江苏省南京市秦淮区2018-2019学年八年级下学期期末考试数学试题

合集下载

(苏科版)2018-2019学年八年级下数学期末考试试卷(有答案)

(苏科版)2018-2019学年八年级下数学期末考试试卷(有答案)

2018-2019学年第二学期期终教学质量调研测试初二 数学(试卷满分130分,考试时间120分钟)一. 选择题(本大题共10小题,每小题3分,共30分,请将下列各题唯一正确的选项代号填涂在答题卡相应的位置上)1.用放大镜观察一个三角形时,不变的是量是A.各条边的长度B.各个角的度数C.三角形的面积D.三角形的周长2.已知反比例函数ky x=的图像经过点(-1,2),则这个函数的图像一定经过点A.(1,2)B.(2,1)C.(-1,-2)D.(-2,1) 3.下列计算正确的是A.2= B.0= C.4= D. 3=-4.下列各分式不能再化简的是A. 22x - B. 11m m -- C. 2xy y xy - D. 22a b a b -- 5.有三个事件,事件A :若a 、b 是实数,则+a b b a +=;事件B :打开电视正在播广告;事件C :同时掷两枚质地均匀地标有数字1-6的骰子,向上一面的点数之和是为13.这三个事件的概率分别记为()()()P A P B P C 、、,则()()()P A P B P C 、、的大小关系正确的是 A .()()()P C P A P B << B .()()()P B P C P A << C .()()()P C P B P A <<D .()()()P B P A P C <<6.如图,点P 在直线外,以点P 为圆心,大于点P 到直线的举例为半径画圆弧,交直线于点A 、B ;保持半径不变,分别以点A 、B 为圆心画弧,两 弧交于点Q ,则PQ ⊥.上述尺规作图的依据是 A .平行四边形的对边互相平行B .垂直平分线上的点到线段两个端点的举例相等C .矩形的领边互相垂直D .菱形的对角线互相垂直7.若1,1()A x y ,2,2()B x y 是函数1y x=-图像上的两个点,且12x x <,则12y y 与的大小关系是A .12y >yB .12y =yC .12y <yD .不能确定8. 如图,点小明在做选择题“如图,四边形ABCD 中, ∠A=45°,∠B=∠D=90°,AD=2,CD=1,则BC 的长为 多少”时遇到了困难.小明通过测量发现,试题给出的 图形中,AD=3cm,BC ≈1.05cm,且各角度符合条件,因 此小明猜想下列选项中最可能正确的是A .2B 1CD 19.如图,已知一次函数的图像与两坐标轴分别交于A 、B ,点C 在x 轴上,AC=4,第一象限内有一个点P ,且PC ⊥x 轴于点C ,若以点P 、A 、C 为顶点的三角形与△OAB 相似,则点P的坐标为 A .(4,8) B .(4,8)或(4,2) C .(6,8) D .(6,8)和(6,-2)10.如图,直线l 为正比例函数y x =的图像,过点A(0,1)作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点1A ,过点1A 作y 轴的垂线交直线l 于点1B ,过点1B 作直线l 的垂线交y 轴于点2A ……;按此作法继续下去,则点n B 的坐标是A .4,4)n nB .-1-14,4)n nC .-14,4)n nD .14,4)n n -二.填空题(本大题共8小题,每小题3分,共24分)11.函数y =x 的取值范围是____________12. 如图,将一个正方形地面等分成9块,其中标有1、2、3、4四 个小方格是空地,另外五个小方格是草坪。

2018-2019学年06月24日八下苏科版数学南京秦淮区期末数学试卷与答案

2018-2019学年06月24日八下苏科版数学南京秦淮区期末数学试卷与答案

4
23.已知近似眼镜片的度数 y (度 ) 是镜片焦距 x (cm) (x ! 0) 的反比例函数,调查数据
如表:
眼镜片度数 y (度 ) 400 625 800 1000 } 1250
镜片焦距 x (cm) 25 16 12.5 10 } 8 (1) 求 y 与 x 的函数表达式;
(2) 若近视眼镜镜片的度数为 500 度,求该镜片的焦距 .
2018-2019学年第二学期南京市秦淮区八年级下
数学期末考试
1.下列图案中,是中心对称图形的是
2019.06.24
A.
B.
C.
D.
2.下列二次根式中,与 2a 是同类二次根式的是
A. 3a
B. 6a
C. 8a
D. 12a
3.下列调查中,调查方式选择合理的是 A.调查秦淮河水质情况,采用抽样调查 B.调查飞机零件合格情况,采用抽样调查 C.检验一批罐装饮料的防腐及含量,采用普查 D.对企业应聘人员进行面试,采用抽样调查
4.已知点 A(2, y1 ),B(1, y2 )都在反比例函数 y
4 的图像上,则 x
A. y1 y2
B. y2 y1
C. y1 y2
D.不能确定
5.随着电影《流浪地球》的热映,其同名科幻小说的销量也急剧上升,某书店分别用 2000
元和 3000 元两次购进该小说,第二次数量比第一次多 50 套,且两次进价相同.如果设该
14
0.28
4
80 d x 90
6
Hale Waihona Puke 0.12590 d x 100
20
c
(1) a
,b
,c

(2)画出 50 名学生的竞赛成绩的频数分布直方图.

最新江苏省2018-2019年八年级下期末数学试卷

最新江苏省2018-2019年八年级下期末数学试卷

八年级(下)期末数学试卷一、选择题(本大题共12小题,共36.0分)1.下列二次根式中,属于最简二次根式的是()A. √5B. √12C. √0.2D. √27【答案】A【解析】解:A、是最简二次根式,故本选项符合题意;B、√12=12√2,不是最简二次根式,故本选项不符合题意;C、√0.2=√14=15√5,不是最简二次根式,故本选项不符合题意;D、√27=3√3,不是最简二次根式,故本选项不符合题意;故选:A.根据最简二次根式的定义逐个判断即可.本题考查了最简二次根式的定义,能熟记最简二次根式的定义的内容是解此题的关键.2.下列各组线段a、b、c中,能组成直角三角形的是()A. a=4,b=5,c=6B. a=1,b=√3,c=2C. a=1,b=1,c=3D. a=5,b=12,c=12【答案】B【解析】解:A、∵42+52≠62,∴该三角形不是直角三角形,故此选项不符合题意;B、∵12+√32=22,∴该三角形是直角三角形,故此选项符合题意;C、∵12+12≠32,∴该三角形不是直角三角形,故此选项不符合题意;D、∵52+122≠122,∴该三角形不是直角三角形,故此选项不符合题意.故选:B.根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.下列各式中,y不是x的函数的是()A. y=|x|B. y=xC. y=−x+1D. y=±x【答案】D【解析】解:A、y=|x|对于x的每一个取值,y都有唯一确定的值,故A错误;B、y=x对于x的每一个取值,y都有唯一确定的值,故B错误;C、y=−x+1对于x的每一个取值,y都有唯一确定的值,故C错误;D、y=±x对于x的每一个取值,y都有两个值,故D正确;故选:D.根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.4.用配方法解方程x2−4x−2=0变形后为()A. (x−2)2=6B. (x−4)2=6C. (x−2)2=2D. (x+2)2=6【答案】A【解析】解:把方程x2−4x−2=0的常数项移到等号的右边,得到x2−4x=2方程两边同时加上一次项系数一半的平方,得到x2−4x+4=2+4配方得(x−2)2=6.故选:A.在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数−4的一半的平方.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5.一次函数y=x+2的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】解:∵k=1>0,图象过一三象限,b=2>0,图象过第二象限,∴直线y=x+2经过一、二、三象限,不经过第四象限.故选:D.根据k,b的符号确定一次函数y=x+2的图象经过的象限.本题考查一次函数的k>0,b>0的图象性质.需注意x的系数为1.6.一元二次方程x2−8x+20=0的根的情况是()A. 没有实数根B. 有两个相等的实数根C. 只有一个实数根D. 有两个不相等的实数根【答案】A【解析】解:∵△=(−8)2−4×20×1=−16<0,∴方程没有实数根.故选:A.先计算出△,然后根据判别式的意义求解.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.7.已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,下列说法正确的是()A. y1>y2B. y1<y2C. y1=y2D. 不能确定【答案】A【解析】解:∵一次函数y=kx中,k<0,∴函数图象经过二、四象限,且y随x的增大而减小,∵x1<x2,∴y1>y2.故选:A.先根据题意判断出一次函数的增减性,再根据x1<x2即可得出结论.本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.8.菱形的两条对角线长分别为6和8,则菱形的面积是()A. 10B. 20C. 24D. 48【答案】C【解析】解:∵菱形的两条对角线的长分别是6和8, ∴这个菱形的面积是:12×6×8=24.故选:C .由菱形的两条对角线的长分别是6和8,根据菱形的面积等于对角线积的一半,即可求得答案. 此题考查了菱形的性质.菱形的面积等于对角线积的一半是解此题的关键.9. 已知一次函数y =kx +b 的图象如图所示,当x <2时,y 的取值范围是( )A. y <−4B. −4<y <0C. y <2D. y <0 【答案】D【解析】解:将(2,0)、(0,−4)代入y =kx +b 中, 得:{−4=b 0=2k+b,解得:{b =−4k=2,∴一次函数解析式为y =2x −4. ∵k =2>0,∴该函数y 值随x 值增加而增加, ∴y <2×2−4=0. 故选:D .由函数图象找出点的坐标,利用待定系数法即可求出函数解析式,再根据函数的性质找出函数的单调性,代入x <2即可得出结论.本题考查了待定系数法求出函数解析式以及一次函数的性质,解题的关键是找出该一次函数的单调性.本题属于基础题,难度不大,解决该题型题目时,根据函数图象找出点的坐标,利用待定系数法求出函数解析式是关键.10. 如图,点O 是矩形ABCD 的对角线AC 的中点,M 是CD 边的中点.若AB =8,OM =3,则线段OB 的长为( ) A. 5 B. 6 C. 8 D. 10 【答案】A 【解析】解:∵四边形ABCD 是矩形, ∴∠D =90∘,∵O 是矩形ABCD 的对角线AC 的中点,OM//AB , ∴OM 是△ADC 的中位线, ∵OM =3, ∴AD =6,∵CD =AB =8,∴AC =√AD 2+CD 2=10, ∴BO =12AC =5.故选:A .已知OM 是△ADC 的中位线,再结合已知条件则DC 的长可求出,所以利用勾股定理可求出AC 的长,由直角三角形斜边上中线的性质则BO 的长即可求出.本题考查了矩形的性质,勾股定理的运用,直角三角形斜边上中线的性质以及三角形的中位线的应用,解此题的关键是求出AC 的长.11. 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售,尽快减少库存,商场决定釆取降价措施,调查发现,每件衬衫,每降价1元,平均每天可多销售2件,若商场每天要盈利1200元,每件衬衫应降价( ) A. 5元 B. 10元 C. 20元 D. 10元或20元 【答案】C【解析】解:设每件衬衫应降价x 元,则每天可销售(20+2x)件, 根据题意得:(40−x)(20+2x)=1200, 解得:x 1=10,x 2=20. ∵扩大销售,减少库存, ∴x =20. 故选:C .设每件衬衫应降价x 元,则每天可销售(20+2x)件,根据每件的利润×销售数量=总利润,即可得出关于x 的一元二次方程,解之取其较大值即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.12. 如图,在平面直角坐标系xOy 中,菱形ABCD 的顶点A 的坐标为(2,0),点B 的坐标为(0,1),点C 在第一象限,对角线BD 与x 轴平行.直线y =x +3与x 轴、y 轴分别交于点E ,F.将菱形ABCD 沿x 轴向左平移m 个单位,当点D 落在△EOF 的内部时(不包括三角形的边),m 的值可能是( ) A. 3 B. 4 C. 5 D. 6 【答案】C【解析】解:∵菱形ABCD 的顶点A(2,0),点B(1,0), ∴点D 的坐标为(4,1), 当y =1时,x +3=1, 解得x =−2,∴点D 向左移动2+4=6时,点D 在EF 上, ∵点D 落在△EOF 的内部时(不包括三角形的边), ∴4<m <6,∴m 的值可能是5. 故选:C .根据菱形的对角线互相垂直平分表示出点D 的坐标,再根据直线解析式求出点D 移动到MN 上时的x 的值,从而得到m 的取值范围,再根据各选项数据选择即可.本题是一次函数综合题型,主要利用了一次函数图象上点的坐标特征,菱形的性质,比较简单,求出m 的取值范围是解题的关键.二、填空题(本大题共6小题,共18.0分)13. 若√x −2在实数范围内有意义,则x 的取值范围为______. 【答案】x ≥2【解析】解:由题意得:x −2≥0, 解得:x ≥2, 故答案为:x ≥2.根据二次根式有意义的条件可得x−2≥0,再解即可.此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.14.将直线y=−2x+4向下平移5个单位长度,平移后直线的解析式为______.【答案】y=−2x−1【解析】解:直线y=−2x+4向下平移5个单位长度后:y=−2x+4−5,即y=−2x−1.故答案为:y=−2x−1.直接根据“上加下减”的平移规律求解即可.本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”.15.已知关于x的方程x2−kx−6=0的一个根为x=3,则实数k的值为______.【答案】1【解析】解:∵x=3是方程的根,由一元二次方程的根的定义,可得32−3k−6=0,解此方程得到k=1.本题根据一元二次方程的根的定义、一元二次方程的定义求解.本题逆用一元二次方程解的定义易得出k的值.16.如图是某地区出租车单程收费y(元)与行驶路程x(km)之间的函数关系图象,根据图象回答下列问题:(Ⅰ)该地区出租车的起步价是______元;(Ⅱ)求超出3千米,收费y(元)与行驶路程x(km)(x>3)之间的函数关系式______.【答案】8;y=2x+2【解析】解:(Ⅰ)该城市出租车3千米内收费8元,即该地区出租车的起步价是8元;故答案为:8;(Ⅱ)依题意设y与x的函数关系为y=kx+b,∵x=3时,y=8,x=8时,y=18;∴{8k+b=183k+b=8,解得{b=2k=2;所以所求函数关系式为:y=2x+2(x>3).故答案为:y=2x+2.(Ⅰ)利用折线图即可得出该城市出租车3千米内收费8元,(Ⅱ)利用待定系数法求出一次函数解析式即可.此题主要考查了一次函数的应用,根据待定系数法求出一次函数的解析式是解题关键.17.如图,在△BC中,AC=BC,点D、E分别是边AB、AC的中点.延长DE到点F,使DE=EF,得四边形ADCF.若使四边形ADCF是正方形,则应在△ABC中再添加一个条件为______.【答案】∠ACB=90∘【解析】解:∠ACB=90∘时,四边形ADCF是正方形,理由:∵E是AC中点,∴AE=EC,∵DE=EF,∴四边形ADCF是平行四边形,∵AD=DB,AE=EC,∴DE =12BC ,∴DF=BC,∵CA=CB,∴AC=DF,∴四边形ADCF是矩形,点D、E分别是边AB、AC的中点,∴DE//BC,∵∠ACB=90∘,∴∠AED=90∘,∴矩形ADCF是正方形.故答案为:∠ACB=90∘.先证明四边形ADCF是平行四边形,再证明AC=DF即可,再利用∠ACB=90∘得出答案即可.本题考查了矩形的判定、等腰三角形的性质、平行四边形的判定、三角形中位线定理、正方形的判定;熟记对角线相等的平行四边形是矩形是解决问题的关键.18.如图,在每个小正方形的边长为1的网格中,A,B,C,D均为格点.(Ⅰ)∠ABC的大小为______(度);(Ⅱ)在直线AB上存在一个点E,使得点E满足∠AEC=45∘,请你在给定的网格中,利用不带刻度的直尺作出∠AEC.【答案】90【解析】解:(Ⅰ)如图,∵△ABM是等腰直角三角形,∴∠ABM=90∘故答案为90;(Ⅱ)构造正方形BCDE,∠AEC即为所求;(Ⅰ)如图,根据△ABM是等腰直角三角形,即可解决问题;(Ⅱ)构造正方形BCDE即可;本题考查作图−应用与设计,解题的关键是寻找特殊三角形或特殊四边形解决问题,属于中考常考题型.三、计算题(本大题共2小题,共12.0分)19.计算下列各题:(Ⅰ)√12+3√2×√6;(Ⅱ)(√5+√2)(√5−√2)−(√3+√2)2.【答案】解:(Ⅰ)原式=2√3+3√3=5√3;(Ⅱ)原式=(√5)2−(√2)2−(5+2√6)=5−2−5−2√6=−2−2√6.【解析】(Ⅰ)先化简二次根式、计算乘法,再合并同类二次根式即可得;(Ⅱ)先利用平方差公式和完全平方公式计算,再去括号、合并同类二次根式即可得.本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.20.某校运动会需购买A、B两种奖品共100件,其中A种奖品的单价为10元,B种奖品的单价为15元,且购买的A种奖品的数量不大于B种奖品的3倍设购买A种奖品x件.(Ⅰ)根据题意,填写下表:购买A种奖品的数量/件 3070 x购买A种奖品的费用/元 300______ ______购买B种奖品的费用/元______ 450______(Ⅱ)设购买奖品所需的总费用为y元,试求出总费用y与购买A种奖品的数量x的函数解析式;(Ⅲ)试求A、B两种奖品各购买多少件时所需的总费用最少?此时的最少费用为多少元?【答案】700;10x;1050;1500−15x【解析】解:(Ⅰ)由题意可得,当购买A种奖品30件时,购买A种奖品的费用是30×10=300(元),购买B种奖品的费用是15×(100−30)=1050(元),当购买A种奖品70件时,购买A种奖品的费用是70×10=700(元),购买B种奖品的费用是15×(100−70)=450(元),当购买A种奖品x件时,购买A种奖品的费用是30x(元),购买B种奖品的费用是15×(100−x)=(1500−15x)(元),故答案为:700、10x、1050、1500−15x;(Ⅱ)由题意可得,y=10x+15(100−x)=−5x+1500,即总费用y与购买A种奖品的数量x的函数解析式是y=−5x+1500;(Ⅲ)∵购买的A种奖品的数量不大于B种奖品的3倍,∴x≤3(100−x),解得,x≤75,∵y=−5x+1500,∴当x=75时,y取得最小值,此时y=−5×75+1500=1125,100−x=25,答:购买的A种奖品75件,B种奖品25件时,所需的总费用最少,最少费用是1125元.(Ⅰ)根据题意和表格中的数据可以将表格中缺失的数据补充完整;(Ⅱ)根据题意可以写出y与x的函数关系式;(Ⅲ)根据题意可以列出相应的不等式,求出x的取值范围,再根据一次函数的性质即可解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.四、解答题(本大题共5小题,共40.0分)21.解下列方程:(Ⅰ)x2+3=2√3x(Ⅱ)x(x−2)+x−2=0.【答案】解:(I)移项得:x2−2√3x+3=0,配方得:(x−√3)2=0,开方得:x−√3=0,即x1=x2=√3;(II)x(x−2)+x−2=0,(x−2)(x+1)=0,x−2=0,x+1=0,x1=2,x2=−1.【解析】(I)移项,配方,开方,即可求出答案;(II)先分解因式,即可得出两个一元一次方程,求出方程的解即可.本题考查了解一元一次方程,能选择适当的方法解一元二次方程是解此题的关键.22.如图,在Rt△ABC中,∠ACB=90∘,BC=3,AC=4,在边BC上有一点M,将△ABM沿直线AM折叠,点B恰好落在AC延长线上的点D处.(Ⅰ)AB的长=______;(Ⅱ)CD的长=______;(Ⅲ)求CM的长.【答案】5;1【解析】解:(Ⅰ)∵∠ACB=90∘,BC=3,AC=4∴AB=5(Ⅱ)∵折叠∴AB=AD=5且AC=4∴CD=1(Ⅲ)连接DM∵折叠∴BM=DM在Rt△CDM中,DM2=CD2+CM2∴(3−CM)2=1+CM2∴CM =4 3(Ⅰ)由勾股定理可得AB的长.(Ⅱ)由折叠可得AD=AB,即可求CD的长.(Ⅲ)在直角三角形CDM中,根据勾股定理可得方程,可求出CM的长.本题考查了折叠问题,勾股定理的运用,关键是灵活运用折叠的性质解决问题.23.在▱ABCD中,点E,F分别在边BC,AD上,且AF=CE.(Ⅰ)如图①,求证四边形AECF是平行四边形;(Ⅱ)如图②,若∠BAC=90∘,且四边形AECF是边长为6的菱形,求BE的长.【答案】解:(I)证明:∵四边形ABCD是平行四边形,∴AD//BC,∵AF=CE,∴四边形AECF是平行四边形;(II)如图:∵四边形AECF是菱形,∴AE=EC,∴∠1=∠2,∵∠BAC=90∘,∴∠2+∠3=90∘∠1+∠B=90∘,∴∠3=∠B,∴AE=BE,∵AE=6,∴BE=6.【解析】(I)根据平行四边形的性质得出AD//BC,根据平行四边形的判定推出即可;(II)根据菱形的性质求出AE=6,AE=EC,求出AE=BE即可.本题考查了平行四边形的性质,等腰三角形的性质,菱形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.24.如图,在Rt△ABC中,∠ABC=90∘,∠C=30∘,AC=12cm,点E从点A出发沿AB以每秒lcm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点D作DF⊥BC于点F.(I)试用含t的式子表示AE、AD、DF的长;(Ⅱ)如图①,连接EF,求证四边形AEFD是平行四边形;(Ⅲ)如图②,连接DE,当t为何值时,四边形EBFD是矩形?并说明理由.【答案】解:(I)由题意得,AE=t,CD=2t,则AD=AC−CD=12−2t,∵DF⊥BC,∠C=30∘,∴DF=12CD=t;(Ⅱ)∵∠ABC=90∘,DF⊥BC,∴AB//DF,∵AE=t,DF=t,∴AE=DF,∴四边形AEFD是平行四边形;(Ⅲ)当t=3时,四边形EBFD是矩形,理由如下:∵∠ABC=90∘,∠C=30∘,∴BC=12AC=6cm,∵BE//DF,∴BE=DF时,四边形EBFD是平行四边形,即6−t=t,解得,t=3,∵∠ABC=90∘,∴四边形EBFD是矩形,∴t=3时,四边形EBFD是矩形.【解析】(I)根据题意用含t的式子表示AE、CD,结合图形表示出AD,根据直角三角形的性质表示出DF;(Ⅱ)根据对边平行且相等的四边形是平行四边形证明;(Ⅲ)根据矩形的定义列出方程,解方程即可.本题考查的是直角三角形的性质、平行四边形的判定、矩形的判定,掌握平行四边形、矩形的判定定理是解题的关键.25.在平面直角坐标系中,直线l1:y=−12x+4分别与x轴、y轴交于点A、点B,且与直线l2:y=x于点C.(Ⅰ)如图①,求出B、C两点的坐标;(Ⅱ)若D是线段OC上的点,且△BOD的面积为4,求直线BD的函数解析式.(Ⅲ)如图②,在(Ⅱ)的条件下,设P是射线BD上的点,在平面内是否存在点Q,使以O、B、P、Q 为顶点的四边形是菱形?若存在,直接写出点Q的坐标;若不存在,请说明理由.【答案】解:(Ⅰ)对于直线:y =−12x +4,令x =0,得到y =4, ∴B(0,4),由{y =x y =−12x +4,解得{x =83y =83,∴C(83,83).(Ⅱ)∵点D 在直线y =x 上,设D(m,m), ∵△BOD 的面积为4, ∴12×4×m =4,解得m =2, ∴D(2,2).设直线BD 的解析式为y =kx +b ,则有{2k +b =2b=4, 解得{b =4k=−1,∴直线BD 的解析式为y =−x +4.(Ⅲ)如图②中,①当OB 为菱形的边时,OB =PB =4,可得P(2√2,4−2√2),Q(2√2,−2√2). ②当P′B 为菱形的对角线时,四边形OBQ′P′是正方形,此时Q(4,4).③当OB 为菱形的边时,点P″与D 重合,P 、Q 关于y 轴对称,Q″(−2,2), 综上所述,满足条件的Q 的坐标为(2√2,−2√2)或(−2,2)或(4,4).【解析】(Ⅰ)利用待定系数法求出点B 坐标,利用方程组求出点C 坐标即可;(Ⅱ)设D(m,m),构建方程求出m 即可解决问题,再利用待定系数法求出直线的解析式; (Ⅲ)分三种情形分别求解即可解决问题;本题主要考查了一次函数图象上点的坐标特征,用待定系数法求一次函数的解析式,解二元一次方程组,菱形的性质,三角形的面积等知识点,解此题的关键是熟练地运用知识进行计算.此题是一个综合性很强的题目.。

苏教版2018-2019学年八年级(下)期末考试数学试卷(含答案详解)

苏教版2018-2019学年八年级(下)期末考试数学试卷(含答案详解)

2018~2019学年第二学期期末调研 初二数学本试卷由选择题、填空题和解答题三大题组成,共29小题,满分100分.考试时间120分钟. 注意事项:1. 答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符; 2. 答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3. 考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相应位置上......... 1. 下面四个黑体字母中,既是轴对称图形,又是中心对称图形的果A. XB. LC. CD. Z 2. 若分式23x x +-的值为零,则 A.3x = B.3x =- C.2x = D.2x =-3. 一只不透明的袋子中装有一些红球和白球,这些球除颜色外都相同.将球摇匀,从中任意摸出一个球,摸到红球是A.确定事件B.必然事件C.不可能事件D.随机事件 4. 为了解我市老年人的健康状况,下列抽样调查最合理的是 A.在公园调查部分老年人的健康状况 B.在医院调查部分老年人的健康状况 C.利用户籍网调查部分老年人的健康状况 D.在周围邻居中调查部分老年人的健康状况 5. 下列各式成立的是A.2= 3= C.22(3=- 3=6. 若(2)2m =⨯-,则有 A.21m -<<- B.10m -<< C.01m << D.12m <<7. ①平行四边形,②矩形,③菱形,④正方形中,对角线的交点到各边中点的距离都相等的是A. ①②B. ③④C. ②③D.②④8. 在反比例函数2ky x-=的图像上有两点11(,)A x y 、22(,)B x y 。

2018-2019学年苏科版八年级数学第二学期期末试卷 (附答案)

2018-2019学年苏科版八年级数学第二学期期末试卷 (附答案)

2018-2019学年八年级(下)期末数学试卷一、选择题:(本大题共有10小题,每小题3分,共30分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并填在答题卡相对应的位置上.)1.(3分)下列图形中,是中心对称图形的是()A.B.C.D.2.(3分)下列事件是随机事件的是()A.如果a,b都是实数,那么a+b=b+aB.同时抛掷两枚骰子,向上一面的点数之和为13C.10张相同的标签,分别标有数字1~10,从中任抽一张,抽到11号签D.射击一次中靶3.(3分)方程4x2﹣1=0的根是()A.B.C.2D.±24.(3分)如图,平行四边形ABCD的对角线相交于点O,BC=7cm,BD=10cm,AC=6cm,则△AOD的周长是(A.23B.1 5C.12D.85.(3分)如图,矩形ABCD的对角线AC,BD相交于点O,∠AOD=120°,AB=4cm,则矩形对角线长为()A.4 cm B.6 cm C.8 cm D.12 cm6.(3分)如图,==2,则=()A.B.2C.D.37.(3分)某中学组织学生去离学校15km的东山农场,先遣队与大队同时出发,先遣队的速度是大队的速度的1.2倍甲若先遣队比大队早到了0.5h,设大队的速度为vkm/h,可得方程为()A.B.C.D.8.(3分)如图,点B在线段AC上,且,设AC=2,则AB的长为()A.B.C.D.9.(3分)已知,则的值为()A.1B.C.D.10.(3分)已知点A(4,0),B(0,﹣4),C(a,2a)及点D是一个平行四边形的四个顶点,则线段CD的长的最小值为()A.B.C.D.二、填空题:(本大题共8小题,每小题3分,共24分,请把答案直接填在答题卡相应位置上.)11.(3分)三角形三条中线交于一点,这个点叫做三角形的.12.(3分)当x=时,分式的值为0.13.(3分)某种水果的售价是a千克b元,那么表示的实际意义是.14.(3分)两个相似多边形的面积比是9:16,其中较小多边形周长为36cm,则较大多边形周长为.15.(3分)已知点A(2,y1),B(1,y2)在反比例函数y=(k<0)的图象上,则y1 y2.(选填“>”、“=”、“<”)16.(3分)如图,A,B两地被建筑物遮挡,为测量A,B两地的距离,在地面上选一点C,连结CA,CB,分别取CA,CB的中点D,E,若DE的长为36m,则A,B两地距离为m.17.(3分)观察下列的式子:=1﹣,=﹣,=﹣……类比这种计算方法,可以求得+++…+=.18.(3分)如图,一块直角三角形木板,一条直角边AC的长1.5m,面积为1.5m2.按图中要求加工成一个正方形桌面,则桌面的边长为m.三、解答题:(本大题共10小题,共76分.解答时写出必要的计算过程、推演步骤或文字说明.)19.(5分)计算:(6﹣)﹣(﹣4).20.(5分)先化简,再求值:÷(x+1﹣),其中x=﹣2.21.(6分)在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复上述过程,下表是活动进行中的一组统计数据:(1)请将表中的数据补充完整,(2)请估计:当n很大时,摸到白球的概率约是.(精确到0.1)22.(8分)解方程:(1)2x2﹣5x+2=0;(2).23.(6分)按下列要求在如图格点中作图:(1)作出△ABC关于原点成中心对称的图形△A'B'C';(2)以点B为位似中心,作出△ABC放大2倍的图形△BA″C″.24.(6分)一列货车从北京开往乌鲁木齐,以58km/h的平均速度行驶需要65h.为了实施西部大开发,京乌线决定全线提速.(1)如果提速后平均速度为vkm/h,全程运营时间为t小时,试写出t与v之间的函数表达式;(2)如果提速后平均速度为78km/h,求提速后全程运营时间;(3)如果全程运营的时间控制在40h内,那么提速后,平均速度至少应为多少?25.(8分)如图,在四边形ABCD中,AB=DC,E,F,G,H分别是AD,BC,BD,AC的中点.(1)证明:EG=EH;(2)证明:四边形EHFG是菱形.26.(10分)如图,在平行四边形ABCD中,AC,BD相交于点O,点E在BC上,AE 交BD于F.(1)若E是靠近点B的三等分点,求;①的值;②△BEF与△DAF的面积比;(2)当时,求的值.27.(10分)如图,已知反比例函数的图象经过点A(﹣1,a),过点A作AB⊥x轴,垂足为点B,△AOB的面积为.(1)求k的值;(2)若一次函数y=mx+n图象经过点A和反比例函数图象上另一点,且与x轴交于M点,求AM的值;(3)在(2)的条件下,如果以线段AM为一边作等边△AMN,顶点N在另一个反比例函数上,则k'=.28.(12分)如图,在平面直角坐标系中,已知矩形OABC的顶点B(6,8),动点M,N同时从O点出发,点M沿射线OA方向以每秒1个单位的速度运动,点N沿线段OB 方向以每秒0.6个单位的速度运动,当点N到达点B时,点M,N同时停止运动,连接MN,设运动时间为t(秒).(1)求证△ONM~△OAB;(2)当点M是运动到点时,若双曲线的图象恰好过点N,试求k的值;(3)△MNB与△OAB能否相似?若能试求出所有t的值,若不能请说明理由.2018-2019学年八年级(下)期末数学试卷参考答案与试题解析一、选择题:(本大题共有10小题,每小题3分,共30分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并填在答题卡相对应的位置上.)1.(3分)下列图形中,是中心对称图形的是()A.B.C.D.【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析.【解答】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、是中心对称图形,故此选项正确;D、不是中心对称图形,故此选项错误;故选:C.【点评】此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.2.(3分)下列事件是随机事件的是()A.如果a,b都是实数,那么a+b=b+aB.同时抛掷两枚骰子,向上一面的点数之和为13C.10张相同的标签,分别标有数字1~10,从中任抽一张,抽到11号签D.射击一次中靶【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A、如果a,b都是实数,那么a+b=b+a,是必然事件;B、同时抛掷两枚骰子,向上一面的点数之和为13,是不可能事件;C、10张相同的标签,分别标有数字1~10,从中任抽一张,抽到11号签是不可能事件;D、射击一次中靶是随机事件;故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.(3分)方程4x2﹣1=0的根是()A.B.C.2D.±2【分析】先把方程变形为x2=,然后利用直接开平方法解方程.【解答】解:x2=,x=.故选:B.【点评】本题考查了解一元二次方程﹣直接开平方法:形如x2=p或(nx+m)2=p(p ≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.4.(3分)如图,平行四边形ABCD的对角线相交于点O,BC=7cm,BD=10cm,AC=6cm,则△AOD的周长是(A.23B.1 5C.12D.8【分析】根据平行四边形的对边相等,对角线互相平分即可解决问题;【解答】解:∵四边形ABCD是平行四边形,AC=6cm,BD=10cm,∴AO=AC3cm,OD=BD=5cm,AD=BC=7cm,∴△AOD的周长=AO+OD+AD=8cm+BC=15cm,故选:B.【点评】本题考查了平行四边形的性质,属于基础题,关键是掌握平行四边形的对边相等,对角线互相平分,对角相等.5.(3分)如图,矩形ABCD的对角线AC,BD相交于点O,∠AOD=120°,AB=4cm,则矩形对角线长为()A.4 cm B.6 cm C.8 cm D.12 cm【分析】根据邻补角的定义求出∠AOB=60°,再根据矩形的对角线互相平分且相等可得AO=BO=CO,然后判断出△AOB是等边三角形,根据等边三角形三条边都相等可得AO=AB,然后求解即可.【解答】解:∵∠AOD=120°,∴∠AOB=180°﹣∠AOD=180°﹣120°=60°,∵四边形ABCD是矩形,∴AO=BO=CO,∴△AOB是等边三角形,∴AO=AB=4cm,∴AC=AO+CO=4+4=8cm.故选:C.【点评】本题考查了矩形的性质,等边三角形的判定与性质,熟记各性质并判断出△AOB 是等边三角形是解题的关键.6.(3分)如图,==2,则=()A.B.2C.D.3【分析】设AD=2k,BD=k,则AB=3k,既可求得结果.【解答】解:∵,设AD=2k,BD=k,∴AB=3k,∴=故选:D.【点评】此题考查平行线分线段成比例,关键是根据平行线分线段成比例解答.7.(3分)某中学组织学生去离学校15km的东山农场,先遣队与大队同时出发,先遣队的速度是大队的速度的1.2倍甲若先遣队比大队早到了0.5h,设大队的速度为vkm/h,可得方程为()A.B.C.D.【分析】设大队的速度为y千米/时,则先遣队的速度是1.2y千米/时,由题意可知先遣队用的时间+0.5小时=大队用的时间.【解答】解:设大队的速度为y千米/时,则先遣队的速度是1.2y千米/时,,故选:A.【点评】此题主要考查了分式方程的应用,关键是弄懂题意,表示出大队和先遣队各走15千米所用的时间,根据时间关系:先遣队比大队早到0.5h列出方程解决问题.8.(3分)如图,点B在线段AC上,且,设AC=2,则AB的长为()A.B.C.D.【分析】根据题意列出一元二次方程,解方程即可.【解答】解:∵,∴AB2=2×(2﹣AB),∴AB2+2AB﹣4=0,解得,AB1=,AB2=(舍去),故选:C.【点评】本题考查的是黄金分割的概念以及黄金比值,掌握一元二次方程得到解法、理解黄金分割的概念是解题的关键.9.(3分)已知,则的值为()A.1B.C.D.【分析】根据,可以求得a、b的值,从而可以求得所求式子的值,本题得以解决.【解答】解:∵,∴a﹣3=0,2﹣b=0,解得,a=3,b=2,∴===,故选:D.【点评】本题考查二次根式的化简求值、非负数的性质,解答本题的关键是明确题意,求出a、b的值.10.(3分)已知点A(4,0),B(0,﹣4),C(a,2a)及点D是一个平行四边形的四个顶点,则线段CD的长的最小值为()A.B.C.D.【分析】讨论两种情形:①CD是对角线,②CD是边.CD是对角线时CF⊥直线y=x时,CD最小.CD是边时,CD=AB=4,通过比较即可得出结论.【解答】解:如图,由题意点C在直线y=2x上,如果AB、CD为对角线,AB与CD交于点F,当FC⊥直线y=2x时,CD最小,易知直线AB为y=x﹣4,∵AF=FB,∴点F坐标为(2,﹣2),∵CF⊥直线y=2x,设直线CF为y=﹣x+b′F(2,﹣2)代入得b′=﹣1∴直线CF为y=﹣x﹣1,由解得,∴点C坐标(﹣,﹣).∴CD=2CF=2×=.如果CD是平行四边形的边,则CD=AB=4>,∴CD的最小值为.故选:B.【点评】本题考查平行四边形的性质、坐标与图形的性质、垂线段最短等知识,学会分类讨论是解题的关键,灵活运用垂线段最短解决实际问题,属于中考常考题型.二、填空题:(本大题共8小题,每小题3分,共24分,请把答案直接填在答题卡相应位置上.)11.(3分)三角形三条中线交于一点,这个点叫做三角形的重心.【分析】根据三角形的重心的概念解答.【解答】解:三角形三条中线交于一点,这个点叫做三角形的重心,故答案为:重心.【点评】本题考查的是三角形重心的概念,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.12.(3分)当x=2时,分式的值为0.【分析】直接利用分式的值为零的条件得出答案.【解答】解:∵分式的值为0,∴x﹣2=0,解得:x=2,故答案为:2.【点评】此题主要考查了分式的值为零的条件,正确把握定义是解题关键.13.(3分)某种水果的售价是a千克b元,那么表示的实际意义是每元买千克.【分析】根据代数式表示的意义解答即可.【解答】解:表示的实际意义是每元买千克,故答案为:每元买千克【点评】此题考查代数式的问题,关键是根据代数式表示的意义解答.14.(3分)两个相似多边形的面积比是9:16,其中较小多边形周长为36cm,则较大多边形周长为48cm.【分析】根据相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方计算即可.【解答】解:两个相似多边形的面积比是9:16,面积比是周长比的平方,则大多边形与小多边形的相似比是4:3.相似多边形周长的比等于相似比,因而设大多边形的周长为xcm,则有=,解得:x=48.大多边形的周长为48cm.故答案为48cm.【点评】本题考查相似多边形的性质.相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方.15.(3分)已知点A(2,y1),B(1,y2)在反比例函数y=(k<0)的图象上,则y1>y2.(选填“>”、“=”、“<”)【分析】先判断出函数的增减性,再根据其坐标特点解答即可.【解答】解:∵k<0,∴反比例函数图象的两个分支在第二四象限,且在每个象限内y 随x的增大而增大,又∵A(2,y1),B(1,y2)在反比例函数y=(k<0)的图象上,且2>1>0,∴y1>y2.故答案为y1>y2.【点评】本题考查利用反比例函数的增减性质判断图象上点的坐标特征.16.(3分)如图,A,B两地被建筑物遮挡,为测量A,B两地的距离,在地面上选一点C,连结CA,CB,分别取CA,CB的中点D,E,若DE的长为36m,则A,B两地距离为72m.【分析】根据三角形中位线定理计算即可. 【解答】解:∵点D ,E 分别为CA ,CB 的中点, ∴AB =2DE =72m , 故答案为:72.【点评】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.17.(3分)观察下列的式子:=1﹣,=﹣,=﹣……类比这种计算方法,可以求得+++…+=.【分析】根据=×(﹣)裂项求和可得.【解答】解:原式=×(﹣)+×(﹣)+×(﹣)+……+×(﹣)=×(﹣+﹣+﹣+……+﹣)=×(﹣)=×=,故答案为:.【点评】本题主要考查分式的加减运算,解题的关键是掌握=×(﹣)和分式的加减运算法则.18.(3分)如图,一块直角三角形木板,一条直角边AC 的长1.5m ,面积为1.5m 2.按图中要求加工成一个正方形桌面,则桌面的边长为m .【分析】先求出点C到AB边的距离,再根据相似三角形△ACB和△DCE对应高的比等于相似比列式求解即可.【解答】解:∵一块直角三角形木板,一条直角边AC的长1.5m,面积为1.5m2,∴另一直角边长为:=2(m),则斜边长为:=2.5,设点C到AB的距离为h,=×2.5h=1.5,则S△ABC解得:h=1.2,∵正方形GFDE的边DE∥GF,∴△ACB∽△DCE,=,即=,解得:x=,故答案为:.【点评】本题考查了相似三角形的应用,主要利用了相似三角形对应边成比例,相似三角形对应高的比等于相似比的性质,读懂题目信息并熟记性质是解题的关键.三、解答题:(本大题共10小题,共76分.解答时写出必要的计算过程、推演步骤或文字说明.)19.(5分)计算:(6﹣)﹣(﹣4).【分析】直接利用二次根式的性质化简进而得出答案.【解答】解:原式=(6×﹣×3)﹣(﹣4×)=﹣2﹣+2=0.【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.20.(5分)先化简,再求值:÷(x+1﹣),其中x=﹣2.【分析】将原式括号中各项通分并利用同分母分式的减法法则计算,整理后再利用平方差公式分解因式,然后利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,即可得到原式的值.【解答】解:÷(x+1﹣)=÷[﹣]=÷=×=当x=﹣2时,原式==.【点评】此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找出公因式,约分时,分式的分子分母出现多项式,应将多项式分解因式后再约分.21.(6分)在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复上述过程,下表是活动进行中的一组统计数据:(1)请将表中的数据补充完整,(2)请估计:当n很大时,摸到白球的概率约是0.6.(精确到0.1)【分析】(1)利用频率=频数÷样本容量直接求解即可;(2)根据统计数据,当n很大时,摸到白球的频率接近0.6.【解答】解:(1)填表如下:故答案为:0.58,0.59;(2)当n很大时,摸到白球的概率约是0.6,故答案为:0.6.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.22.(8分)解方程:(1)2x2﹣5x+2=0;(2).【分析】(1)直接利用十字相乘法分解因式进而解方程即可;(2)首先去分母进而解分式方程得出答案.【解答】解:(1)2x2﹣5x+2=0(2x﹣1)(x﹣2)=0,则2x﹣1=0或x﹣2=0,解得:x1=,x2=2;(2)1﹣x+2(x﹣2)=﹣1,则x=2,检验:当x=2时,x﹣2=0,故此方程无解.【点评】此题主要考查了因式分解法解方程以及分式方程的解法,正确分解因式是解题关键.23.(6分)按下列要求在如图格点中作图:(1)作出△ABC关于原点成中心对称的图形△A'B'C';(2)以点B为位似中心,作出△ABC放大2倍的图形△BA″C″.【分析】(1)直接利用关于原点对称图形的性质得出答案;(2)直接利用位似图形的性质得出对应点位置进而得出答案.【解答】解:(1)如图所示:△A'B'C',即为所求;(2)如图所示:△BA″C″,即为所求.【点评】此题主要考查了位似变换以及旋转变换,正确得出对应点位置是解题关键.24.(6分)一列货车从北京开往乌鲁木齐,以58km/h的平均速度行驶需要65h.为了实施西部大开发,京乌线决定全线提速.(1)如果提速后平均速度为vkm/h,全程运营时间为t小时,试写出t与v之间的函数表达式;(2)如果提速后平均速度为78km/h,求提速后全程运营时间;(3)如果全程运营的时间控制在40h内,那么提速后,平均速度至少应为多少?【分析】(1)直接利用路程=时间×速度得出总路程进而得出函数关系式;(2)利用总路程除以速度即可得出时间;(3)利用总路程除以时间即可得出平均速度.【解答】解:(1)由题意可得,总路程为58×65=3770(km),则提速后平均速度为vkm/h,全程运营时间为t小时,故t与v之间的函数表达式为:t=;(2)当v=78km/h时,t==48(小时),答:提速后全程运营时间为48小时;(3)∵全程运营的时间控制在40h内,∴平均速度应为:t≥=94.25,答:提速后,平均速度至少应为94.25km.【点评】此题主要考查了反比例函数的应用,正确得出函数关系式是解题关键.25.(8分)如图,在四边形ABCD中,AB=DC,E,F,G,H分别是AD,BC,BD,AC的中点.(1)证明:EG=EH;(2)证明:四边形EHFG是菱形.【分析】(1)利用三角形中位线定理证明即可;(2)首先运用三角形中位线定理可得到FG∥AB,HE∥AB,FH∥CD,GE∥DC,从而再根据平行于同一条直线的两直线平行得到GE∥FH,GF∥EH,可得到四边形ABCD 是平行四边形,再运用三角形中位线定理证明邻边相等,从而证明它是菱形.【解答】证明:(1)∵四边形ABCD中,点E、F、G、H分别是BC、AD、BD、AC 的中点,∴EG是△ABD的中位线,EH是△ADC的中位线,∴EG =AB ,EH =CD , ∵AB =CD , ∴EG =EH ;(2)∵四边形ABCD 中,点E 、F 、G 、H 分别是BC 、AD 、BD 、AC 的中点, ∴FG ∥AB ,HE ∥AB ,FH ∥CD ,GE ∥DC ,∴GE ∥FH ,GF ∥EH (平行于同一条直线的两直线平行); ∴四边形GFHE 是平行四边形,∵四边形ABCD 中,点E 、F 、G 、H 分别是BC 、AD 、BD 、AC 的中点, ∴FG 是△ABD 的中位线,GE 是△BCD 的中位线,∴GF =AB ,GE =CD , ∵AB =CD , ∴GF =GE ,∴四边形EHFG 是菱形.【点评】此题主要考查了三角形中位线定理和菱形的判定方法,利用三角形中位线定理解答是关键.26.(10分)如图,在平行四边形ABCD 中,AC ,BD 相交于点O ,点E 在BC 上,AE 交BD 于F .(1)若E 是靠近点B 的三等分点,求;①的值;②△BEF 与△DAF 的面积比;(2)当时,求的值.【分析】(1)①利用平行线分线段成本定理定理即可解决问题; ②利用相似三角形的性质即可解决问题;(2)利用平行四边形的性质以及平行线分线段成比例定理即可解决问题; 【解答】解:(1)①∵四边形ABCD 是平行四边形,∴BC=AD,BC∥AD,∵BE:BC=1:3,∴==.②∵BE∥AD,∴△BEF∽△DAF,∴=()2=.(2)∵四边形ABCD是平行四边形,∴OB=OD,BC∥AD,BC=AD,∵BF:OF=n:m,∴BF:DF=n:(2m+n),∴BE:AD=BF:DF=n:(2m+n),∴=.【点评】本题考查相似三角形的判定和性质、平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.27.(10分)如图,已知反比例函数的图象经过点A(﹣1,a),过点A作AB⊥x轴,垂足为点B,△AOB的面积为.(1)求k的值;(2)若一次函数y=mx+n图象经过点A和反比例函数图象上另一点,且与x轴交于M点,求AM的值;(3)在(2)的条件下,如果以线段AM为一边作等边△AMN,顶点N在另一个反比例函数上,则k'=4或.【分析】(1)根据点A的坐标以及三角形的面积公式即可求出a值,再根据反比例函数图象上点的坐标特征即可求出k的值;(2)根据反比例函数解析式可求出点C的坐标,由点A、C的坐标利用待定系数法即可求出直线AM的解析式,令线AM的解析式中y=0求出x值,即可得出点M的坐标,再利用勾股定理即可求出线段AM的长度;(3)设点N的坐标为(m,n),由等边三角形的性质结合两点间的距离公式即可得出关于m、n的二元二次方程组,解方程组即可得出n与m之间的关系,由此即可得出b 值.=OB•AB=,【解答】解:(1)∵S△AOB∴×1×a=,∴a=.∴点A(﹣1,).∵反比例函数y=的图象经过点A(﹣1,),∴k=﹣.(2)∵C(t,﹣)在反比例函数y=﹣的图象上,∴﹣t=﹣,解得:t=3,∴C(3,﹣).将A(﹣1,)、C(3,﹣)代入y=mx+n中,得:,解得:,∴直线AM的解析式为y=﹣x+.令y=﹣x+中y=0,则x=2,∴M(2,0).在Rt△ABM中,AB=,BM=2﹣(﹣1)=3,∴AM==2.(3)设点N的坐标为(m,n),∵△AMN为等边三角形,且AM=2.∴∠AMN=60°,∵tan∠AMB==,∴∠AMB=30°,∴∠NMB=90°,∴N(2,2),同法可得:当△AMN′是等边三角形时,可得N′(﹣1,﹣),∵顶点N在另一个反比例函数上,∴k′=4或故答案为:4或.【点评】本题考查了三角形的面积公式、反比例函数图象上点的坐标特征、勾股定理以及解二元二次方程组,解题的关键是:(1)求出点A的坐标;(2)求出点M的坐标;(3)根据等边三角形的性质找出关于m、n的二元二次方程组.本题属于中档题,难度不大,解决该题型题目时,根据等边三角形的性质利用两点间的距离公式找出点的横纵坐标之间的关系是关键.28.(12分)如图,在平面直角坐标系中,已知矩形OABC的顶点B(6,8),动点M,N同时从O点出发,点M沿射线OA方向以每秒1个单位的速度运动,点N沿线段OB 方向以每秒0.6个单位的速度运动,当点N到达点B时,点M,N同时停止运动,连接MN,设运动时间为t(秒).(1)求证△ONM~△OAB;(2)当点M是运动到点时,若双曲线的图象恰好过点N,试求k的值;(3)△MNB与△OAB能否相似?若能试求出所有t的值,若不能请说明理由.【分析】(1)想办法证明=,即可解决问题;(2)只要证明点N是OB中点,即可求出点N坐标,再利用待定系数法即可解决问题;(3)分两种情形解决问题即可;【解答】(1)证明:由题意:OA=6,AB=8,OB=10,OM=t,ON=0.6t,∴=,∵∠MON=∠AOB,∴△ONM∽△OAB.(2)当OM=时,ON=5,∴ON=NB,∴N(3,4),∵双曲线的图象恰好过点N,∴k=12.(3)①当点M与点A重合时,△BNM∽△BAO,此时t=6s.②当OM=BM时,∠MBN=∠AOB,∵∠OAB=∠MNB=90°,∴△MBN∽△BOA,此时点M在线段OB的垂直平分线上,由(2)可知,此时OM=,t=s,综上所述,当t=6s或s时,△BMN与△AOB相似.【点评】本题考查反比例函数综合题、相似三角形的判定和性质、线段的垂直平分线的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.。

2019年苏教版八年级(下)期末考试数学试卷含答案详解

2019年苏教版八年级(下)期末考试数学试卷含答案详解

2018~2019学年度第二学期期末考试试卷初二数学本试卷由填空题、选择题和解答题三大题组成,共28题,满分130分。

考试用时120分钟。

注意事项:1.答卷前考生务必将自己的学校、班级、姓名、考场号、考试号使用0 5毫米黑色签字笔书写在答题卷的相应位置上,并将考试号用2B 铅笔正确填涂.2.答选择题必须用2B 铅笔把答题卷上对应题目的答案标号涂黑;答非选择题必须用0.5mm 的黑色墨水签字笔写在答题卷指定的位置上,不在答题区域的答案一律无效,不得用其他笔答题。

3.考生答题必须在答题卷上,答在试卷上和草稿纸上一律无效.一、选择题:(本大题共有10小题,每小题3分,共30分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并在答题卷上将该项涂黑.) 1.若代数式13x +在实数范围内有意义,则实数x 的取值范围是 A. 3x =- B. 3x ≠- C. 3x <- D. 3x >- 2.下列各点中,在双曲线上12y x=的点是 A .(4,-3) B. (3,-4) C. (-4,3) D.(-3,-4) 3.化简2(5)-的结果是A .5 B. -5 C. ±5 D. 25 4.菱形对角线不.具有的性质是 A .对角线互相垂直 B. 对角线所在直线是对称轴 C .对角线相等 D. 对角线互相平分5.苏州市5月中旬每天平均空气质量指数(AQI)分别为:84,89,83,99,69,73,78,81,89,82,为了描述这十天空气质量的变化情况,最适合用的统计图是A .折线统计图B .频数分布直方图C .条形统计图D .扇形统计图 6.如图,//DE BC 在下列比例式中,不能..成立的是A .AD AE DB EC = B.DE AEBC EC = C.AB AC AD AE = D.DB ABEC AC=7.有五张卡片(形状、大小、质地都相同),正面分别画有下列图形:①线段;②正三角形;③平行四边形;④圆;⑤菱形.将卡片背面朝上洗匀,从中抽取一张,其正面图形既是轴对称图形,又是中心对称图形的概率是 A.15 B.25 C.35 D.458.如图, 在正方形ABCD 中,AC 为对角线,点E 在AB 边上,EF AC ⊥于点F ,连接EC ,3,AF EFC =∆的周长为12,则EC 的长为A.722B.32C.5D.6 9.如图,路灯灯柱OP 的长为8米,身高1.6米的小明从距离灯的底部(点O 20米的点A 处,沿AO 所在的直线行走14米到点B 处时,人影的长度 A .变长了1.5米 B .变短了2.5米 C .变长了3.5米 D. 变短了3.5米10.如图所示,在Rt AOB ∆中,90,23AOB OB OA ∠=︒=,点A 在反比例函数2y x =的图象上,若点B 在反比例函数k y x=的 图象上,则k 的值为A .3 B. -3C. 94-D. 92-二、填空题:(本大题共8小题,每小题3分,共24分) 11.计算:2633⋅= . 12.一个不透明的盒子中装有3个红球,2个黄球,这些球除了颜色外其余都相同,从中随机摸出3个小球,则事件“所摸3个球中必含有红球”是 (填“必然事件”、“随机事件”或 “不可能事件”).13.某建筑物的窗户为黄金矩形,已知它较长的一边长为l 米,则较短的一边长为 米.(结果保留根号或者3位小数)14.如图,在四边形ABCD 中,AC 平分BCD ∠,要A B CD A C ∆∆,还需添加一个条件,你添加的条件是 .(只需写一个条件,不添加辅助线和字母)15.如图,E 是矩形ABCD 的对角线的交点,点F 在边AE 上,且DF DC =,若25ADF ∠=︒,则ECD ∠= °. 16.关于x 的方程122x ax x +=--有增根,则a 的值为 . 17.如图,在ABC ∆中,90,16C BC ∠=︒=cm ,AC =12cm ,点P 从点B 出发,沿BC 以2cm/s 的速度向点C 移动,点Q 从点C 出发,沿CA 以lcm/s 的速度向点A 移动,若点P 、Q 分别从点B 、C 同时出发,设运动时间为t s ,当t = 时,//AB PQ .18.如图,直线2y x =与反比例函数ky x=的图象交于点(3,)A m ,点B 是线段OA 的中点,点(,4)E n 在反比例函数的图象上,点F 在x 轴上,若EAB EBF AOF ∠=∠=∠,则点F 的横坐标为 .三、解答题:(本大题共10小题,共76分.把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明).19.(本题满分6分)己知22()4(0()a b abA ab ab a b +-=≠-且)a b ≠. (1)化简A ;(2)若点(,)P a b 在反比例函数5y x=-的图象上,求A 的值20.(本题满分6分)为了加强学生的安全意识,某校组织了学生参加安全知识竞赛.从中抽取了部分学生成绩(得分数取正整数,满分为100分)进行统计,已知A 组的频数a 比B 组的频数b 小24,绘制统计频数分布直方图(未完成)和扇形图如下,请解答下列问题: (1)样本容量为: ,a 为 ; (2)n 为 °,E 组所占比例为 %; (3)补全频数分布直方图:(4)若成绩在80分以上记作优秀,全校共有2000名学生,估计成绩优秀学生有 名.21.(本题满分6分)请你阅读小红同学的解题过程,并回答所提出的问题. 计算:23311x x x-+-- (1)问:小红在第 步开始出错(写出序号即可); (2)请你给出正确解答过程.22.(本题满分8分)如图所示,在4×4的正方形万格中,ABC ∆和DEF ∆的顶点都在边长为1的小正方形的顶点上.(1)填空:ABC ∠= °,BC = ; (2)判断ABC ∆与DEF ∆是否相似?并证明你的结论.23.(本题满分8分)已知17178a a b -+-=+.(1)求a 的值; (2)求22a b -的平方根.24.(本题满分8分)己知, 121,y y y y =+与x 成正比例,2y 与x 成反比例,并且当1x =-时,1y =-,当2x =时,5y =.(1)求y 关于x 的函数关系式; (2)当0y =时,求x 的值.25.(本题满分8分)如图,在ABC ∆中, 90,BAC AD ∠=︒是斜边上的中线,E 是AD 的中点,过点A 作//AF BC 交BE 的的延长线于F ,连接CF .2-1-c-n-j-y (1)求证:BD AF =;(2)判断四边形ADCF 的形状,并证明你的结论.26.(本题满分8分)如图,反比例函数4y x=的图象与一次函数3y kx =-的图象在第一象限内相交于点A ,且点A 的横坐标为 4. (1)求点A 的坐标及一次函数解析式;(2)若直线2x =与反比例函数和一次函数的图象分别 交于点B 、C ,求ABC ∆的面积.27.(本题满分8分)如图,在平行四边形ABCD 中,F 是AD 的中点,延长BC 到点E ,使12CE BC =,连接,DE CF .(1)求证: DE CF =;(2)若4,6,60AB AD B ==∠=︒,求DE 的长.28.(本题满分10分)如图,在平面直角坐标系中,一次函数6y kx =+的图象分别与x 轴,y 轴交于点,A B ,点A 的坐标为(-8,0).(1)点B 的坐标为 ;(2)在第二象限内是否存在点P ,使得以P 、O 、A 为顶 点的三角彤与OAB ∆相似?若存在,请求出所有符台 条件的点P 的坐标:若不存在,请说明理由.- 11 -。

2018-2019学年苏教版八年级(下)期末考试数学试卷含答案详解

2018-2019学年苏教版八年级(下)期末考试数学试卷一、选择题(本大题共6小题,每小题2分,共12分,在每小题给出的四个选项中,只有一项是符合题目要求的)21.下列式子中,为最简二次根式的是( ) A .4 B .10 C .D .2.一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是( ) A .至少有2个球是黑球B .至少有1个球是白球C .至少有1个球是黑球D .至少有2个球是白球 3.与分式﹣的值相等的是( ) A .﹣B .﹣C .D .4.如图,在矩形ABCD 中,点E 在AD 上,且EC 平分∠BED ,AB =2,∠ABE =45°,则DE 的长为( )2第4题第5题第11题A .2-2 B .-1 C . -1D .2-5.反比例函数的图象如图所示,则这个反比例函数的解析式可能是( ) A . xy 2=B .x y 6=C .x y 7=D .xy 9= 6.若分式方程+1=有增根,则a 的值是( ) A .4B .0或4C .0D .0或﹣4二、填空题:(本大题共10小题,每小题3分,计30分) 7.使22-x 有意义的x 的取值范围是______.8.分式392--x x 的值为0,那么x 的值为______;9.某班级40名学生在期中学情分析考试中,分数段在90~100分的频率为0.2,则该班级在这个分数段内的学生有 人.10.若一元二次方程ax 2-(b -1)x ﹣2017=0有一根为x =﹣1,则a +b 的值为______;11.如图,在Rt △ABC 中,∠ACB =90°,点D 、E 、F 分别为AB 、AC 、BC 的中点.若CD =5,则EF 的长为______.12.如图,在Rt △ABC 中,∠ABC =90°,AB =BC ,将△ABC 绕点C 逆时针旋转α(0°<α<90°),得到△MNC ,连接BM ,当 BM ⊥AC ,则旋转角α的度数为______.13.已知菱形的周长为40cm ,两条对角线之比3:4,则菱形面积为______________cm 2.14.一次函数y =-x +1与反比例函数xky =(k <0)中,x 与y 的部 分对应值如下表:x -3 -2 -1 1 2 3 y =-x +143 2 0 -1 -2xk y =32 12-2-132- 则不等式1-+x x>0的解集为____________________________. 15.已知关于x 的方程=3的解是正数,那么m 的取值范围为___________16.正方形ABCD 中,直线l 经过点A ,过点B 、D 分别作直线l 的垂线,垂足分别为E 、F ,若BE =7,DF =4,则DE 的长度为___________________________. 三、解答题:(本大题共10小题,计78分) 17.(3分×2=6分)化简与计算: (1)( x ≥0,y ≥0); (2)×+÷.18.(4分×2=8分) 解方程:(1) (x -2)(x -5)=-2 (2)xx x 101317=-++19.(6分)先化简,再求值:(a a 112--)÷1222+-+a a aa ,其中a 2+a -2=0.20.(8分) 某学校校园读书节期间,学校准备购买一批课外读物.为使购买的课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别对部分同学进行了抽样调查(每位同学只选一类).下图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息解答下列问题:(1) 本次抽样调查一共抽查了_______名同学;(2) 条形统计图中,m=_______,n=_______;(3) 扇形统计图中,艺术类读物所在扇形的圆心角是_______度;(4) 学校计划购买课外读物6000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?21.(6分)已知关于x的方程x2﹣4mx+4m2﹣9=0.(1) 求证:此方程有两个不相等的实数根;(2) 设此方程的两个根分别为x1,x2,其中x1<x2.若2x1=x2+1,求m的值.ABCD E第22题图22.(6分)如图,在△ABC 中,AB =AC ,D 为边BC 上一点,将线段AB 平移至DE ,连接AE 、AD 、E C . (1) 求证:AD =EC ; (2) 当点D 是BC 的中点时, 求证:四边形ADCE 是矩形.23.(8分)一儿童服装商店在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六·一”儿童节,商店决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装上盈利1200元,那么每件童装应降价多少元?x24.(8分)如图,点B 在反比例函数y =4x(x >0)的图像上,点A 、C 分别在x 轴、y 轴正 半轴上,且四边形OABC 为正方形. (1) 求点B 的坐标; (2) 点P 是y =x4在第一象限的图像上点B 右侧一动点, 且S △POB =S △AOB ,求点P 的坐标.25.(10分)四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.2·1·c·n·j·y(1) 如图1,求证:矩形DEFG是正方形;(2) 若AB=2,CE=2,求CG的长度;(3) 当线段DE与正方形ABCD的某条边的夹角是30°时,直接写出∠EFC的度数.26.(12分)如图,O 为坐标原点,四边形OABC 为矩形,A (10,0),C (0,8),点P 在边BC 上以每秒1个单位长的速度由点C 向点B 运动,同时点Q 在边AB 上以每秒a 个单位长的速度由点A 向点B 运动,运动时间为t 秒(t >0).(1) 若反比例函数xm y 图像经过P 点、Q 点,求a 的值;(2) 若OQ 垂直平分AP ,求a 的值;(3) 当Q 点运动到AB 中点时,是否存在a 使△OPQ 为直角三角形?若存在,求出a 的值;若不存在,请说明理由;参考答案1.B 2.C 3.D 4.A 5.C 6.A 7.X ≥1 8.- 3 9.8 10.2018 11.5 12.6013.24 14.-1<x <0或x >2 15.m >-6且m ≠-4 16.5或137 17.(1)5xy x 3 (2)1118.(1)x 1=3, x 2=4 (2)x =25(不检验扣1分) 19.21aa -(3分) a =-2 (a =1舍去)(2分) 43-(1分)20.(1)200 (2)m =40, n =60 (3) 72 (4)900 (每题2分)21.(1)证明(略) (2分) (2)x 1=2m -3 x 2=2m +3 (判断1分共2分)m =5 (2分)w 22.(1)证明(略)(3分)(2)证明(略)(3分) 23.设每件童装应降价x 元,根据题意得(40-x )(20+2x )=1200 (4分) x 1=20 x 2=10 (2分)因为要尽快减少库存,则x =10舍去则x =20 (1分) 答:每件童装应降价20元.(1分)(其他方法参照执行)224. (1)B (2,2) (4分) (2) P (1+, 1-+) (4分)25.(1)证明(略) (3分) (2) CG =2 (3分) (3)120°或30°(4分)【 26.(1)a =54(2分) (2)a =65(4分)(3)①当t >0时∠POQ <∠AOB =90°,则∠POQ 不为直角; (1分) ②当∠OPQ =90°时, OP 2+PQ 2=OQ 2∴82+t 2+42+(10-t )2=42+102 t 2-10t +32=0此方程无实数解,则∠OPQ 不为直角 (2分) ③当∠OQP =90°时OP 2=PQ 2+OQ 2 ∴82+t 2=42+(10-t )2+42+102t =542(2分)∵at =4 ∴a =2110(1分)。

最新江苏省2018-2019年八年级下期末数学试卷

八年级(下)期末数学试卷一、选择题(本大题共12小题,共36.0分)1.下列二次根式中,属于最简二次根式的是()A. √5B. √12C. √0.2D. √27【答案】A【解析】解:A、是最简二次根式,故本选项符合题意;B、√12=12√2,不是最简二次根式,故本选项不符合题意;C、√0.2=√14=15√5,不是最简二次根式,故本选项不符合题意;D、√27=3√3,不是最简二次根式,故本选项不符合题意;故选:A.根据最简二次根式的定义逐个判断即可.本题考查了最简二次根式的定义,能熟记最简二次根式的定义的内容是解此题的关键.2.下列各组线段a、b、c中,能组成直角三角形的是()A. a=4,b=5,c=6B. a=1,b=√3,c=2C. a=1,b=1,c=3D. a=5,b=12,c=12【答案】B【解析】解:A、∵42+52≠62,∴该三角形不是直角三角形,故此选项不符合题意;B、∵12+√32=22,∴该三角形是直角三角形,故此选项符合题意;C、∵12+12≠32,∴该三角形不是直角三角形,故此选项不符合题意;D、∵52+122≠122,∴该三角形不是直角三角形,故此选项不符合题意.故选:B.根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.下列各式中,y不是x的函数的是()A. y=|x|B. y=xC. y=−x+1D. y=±x【答案】D【解析】解:A、y=|x|对于x的每一个取值,y都有唯一确定的值,故A错误;B、y=x对于x的每一个取值,y都有唯一确定的值,故B错误;C、y=−x+1对于x的每一个取值,y都有唯一确定的值,故C错误;D、y=±x对于x的每一个取值,y都有两个值,故D正确;故选:D.根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.4.用配方法解方程x2−4x−2=0变形后为()A. (x−2)2=6B. (x−4)2=6C. (x−2)2=2D. (x+2)2=6【答案】A【解析】解:把方程x2−4x−2=0的常数项移到等号的右边,得到x2−4x=2方程两边同时加上一次项系数一半的平方,得到x2−4x+4=2+4配方得(x−2)2=6.故选:A.在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数−4的一半的平方.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5.一次函数y=x+2的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】解:∵k=1>0,图象过一三象限,b=2>0,图象过第二象限,∴直线y=x+2经过一、二、三象限,不经过第四象限.故选:D.根据k,b的符号确定一次函数y=x+2的图象经过的象限.本题考查一次函数的k>0,b>0的图象性质.需注意x的系数为1.6.一元二次方程x2−8x+20=0的根的情况是()A. 没有实数根B. 有两个相等的实数根C. 只有一个实数根D. 有两个不相等的实数根【答案】A【解析】解:∵△=(−8)2−4×20×1=−16<0,∴方程没有实数根.故选:A.先计算出△,然后根据判别式的意义求解.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.7.已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,下列说法正确的是()A. y1>y2B. y1<y2C. y1=y2D. 不能确定【答案】A【解析】解:∵一次函数y=kx中,k<0,∴函数图象经过二、四象限,且y随x的增大而减小,∵x1<x2,∴y1>y2.故选:A.先根据题意判断出一次函数的增减性,再根据x1<x2即可得出结论.本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.8.菱形的两条对角线长分别为6和8,则菱形的面积是()A. 10B. 20C. 24D. 48【答案】C【解析】解:∵菱形的两条对角线的长分别是6和8, ∴这个菱形的面积是:12×6×8=24.故选:C .由菱形的两条对角线的长分别是6和8,根据菱形的面积等于对角线积的一半,即可求得答案. 此题考查了菱形的性质.菱形的面积等于对角线积的一半是解此题的关键.9. 已知一次函数y =kx +b 的图象如图所示,当x <2时,y 的取值范围是( )A. y <−4B. −4<y <0C. y <2D. y <0 【答案】D【解析】解:将(2,0)、(0,−4)代入y =kx +b 中, 得:{−4=b 0=2k+b,解得:{b =−4k=2,∴一次函数解析式为y =2x −4. ∵k =2>0,∴该函数y 值随x 值增加而增加, ∴y <2×2−4=0. 故选:D .由函数图象找出点的坐标,利用待定系数法即可求出函数解析式,再根据函数的性质找出函数的单调性,代入x <2即可得出结论.本题考查了待定系数法求出函数解析式以及一次函数的性质,解题的关键是找出该一次函数的单调性.本题属于基础题,难度不大,解决该题型题目时,根据函数图象找出点的坐标,利用待定系数法求出函数解析式是关键.10. 如图,点O 是矩形ABCD 的对角线AC 的中点,M 是CD 边的中点.若AB =8,OM =3,则线段OB 的长为( ) A. 5 B. 6 C. 8 D. 10 【答案】A 【解析】解:∵四边形ABCD 是矩形, ∴∠D =90∘,∵O 是矩形ABCD 的对角线AC 的中点,OM//AB , ∴OM 是△ADC 的中位线, ∵OM =3, ∴AD =6,∵CD =AB =8,∴AC =√AD 2+CD 2=10, ∴BO =12AC =5.故选:A .已知OM 是△ADC 的中位线,再结合已知条件则DC 的长可求出,所以利用勾股定理可求出AC 的长,由直角三角形斜边上中线的性质则BO 的长即可求出.本题考查了矩形的性质,勾股定理的运用,直角三角形斜边上中线的性质以及三角形的中位线的应用,解此题的关键是求出AC 的长.11. 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售,尽快减少库存,商场决定釆取降价措施,调查发现,每件衬衫,每降价1元,平均每天可多销售2件,若商场每天要盈利1200元,每件衬衫应降价( ) A. 5元 B. 10元 C. 20元 D. 10元或20元 【答案】C【解析】解:设每件衬衫应降价x 元,则每天可销售(20+2x)件, 根据题意得:(40−x)(20+2x)=1200, 解得:x 1=10,x 2=20. ∵扩大销售,减少库存, ∴x =20. 故选:C .设每件衬衫应降价x 元,则每天可销售(20+2x)件,根据每件的利润×销售数量=总利润,即可得出关于x 的一元二次方程,解之取其较大值即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.12. 如图,在平面直角坐标系xOy 中,菱形ABCD 的顶点A 的坐标为(2,0),点B 的坐标为(0,1),点C 在第一象限,对角线BD 与x 轴平行.直线y =x +3与x 轴、y 轴分别交于点E ,F.将菱形ABCD 沿x 轴向左平移m 个单位,当点D 落在△EOF 的内部时(不包括三角形的边),m 的值可能是( ) A. 3 B. 4 C. 5 D. 6 【答案】C【解析】解:∵菱形ABCD 的顶点A(2,0),点B(1,0), ∴点D 的坐标为(4,1), 当y =1时,x +3=1, 解得x =−2,∴点D 向左移动2+4=6时,点D 在EF 上, ∵点D 落在△EOF 的内部时(不包括三角形的边), ∴4<m <6,∴m 的值可能是5. 故选:C .根据菱形的对角线互相垂直平分表示出点D 的坐标,再根据直线解析式求出点D 移动到MN 上时的x 的值,从而得到m 的取值范围,再根据各选项数据选择即可.本题是一次函数综合题型,主要利用了一次函数图象上点的坐标特征,菱形的性质,比较简单,求出m 的取值范围是解题的关键.二、填空题(本大题共6小题,共18.0分)13. 若√x −2在实数范围内有意义,则x 的取值范围为______. 【答案】x ≥2【解析】解:由题意得:x −2≥0, 解得:x ≥2, 故答案为:x ≥2.根据二次根式有意义的条件可得x−2≥0,再解即可.此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.14.将直线y=−2x+4向下平移5个单位长度,平移后直线的解析式为______.【答案】y=−2x−1【解析】解:直线y=−2x+4向下平移5个单位长度后:y=−2x+4−5,即y=−2x−1.故答案为:y=−2x−1.直接根据“上加下减”的平移规律求解即可.本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”.15.已知关于x的方程x2−kx−6=0的一个根为x=3,则实数k的值为______.【答案】1【解析】解:∵x=3是方程的根,由一元二次方程的根的定义,可得32−3k−6=0,解此方程得到k=1.本题根据一元二次方程的根的定义、一元二次方程的定义求解.本题逆用一元二次方程解的定义易得出k的值.16.如图是某地区出租车单程收费y(元)与行驶路程x(km)之间的函数关系图象,根据图象回答下列问题:(Ⅰ)该地区出租车的起步价是______元;(Ⅱ)求超出3千米,收费y(元)与行驶路程x(km)(x>3)之间的函数关系式______.【答案】8;y=2x+2【解析】解:(Ⅰ)该城市出租车3千米内收费8元,即该地区出租车的起步价是8元;故答案为:8;(Ⅱ)依题意设y与x的函数关系为y=kx+b,∵x=3时,y=8,x=8时,y=18;∴{8k+b=183k+b=8,解得{b=2k=2;所以所求函数关系式为:y=2x+2(x>3).故答案为:y=2x+2.(Ⅰ)利用折线图即可得出该城市出租车3千米内收费8元,(Ⅱ)利用待定系数法求出一次函数解析式即可.此题主要考查了一次函数的应用,根据待定系数法求出一次函数的解析式是解题关键.17.如图,在△BC中,AC=BC,点D、E分别是边AB、AC的中点.延长DE到点F,使DE=EF,得四边形ADCF.若使四边形ADCF是正方形,则应在△ABC中再添加一个条件为______.【答案】∠ACB=90∘【解析】解:∠ACB=90∘时,四边形ADCF是正方形,理由:∵E是AC中点,∴AE=EC,∵DE=EF,∴四边形ADCF是平行四边形,∵AD=DB,AE=EC,∴DE =12BC ,∴DF=BC,∵CA=CB,∴AC=DF,∴四边形ADCF是矩形,点D、E分别是边AB、AC的中点,∴DE//BC,∵∠ACB=90∘,∴∠AED=90∘,∴矩形ADCF是正方形.故答案为:∠ACB=90∘.先证明四边形ADCF是平行四边形,再证明AC=DF即可,再利用∠ACB=90∘得出答案即可.本题考查了矩形的判定、等腰三角形的性质、平行四边形的判定、三角形中位线定理、正方形的判定;熟记对角线相等的平行四边形是矩形是解决问题的关键.18.如图,在每个小正方形的边长为1的网格中,A,B,C,D均为格点.(Ⅰ)∠ABC的大小为______(度);(Ⅱ)在直线AB上存在一个点E,使得点E满足∠AEC=45∘,请你在给定的网格中,利用不带刻度的直尺作出∠AEC.【答案】90【解析】解:(Ⅰ)如图,∵△ABM是等腰直角三角形,∴∠ABM=90∘故答案为90;(Ⅱ)构造正方形BCDE,∠AEC即为所求;(Ⅰ)如图,根据△ABM是等腰直角三角形,即可解决问题;(Ⅱ)构造正方形BCDE即可;本题考查作图−应用与设计,解题的关键是寻找特殊三角形或特殊四边形解决问题,属于中考常考题型.三、计算题(本大题共2小题,共12.0分)19.计算下列各题:(Ⅰ)√12+3√2×√6;(Ⅱ)(√5+√2)(√5−√2)−(√3+√2)2.【答案】解:(Ⅰ)原式=2√3+3√3=5√3;(Ⅱ)原式=(√5)2−(√2)2−(5+2√6)=5−2−5−2√6=−2−2√6.【解析】(Ⅰ)先化简二次根式、计算乘法,再合并同类二次根式即可得;(Ⅱ)先利用平方差公式和完全平方公式计算,再去括号、合并同类二次根式即可得.本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.20.某校运动会需购买A、B两种奖品共100件,其中A种奖品的单价为10元,B种奖品的单价为15元,且购买的A种奖品的数量不大于B种奖品的3倍设购买A种奖品x件.(Ⅰ)根据题意,填写下表:购买A种奖品的数量/件 3070 x购买A种奖品的费用/元 300______ ______购买B种奖品的费用/元______ 450______(Ⅱ)设购买奖品所需的总费用为y元,试求出总费用y与购买A种奖品的数量x的函数解析式;(Ⅲ)试求A、B两种奖品各购买多少件时所需的总费用最少?此时的最少费用为多少元?【答案】700;10x;1050;1500−15x【解析】解:(Ⅰ)由题意可得,当购买A种奖品30件时,购买A种奖品的费用是30×10=300(元),购买B种奖品的费用是15×(100−30)=1050(元),当购买A种奖品70件时,购买A种奖品的费用是70×10=700(元),购买B种奖品的费用是15×(100−70)=450(元),当购买A种奖品x件时,购买A种奖品的费用是30x(元),购买B种奖品的费用是15×(100−x)=(1500−15x)(元),故答案为:700、10x、1050、1500−15x;(Ⅱ)由题意可得,y=10x+15(100−x)=−5x+1500,即总费用y与购买A种奖品的数量x的函数解析式是y=−5x+1500;(Ⅲ)∵购买的A种奖品的数量不大于B种奖品的3倍,∴x≤3(100−x),解得,x≤75,∵y=−5x+1500,∴当x=75时,y取得最小值,此时y=−5×75+1500=1125,100−x=25,答:购买的A种奖品75件,B种奖品25件时,所需的总费用最少,最少费用是1125元.(Ⅰ)根据题意和表格中的数据可以将表格中缺失的数据补充完整;(Ⅱ)根据题意可以写出y与x的函数关系式;(Ⅲ)根据题意可以列出相应的不等式,求出x的取值范围,再根据一次函数的性质即可解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.四、解答题(本大题共5小题,共40.0分)21.解下列方程:(Ⅰ)x2+3=2√3x(Ⅱ)x(x−2)+x−2=0.【答案】解:(I)移项得:x2−2√3x+3=0,配方得:(x−√3)2=0,开方得:x−√3=0,即x1=x2=√3;(II)x(x−2)+x−2=0,(x−2)(x+1)=0,x−2=0,x+1=0,x1=2,x2=−1.【解析】(I)移项,配方,开方,即可求出答案;(II)先分解因式,即可得出两个一元一次方程,求出方程的解即可.本题考查了解一元一次方程,能选择适当的方法解一元二次方程是解此题的关键.22.如图,在Rt△ABC中,∠ACB=90∘,BC=3,AC=4,在边BC上有一点M,将△ABM沿直线AM折叠,点B恰好落在AC延长线上的点D处.(Ⅰ)AB的长=______;(Ⅱ)CD的长=______;(Ⅲ)求CM的长.【答案】5;1【解析】解:(Ⅰ)∵∠ACB=90∘,BC=3,AC=4∴AB=5(Ⅱ)∵折叠∴AB=AD=5且AC=4∴CD=1(Ⅲ)连接DM∵折叠∴BM=DM在Rt△CDM中,DM2=CD2+CM2∴(3−CM)2=1+CM2∴CM =4 3(Ⅰ)由勾股定理可得AB的长.(Ⅱ)由折叠可得AD=AB,即可求CD的长.(Ⅲ)在直角三角形CDM中,根据勾股定理可得方程,可求出CM的长.本题考查了折叠问题,勾股定理的运用,关键是灵活运用折叠的性质解决问题.23.在▱ABCD中,点E,F分别在边BC,AD上,且AF=CE.(Ⅰ)如图①,求证四边形AECF是平行四边形;(Ⅱ)如图②,若∠BAC=90∘,且四边形AECF是边长为6的菱形,求BE的长.【答案】解:(I)证明:∵四边形ABCD是平行四边形,∴AD//BC,∵AF=CE,∴四边形AECF是平行四边形;(II)如图:∵四边形AECF是菱形,∴AE=EC,∴∠1=∠2,∵∠BAC=90∘,∴∠2+∠3=90∘∠1+∠B=90∘,∴∠3=∠B,∴AE=BE,∵AE=6,∴BE=6.【解析】(I)根据平行四边形的性质得出AD//BC,根据平行四边形的判定推出即可;(II)根据菱形的性质求出AE=6,AE=EC,求出AE=BE即可.本题考查了平行四边形的性质,等腰三角形的性质,菱形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.24.如图,在Rt△ABC中,∠ABC=90∘,∠C=30∘,AC=12cm,点E从点A出发沿AB以每秒lcm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点D作DF⊥BC于点F.(I)试用含t的式子表示AE、AD、DF的长;(Ⅱ)如图①,连接EF,求证四边形AEFD是平行四边形;(Ⅲ)如图②,连接DE,当t为何值时,四边形EBFD是矩形?并说明理由.【答案】解:(I)由题意得,AE=t,CD=2t,则AD=AC−CD=12−2t,∵DF⊥BC,∠C=30∘,∴DF=12CD=t;(Ⅱ)∵∠ABC=90∘,DF⊥BC,∴AB//DF,∵AE=t,DF=t,∴AE=DF,∴四边形AEFD是平行四边形;(Ⅲ)当t=3时,四边形EBFD是矩形,理由如下:∵∠ABC=90∘,∠C=30∘,∴BC=12AC=6cm,∵BE//DF,∴BE=DF时,四边形EBFD是平行四边形,即6−t=t,解得,t=3,∵∠ABC=90∘,∴四边形EBFD是矩形,∴t=3时,四边形EBFD是矩形.【解析】(I)根据题意用含t的式子表示AE、CD,结合图形表示出AD,根据直角三角形的性质表示出DF;(Ⅱ)根据对边平行且相等的四边形是平行四边形证明;(Ⅲ)根据矩形的定义列出方程,解方程即可.本题考查的是直角三角形的性质、平行四边形的判定、矩形的判定,掌握平行四边形、矩形的判定定理是解题的关键.25.在平面直角坐标系中,直线l1:y=−12x+4分别与x轴、y轴交于点A、点B,且与直线l2:y=x于点C.(Ⅰ)如图①,求出B、C两点的坐标;(Ⅱ)若D是线段OC上的点,且△BOD的面积为4,求直线BD的函数解析式.(Ⅲ)如图②,在(Ⅱ)的条件下,设P是射线BD上的点,在平面内是否存在点Q,使以O、B、P、Q 为顶点的四边形是菱形?若存在,直接写出点Q的坐标;若不存在,请说明理由.【答案】解:(Ⅰ)对于直线:y =−12x +4,令x =0,得到y =4, ∴B(0,4),由{y =x y =−12x +4,解得{x =83y =83,∴C(83,83).(Ⅱ)∵点D 在直线y =x 上,设D(m,m), ∵△BOD 的面积为4, ∴12×4×m =4,解得m =2, ∴D(2,2).设直线BD 的解析式为y =kx +b ,则有{2k +b =2b=4, 解得{b =4k=−1,∴直线BD 的解析式为y =−x +4.(Ⅲ)如图②中,①当OB 为菱形的边时,OB =PB =4,可得P(2√2,4−2√2),Q(2√2,−2√2). ②当P′B 为菱形的对角线时,四边形OBQ′P′是正方形,此时Q(4,4).③当OB 为菱形的边时,点P″与D 重合,P 、Q 关于y 轴对称,Q″(−2,2), 综上所述,满足条件的Q 的坐标为(2√2,−2√2)或(−2,2)或(4,4).【解析】(Ⅰ)利用待定系数法求出点B 坐标,利用方程组求出点C 坐标即可;(Ⅱ)设D(m,m),构建方程求出m 即可解决问题,再利用待定系数法求出直线的解析式; (Ⅲ)分三种情形分别求解即可解决问题;本题主要考查了一次函数图象上点的坐标特征,用待定系数法求一次函数的解析式,解二元一次方程组,菱形的性质,三角形的面积等知识点,解此题的关键是熟练地运用知识进行计算.此题是一个综合性很强的题目.。

苏科版2018-2019学年八年级下学期期末数学试卷及答案

2018-2019学年八年级(下)期末数学试卷一、选择题(本大题共有6小题,每小题3分,共18分)1.(3分)若代数式有意义,则实数x的取值范围是()A.x=0B.x=4C.x≠0D.x≠42.(3分)已知反比例函数的图象经过点A(﹣4,2),则k的值为()A.2B.﹣4C.8D.﹣83.(3分)在下列二次根式中,与是同类二次根式的是()A.B.C.D.4.(3分)在⊙O中,圆心角AOB=56°,弦AB所对的圆周角等于()A.28°B.112°C.28°或152°D.124°或56°5.(3分)某商店6月份的利润是2500元,8月份的利润达到3600元.设平均每月利润增长的百分率是x,则可以列出方程()A.2500(1+x)=3600B.2500(1﹣x)=3600C.2500(1+x)2=3600D.2500[(1+x)+(1+x)2]=36006.(3分)在同一平面直角坐标系中,函数y=mx+2和y=(m≠0)的图象大致是()A.B.C.D.二、填空题(本大题共有10小题,每小题3分,共30分)7.(3分)函数y=中,自变量x的取值范围是.8.(3分)分式化简的结果为.9.(3分)反比例函数y=的图象上三个点的坐标为A(﹣1,y1),B(1,y2),C(3,y3),则y1,y2,y3的大小关系是(用“<”连接).10.(3分)如图,四边形ABCD为⊙O的内接四边形,已知∠BCD=120°,则∠BAD =.11.(3分)已知a是关于x方程x2﹣2x﹣8=0的一个根,则2a2﹣4a的值为.12.(3分)分式的值是整数,负整数m的值为.13.(3分)已知+=0,则+=.14.(3分)如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D,连接BD、BE、CE,若∠BEC=127°,则∠CBD的度数为度.15.(3分)如图,⊙O是△ABC的内切圆,切点为D,E,F,若AD、BE的长为方程x2﹣17x+60=0的两个根,则△ABC的周长为.16.(3分)如图,在直角坐标系中,⊙A的圆心A的坐标为(﹣1,0),半径为1,点P为直线y=﹣x+3上的动点,过点P作⊙A的切线,切点为Q,则切线长PQ的最小值是.三、解答题(本大题共有10小题,共102分.解答时应写出必要的步骤)17.(10分)计算:(1)+﹣(2)(2+3)(2﹣3);18.(8分)先化简,再求值:1﹣,其中a=﹣219.(10分)解方程:(1)x2=﹣4x(2)2x2﹣5x+2=0(用公式法)20.(8分)一个分数的分母比它的分子大5,如果将这个分数的分子加上14,分母减去1,那么所得分数是原分数的倒数.求原分数.21.(10分)观察下列式子,探索它们的规律并解决问题:=1﹣,=﹣,=﹣,……(1)试用正整数n表示这个规律,并加以证明;(2)运用(1)中得到的规律解方程:+++…+=1+22.(10分)已知关于x的一元二次方程x2﹣2x+k﹣1=0有两个不相等的实数根x1和x2.(1)求k的取值范围;(2)当k=时,求x12+x22的值.23.(10分)如图,某小区规划在长32米,宽20米的矩形场地ABCD上修建三条同样宽的3条小路,使其中两条与AB平行,一条与AD平行,其余部分种植草坪,若使草坪的面积为570米2,问小路宽为多少米?24.(10分)如图,已知⊙O的半径为4,OA为半径,CD为弦,OA与CD交于点M,将弧CD沿着CD翻折后,点A与圆心O重合,延长OA至P,使AP=OA,连接PC.(1)求CD的长;(2)求证:PC是⊙O的切线.25.(12分)如图,反比例函数y=与一次函数y=ax+b的图象交于点A(﹣2,6)、点B(n,1).(1)求反比例函数与一次函数的表达式;(2)点E为y轴上一个动点,若S=5,求点E的坐标.△AEB(3)将一次函数y=ax+b的图象沿y轴向下平移n个单位,使平移后的图象与反比例函数y=的图象有且只有一个交点,求n的值.26.(14分)如图1,直线y=x+4分别交x轴、y轴于A、B两点,点P是线段AB上的一动点,以P为圆心,r为半径画圆.(1)若点P的横坐标为﹣3,当⊙P与x轴相切时,则半径r为,此时⊙P与y 轴的位置关系是.(直接写结果)(2)若r=,当⊙P与坐标轴有且只有3个公共点时,求点P的坐标.(3)如图2,当圆心P与A重合,r=2时,设点C为⊙P上的一个动点,连接OC,将线段OC绕点O顺时针旋转90°,得到线段OD,连接AD,求AD长的最值并直接写出对应的点D的坐标.2018-2019学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共有6小题,每小题3分,共18分)1.(3分)若代数式有意义,则实数x的取值范围是()A.x=0B.x=4C.x≠0D.x≠4【分析】根据分式有意义的条件即可求出x的范围;【解答】解:由代数式有意义可知:x﹣4≠0,∴x≠4,故选:D.【点评】本题考查分式有意义的条件,解题的关键是正确理解分式有意义的条件,本题属于基础题型.2.(3分)已知反比例函数的图象经过点A(﹣4,2),则k的值为()A.2B.﹣4C.8D.﹣8【分析】把A点的坐标代入解析式,即可求出答案.【解答】解:∵反比例函数的图象经过点A(﹣4,2),∴2=,解得:k=﹣8.故选:D.【点评】本题考查了反比例函数的图象上点的坐标,能理解函数图象上点的特点是解此题的关键.3.(3分)在下列二次根式中,与是同类二次根式的是()A.B.C.D.【分析】先将各选项化简,再找到被开方数为a的选项即可.【解答】解:A、a与被开方数不同,故不是同类二次根式;B、=|a|与被开方数不同,故不是同类二次根式;C、=|a|与被开方数相同,故是同类二次根式;D、=a2与被开方数不同,故不是同类二次根式.故选:C.【点评】此题主要考查了同类二次根式的定义,即:化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.4.(3分)在⊙O中,圆心角AOB=56°,弦AB所对的圆周角等于()A.28°B.112°C.28°或152°D.124°或56°【分析】分类讨论:当弦AB所对的圆周角所对的弧为劣弧时,根据圆周角定理求解;当弦AB所对的圆周角所对的弧为优弧时,根据圆内接四边形的性质求解.【解答】解:当弦AB所对的圆周角所对的弧为劣弧时,此时圆周角=∠AOB=28°;当弦AB所对的圆周角所对的弧为优弧时,此时圆周角=180°﹣28°=152°.所以弦AB所对的圆周角为28°或152°.故选:C.【点评】本题考查了圆周角:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.5.(3分)某商店6月份的利润是2500元,8月份的利润达到3600元.设平均每月利润增长的百分率是x,则可以列出方程()A.2500(1+x)=3600B.2500(1﹣x)=3600C.2500(1+x)2=3600D.2500[(1+x)+(1+x)2]=3600【分析】如果设平均每月利润增长的百分率是x,那么7月份的利润是2500(1+x)元,8月份的利润是2500(1+x)2元,而此时利润是3600元,根据8月份的利润不变,列出方程.【解答】解:设平均每月利润增长的百分率是x,依题意,得2500(1+x)2=3600.故选:C.【点评】本题考查的是由实际问题抽象出一元二次方程﹣平均增长率问题.解决这类问题所用的等量关系一般是:增长前的量×(1+平均增长率)增长的次数=增长后的量.6.(3分)在同一平面直角坐标系中,函数y=mx+2和y=(m≠0)的图象大致是()A.B.C.D.【分析】先根据y=mx+2判断直线的位置,再根据m的符号,判断双曲线的位置即可.【解答】解:由y=mx+2可得,2>0,直线与y轴交于正半轴,故B,C错误;当m>0时,直线从左往右上升,双曲线在第一,三象限,故A正确;当m<0时,直线从左往右下降,双曲线在第二,四象限,故D正确;故选:A.【点评】本题主要考查了反比例函数的图象性质和一次函数的图象性质,重点是依据系数m的取值判断函数图象的位置.二、填空题(本大题共有10小题,每小题3分,共30分)7.(3分)函数y=中,自变量x的取值范围是x≥2.【分析】根据二次根式的性质,被开方数大于等于0,就可以求解.【解答】解:依题意,得x﹣2≥0,解得:x≥2,故答案为:x≥2.【点评】本题主要考查函数自变量的取值范围,考查的知识点为:二次根式的被开方数是非负数.8.(3分)分式化简的结果为.【分析】根据分式的基本性质即可求出答案.【解答】解:原式==;故答案为:【点评】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.9.(3分)反比例函数y=的图象上三个点的坐标为A(﹣1,y1),B(1,y2),C(3,y3),则y1,y2,y3的大小关系是y1<y3<y2(用“<”连接).【分析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据各点横坐标的特点进行解答即可.【解答】解:∵9>0,∴反比例函数y=的图象在第一、三象限,并且在每一象限内y随x的增大而减小,∵﹣2<0<1<3,∴点A在第三象限,∴0>y1,点B、C在第一象限,∴0<y3<y2,∴y1<y3<y2.故答案是:y1<y3<y2.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.10.(3分)如图,四边形ABCD为⊙O的内接四边形,已知∠BCD=120°,则∠BAD=60°.【分析】根据圆内接四边形的对角互补求∠BAD的度数即可.【解答】解:∵四边形ABCD为⊙O的内接四边形,∴∠BCD+∠BAD=180°(圆内接四边形的对角互补);又∵∠BCD=120°,∴∠BAD=60°.故答案为:60°.【点评】本题主要考查了圆内接四边形的性质.解答此题时,利用了圆内接四边形的对角互补的性质来求∠BCD的补角即可.11.(3分)已知a是关于x方程x2﹣2x﹣8=0的一个根,则2a2﹣4a的值为16.【分析】根据方程的解的定义把x=a代入一元二次方程x2﹣2x﹣8=0,得到a2﹣2a=8,然后将其整体代入所求的代数式进行求值.【解答】解:∵a是一元二次方程x2﹣2x﹣8=0的一个根,∴a2﹣2a﹣8=0,∴a2﹣2a=8,∴2a2﹣4a=2(a2﹣2a)=2×8=16.故答案为:16.【点评】本题考查了一元二次方程的解的定义.注意解题中的整体代入思想的应用.12.(3分)分式的值是整数,负整数m的值为﹣1或﹣3.【分析】根据分式的值是整数,确定出负整数m的值即可.【解答】解:分式的值是整数(m为负整数),得到m﹣1=﹣2,m﹣1=﹣4,解得:m=﹣1或m=﹣3,故答案为:﹣1或﹣3;【点评】此题考查了分式的值,熟练掌握运算法则是解本题的关键.13.(3分)已知+=0,则+=.【分析】根据非负数的性质列方程求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,a﹣3=0,2﹣b=0,解得a=3,b=2,所以,+=+=+=.故答案为:.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.14.(3分)如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D,连接BD、BE、CE,若∠BEC=127°,则∠CBD的度数为37度.【分析】利用三角形内心的性质和三角形角平分线的定义得到∠BEC=90°+∠BAC,则∠BAC=74°,所以∠DAC=37°,然后根据圆周角定理得到∠CBD的度数.【解答】解:∵点E是△ABC的内心,∴∠BEC=90°+∠BAC,∴∠BAC=74°,∴∠DAC=∠BAC=37°,∴∠CBD=∠DAC=37°.故答案为37.【点评】本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了三角形外心.15.(3分)如图,⊙O是△ABC的内切圆,切点为D,E,F,若AD、BE的长为方程x2﹣17x+60=0的两个根,则△ABC的周长为40.【分析】根据一元二次方程的解法即可求出AD、BE的长度,【解答】解:∵x2﹣17x+60=0,∴x=5或x=12∴AD=5,BE=12,∵⊙O是△ABC的内切圆,∴AD=AF=5,BE=BF=12,又设⊙O的半径为r,∴AC=5+r,BC=12+r,AB=17∴由勾股定理可知:(5+r)2+(12+r)2=172,∴解得:r=3或r=﹣20(舍去)∴AC=8,BC=15,∴△ABC的周长为:8+15+17=40故答案为:40;【点评】本题考查三角形内切圆的性质,解题的关键是熟练运用三角形的内切圆性质以及勾股定理,本题属于中等题型.16.(3分)如图,在直角坐标系中,⊙A的圆心A的坐标为(﹣1,0),半径为1,点P为直线y=﹣x+3上的动点,过点P作⊙A的切线,切点为Q,则切线长PQ的最小值是2.【分析】连接AP,PQ,当AP最小时,PQ最小,当AP⊥直线y=﹣x+3时,PQ最小,根据全等三角形的性质得到AP=3,根据勾股定理即可得到结论.【解答】解:如图,作AP⊥直线y=﹣x+3,垂足为P,作⊙A的切线PQ,切点为Q,此时切线长PQ最小,∵A的坐标为(﹣1,0),设直线与x轴,y轴分别交于C,B,∴B(0,3),C(4,0),∴OB=3,AC=5,∴BC==5,∴AC=BC,在△APC与△BOC中,,∴△APC≌△BOC,∴AP=OB=3,∴PQ==2.∵PQ2=PA2﹣1,此时PA最小,所以此时切线长PQ也最小,最小值为2.【点评】本题主要考查切线的性质,掌握过切点的半径与切线垂直是解题的关键,用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.三、解答题(本大题共有10小题,共102分.解答时应写出必要的步骤)17.(10分)计算:(1)+﹣(2)(2+3)(2﹣3);【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式计算.【解答】解:(1)原式=2+3﹣2=2+;(2)原式=20﹣18=2.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.(8分)先化简,再求值:1﹣,其中a=﹣2【分析】根据分式的除法和减法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.【解答】解:1﹣===,当时,原式==.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.19.(10分)解方程:(1)x2=﹣4x(2)2x2﹣5x+2=0(用公式法)【分析】(1)两边开方,即可得出两个一元一次方程,求出方程的解即可;(2)先把方程左边利用十字相乘法分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(1)原方程可变形为x(x+4)=0,x+4=0或x=0,x1=﹣4,x2=0;(2)2x2﹣5x+2=0,∵a=2,b=﹣5,c=2,b2﹣4ac=(﹣5)2﹣4×2×2=9>0,∴,∴x1=2,.【点评】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键.20.(8分)一个分数的分母比它的分子大5,如果将这个分数的分子加上14,分母减去1,那么所得分数是原分数的倒数.求原分数.【分析】设原分数的分子为x,则分母为x+5,根据“如果将这个分数的分子加上14,分母减去1,那么所得分数是原分数的倒数”,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设原分数的分子为x,则分母为x+5,根据题意得:,解得:x=4,经检验,x=4是所列方程的解,∴x+5=9.答:原分数为.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.21.(10分)观察下列式子,探索它们的规律并解决问题:=1﹣,=﹣,=﹣,……(1)试用正整数n表示这个规律,并加以证明;(2)运用(1)中得到的规律解方程:+++…+=1+【分析】(1)由已知等式知连续整数乘积的倒数等于各自倒数的差,据此可得;(2)利用所得规律化简原分式方程,解之可得.【解答】解:(1)∵左边=,右边===,∴左边=右边∴;(2)根据(1)中的规律方程变形为:﹣+﹣+…+﹣=1+,﹣=1+,两边都乘以x(x+2018),得:x+2018﹣x=x(x+2018)+x+2018,解得:x=0或x=﹣2019,检验:x=0时,x(x+2018)=0,是分式方程的增根;当x=﹣2019时,x(x+2018)=2019≠0,所以分式方程的根为x=﹣2019.【点评】本题主要考查数字的变化类及解分式方程,解题的关键是根据题意得出连续整数乘积的倒数等于各自倒数的差.22.(10分)已知关于x的一元二次方程x2﹣2x+k﹣1=0有两个不相等的实数根x1和x2.(1)求k的取值范围;(2)当k=时,求x12+x22的值.【分析】(1)根据判别式的意义得到△=(﹣2)2﹣4(k﹣1)>0,然后解关于k的不等式即可;(2)当k=时,利用根与系数的关系得到x1+x2=2,x1x2=﹣1,再利用完全平方公式变形得到=,然后利用整体代入的方法计算.【解答】解:(1)∵△=(﹣2)2﹣4(k﹣1)>0,∴k<2;(2)当k=时,方程变形为x2﹣2x+﹣1=0,则x1+x2=2,x1x2=﹣1,∴===.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,x1+x2=﹣,x1x2=.也考查了根的判别式.23.(10分)如图,某小区规划在长32米,宽20米的矩形场地ABCD上修建三条同样宽的3条小路,使其中两条与AB平行,一条与AD平行,其余部分种植草坪,若使草坪的面积为570米2,问小路宽为多少米?【分析】设小路宽为x米,则种植草坪的六块区域可合成长为(32﹣2x)米、宽为(20﹣x)米的矩形,根据矩形的面积公式结合草坪的面积为570米2,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答】解:设小路宽为x米,则种植草坪的六块区域可合成长为(32﹣2x)米、宽为(20﹣x)米的矩形,根据题意得:(32﹣2x)(20﹣x)=570,整理得:x2﹣36x+35=0,解得:x1=1,x2=35(舍去).答:小路宽为1米.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.24.(10分)如图,已知⊙O的半径为4,OA为半径,CD为弦,OA与CD交于点M,将弧CD沿着CD翻折后,点A与圆心O重合,延长OA至P,使AP=OA,连接PC.(1)求CD的长;(2)求证:PC是⊙O的切线.【分析】(1)连接OC,根据折叠得出∠CMO=90°,OA=OM=2,根据勾股定理求出CM,根据垂径定理求出CD即可;(2)根据勾股定理求出PC长,根据勾股定理的逆定理求出∠PCO=90°,根据切线的判定得出即可.【解答】(1)解:连接OC,∵弧CD沿CD翻折后,A与O重合,∴OM=OA=2,CD⊥OA,∵OC=2,∴CD=2CM=2=2×=4;(2)证明:∵PA=OA=4,AM=OM=2,CM=2,又∵∠CMP=∠OMC=90°,∴PC===4,∵OC=4,PO=4+4=8,∴PC2+OC2=PO2,∴∠PCO=90°,∵OC是半径,∴PC是⊙O的切线.【点评】本题考查了折叠的性质、垂径定理、切线的判定、勾股定理等知识点,能综合运用知识点进行推理和计算是解此题的关键.25.(12分)如图,反比例函数y=与一次函数y=ax+b的图象交于点A(﹣2,6)、点B(n,1).(1)求反比例函数与一次函数的表达式;=5,求点E的坐标.(2)点E为y轴上一个动点,若S△AEB(3)将一次函数y=ax+b的图象沿y轴向下平移n个单位,使平移后的图象与反比例函数y=的图象有且只有一个交点,求n的值.【分析】(1)先把A 点坐标代入y =中求出k 得到反比例函数解析式为y =﹣,再利用反比例函数解析式确定B (﹣12,1),然后利用待定系数法求一次解析式;(2)设一次函数图象与y 轴的交点为Q ,易得Q (0,7),设E (0,m ),利用三角形面积公式,利用S △AEB =S △BEQ ﹣S △AEQ 得到|m ﹣7|×(12﹣2)=5,然后解方程求出m 即可得到点E 的坐标;(3)由平移后的图象与反比例函数y =的图象有且只有一个交点,则方程﹣=x +7﹣n 只有一个解,然后利用判别式的意义得(14﹣2n )2﹣4×24=0,最后解关于n 的方程即可.【解答】解:(1)把A (﹣2,6)代入y =得k =﹣2×6=﹣12,∴反比例函数解析式为y =﹣,把B (n ,1)代入y =﹣得n =﹣12,则B (﹣12,1),把A (﹣2,6)、B (﹣12,1)代入y =ax +b 得,解得,∴一次函数解析式为y =x +7;(2)设y =x +7与y 轴的交点为Q ,易得Q (0,7),设E (0,m ), ∴S △AEB =S △BEQ ﹣S △AEQ =5,|m ﹣7|×(12﹣2)=5,解得m 1=6,m 2=8. ∴点E 的坐标为(0,6)或(0,8);(3)由题意得﹣=x +7﹣n ,方程变形为x 2+(14﹣2n )x +24=0,∵平移后的图象与反比例函数y=的图象有且只有一个交点,∴△=(14﹣2n)2﹣4×24=0,解得n1=7+2,n2=7﹣2,即n的值为7±2.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.26.(14分)如图1,直线y=x+4分别交x轴、y轴于A、B两点,点P是线段AB上的一动点,以P为圆心,r为半径画圆.(1)若点P的横坐标为﹣3,当⊙P与x轴相切时,则半径r为1,此时⊙P与y轴的位置关系是相离.(直接写结果)(2)若r=,当⊙P与坐标轴有且只有3个公共点时,求点P的坐标.(3)如图2,当圆心P与A重合,r=2时,设点C为⊙P上的一个动点,连接OC,将线段OC绕点O顺时针旋转90°,得到线段OD,连接AD,求AD长的最值并直接写出对应的点D的坐标.【分析】(1)根据点P的横坐标可以求得点P的纵坐标,由当⊙P与x轴相切,可以求得r的值,然后根据点P的横坐标的绝对值与半径r比较大小即可得到此时⊙P与y轴的位置关系;(2)r=,可以分两种情况讨论,求出对应的点P的坐标;(3)根据题意可以证明△AOC和△BOD全等,从而可以得到点D的运动轨迹,然后跟题意和函数图象,利用分类讨论的数学思想即可求得AD长的最值并直接写出对应的点D的坐标.【解答】解:(1)将x=﹣3代入y=x+4,得y=1,∴点P的坐标为(﹣3,1),∵⊙P与x轴相切时,∴半径r为1,∵|﹣3|>1,∴此时⊙P与y轴的位置关系是相离,故答案为:1,相离;(2)当⊙P于x轴相切,与y轴相交时,则点P的纵坐标是,∵点P在直线y=x+4上,∴=x+4,得x=,∴点P的坐标为(,);当⊙P于y轴相切,与x轴相交时,则点P的横坐标是﹣,∵点P在直线y=x+4上,∴y=+4,得y=,∴点P的坐标为(,);(3)连接AC、BD,∵∠COD=∠AOB=90°,∴∠COA=∠DOB,∵y=x+4,∴x=0时,y=4,y=0时,x=﹣4,∴点B(0,4),点A(﹣4,0),∴OA=OB,AB=4,在△AOC和△BOD中,,∴△AOC≌△BOD(SAS),∴BD=AC,∵AC=r=2,∴BD=2,∴点D的运动轨迹是以点B为圆心,2为半径的圆.∴当点D在线段AB上时,AD可取得最小值为,此时,设点D的坐标为(a,a+4),则,解得,a=﹣或a=﹣8+(舍去),则a+4=4,∴点D坐标为,当点D在线段AB的延长线上时,AD可取得最大值为,此时点D的坐标为(b,b+4),则=,解得,b=或b=﹣8﹣(舍去),则b+4=4+,点D坐标为.【点评】本题是一道关于圆的综合题,解答本题的关键是明确题意,作出合适的辅助线,找出所求问题需要的条件,利用数形结合的思想和分类讨论的数学思想解答.。

2018-2019学年苏教版八年级第二学期期末考试数学试卷(含答案详解)

2018-2019学年苏教版八年级第二学期期末考试数学试卷注意:1.本试卷共4页,满分为150分,考试时间为120分钟.2.考生答题前,务必将本人的学校、班级、姓名、学号填写在答题纸相应的位置. 3.考生答题必须用0.5毫米黑色墨水签字笔,写在答题纸指定位置处,答在试卷、草稿纸等其他位置上一律无效.一、选择题(本大题共有6小题,每小题3分,共18分) 1.二次根式x -2有意义,则x 的取值范围是( )A .2>xB .2<xC .2≥xD .2≤x 2.分式x--11可变形为( ) A .11--x B .x +-11 C .x +11 D .11-x 3.在平面直角坐标系xoy 中,⊙O 的半径为4,点P 的坐标为(3,4),则点P 的位置为( ) A.在⊙A 外 B. 在⊙A 上 C. 在⊙A 内 D.不确定 4.对于反比例函数xy 2=,下列说法不正确的是( ) A .点(21)--,在它的图像上B .它的图像在第一、三象限C .当0x >时,y 随x 的增大而增大D .当0x <时,y 随x 的增大而减小5.我市“菜花节”观赏人数逐年增加,据有关部门统计,2017年约为20万人次,2019年约为28.8万人次,设观赏人数年均增长率为x ,则下列方程中正确的是( ) A .2012)28.8x +=( B .228.81)20x +=(C .2201)28.8x +=(D .220201)201)28.8x x ++++=(( 6.有下列五个命题:①半圆是弧,弧是半圆;②周长相等的两个圆是等圆;③半径相等的两个半圆是等弧;④直径是圆的对称轴;⑤直径平分弦与弦所对的弧. 其中正确的有( ) A .1个 B .2个 C . 3个 D . 4个二、填空题(本大题共有10小题,每小题3分,共30分) 7.当a = 时,分式32a a +-的值为-4. 8.分式25x y 和52x y 的最简公分母是 . 9.比较大小:1(填“﹤”,“=”,“﹥”).10.以3、-5为根且二次项系数为1的一元二次方程是 . 11.当1<P <2时,代数式22)2()1(p p -+-的值为 .12. 已知y 是x 的反比例函数,且当x =2时,y =-3. 则当y =2时,x = .13.关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 .14.如图,已知⊙O 的半径为5,点P 是弦AB 上的一动点,且弦AB 的长为8.则OP 的取值范围为 .15. 用配方法求得代数式2367x x +-的最小值是 .16.若直角三角形的两边a 、b 是方程27120x x -+=的两个根,则该直角三角形的内切圆的半径r=.三、解答题(本大题共有10小题,共102分.解答时应写出必要的步骤)17.(本题满分12分) 计算:(1⎛⎝ (2)012017222-⨯;(第14题图)18.(本题满分8分)解方程:(1)0)3(3=+-+x x x . (2)41622222-=-+-+-x x x x x .19.(本题满分8分)先化简,再求值:)2(222ab ab a a b a --÷-,其中32+=a ,32-=b .20.(本题满分8分)小明用12元买软面笔记本,小丽用21元买硬面笔记本,已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同数量的笔记本吗?21.(本题满分10分)已知反比例函数1kyx-=的图像经过点A(2,-4).(1)求k的值;(2)它的图像在第象限内,在各象限内,y随x增大而;(填变化情况)(3)当-2 ≤ x ≤-12时,求y的取值范围.22.(本题满分10分)如图,已知BC 是⊙O 的直径,A 是⊙O 上一点,AD ⊥BC ,垂足为D ,⌒AE =⌒AB ,BE 交AD 于点F .(1)∠ACB 与∠BAD 相等吗?为什么? (2)判断△FAB 的形状,并说明理由.C B(第22题图)23.(本题满分10分)花鸟市场一家店铺正销售一批兰花,每盆进价100元,售价为140元,平均每天可售出20盆.为扩大销量,增加利润,该店决定适当降价.据调查,每盆兰花每降价1元,每天可多售出2盆. 要使得每天利润达到1200元,则每盆兰花售价应定为多少元?24.(本题满分10分)关于x 的二次方程21)220k x kx -++=( . (1)求证:无论k 为何值,方程总有实数根.(2)设1x 、2x 是方程21)220k x kx -++=(的两个根,记S =2112x x x x +12x x ++,S 的值能为2吗?若能,求出此时k 的值.若不能,请说明理由.25.(本题满分12分)如图,在△ABC中,⊙O经过A、B两点,圆心O在BC边上,且⊙O与BC边交于点E,在BC上截取CF=AC,连接AF交⊙O 于点D,若点D恰好是⌒BE的中点.(1)求证:AC是⊙O的切线;(2)若BF=17,DF=13,求⊙O的半径r;(3)若∠ABC=30°,动直线l从与点A、O重合的位置开始绕点O顺时针旋转,到与OC重合时停止,设直线l与AC的交点为F,点Q为OF的中点,过点F作FG⊥BC于G,连接AQ、QG.请问在旋转过程中,∠AQG的大小是否变化?若不变,求出∠AQG的度数;若变化,请说明理由.BB(第25题图) (备用图)26.(本题满分14分)如图1,正方形ABCD顶点A、B在函数y=kx(k﹥0)的图像上,点C、D分别在x轴、y轴的正半轴上,当k的值改变时,正方形ABCD的大小也随之改变.(1)若点A的横坐标为3,求点D的纵坐标;(2)如图2,当k=8时,分别求出正方形A′B′C′D′的顶点A′、B′ 两点的坐标;(3)当变化的正方形ABCD与(2)中的正方形A′B′C′D′有重叠部分时,求k的取值范围.图1 图2(第26题图)参考答案与评分标准一、选择题(本大题共有6小题,每小题3分,共18分) 1.D ;2.D ;3.A ;4.C ;5.C ;6.B.二、填空题(本大题共有10小题,每小题3分,共30分)7.1; 8.510x ; 9. ﹥; 10. 01522=-+x x ; 11.1; 12.-3; 13.-2; 14. 3≤OP ≤5; 15.-10; 16. 1或712- 三、解答题(共10题,102分.下列答案仅供参考........,有其它答案或解法.......,参照标准给分.......) 17.(本题满分12分)(1)(本小题6分)原式=335--(3分,每对1个得1分)=5-(3分); (2)(本小题6分)原式=122122++-+(4分,每对1个得1分)=32(2分). 18.(本题满分8分)(1)(本小题4分)(3)1)0x x +-=((2分),13x =-,21x =(2分). (2)(本小题4分)22(2)(2)16x x --+=(2分),2x =-,(1分).检验,2x =-是原方程的增根,所以原方程无解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省南京市秦淮区八年级(下)期末数学试卷
一、选择题(共6小题,每小题3分,满分18分)
1.(3分)下列图案中,是中心对称图形的是()
A.B.C.D.
2.(3分)下列二次根式中,与是同类二次根式的是()
A.B.C.D.
3.(3分)下列调查中,调查方式选择合理的是()
A.调查秦淮河水质情况,采用抽样调查
B.调查飞机零件合格情况,采用抽样调查
C.检验一批罐装饮料的防腐及含量,采用普查
D.对企业应聘人员进行面试,采用抽样调查
4.(3分)已知点A(2,y1),B(1,y2)都在反比例函数y=的图象上,则()A.y1<y2B.y1>y2C.y1=y2D.不能确定
5.(3分)随着电影《流浪地球》的热映,其同名科幻小说的销量也急剧上升.某书店分别用2000元和3000元两次购进该小说,第二次数量比第一次多50套,则两次进价相同.该书店第一次购进x套,根据题意,列方程正确的是()
A.=B.=
C.=D.=
6.(3分)如图,△ABC是等边三角形,P是三角形内任意一点,D、E、F分别是AC、AB、BC 边上的三点,且PF∥AB,PD∥BC,PE∥AC.若PF+PD+PE=a,则△ABC的边长为()
A.a B.a C.a D.a
二、填空题
7.若分式有意义,则x的取值范围是.
8.一只不透明的袋子中装有10个白球、20个黄球和30个红球,每个球除颜色外都相同,将球搅匀,从中任意摸出一个球,则下列事件:①该球是白球;②该球是黄球;③该球是红球,按发生的可能性大小从小到大依次排序为(只填写序号).
9.已知反比例函数y=的图象经过点A(﹣2,3),则当x=﹣3时,y=.
10.比较大小:+1.(填“>”“<”或“=”)
11.已知一个菱形的周长是20cm,两条对角线的长度比是4:3,则这个菱形的面积是cm2.12.如图:在△ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么△ACD的周长是.
13.如图,△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得C′C∥AB,则∠BAB′等于.
14.已知a=2+,b=2﹣,则a2b+ab2=.
15.如图,在矩形ABCD中无重叠放入面积分别为acm2和bcm2(a>b)的两张正方形纸片,则图中空白部分的面积为cm2.
16.如图,在Rt△ABC中,∠BAC=90°,AB=8,AC=6,以BC为一边作正方形BDEC设正方形的对称中心为O,连接AO,则AO=.
三、解答题
17.计算:
(1)2+3
(2)(2﹣3)×
18.(1)化简
(2)解方程=0
19.先化简,再求值:(1﹣)÷,其中a=﹣3.
20.如图,是5个全等的小正方形组成的图案,请用不同的两种方法分别在两幅图中各添加1个正方形,使整个图案称为中心对称图形.
21.讲禁毒,知今古,教训深,应紧记!某校积极爼织开展全国青少年禁莓知识竞赛活动,为了解全校学生的活动情况,随机抽取了50名学生的竞赛成绩,将抽取得到的成绩分为5组,整理后得到下面的频数、频率分布表:
组别分组频数/人频率
150≤x<6030.06
260≤x<70a b
370≤x<80140.28
480≤x<9060.12
590≤x<10020c (1)a=,b=,c=;
(2)画出50名学生的竞赛成绩的频数分布直方图.
22.如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;
(2)四边形BCED是菱形.
23.已知近视眼镜片的度数y(度)是镜片焦距x(cm)(x>0)的反比例函数,调查数据如表:眼镜片度数y(度)4006258001000 (1250)
镜片焦距x(cm)251612.510 (8)
(1)求y与x的函数表达式;
(2)若近视眼镜镜片的度数为500度,求该镜片的焦距.
24.某工厂有甲、乙两台机器加工同一种零件,已知甲每小时加工的零件数与乙每小时加工的零件数的和为36个,甲加工80个零件与乙加工100个零件的所用时间相等.求两台机器每小时分别加工零件多少个? 设甲机器每小时加工x 个零件: (1)用含x 的代数式填表;
每小时加工个数 (个/小时)
加工时间
加工的总个数(个)
甲机器 x 80 乙机器
100
(2)求x 的值.
25.如图,函数y 1=(x >0)的图象与正比例函数y 2=kx 的图象交于点A (m ,3),将函数y 2
=kx 的图象向下平移3个单位,得到直线L . (1)求m 、k 的值;
(2)直线L 对应的函数表达式为 ;
(3)垂直于y 轴的直线与如图所示的函数y 1、y 2的图象分别交于点P (x 1,y 1),Q (x 2,y 2),且与直线L 交于点N (x 3,y 3),若x 1<x 2<x 3,结合函数的图象,直接写出x 1+x 2﹣x 3的取值范围.
26.已知:如图,在▱ABCD 中,G 、H 分别是AD 、BC 的中点,E 、O 、F 分别是对角线BD 上的四等分点,顺次连接G 、E 、H 、F . (1)求证:四边形GEHF 是平行四边形;
(2)当▱ABCD 满足 条件时,四边形GEHF 是菱形; (3)若BD =2AB

①探究四边形GEHF的形状,并说明理由;
②当AB=2,∠ABD=120°时,直接写出四边形GEHF的面积.
参考答案
一、选择题(共6小题,每小题3分,满分18分)
1.C;2.C;3.A;4.A;5.C;6.D;
二、填空题
7.x≠;8.①②③;9.2;10.<;11.24;12.18;13.40°;14.4;15.(﹣b);16.;
三、解答题
17【解答】解:(1)2+3
=2+6﹣4
=4;
(2)(2﹣3)×
=(4﹣)×
=3×
=9.
18【解答】解:(1)原式==﹣=﹣;
(2)去分母得:4﹣x﹣2=0,
解得:x=2,
经检验x=2是增根,分式方程无解.
19【解答】解:(1﹣)÷
=(﹣)÷
=×
=,
当a=﹣3时,原式==﹣.
20【解答】解:如图所示:

21【解答】解(1)3÷0.06=50(人),
a=50﹣3﹣14﹣6﹣20=7,
b=7÷50=0.14,
c=20÷50=0.4,
故答案为7,0.14,0.4;
(2)频数分布直方图:
22【解答】证明;(1)∵△ABC≌△ABD,∴∠ABC=∠ABD,
∵CE∥BD,
∴∠CEB=∠DBE,
∴∠CEB=∠CBE.
(2))∵△ABC≌△ABD,
∴BC=BD,
∵∠CEB=∠CBE,
∴CE=CB,
∴CE=BD
∵CE∥BD,
∴四边形CEDB是平行四边形,
∵BC=BD,
∴四边形CEDB是菱形.
23【解答】解:(1)根据题意得:y与x之积恒为10000,则函数的解析式是y=;(2)令y=500,则500=,
解得:x=20.
即该镜片的焦距是20cm.
24【解答】解:(1)填表如下:
故答案为,36﹣x,;
(2)设甲机器每小时加工x个零件,
根据题意得,=,
解得:x=16.
经检验,x=16是原方程的解.
所以x=16.
25【解答】解:(1)把A(m,3)代入y1=得3m=6,解得m=2,则A(2,3),把A(2,3)代入y2=kx得2k=3,解得k=;
(2)∵函数y2=x的图象向下平移3个单位,得到直线L.
∴直线l的解析式为y=x﹣3;
故答案为y=x﹣3;
(3)如图,
∵x1<x2<x3,
∴0<x1<2,
∵y2=y3,
∴x2=x3﹣3,
∴x2﹣x3=﹣2,
∴﹣2<x1+x2﹣x3<0.
26【解答】(1)证明:连接AC,如图1所示:
∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD,
∴BD的中点在AC上,
∵E、O、F分别是对角线BD上的四等分点,
∴E、F分别为OB、OD的中点,
∵G是AD的中点,
∴GF为△AOD的中位线,
∴GF∥OA,GF=OA,
同理:EH∥OC,EH=OC,
∴EH=GF,EH∥GF,
∴四边形GEHF是平行四边形;
(2)解:当▱ABCD满足AB⊥BD条件时,四边形GEHF是菱形;理由如下:连接GH,如图2所示:
则AG=BH,AG∥BH,
∴四边形ABHG是平行四边形,
∴AB∥GH,
∵AB⊥BD,
∴GH⊥BD,
∴GH⊥EF,
∴四边形GEHF是菱形;
故答案为:AB⊥BD;
(3)解:①四边形GEHF是矩形;理由如下:
由(2)得:四边形GEHF是平行四边形,
∴GH=AB,
∵BD=2AB,
∴AB=BD=EF,
∴GH=EF,
∴四边形GEHF是矩形;
②作AM⊥BD于M,GN⊥BD于N,如图3所示:
则AM∥GN,
∵G是AD的中点,
∴GN是△ADM的中位线,
∴GN=AM,
∵∠ABD=120°,
∴∠ABM=60°,
∴∠BAM=30°,
∴BM=AB=1,AM=BM=,
∴GN=,
∵BD=2AB=4,
∴EF=BD=2,
∴△EFG的面积=EF×GN=×2×=,∴四边形GEHF的面积=2△EFG的面积=.。

相关文档
最新文档