全部售完后,求该商铺两次共盈利多少元?26.(10分)如图,在平面直角坐标系中,点B是反比例函数y=的图象上任意一点,将点B绕原点O顺时针方向旋转90°到点A.(1)若点A的坐标为(4,2).①求k的值;②在反比例函数y=的图象上是否存在一点P,使得△AOP是等腰三角形且∠AOP是顶角,若存在,写出点P的坐标;若不存在,请说明理由.(2)当k=﹣1,点B在反比例函数y=的图象上运动时,判断点A在怎样的图象上运动?并写出表达式.27.(7分)(1)方法回顾在学习三角形中位线时,为了探索三角形中位线的性质,思路如下:第一步添加辅助线:如图1,在△ABC中,延长DE (D、E分别是AB、AC的中点)到点F,使得EF=DE,连接CF;第二步证明△ADE≌△CFE,再证四边形DBCF是平行四边形,从而得到DE∥BC,DE=BC.(2)问题解决如图2,在正方形ABCD中,E为AD的中点,G、F分别为AB、CD边上的点,若AG=2,DF=3,∠GEF=90°,求GF的长.(3)拓展研究如图3,在四边形ABCD中,∠A=105°,∠D=120°,E为AD的中点,G、F分别为AB、CD边上的点,若AG=3,DF=2,∠GEF=90°,求GF的长.2015-2016学年江苏省南京市玄武区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.(2分)使分式有意义,则x的取值范围是()A.x≠1 B.x=1 C.x≤1 D.x≥1【分析】根据分式有意义的条件:分母不等于0,即可求解.【解答】解:根据题意得:x﹣1≠0,解得:x≠1.故选:A.【点评】本题主要考查了分式有意义的条件,正确理解条件是解题的关键.3.(2分)下列说法中,正确的是()A.“打开电视,正在播放河南新闻节目”是必然事件B.某种彩票中奖概率为10%是指买十张一定有一张中奖C.神舟飞船发射前需要对零部件进行抽样调查D.了解某种节能灯的使用寿命适合抽样调查【分析】必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.不易采集到数据的调查要采用抽样调查的方式,据此判断即可.【解答】解:A.“打开电视,正在播放河南新闻节目”是随机事件,故A选项错误;B.某种彩票中奖概率为10%是指买十张可能中奖,也可能不中奖,故B选项错误;C.神舟飞船发射前需要对零部件进行全面调查,故C选项错误;D.解某种节能灯的使用寿命,具有破坏性适合抽样调查,故D选项正确.故选:D.【点评】本题考查了调查的方式和事件的分类.不易采集到数据的调查要采用抽样调查的方式;必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.(2分)若A(1,y1),B(2,y2)两点都在反比例函数y=的图象上,则y1与y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.无法确定【分析】根据反比例函数图象上点的坐标特征结合点A、B的横坐标,求出y1、y2的值,二者进行比较即可得出结论.【解答】解:∵A(1,y1),B(2,y2)两点都在反比例函数y=的图象上,∴1•y1=1,2•y2=1,解得:y1=1,y2=,∵1>,∴y1>y2.故选C.【点评】本题考查了反比例函数图象上点的坐标特征,解题的关键是根据反比例函数图象上点的坐标特征求出y1、y2的值.本题属于基础题,难度不大,解决该题型题目时,结合点的横坐标,利用反比例函数图象上点的坐标特征求出点的纵坐标是关键.5.(2分)下列各式计算正确的是()A.+=B.2﹣=C.=×D.÷=【分析】根据二次根式的加减法则对A、B进行判断,根据二次根式的性质对C 进行判断,根据二次根式的除法法则对D进行判断.【解答】解:A、与不是同类项,不能合并,故本选项错误;B、2﹣=,故本选项正确;C、=,故故本选项错误;D、=,故本选项错误.故选B.【点评】本题考查的是二次根式的混合运算,熟练掌握加减乘除法则和二次根式的性质是解答此题的关键.6.(2分)如图,P为正方形ABCD的对角线BD上任一点,过点P作PE⊥BC于点E,PF⊥CD于点F,连接EF.给出以下4个结论:①△FPD是等腰直角三角形;②AP=EF;③AD=PD;④∠PFE=∠BAP.其中,所有正确的结论是()A.①②B.①④C.①②④D.①③④【分析】用正方形的性质和垂直的定义判断出四边形PECF是矩形,从而判定②正确;直接用正方形的性质和垂直得出①正确,利用全等三角形和矩形的性质得出④正确,由点P是正方形对角线上任意一点,说明AD和PD不一定相等,得出③错误.【解答】解:如图,∵P为正方形ABCD的对角线BD上任一点,∴PA=PC,∠C=90°,∵过点P作PE⊥BC于点E,PF⊥CD,∴∠PEC=∠DFP=∠PFC=∠C=90°,∴四边形PECF是矩形,∴PC=EF,∴PA=EF,故②正确,∵BD是正方形ABCD的对角线,∴∠ABD=∠BDC=∠DBC=45°,∵∠PFC=∠C=90°,∴PF∥BC,∴∠DPF=45°,∵∠DFP=90°,∴△FPD是等腰直角三角形,故①正确,在△PAB和△PCB中,,∴△PAB≌△PCB,∴∠BAP=∠BCP,在矩形PECF中,∠PFE=∠FPC=∠BCP,∴∠PFE=∠BAP.故④正确,∵点P是正方形对角线BD上任意一点,∴AD不一定等于PD,只有∠BAP=22.5°时,AD=PD,故③错误,故选C【点评】此题是四边形综合题,主要考查了正方形的性质,矩形的判定和性质,全等三角形的判定和性质,垂直的定义,解本题的关键是判断出四边形PECF是矩形.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)要使有意义,则x的取值范围是x≥3.【分析】根据二次根式的性质知,被开方数大于或等于0,据此可以求出x的范围.【解答】解:根据题意得:x﹣3≥0,解得:x≥3;故答案是:x≥3.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.8.(2分)若分式的值为零,则x=﹣1.【分析】直接利用分式的值为0,则分子为零,且分母不为零,进而求出答案.【解答】解:由题意得:x2﹣1=0,且x﹣1≠0,解得:x=﹣1,故答案为:﹣1.【点评】此题主要考查了值为零的条件,分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.9.(2分)计算﹣的结果是.【分析】首先把代数式中的二次根式进行化简,再合并同类二次根式即可.【解答】解:原式=﹣=,故答案为:.【点评】此题主要考查了二次根式的减法,关键是掌握计算法则:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.10.(2分)已知反比例函数的图象经过点(m,2)和(﹣2,3),则m的值为﹣3.【分析】此题可根据反比例函数图象上点的横纵坐标是一个定值即可求解.【解答】解:∵反比例函数的图象经过点(m,2)和(﹣2,3),∴k=xy=﹣2×3=﹣6,∴2m=﹣6,∴m=﹣3.故答案为:﹣3.【点评】本题考查了反比例函数图象上点的坐标特征,较为简单,容易掌握.11.(2分)如图,转盘被平均分成8个区域,每个区域分别标注数字1、2、3,4、5、6、7、8,任意转动转盘一次,当转盘停止转动时,对于下列事件:①指针落在标有5的区域;②指针落在标有10的区域;③指针落在标有奇数的区域;④指针落在能被3整除的区域.其中,发生可能性最大的事件是③.(填写序号)【分析】确定指针落在标有数字的面积在整个转盘中占的比例,根据这个比例即可求出转盘停止转动时指针指向指针落在标有数字部分的概率.【解答】解:①指针落在标有5的区域的概率=;②指针落在标有10的区域的概率=0;③指针落在标有奇数的区域的概率=;④指针落在能被3整除的区域的概率=,故答案为:③【点评】此题考查可能性问题,用到的知识点为:概率=相应的面积与总面积之比.12.(2分)已知菱形的面积是5,它的两条对角线的长分别为x、y(x>0,y>0),则y与x的函数表达式为y=.【分析】由菱形的两条对角线长分别为x和y,根据菱形的面积等于对角线积的一半,即可求得答案.【解答】解:∵菱形的两条对角线长分别为x和y,∴它的面积为:×x×y=5.即y=故答案为:y=.【点评】此题考查了菱形的性质.注意菱形的面积等于对角线积的一半是解题的关键.13.(2分)如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24cm,△OAB的周长是18cm,则EF=3cm.【分析】首先由▱ABCD的对角线AC,BD相交于点O,求得OA=AB,OB=BD,又由AC+BD=24cm,可求得OA+OB的长,继而求得AB的长,然后由三角形中位线的性质,求得答案.【解答】解:∵四边形ABCD是平行四边形,∴OA=AC,OB=BD,∵AC+BD=24cm,∴OA+OB=12cm,∵△OAB的周长是18cm,∴AB=6cm,∵点E,F分别是线段AO,BO的中点,∴EF=AB=3cm.故答案为:3.【点评】此题考查了平行四边形的性质以及三角形中位线的性质.注意由平行四边形的性质求得AB的长是关键.14.(2分)已知等式=﹣,对任意正整数n都成立.计算:++++…+=.【分析】利用等式=﹣把原式化为=1﹣+﹣+﹣+﹣+…+﹣,然后合并后进行通分即可.【解答】解:原式=1﹣+﹣+﹣+﹣+…+﹣=1﹣=.故答案为.【点评】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.15.(2分)如图,矩形OABC的顶点A、C的坐标分别为(4,0)、(0,2),对角线的交点为P,反比例函数y=(k>0)的图象经过点P,与边BA、BC分别交于点D、E,连接OD、OE、DE,则△ODE的面积为.【分析】根据矩形的性质可以找出点B、P的坐标,利用反比例函数图象上点的坐标特征即可求出反比例函数解析式,再分别代入x=4、y=2即可得出点D、E 的坐标,利用分割图形求面积法即可得出结论.【解答】解:∵四边形OABC是矩形,且A(4,0)、C(0,2),∴B(4,2),∵点P为对角线的交点,∴P(2,1).∵反比例函数y=的图象经过点P,∴k=2×1=2,∴反比例函数解析式为y=.令y=中x=4,则y=,∴D(4,);令y=中y=2,则x=1,∴E(1,2).S△ODE=S矩形OABC﹣S△OCE﹣S△OAD﹣S△BDE=OA•OC﹣k﹣k﹣BD•BE=.故答案为:.【点评】本题考查了矩形的性质、反比例函数图象上点的坐标特征以及反比例系数k的几何意义,解题的关键是求出反比例函数解析式以及点B、D、E的坐标.本题属于基础题,难度不大,解决该题型题目时,利用分割图形求面积法是关键.16.(2分)设函数y=x﹣2与y=的图象的交点坐标为(m,n),则﹣的值为﹣.【分析】有两函数的交点为(m,n),将(m,n)代入一次函数与反比例函数解析式中得到mn与n﹣m的值,所求式子通分并利用同分母分式的减法法则计算,将各自的值代入计算即可求出值.【解答】解:∵函数y=x﹣2与y=的图象的交点坐标为(m,n),∴n﹣m=﹣2,mn=3,∴﹣==﹣,故答案为﹣【点评】此题考查了反比例函数与一次函数的交点问题,以及分式的加减运算,求出mn与n﹣m的值是解本题的关键.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)解分式方程:=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:1=x﹣1﹣3x+6,解得:x=2,经检验x=2是增根,分式方程无解.【点评】此题考查了解分式方程,熟练掌握运算法则是解本题的关键.18.(8分)计算:(1)•(a≥0);(2)×(2﹣3).【分析】(1)根据二次根式的乘法法则得出即可;(2)可以把二次根式化简,合并括号里同类二次根式,再做乘法;也可以用分配律计算;【解答】解:(1)原式===4a2.(2)原式=×(2﹣)=×=3.【点评】主要考查了二次根式的混合运算,在二次根式的混合运算中,要掌握好运算顺序及各运算律.19.(8分)先化简[﹣]÷,然后从﹣1,0,1,2中选取一个你认为合适的数作为x的值代入求值.【分析】先算括号里面的,再算除法,最后选出合适的x的值代入进行计算即可.【解答】解:原式=•=•=,当x=﹣1时,原式=﹣.【点评】本题考查的是分式的化简求值,分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.20.(8分)在一个不透明的盒子里装有黑、白两种颜色的球共40只,这些球除颜色外其余完全相同.小颖做摸球实验,搅匀后,她从盒子里随机摸出一只球记下颜色后,再把球放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n10020030050080010003000摸到白球的次数m651241783024815991803摸到白球的频率0.650.620.5930.6040.6010.5990.601(1)请估计:当n很大时,摸到白球的频率将会接近0.6;(精确到0.1)(2)若从盒子里随机摸出一只球,则摸到白球的概率的估计值为0.6;(3)试估算盒子里黑、白两种颜色的球各有多少只?【分析】(1)计算出其平均值即可;(2)概率接近于(1)得到的频率;(3)白球个数=球的总数×得到的白球的概率,让球的总数减去白球的个数即为黑球的个数,问题得解.【解答】解:(1)∵摸到白球的频率为0.6,∴当n很大时,摸到白球的频率将会接近0.6,故答案为:0.6;(2)∵摸到白球的频率为0.6,∴假如你摸一次,你摸到白球的概率P(白球)=0.6,故答案为:0.6;(3)盒子里黑、白两种颜色的球各有40﹣24=16,40×0.6=24.【点评】本题比较容易,考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:部分的具体数目=总体数目×相应频率.21.(8分)某校为了开设武术、舞蹈、剪纸等三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成如图两幅统计图,请你结合图中信息解答问题.(1)将条形统计图补充完整;(2)本次抽样调查的样本容量是100;(3)已知该校有1200名学生,请你根据样本估计全校学生中喜欢剪纸的人数.【分析】(1)根据扇形统计图可得出女生喜欢武术的占20%,利用条形图中喜欢武术的女生有10人,即可求出女生总人数,即可得出喜欢舞蹈的人数;(2)根据(1)的计算结果再利用条形图即可得出样本容量;(3)用全校学生数×喜欢剪纸的学生在样本中所占百分比即可求出.【解答】解:(1)∵根据扇形统计图可得出女生喜欢武术的占20%,利用条形图中喜欢武术的女生有10人,∴女生总人数为:10÷20%=50(人),∴女生中喜欢舞蹈的人数为:50﹣10﹣16=24(人),如图所示:(2)本次抽样调查的样本容量是:30+6+14+50=100;(3)∵样本中喜欢剪纸的人数为30人,样本容量为100,∴估计全校学生中喜欢剪纸的人数=1200×=360人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(8分)小明到眼镜店调查了近视眼镜镜片的度数和镜片焦距的关系,发现镜片的度数y(度)是镜片焦距x(厘米)(x>0)的反比例函数,调查数据如表:眼镜片度数y(度)40062580010001250…镜片焦距x(厘米)251612.5108…(1)求y与x的函数表达式;(2)若小明所戴近视眼镜镜片的度数为500度,求该镜片的焦距.【分析】(1)根据图表可以得到眼镜片的度数与焦距的积是一个常数,因而眼镜片度数与镜片焦距成反比例函数关系,即可求解;(2)在解析式中,令y=500,求出x的值即可.【解答】解:(1)根据题意得:与x之积恒为10000,则函数的解析式是y=;(2)令y=500,则500=,解得:x=20.即该镜片的焦距是20cm.【点评】考查了反比例函数的应用,正确理解反比例函数的特点,两个变量的乘积是常数,是解决本题的关键.23.(8分)著名数学家斐波那契曾研究一列数,被称为斐波那契数列(按照一定顺序排列的一列数称为数列),这个数列的第n个数为[()n﹣()n](n为正整数),例如这个数列的第8个数可以表示为[()8﹣()8].根据以上材料,写出并计算:(1)这个数列的第1个数;(2)这个数列的第2个数.【分析】(1)把n=1代入式子化简求得答案即可.(2)把n=2代入式子化简求得答案即可.【解答】解:(1)第1个数,当n=1时,(﹣)=×=1;(2)第2个数,当n=2时,[()2﹣()2]=(+)(﹣)=×1×=1.【点评】此题考查二次根式的混合运算、化简求值以及应用,理解题意,找出运算的方法是解决问题的关键.24.(8分)如图,在▱ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F.(1)求证:四边形ABEF是菱形;(2)若AB=5,BF=8,AD=,则▱ABCD的面积是36.【分析】(1)根据平行四边形的性质和角平分线的性质证明∠BAE=∠BEA,从而可得AB=BE,同理可得AB=AF,再由AF∥BE可得四边形ABEF是菱形;(2)过A作AH⊥BE,根据菱形的性质可得AO=EO,BO=FO,BE=AB=5,AE⊥BF,利用勾股定理可得AO的长,进而可得AE长,利用菱形的面积公式计算出AH的长,然后可得▱ABCD的面积.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵∠BAD的平分线交BC于点E,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE,同理:AB=AF,∴AF=BE,∵AF∥BE,∴四边形ABEF是平行四边形,∵AB=AF∴四边形ABEF是菱形.(2)解:过A作AH⊥BE,∵四边形ABCD是菱形,∴AO=EO,BO=FO,BE=AB=5,AE⊥BF,∵BF=8,∴BO=4,∴AO==3,∴AE=6,∴S=AE•BF=×6×8=24,菱形ABEF∴BE•AH=24,∴AH=,∵四边形ABCD是平行四边形,∴BC=AD=,=×=36,∴S平行四边形ABCD故答案为:36.【点评】此题主要考查了菱形的性质和判定,以及平行四边形的性质,关键是掌握邻边相等的平行四边形是菱形,菱形的面积为对角线之积的一半.25.(8分)“五一”期间,某商铺经营某种旅游纪念品.该商铺第一次批发购进该纪念品共花费3 000元,很快全部售完.接着,该商铺第二次批发购进该纪念品共花费9000元.已知第二次所购进该纪念品的数量是第一次的2倍还多300个,第二次的进价比第一次的进价提高了20%.(1)求第一次购进该纪念品的进价是多少元?(2)若该纪念品的两次售价均为9元/个,两次所购纪念品全部售完后,求该商铺两次共盈利多少元?【分析】(1)设第一次所购该纪念品是多少元,由题意可列方程求解.(2)求出两次的购进数,根据利润=售价﹣进价,可求出结果.【解答】解:(1)设第一次所购该纪念品是x元,依题意,得,解得,x=5,经检查,x=5是原方程的解.答:第一次购进该纪念品的进价为5元;(2)第一次购进:3000÷5=600,第二次购进:9000÷6=1500,获利;(600+1500)×9﹣3000﹣9000=6900元,答:该商铺两次共盈利6900元.【点评】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.26.(10分)如图,在平面直角坐标系中,点B是反比例函数y=的图象上任意一点,将点B绕原点O顺时针方向旋转90°到点A.(1)若点A的坐标为(4,2).①求k的值;②在反比例函数y=的图象上是否存在一点P,使得△AOP是等腰三角形且∠AOP是顶角,若存在,写出点P的坐标;若不存在,请说明理由.(2)当k=﹣1,点B在反比例函数y=的图象上运动时,判断点A在怎样的图象上运动?并写出表达式.【分析】(1)①过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F,通过同角的余角相等结合旋转的性质即可证出△BOF≌△OAE,根据全等三角形的性质找出相等边,再结合点A的坐标以及点B所在的位置即可得出点B的坐标,由点B 的坐标利用反比例函数图象上点的坐标特征即可求出k值;②假设存在,设点P的坐标为(m,n),根据等腰三角形的性质结合反比例函数图象上点的坐标特征即可得出关于m、n的二元二次方程组,解方程组即可得出点P的坐标;(2)设点B的坐标为(a,b),由(1)①可知点A的坐标为(b,﹣a),根据反比例函数图象上点的坐标特征即可得出结论.【解答】解:(1)①过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F,如图1所示.∵BF⊥x轴,AE⊥x轴,∴∠BFO=OEA=90°,∴∠OBF+∠BOF=90°,∠BOF+∠AOE=90°,∴∠OBF=∠AOE.在△BOF和△OAE中,有,∴△BOF≌△OAE(AAS),。

相关文档
最新文档