最新高考圆锥曲线大题资料
圆锥曲线高考大题

圆锥曲线高考大题
1. 已知圆锥曲线方程为x^2 + 2y^2 + 4x + 6y - 3 = 0,求该圆锥曲线的标准方程。
2. 根据给定的圆锥曲线方程3x^2 - 2y^2 + 6x - 4y + 5 = 0,判断该圆锥曲线的类型,并确定其离心率。
3. 某圆锥曲线的焦点坐标为(2, 4),离心率为2,求该圆锥曲线的方程。
4. 已知圆锥曲线的顶点为(-3, 2),过点(-1, 0)的切线斜率为2,求该圆锥曲线的方程。
5. 圆锥曲线方程2x^2 - 3y^2 + 4x - 6y + 1 = 0经平移后,新的圆锥曲线方程为3x^2 - y^2 + 12x + 4y + 9 = 0,求该平移向量的坐标。
6. 已知圆锥曲线的焦点坐标为(0, -2),准线与x轴平行,焦距为2,求该圆锥曲线的方程。
7. 某圆锥曲线的焦点坐标为(2, -1),离心率为3/2,求该圆锥曲线的方程。
8. 已知圆锥曲线方程6x^2 + y^2 + 8x - 2y - 9 = 0,求该圆锥曲线的顶点坐标。
9. 某圆锥曲线过点(1, 4),离心率为4/5,焦点在y轴上,求该圆锥曲线的方程。
10. 圆锥曲线方程4x^2 - 9y^2 + 8x + 12y - 15 = 0经旋转后,新的圆锥曲线方程为9x^2 - 4y^2 - 16x + 24y - 21 = 0,求该旋转的角度。
【2023届新高考必刷】 圆锥曲线大题综合 学生版

【2023届新高考必刷】圆锥曲线大题综合1.(2023春·江苏扬州·高三统考开学考试)已知AB为抛物线G:y2=2px(p>0)的弦,点C在抛物线的准线l上.当AB过抛物线焦点F且长度为8时,AB中点M到y轴的距离为3.(1)求抛物线G的方程;(2)若∠ACB为直角,求证:直线AB过定点.2.(2023·江苏泰州·统考一模)已知双曲线C:x2a2-y2b2=1(a>0,b>0)的左顶点为A,过左焦点F的直线与C交于P,Q两点.当PQ⊥x轴时,PA=10,△PAQ的面积为3.(1)求C的方程;(2)证明:以PQ为直径的圆经过定点.3.(2023秋·浙江绍兴·高三期末)在平面直角坐标系xOy 中,已知点A (-2,0),B (2,0),直线PA 与直线PB 的斜率之积为-14,记动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)若直线l :y =kx +m 与曲线C 交于M ,N 两点,直线MA ,NB 与y 轴分别交于E ,F 两点,若EO=3OF ,求证:直线l 过定点.4.(2023秋·浙江·高三期末)已知点A 463,233 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)上一点,B 与A 关于原点对称,F 是右焦点,∠AFB =π2.(1)求双曲线的方程;(2)已知圆心在y 轴上的圆C 经过点P (-4,0),与双曲线的右支交于点M ,N ,且直线MN 经过F ,求圆C 的方程.5.(2023春·广东揭阳·高三校考阶段练习)已知抛物线E:y2=2px p>0的焦点为F,点F关于直线y=12x+34的对称点恰好在y轴上.(1)求抛物线E的标准方程;(2)直线l:y=k x-2k≥6与抛物线E交于A,B两点,线段AB的垂直平分线与x轴交于点C,若D6,0,求ABCD的最大值.6.(2023·湖南邵阳·统考二模)已知双曲线C:x2a2-y2b2=10<a10,b的右顶点为A,左焦点F-c,0到其渐近线bx+ay=0的距离为2,斜率为13的直线l1交双曲线C于A,B两点,且AB=8103.(1)求双曲线C的方程;(2)过点T6,0的直线l2与双曲线C交于P,Q两点,直线AP,AQ分别与直线x=6相交于M,N 两点,试问:以线段MN为直径的圆是否过定点?若过定点,求出定点的坐标;若不过定点,请说明理由.7.(2023春·湖南长沙·高三雅礼中学校考阶段练习)定义:一般地,当λ>0且λ≠1时,我们把方程x2a2+y2b2=λ(a>b>0)表示的椭圆Cλ称为椭圆x2a2+y2b2=1(a>b>0)的相似椭圆.(1)如图,已知F1-3,0,F23,0,M为⊙O:x2+y2=4上的动点,延长F1M至点N,使得MN= MF1,F1N的垂直平分线与F2N交于点P,记点P的轨迹为曲线C,求C的方程;(2)在条件(1)下,已知椭圆Cλ是椭圆C的相似椭圆,M1,N1是椭圆Cλ的左、右顶点.点Q是Cλ上异于四个顶点的任意一点,当λ=e2(e为曲线C的离心率)时,设直线QM1与椭圆C交于点A,B,直线QN1与椭圆C交于点D,E,求AB+DE的值.8.(2023·湖北武汉·统考模拟预测)过坐标原点O 作圆C :(x +2)2+y 2=3的两条切线,设切点为P ,Q ,直线PQ 恰为抛物E :y 2=2px ,(p >0)的准线.(1)求抛物线E 的标准方程;(2)设点T 是圆C 上的动点,抛物线E 上四点A ,B ,M ,N 满足:TA =2TM ,TB =2TN ,设AB 中点为D .(i )求直线TD 的斜率;(ii )设△TAB 面积为S ,求S 的最大值.9.(2023·山东·潍坊一中校联考模拟预测)已知F 为抛物线C :y 2=2px (p >0)的焦点,O 为坐标原点,M 为C 的准线l 上的一点,直线MF 的斜率为-1,△OFM 的面积为1.(1)求C 的方程;(2)过点F 作一条直线l ,交C 于A ,B 两点,试问在l 上是否存在定点N ,使得直线NA 与NB 的斜率之和等于直线NF 斜率的平方?若存在,求出点N 的坐标;若不存在,请说明理由.10.(2023·山东菏泽·统考一模)如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦点分别为F 1-3,0,F 23,0 ,A 为椭圆C 上一点,△F 1AF 2的面积最大值为3.(1)求椭圆C 的方程;(2)若B 、D 分别为椭圆C 的上、下顶点,不垂直坐标轴的直线l 交椭圆C 于P 、Q (P 在上方,Q 在下方,且均不与B ,D 点重合)两点,直线PB ,QD 的斜率分别为k 1,k 2,且k 2=-3k 1,求△PBQ 面积的最大值.11.(2023·福建泉州·统考三模)已知椭圆C :x 24+y 23=1的左、右顶点分别为A ,B .直线l 与C 相切,且与圆O :x 2+y 2=4交于M ,N 两点,M 在N 的左侧.(1)若|MN |=455,求l 的斜率;(2)记直线AM ,BN 的斜率分别为k 1,k 2,证明:k 1k 2为定值.12.(2023·江苏南通·统考模拟预测)已知A x 1,y 1 ,B x 2,y 2 ,C x 3,y 3 三个点在椭圆x 22+y 2=1,椭圆外一点P 满足OP =2AO ,BP =2CP,(O 为坐标原点).(1)求x 1x 2+2y 1y 2的值;(2)证明:直线AC 与OB 斜率之积为定值.13.(2023·浙江嘉兴·统考模拟预测)已知抛物线C :y 2=2px p >0 ,过焦点F 的直线交抛物线C 于A ,B 两点,且AB =AF ⋅BF .(1)求抛物线C 的方程;(2)若点P 4,4 ,直线PA ,PB 分别交准线l 于M ,N 两点,证明:以线段MN 为直径的圆过定点.14.(2023·江苏连云港·统考模拟预测)已知椭圆E:x2a2+y2b2=1a>b>0的焦距为23,且经过点P-3,12.(1)求椭圆E的标准方程:(2)过椭圆E的左焦点F1作直线l与椭圆E相交于A,B两点(点A在x轴上方),过点A,B分别作椭圆的切线,两切线交于点M,求ABMF1的最大值.15.(2023春·江苏常州·高三校联考开学考试)已知点P2,-1在椭圆C:x2a2+y2b2=1(a>b>0)上,C的长轴长为42,直线l:y=kx+m与C交于A,B两点,直线PA,PB的斜率之积为14.(1)求证:k为定值;(2)若直线l与x轴交于点Q,求QA|2+QB|2的值.16.(2023春·江苏苏州·高三统考开学考试)已知抛物线y2=a2x的焦点也是离心率为32的椭圆x2a2+y2 b2=1a>b>0的一个焦点F.(1)求抛物线与椭圆的标准方程;(2)设过F的直线l交抛物线于A、B,交椭圆于C、D,且A在B左侧,C在D左侧,A在C左侧.设a=AC,b=μCD,c=DB.①当μ=2时,是否存在直线l,使得a,b,c成等差数列?若存在,求出直线l的方程;若不存在,说明理由;②若存在直线l,使得a,b,c成等差数列,求μ的范围.17.(2023秋·江苏无锡·高三统考期末)已知椭圆C1:x2a2+y2b2=1a>b>0的右焦点F和抛物线C2:y2=2px p>0的焦点重合,且C1和C2的一个公共点是23,263.(1)求C1和C2的方程;(2)过点F作直线l分别交椭圆于A,B,交抛物线C2于P,Q,是否存在常数λ,使1AB-λPQ为定值?若存在,求出λ的值;若不存在,说明理由.18.(2023秋·江苏·高三统考期末)如图,已知椭圆x24+y2=1的左、右顶点分别为A,B,点C是椭圆上异于A,B的动点,过原点O平行于AC的直线与椭圆交于点M,N,AC的中点为点D,直线OD与椭圆交于点P,Q,点P,C,M在x轴的上方.(1)当AC=5时,求cos∠POM;(2)求PQ⋅MN的最大值.19.(2023·浙江·校联考模拟预测)设双曲线C:x2a2-y2b2=1的右焦点为F3,0,F到其中一条渐近线的距离为2.(1)求双曲线C的方程;(2)过F的直线交曲线C于A,B两点(其中A在第一象限),交直线x=53于点M,(i)求|AF|⋅|BM||AM|⋅|BF|的值;(ii)过M平行于OA的直线分别交直线OB、x轴于P,Q,证明:MP=PQ.20.(2023春·浙江绍兴·高三统考开学考试)在平面直角坐标系xOy 中,已知椭圆C :x 24+y 2=1,B 1,0 .(1)设P 是椭圆C 上的一个动点,求PO ⋅PB的取值范围;(2)设与坐标轴不垂直的直线l 交椭圆C 于M ,N 两点,试问:是否存在满足条件的直线l ,使得△MB N 是以B 为直角顶点的等腰直角三角形?若存在,求出直线l 的方程,若不存在,请说明理由.21.(2023春·浙江·高三开学考试)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,且经过点M(-2,0),F 1,F 2为椭圆C 的左右焦点,Q x 0,y 0 为平面内一个动点,其中y 0>0,记直线QF 1与椭圆C 在x 轴上方的交点为A x 1,y 1 ,直线QF 2与椭圆C 在x 轴上方的交点为B x 2,y 2 .(1)求椭圆C 的标准方程;(2)①若AF 2∥BF 1,证明:1y 1+1y 2=1y 0;②若QF 1 +QF 2 =3,探究y 0,y 1,y 2之间关系.22.(2023春·浙江温州·高三统考开学考试)如图,椭圆x 24+y 2=1的左右焦点分别为F 1,F 2,点P x 0,y 0 是第一象限内椭圆上的一点,经过三点P ,F 1,F 2的圆与y 轴正半轴交于点A 0,y 1 ,经过点B (3,0)且与x 轴垂直的直线l 与直线AP 交于点Q .(1)求证:y 0y 1=1.(2)试问:x 轴上是否存在不同于点B 的定点M ,满足当直线MP ,MQ 的斜率存在时,两斜率之积为定值?若存在定点M ,求出点M 的坐标及该定值;若不存在,请说明理由.23.(2023春·广东·高三校联考阶段练习)已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的右顶点为A 2,0 ,直线l 过点P 4,0 ,当直线l 与双曲线E 有且仅有一个公共点时,点A 到直线l 的距离为255.(1)求双曲线E 的标准方程;(2)若直线l 与双曲线E 交于M ,N 两点,且x 轴上存在一点Q t ,0 ,使得∠MQP =∠NQP 恒成立,求t .24.(2023·广东梅州·统考一模)已知动圆M经过定点F1-3,0,且与圆F2:x-32+y2=16内切.(1)求动圆圆心M的轨迹C的方程;(2)设轨迹C与x轴从左到右的交点为点A,B,点P为轨迹C上异于A,B的动点,设PB交直线x=4于点T,连结AT交轨迹C于点Q.直线AP、AQ的斜率分别为k AP、k AQ.(i)求证:k AP⋅k AQ为定值;(ii)证明直线PQ经过x轴上的定点,并求出该定点的坐标.25.(2023春·湖北武汉·高三华中师大一附中校考阶段练习)已知双曲线E:x24-y2=1与直线l:y=kx-3相交于A、B两点,M为线段AB的中点.(1)当k变化时,求点M的轨迹方程;(2)若l与双曲线E的两条渐近线分别相交于C、D两点,问:是否存在实数k,使得A、B是线段CD的两个三等分点?若存在,求出k的值;若不存在,说明理由.26.(2023·山东·日照一中校考模拟预测)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,斜率为-3的直线l 与双曲线C 交于A ,B 两点,点M (4,-22)在双曲线C 上,且MF 1 ⋅MF 2 =24.(1)求△MF 1F 2的面积;(2)若OB +OB=0(O 为坐标原点),点N 3,1 ,记直线NA ,NB 的斜率分别为k 1,k 2,问:k 1⋅k 2是否为定值?若是,求出该定值;若不是,请说明理由.27.(2023秋·山东泰安·高三统考期末)已知椭圆E :x 2a 2+y 2b2=1a >b >0 过A 1,62 ,B 3,22两点.(1)求椭圆E 的方程;(2)已知Q 4,0 ,过P 1,0 的直线l 与E 交于M ,N 两点,求证:MP NP=MQ NQ.28.(2023·浙江·模拟预测)已知双曲线E:x2a2-y2b2=1(a>0,b>0)的焦距为10,且经过点M(8,33).A,B为双曲线E的左、右顶点,P为直线x=2上的动点,连接PA,PB交双曲线E于点C,D(不同于A,B).(1)求双曲线E的标准方程.(2)直线CD是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.29.(2023·湖南·模拟预测)已知椭圆C:x2a2+y2b2=1a>b>0的上顶点为B,O为坐标原点,P-a2,0为椭圆C的长轴上的一点,若∠BPO=45°,且△OPB的面积为12.(1)求椭圆C的标准方程;(2)椭圆C与x轴负半轴交于点A,过点A的直线AM,AN分别与椭圆C交于M,N两点,直线AM,AN的斜率分别为k AM,k AN,且k AM⋅k AN=-112,求证:直线MN过定点,并求出该定点坐标,求出△AMN面积的最大值.30.(2023春·湖北·高三统考阶段练习)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为12.且经过点1,32 ,P ,Q 是椭圆C 上的两点.(1)求椭圆C 的方程;(2)若直线OP 与OQ 的斜率之积为-34(O 为坐标原点),点D 为射线OP 上一点,且OP =PD ,若线段DQ 与椭圆C 交于点E ,设QE =λED(λ>0).(i )求λ值;(ii )求四边形OPEQ 的面积.。
高考圆锥曲线大题

高考圆锥曲线大题设圆锥曲线方程为$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$,其中$A,B,C,D,E,F$为常数且$B^2 - 4AC < 0$。
1. 若圆锥曲线经过点$P(x_1, y_1)$,则将$P$代入方程得到$Ax_1^2 + Bx_1y_1 + Cy_1^2 + Dx_1 + Ey_1 + F = 0$。
2. 若圆锥曲线的切线斜率为$k$,则曲线上任一点$(x,y)$处的切线斜率可通过$f'(x) = -\left(\frac{Ax+By+D}{2Ay+Bx+E}\right)$求得。
3. 圆锥曲线的离心率可通过公式$e = \sqrt{\frac{A^2 +C^2}{B^2 - 4AC}}$计算。
4. 圆锥曲线的焦点坐标可通过$(x,y) = \left(\frac{B(E-By)-2C(D-Ax)}{B^2-4AC}, \frac{B(D-Ax)-2A(E-By)}{B^2-4AC}\right)$计算。
5. 若圆锥曲线的方程为$x^2 - 2xy - y^2 + 4x + 4y - 4 = 0$,则$A=1, B=-2, C=-1, D=4, E=4, F=-4$。
6. 若圆锥曲线是椭圆,则满足$B^2 - 4AC < 0$以及$A=C$的条件。
7. 若圆锥曲线是抛物线,则满足$B^2 - 4AC = 0$的条件。
8. 若圆锥曲线是双曲线,则满足$B^2 - 4AC < 0$以及$A\neqC$的条件。
9. 圆锥曲线方程的标准形式为$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$或$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$,其中$(h,k)$为中心坐标,$a$和$b$为椭圆的半长轴和半短轴。
10. 若已知圆锥曲线的焦点坐标$(x_1,y_1)$和$(x_2,y_2)$,则圆锥曲线方程可表示为$(x-x_1)^2 + (y-y_1)^2 = (x-x_2)^2 + (y-y_2)^2$。
2024数学高考前冲刺题《圆锥曲线(椭圆、双曲线、抛物线)》含答案

黄金冲刺大题06 圆锥曲线(椭圆、双曲线、抛物线)(精选30题)1.(2024·山东·二模)已知椭圆的焦点分别是)()12,F F ,点M 在椭圆上,且124MF MF +=.(1)求椭圆的标准方程;(2)若直线y kx =,A B 两点,且OA OB ⊥,求实数k 的值.2.(2024·江苏南通·模拟预测)在平面直角坐标系xOy 中,设椭圆()2222:10x y C a b a b +=>>1F ,2F 分别是椭圆的左、右焦点,过2F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A ,B 两点,直线2l与C 交于D ,E 两点,且12AF F 的周长是4+(1)求椭圆C 的方程;(2)当32AB DE =时,求ODE 的面积.3.(2024·河北邯郸·二模)已知椭圆C 的中心为坐标原点,对称轴为x 轴、y 轴,且过()2,0,1,M N ⎛ ⎝两点.(1)求C 的方程.(2),A B 是C 上两个动点,D 为C 的上顶点,是否存在以D 为顶点,AB 为底边的等腰直角三角形?若存在,求出满足条件的三角形的个数;若不存在,请说明理由.4.(2024·广东广州·模拟预测)已知椭圆222:1(08x y C b b+=<<,右顶点为E ,上、下顶点分别为12,,B B G是1EB 的中点,且121EB GB ⋅=.(1)求椭圆C 的方程;(2)设过点()4,0D -的直线l 交椭圆C 于点,M N ,点()2,1A --,直线,MA NA 分别交直线4x =-于点,P Q ,求证:线段PQ 的中点为定点.5.(2024·辽宁·二模)平面直角坐标系xOy 中,面积为9的正方形ABCD 的顶点,A B 分别在x 轴和y 轴上滑动,且23OP OA = ,记动点P 的轨迹为曲线Γ.(1)求Γ的方程;(2)过点()4,1E 的动直线l 与曲线Γ交于不同的两点,M N 时,在线段MN 上取点Q ,满足||||||||EM QN QM EN ⋅=⋅.试探究点Q 是否在某条定直线上?若是,求出定直线方程;若不是,说明理由.6.(2024·福建厦门·三模)在直角坐标系xOy 中,已知抛物线2:2(0)C y px p =>的焦点为F ,过F 的直线l 与C 交于,M N 两点,且当l 的斜率为1时,8MN =.(1)求C 的方程;(2)设l 与C 的准线交于点P ,直线PO 与C 交于点Q (异于原点),线段MN 的中点为R ,若3QR ≤,求MNQ △面积的取值范围.7.(2024·浙江丽水·二模)已知抛物线2:4E y x =,点,,A B C 在抛物线E 上,且A 在x 轴上方,B 和C 在x 轴下方(B 在C 左侧),,A C 关于x 轴对称,直线AB 交x 轴于点M ,延长线段CB 交x 轴于点Q ,连接QA .(1)证明:OM OQ为定值(O 为坐标原点);(2)若点Q 的横坐标为1-,且89MB MC ⋅= ,求AQB 的内切圆的方程.8.(2024·江苏苏州·模拟预测)已知点(1,0)A ,(0,1)B ,(1,1)C 和动点(,)P x y 满足2y 是PA PB ⋅ ,PA PC ⋅的等差中项.(1)求P 点的轨迹方程;(2)设P 点的轨迹为曲线1C 按向量31,416a ⎛⎫=- ⎪⎝⎭平移后得到曲线2C ,曲线2C 上不同的两点M ,N 的连线交y 轴于点(0,)Q b ,如果MON ∠(O 为坐标原点)为锐角,求实数b 的取值范围;(3)在(2)的条件下,如果2b =时,曲线2C 在点M 和N 处的切线的交点为R ,求证:R 在一条定直线上.9.(2024·江苏南通·二模)已知双曲线E的渐近线为y =,左顶点为()A .(1)求双曲线E 的方程;(2)直线:l x t =交x 轴于点D ,过D 点的直线交双曲线E 于B ,C ,直线AB ,AC 分别交l 于G ,H ,若O ,A ,G ,H 均在圆P 上,①求D 的横坐标;②求圆P 面积的取值范围.10.(2024·江苏南京·二模)已知抛物线2:2(0)C y px p =>与双曲线2222:1x y E a b-=(0a >,0b >)有公共的焦点F ,且4p b =.过F 的直线1与抛物线C 交于A ,B 两点,与E 的两条近线交于P ,Q 两点(均位于y 轴右侧).(1)求E 的渐近线方程;(2)若实数λ满足1111||||||||OP OQ AF BF λ⎛⎫+=- ⎪⎝⎭,求λ的取值范围.11.(2024·重庆·三模)已知()2,0F ,曲线C 上任意一点到点F 的距离是到直线12x =的距离的两倍.(1)求曲线C 的方程;(2)已知曲线C 的左顶点为A ,直线l 过点F 且与曲线C 在第一、四象限分别交于M ,N 两点,直线AM 、AN 分别与直线12x =交于P ,H 两点,Q 为PH 的中点.(i )证明:QF MN ⊥;(ii )记PMQ ,HNQ ,MNQ 的面积分别为1S ,2S ,3S ,则123S S S +是否为定值?若是,求出这个定值;若不是,请说明理由.12.(2024·河北·二模)已知椭圆()2222:10x y E a b a b +=>>的离心率e =(1)若椭圆E过点(,求椭圆E 的标准方程.(2)若直线1l ,2l 均过点()()*,00,n n P p p a n <<∈N 且互相垂直,直线1l 交椭圆E 于,A B 两点,直线2l 交椭圆E于,C D 两点,,M N 分别为弦AB 和CD 的中点,直线MN 与x 轴交于点(),0n Q t ,设13n np =.(ⅰ)求n t ;(ⅱ)记n a PQ =,求数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S .13.(2024·辽宁沈阳·二模)P 为大圆上一动点,大圆半径OP 与小圆相交于点,B PP x '⊥轴于,P BB PP ⊥'''于,B B ''点的轨迹为Ω.(1)求B '点轨迹Ω的方程;(2)点()2,1A ,若点M N 、在Ω上,且直线AM AN 、的斜率乘积为12,线段MN 的中点G ,当直线MN 与y 轴的截距为负数时,求AOG ∠的余弦值.14.(2024·广东佛山·二模)两条动直线1y k x =和2y k x =分别与抛物线()2:20C y px p =>相交于不同于原点的A ,B 两点,当OAB 的垂心恰是C 的焦点时,AB =(1)求p ;(2)若124k k =-,弦AB 中点为P ,点()2,0M -关于直线AB 的对称点N 在抛物线C 上,求PMN 的面积.15.(2024·广东深圳·二模)设抛物线C :22x py =(0p >),直线l :2y kx =+交C 于A ,B 两点.过原点O 作l 的垂线,交直线=2y -于点M .对任意R k ∈,直线AM ,AB ,BM 的斜率成等差数列.(1)求C 的方程;(2)若直线//l l ',且l '与C 相切于点N ,证明:AMN 的面积不小于16.(2024·湖南·一模)已知双曲线2222:1(1)x y C b a a b-=>>的渐近线方程为y =,C 的半焦距为c ,且44244a b c ++=.(1)求C 的标准方程.(2)若P 为C 上的一点,且P 为圆224x y +=外一点,过P 作圆224x y +=的两条切线12,l l (斜率都存在),1l 与C 交于另一点2,M l 与C 交于另一点N ,证明:(ⅰ)12,l l 的斜率之积为定值;(ⅱ)存在定点A ,使得,M N 关于点A 对称.17.(2024·湖南岳阳·三模)已知动圆P 过定点(0,1)F 且与直线3y =相切,记圆心P 的轨迹为曲线E .(1)已知A 、B 两点的坐标分别为(2,1)-、(2,1),直线AP 、BP 的斜率分别为1k 、2k ,证明:121k k -=;(2)若点()11,M x y 、()22,N x y 是轨迹E 上的两个动点且124x x =-,设线段MN 的中点为Q ,圆P 与动点Q 的轨迹Γ交于不同于F 的三点C 、D 、G ,求证:CDG 的重心的横坐标为定值.18.(2024·湖北·二模)已知双曲线P 的方程为()()221,,0,,04x y B a C a -=-,其中()()00002,,,0a D x y x a y >≥>是双曲线上一点,直线DB 与双曲线P 的另一个交点为E ,直线DC 与双曲线P的另一个交点为F ,双曲线P 在点,E F 处的两条切线记为121,,l l l 与2l 交于点P ,线段DP 的中点为G ,设直线,DB DC 的斜率分别为12,k k .(1)证明:12114k k <+≤(2)求GBGC的值.19.(2024·湖北·模拟预测)已知椭圆2212:1x C y a +=和()2222:10x C y a b b +=>>的离心率相同,设1C 的右顶点为1A ,2C 的左顶点为2A ,()0,1B ,(1)证明:12BA BA ⊥;(2)设直线1BA 与2C 的另一个交点为P ,直线2BA 与1C 的另一个交点为Q ,连PQ ,求PQ 的最大值.参考公式:()()3322m n m n m mn n +=+-+20.(2024·山东·二模)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,设C 的右焦点为F ,左顶点为A ,过F 的直线与C 于,D E 两点,当直线DE 垂直于x 轴时,ADE V 的面积为92.(1)求椭圆C 的标准方程;(2)连接AD 和AE 分别交圆22(1)1x y ++=于,M N 两点.(ⅰ)当直线DE 斜率存在时,设直线DE 的斜率为1k ,直线MN 的斜率为2k ,求12k k ;(ⅱ)设ADE V 的面积为1,S AMN △的面积为2S ,求12S S 的最大值.21.(2024·山东潍坊·二模)已知双曲线C :()222210,0x y a b a b -=>>的实轴长为2F 到一条渐近线的距离为1.(1)求C 的方程;(2)过C上一点(1P 作C 的切线1l ,1l 与C 的两条渐近线分别交于R ,S 两点,2P 为点1P 关于坐标原点的对称点,过2P 作C 的切线2l ,2l 与C 的两条渐近线分别交于M ,N 两点,求四边形RSMN 的面积.(3)过C 上一点Q 向C 的两条渐近线作垂线,垂足分别为1H ,2H ,是否存在点Q ,满足122QH QH +=,若存在,求出点Q 坐标;若不存在,请说明理由.22.(23-24高三下·湖北武汉·阶段练习)已知抛物线2:=E y x ,过点()1,2T 的直线与抛物线E 交于,A B 两点,设抛物线E 在点,A B 处的切线分别为1l 和2l ,已知1l 与x 轴交于点2,M l 与x 轴交于点N ,设1l 与2l 的交点为P .(1)证明:点P 在定直线上;(2)若PMN ,求点P 的坐标;(3)若,,,P M N T 四点共圆,求点P 的坐标.23.(2024·福建漳州·一模)已知过点()11,0F -的直线l 与圆2F :()22116x y -+=相交于G ,H 两点,GH 的中点为E ,过1GF 的中点F 且平行于2EF 的直线交2G F 于点P ,记点P 的轨迹为C .(1)求轨迹C 的方程.(2)若,A B 为轨迹C 上的两个动点且均不在y 轴上,点M 满足OM OA OB λμ=+(λ,μ∈R ),其中O 为坐标原点,从下面①②③中选取两个作为条件,证明另外一个成立.①点M 在轨迹C 上;②直线OA 与OB 的斜率之积为34-;③221λμ+=.注:若选择不同的组合分别解答,则按第一个解答计分.24.(2024·福建福州·模拟预测)点P 是椭圆E :22221x y a b +=(0a b >>)上(左、右端点除外)的一个动点,()1,0F c -,()2,0F c 分别是E 的左、右焦点.(1)设点P 到直线l :2a x c =的距离为d ,证明2PF d 为定值,并求出这个定值;(2)12PF F △的重心与内心(内切圆的圆心)分别为G ,I ,已知直线IG 垂直于x 轴.(ⅰ)求椭圆E 的离心率;(ⅱ)若椭圆E 的长轴长为6,求12PF F △被直线IG 分成两个部分的图形面积之比的取值范围.25.(2024·福建三明·三模)已知平面直角坐标系xOy 中,有真命题:函数(0,0)ny mx m n x =+≥>的图象是双曲线,其渐近线分别为直线y mx =和y 轴.例如双曲线4y x=的渐近线分别为x 轴和y 轴,可将其图象绕原点O 顺时针旋转π4得到双曲线228x y -=的图象.(1)求双曲线1y x=的离心率;(2)已知曲线22:2E x y -=,过E 上一点P 作切线分别交两条渐近线于,A B 两点,试探究AOB 面积是否为定值,若是,则求出该定值;若不是,则说明理由;(3)已知函数y x =Γ,直线:30l x -=,过F 的直线与Γ在第一象限交于,M N 两点,过,M N 作l 的垂线,垂足分别为,C D ,直线,MD NC 交于点H ,求MNH △面积的最小值.26.(2024·浙江绍兴·二模)已知抛物线C :()220y px p =>的焦点到准线的距离为2,过点()2,2A 作直线交C 于M ,N 两点,点()1,1B -,记直线BM ,BN 的斜率分别为1k ,2k .(1)求C 的方程;(2)求()121232k k k k -+的值;(3)设直线BM 交C 于另一点Q ,求点B 到直线QN 距离的最大值.27.(2024·浙江绍兴·模拟预测)已知抛物线C :22y px =的焦点F ,直线l 过F 且交C 于两点M N 、,已知当3MF NF =时,MN (1)求C 的标准方程.(2)令,02p F ⎛⎫'- ⎪⎝⎭,P 为C 上的一点,直线F P ',FP 分别交C 于另两点A ,B .证明:·1AF PF PF BF '='.(3)过,,A B P 分别作C 的切线123,,l l l , 3l 与1l 相交于D ,同时与2l 相交于E ,求四边形ABED 面积取值范围.28.(2024·河北保定·二模)平面几何中有一定理如下:三角形任意一个顶点到其垂心(三角形三条高所在直线的交点)的距离等于外心(外接圆圆心)到该顶点对边距离的2倍.已知ABC 的垂心为D ,外心为E ,D 和E 关于原点O 对称,()13,0A .(1)若()3,0E ,点B 在第二象限,直线BC x ⊥轴,求点B 的坐标;(2)若A ,D ,E 三点共线,椭圆T :()222210x y a b a b+=>>与ABC 内切,证明:D ,E 为椭圆T 的两个焦点.29.(2024·浙江杭州·模拟预测)设双曲线22:12x C y -=,直线:l y x m =+与C 交于,A B 两点.(1)求m 的取值范围;(2)已知C 上存在异于,A B 的,P Q 两点,使得PA PB QA QB t ⋅=⋅=.(i )当4t =时,求,P Q 到点()2,m m --的距离(用含m 的代数式表示);(ii )当2t =时,记原点到直线PQ 的距离为d ,若直线PQ 经过点(),m m -,求d 的取值范围.30.(2024·湖北·一模)已知椭圆2222:1(0)x y M a b a b+=>>的离心率为12,A ,B 分别为椭圆的左顶点和上顶点,1F 为左焦点,且1ABF(1)求椭圆M 的标准方程:(2)设椭圆M 的右顶点为C 、P 是椭圆M 上不与顶点重合的动点.(i )若点31,2P ⎛⎫⎪⎝⎭,点D 在椭圆M 上且位于x 轴下方,直线PD 交x 轴于点F ,设APF 和CDF 的面积分别为1S ,2S 若1232S S -=,求点D 的坐标:(ii )若直线AB 与直线CP 交于点Q ,直线BP 交x 轴于点N ,求证:2QN QC k k -为定值,并求出此定值(其中QN k 、QC k 分别为直线QN 和直线QC 的斜率).黄金冲刺大题06 圆锥曲线(椭圆、双曲线、抛物线)(精选30题)1.(2024·山东·二模)已知椭圆的焦点分别是)()12,F F ,点M 在椭圆上,且124MF MF +=.(1)求椭圆的标准方程;(2)若直线y kx =,A B 两点,且OA OB ⊥,求实数k 的值.【答案】(1)2214x y +=;【分析】(1)根据所给条件求出,a b ,即可得出椭圆标准方程;(2)联立直线与椭圆方程,根据根与系数的关系及OA OB ⊥,列出方程求k 即可.【详解】(1)设椭圆的标准方程为22221(0)x y a b a b+=>>.由题意可知22224c a a b c ⎧=⎪=⎨⎪=+⎩,解得2,1,a b c ⎧=⎪=⎨⎪=⎩所以椭圆的标准方程为2214x y +=.(2)设()()1122,,,A x y B x y ,如图,联立方程2214y kx x y ⎧=⎪⎨+=⎪⎩,消去y ,得()221440k x +++=,则12122414x x x x k +==+,从而(1212y y kx kx =+()212122k x x x x =+++222414kk-=+,因为,0OA OB OA OB ⊥⋅=,即12120x x y y +=,所以22222424640141414k k k k k --+==+++,解得k =或,经验证知Δ0>,所以k.2.(2024·江苏南通·模拟预测)在平面直角坐标系xOy 中,设椭圆()2222:10x y C a b a b +=>>1F ,2F 分别是椭圆的左、右焦点,过2F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A ,B 两点,直线2l 与C 交于D ,E 两点,且12AF F的周长是4+(1)求椭圆C 的方程;(2)当32AB DE =时,求ODE 的面积.【答案】(1)2214x y +=【分析】(1)由椭圆离心率和焦点三角形的周长,列方程组求出,a b ,得椭圆C 的方程;(2)设直线1l ,2l 的方程,与椭圆联立,利用韦达定理和32AB DE =求出DE 和2l 的方程,再求出O 到直线2l 的距离,可求ODE 的面积.【详解】(1)由题意知,222224a c ca b a c ⎧+=+⎪⎪=⎨⎪=-⎪⎩,解得2,1,a b c ===所以椭圆C 的方程为2214x y +=;(2)若直线1l 的斜率不存在,则直线2l 的斜率为0,不满足32AB DE =,直线1l 的的斜率为0,则12,,A F F 三点共线,不合题意,所以直线1l 的斜率存在且不为0,设直线1l的方程为x my =由2214x my x y ⎧=⎪⎨+=⎪⎩,消去x得2211044m y y ⎛⎫++-= ⎪⎝⎭,设()()1122,,,A x y B x y,则12y y +=1221414y y m =-+,()2241.4m AB m +∴===+同理可得()222214141.1144m m DE m m ⎛⎫+ ⎪+⎝⎭==++,由32AB DE =,得()()2222414134214m m m m++=⋅++,解得22m =,则43DE =,∴直线2l的方程为y x =,∴坐标原点O 到直线2l的距离为d ==1423ODE S =⨯= 即ODE【点睛】方法点睛:解答直线与圆锥曲线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系,涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形,强化有关直线与圆锥曲线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.3.(2024·河北邯郸·二模)已知椭圆C 的中心为坐标原点,对称轴为x 轴、y 轴,且过()2,0,1,M N ⎛⎝两点.(1)求C 的方程.(2),A B 是C 上两个动点,D 为C 的上顶点,是否存在以D 为顶点,AB 为底边的等腰直角三角形?若存在,求出满足条件的三角形的个数;若不存在,请说明理由.【答案】(1)2214x y +=(2)存在,3个【分析】(1)设椭圆C 的方程为221(0,0,)mx ny m n m n +=>>≠,根据条件得到41314m m n =⎧⎪⎨+=⎪⎩,即可求出结果;(2)设直线DA 为1y kx =+,直线DB 为11y x k=-+,当1k =时,由椭圆的对称性知满足题意;当21k ≠时,联立直线与椭圆方程,求出,A B 的坐标,进而求出AB 中垂线方程,根据条件中垂线直经过点(0,1)D ,从而将问题转化成方程42710k k -+=解的个数,即可解决问题.【详解】(1)由题设椭圆C 的方程为221(0,0,)mx ny m n m n +=>>≠,因为椭圆过()2,0,1,M N ⎛ ⎝两点,所以41314m m n =⎧⎪⎨+=⎪⎩,得到1,14m n ==,所以椭圆C 的方程为2214x y +=.(2)由(1)知(0,1)D ,易知直线,DA DB 的斜率均存在且不为0,不妨设(0)DA k k k =>,1DB k k=-,直线DA 为1y kx =+,直线DB 为11y x k =-+,由椭圆的对称性知,当1k =时,显然有DA DB =,满足题意,当21k ≠时,由22114y kx x y =+⎧⎪⎨+=⎪⎩,消y 得到221()204k x kx ++=,所以2814A k x k =-+,222281411414A k k y k k -=-+=++,即222814(,)1414k k A k k--++,同理可得22284(,44k k B k k -++,所以()2222222222222414(4)14(4)(14)1414888(144)5414ABk k k k k k k k k k k k k k k k k k ----+-+--++===++++++,设AB 中点坐标为00(,)x y ,则2220228812(1)1442(4)(14)k kk k k k x k k -+-++==++,22222022144151442(4)(14)k k k k k y k k --+-++==++,所以AB 中垂线方程为222222215512(1)()(4)(14)1(4)(14)k k k k y x k k k k k -+=--++-++,要使ADB 为AB 为底边的等腰直角三角形,则直AB 中垂线方程过点(0,1),所以222222215512(1)1(0)(4)(14)1(4)(14)k k k k k k k k k -+=--++-++,整理得到42710k k -+=,令2t k =,则2710t t -+=,4940∆=->,所以t 有两根12,t t ,且121270,10t t t t +=>=>,即2710t t -+=有两个正根,故有2个不同的2k 值,满足42710k k -+=,所以由椭圆的对称性知,当21k ≠时,还存在2个符合题意的三角形,综上所述,存在以D 为顶点,AB 为底边的等腰直角三角形,满足条件的三角形的个数有3个.【点睛】关键点点晴:本题的关键在于第(2)问,通过设出直线DA 为1y kx =+,直线DB 为11y x k=-+,联立椭圆方程求出,A B 坐标,进而求出直线AB 的中垂线方程,将问题转化成直线AB 的中垂线经过点(0,1)D ,再转化成关于k 的方程的解的问题.4.(2024·广东广州·模拟预测)已知椭圆222:1(08x y C b b+=<<,右顶点为E ,上、下顶点分别为12,,B B G是1EB 的中点,且121EB GB ⋅=.(1)求椭圆C 的方程;(2)设过点()4,0D -的直线l 交椭圆C 于点,M N ,点()2,1A --,直线,MA NA 分别交直线4x =-于点,P Q ,求证:线段PQ 的中点为定点.【答案】(1)22182x y +=(2)证明见解析【分析】(1)通过椭圆的性质和中点的坐标,然后根据向量的数量积得到等量关系即可求出椭圆的标准方程;(2)设出直线l 的方程并与椭圆方程联立,化简写出根与系数的关系,求得点,P Q 的坐标,进而证得线段PQ 的中点为定点.【详解】(1)由题可得()28,,0a E a = ,()()120,,0,B b B b -,1EB ∴的中点为,22a b G ⎛⎫ ⎪⎝⎭,2221233(,),1,2,2222a b a bEB GB a b b ⎛⎫⋅=-⋅--=-=∴= ⎪⎝⎭ 故椭圆C 的方程为22182x y +=;(2)依题意可知直线l 的斜率存在,设直线l 的方程为()4y k x =+,由()224182y k x x y ⎧=+⎪⎨+=⎪⎩消去y 并化简得()222214326480k x k x k +++-=,由()()422Δ10244146480k k k =-+->,得2111,422k k <-<<.设()(),,,M M N N M x y N x y ,则222232648,1414M N M N k k x x x x k k -+=-=++,依题意可知直线,MA NA 的斜率存在,直线MA 的方程为()1122M M y y x x ++=++,令4x =-,得()2442422M M M M P M M k x x y x y x x -+-----==++()()()2184212424221222M M M M M k x k k x k k k x x x ------+--+===---+++,同理可求得42212Q N k y k x +=---+,()N 4242114242422222P Q M N M k k y y k k k x x x x ⎛⎫++∴+=----=---++ ⎪++++⎝⎭()()4424224M N M N M N x x k k x x x x ++=---+⋅+++()22222232414424242(42)064832241414k k k k k k k k k k -++=---+⋅=--++=⎛⎫-+-+ ⎪++⎝⎭,∴线段PQ 的中点为定点()4,0-.【点睛】方法点睛:对于直线和圆锥曲线相交的问题,我们一般将直线和圆锥曲线联立,利用韦达定理带入计算求解.5.(2024·辽宁·二模)平面直角坐标系xOy 中,面积为9的正方形ABCD 的顶点,A B 分别在x 轴和y 轴上滑动,且23OP OA = ,记动点P 的轨迹为曲线Γ.(1)求Γ的方程;(2)过点()4,1E 的动直线l 与曲线Γ交于不同的两点,M N 时,在线段MN 上取点Q ,满足||||||||EM QN QM EN ⋅=⋅.试探究点Q 是否在某条定直线上?若是,求出定直线方程;若不是,说明理由.【答案】(1)22143x y +=(2)点Q 在定直线上,定直线方程为330x y +-=【分析】(1)设点,,P A B 的坐标,利用平面向量的坐标表示消参得0032x x y ⎧=⎪⎨⎪=⎩,结合正方形面积得Γ的方程;(2)设:14l y kx k =+-,,,Q M N 的坐标,与椭圆联立并根据韦达定理得,M N 横坐标关系,再根据线段乘积关系化为比值关系得01120244x x x x x x --=--,化简得0243kx k+=+,代入直线方程即可0y ,从而求出定直线方程.【详解】(1)设()()()00,,,0,0,P x y A x B y ,由0000222(,0))()333OP OA x y x y ==+=,得0023x x y y ⎧=⎪⎪⎨⎪=⎪⎩,所以032x x y ⎧=⎪⎨⎪=⎩,因为正方形ABCD 的面积为29AB =,即22009x y +=,所以223())92x +=,整理可得22143x y +=,因此C 的轨迹方程为22143x y +=.(2)依题意,直线l 存在斜率,设l :1(4)y k x -=-,即14y kx k =+-,设点()00,Q x y ,()11,M x y ,()22,N x y ()102x x x <<,由22143412y kx kx y =+-⎧⎨+=⎩,消y 得2234(14)12x kx k ++-=,即222(34)8(14)4(14)120k x k k x k ++-+--=,由()()()2222Δ64141634143k k k k ⎡⎤=--+--⎣⎦()()()()()22222216144344834483414k k k k k k ⎡⎤⎡⎤=--+++=+--⎣⎦⎣⎦()()22481282966410k k k k =-++=-++>,k <<所以3k ≠-,可得1228(14)34k k x x k -+=-+,21224(14)1234k x x k --=+,由||||||||EM QN QM EN ⋅=⋅ ,得||||||||QM EM QN EN =,所以01120244x x x x x x --=--,可得222121201228(14)4(14)124234344()28(14)8()834k k k k k x x x x x k k x x k ⎡⎤---⎡⎤--⎢⎥⎢⎥+++-⎣⎦⎣⎦==--+⎡⎤--⎢⎥+⎣⎦()()2222232148142432128128648242432824248k k k k k k k k k k k----+-+-+-+==++-+1632242483k kk k++==++,所以()()200143243914333k k k k ky kx k k k k-++-=+-=+=+++,因为00612393333k kx y k k+-+=+=++,所以点Q 在定直线上,定直线方程为330x y +-=.6.(2024·福建厦门·三模)在直角坐标系xOy 中,已知抛物线2:2(0)C y px p =>的焦点为F ,过F 的直线l 与C 交于,M N 两点,且当l 的斜率为1时,8MN =.(1)求C 的方程;(2)设l 与C 的准线交于点P ,直线PO 与C 交于点Q (异于原点),线段MN 的中点为R ,若3QR ≤,求MNQ △面积的取值范围.【答案】(1)24y x =;(2)(.【分析】(1)先设l 的方程为2px my =+,()11,M x y ,()22,N x y ,联立直线与抛物线方程,结合韦达定理及抛物线定义即可求解;(2)先设出()221,2R m m +,进而可求,P Q 的坐标,可得直线//QR x 轴,求出QR 的范围,再由三角形面积公式即可求解.【详解】(1)不妨先设l 的方程为2px my =+,()11,M x y ,()22,N x y ,代入22y px =,可得2220y mpy p --=,所以122y y mp +=,212y y p =-,则()21212222MN x x p m y y p m p p =++=++=+,由题意可知当斜率为1时,1m =,又8MN =,即228p p +=,解得2p =,所以C 的方程为24y x =;(2)由(1)知2p =,直线l 的方程为1x my =+,抛物线方程24y x =,124y y m +=,124y y =-所以R 的纵坐标1222R y y y m +==,将R 的纵坐标2m 代入1x my =+,得221x m =+,所以R 的坐标()221,2m m +,易知抛物线的准线为=1x -,又因为l 与C 的准线交于点P ,所以P 的坐标21,m ⎛⎫-- ⎪⎝⎭,则直线OP 的方程为2m x y =,把2mx y =代入24y x =,得22y my =,即2y m =或0y =,因为点Q 异于原点,从而Q 的纵坐标为2m ,把2y m =代入2m x y =,得22mx y m ==,所以()2,2Q m m ,因为R 的坐标()221,2m m +,所以R ,Q 的纵坐标相同,所以直线//QR x 轴,且222211QR m m m =+-=+,所以MNQ △面积1212MNQ MRQ NRQ S S S QR y y =+=- ,因为()22212121241616y y y y y y m -=+-=+,所以12y y -==,所以()332222112122MNQS m m QR =+⨯=+= ,因为点Q 异于原点,所以0m ≠,所以210m +>,因为3QR ≤,所以13QR <≤,所以3222QR <≤MNQ △面积的取值范围为(.7.(2024·浙江丽水·二模)已知抛物线2:4E y x =,点,,A B C 在抛物线E 上,且A 在x 轴上方,B 和C 在x 轴下方(B 在C 左侧),,A C 关于x 轴对称,直线AB 交x 轴于点M ,延长线段CB 交x 轴于点Q ,连接QA .(1)证明:OM OQ为定值(O 为坐标原点);(2)若点Q 的横坐标为1-,且89MB MC ⋅= ,求AQB 的内切圆的方程.【答案】(1)1(2)221499x y ⎛⎫-+=⎪⎝⎭【分析】(1)根据已知条件作出图形,设出直线AB 的方程,与抛物线联立,利用韦达定理及直线的点斜式方程即可求解;(2)根据(1)的结论及向量的数量积的坐标表示,进而得出直线AB 的方程,利用直线的斜率公式及直线的点斜式方程,结合角平分线的性质及圆的标准方程即可求解.【详解】(1)设直线AB 的方程为()()()11220,,,,x my t m A x y B x y =+>,则()()11,,,0C x y M t -,由24x my ty x =+⎧⎨=⎩,消去x ,得2440y my t --=,()22Δ1600m t m t =+>⇒+>,所以12124,4y y m y y t +==-,直线BC 的方程为()211121y y y y x x x x ++=--,化简得1221214y y xy y y y y =---,令0y =,得124Q y y x t ==-,所以(),0Q t -因此1OM t OQt==-.(2)因为点Q 的横坐标为1-,由(1)可知,()()1,0,1,0Q M -,设QA 交抛物线于D ,()()()()11221144,,,,,,,A x y B x y C x y D x y -,如图所示又由(1)知,124y y =-,同理可得144y y =,得42y y =-,又()212121211242x x my my m y y m +=+++=++=+,()22212121214416y y y y x x =⋅==,又()()22111,,1,MB x y MC x y =-=-- ,则()()()221121212111444MB MC x x y y x x x x m ⋅=---=-+++=- ,故2844,9m -=结合0m >,得m =所以直线AB的方程为330,x -=又12163y y -===,则141414221214141412443444AD y y y y y y k y y x x x x y y y y ---======--+--,所以直线AD 的方程为3430x y -+=,设圆心(,0)(11)T s s -<<,因为QM 为AQB ∠的平分线,故点T 到直线AB 和直线AD 的距离相等,所以333354s s +-=,因为11s -<<,解得19s =,故圆T 的半径33253s r +==,因此圆T 的方程为221499x y ⎛⎫-+= ⎪⎝⎭.8.(2024·江苏苏州·模拟预测)已知点(1,0)A ,(0,1)B ,(1,1)C 和动点(,)P x y 满足2y 是PA PB ⋅ ,PA PC ⋅的等差中项.(1)求P 点的轨迹方程;(2)设P 点的轨迹为曲线1C 按向量31,416a ⎛⎫=- ⎪⎝⎭平移后得到曲线2C ,曲线2C 上不同的两点M ,N 的连线交y 轴于点(0,)Q b ,如果MON ∠(O 为坐标原点)为锐角,求实数b 的取值范围;(3)在(2)的条件下,如果2b =时,曲线2C 在点M 和N 处的切线的交点为R ,求证:R 在一条定直线上.【答案】(1)23122y x x =-+;(2)0b <或1b >;(3)证明见解析.【分析】(1)根据题意,由平面向量的坐标运算,结合等差中项的定义代入计算,即可得到结果;(2)根据题意,由平移公式可得曲线2C 的方程,然后与直线MN 的方程联立,由平面向量的夹角公式,代入计算,即可得到结果;(3)根据题意,求导可得在点,M N 处的切线方程,联立两条切线方程,代入计算,即可得到结果.【详解】(1)由题意可得(1,)PA x y =-- ,(,1)PB x y =-- ,(1,1)PC x y =--,则22(1)()()(1)PA PB x x y y x y x y ⋅=-⋅-+-⋅-=+--,22(1)(1)()(1)21PA PC x x y y x y x y ⋅=-⋅-+-⋅-=+--+,又2y 是PA PB ⋅ ,PA PC ⋅的等差中项,()()22222212x y x y x y x y y ∴+--++--+=,整理得点(,)P x y 的轨迹方程为23122y x x =-+.(2)由(1)知2131:22C y x x =-+,又31,416a ⎛⎫=- ⎪⎝⎭ ,∴平移公式为34116x x y y ⎧=-⎪⎪⎨⎪=+'⎩'⎪即34116x x y y ⎧=+⎪⎪⎨⎪=-'⎩'⎪,代入曲线1C 的方程得到曲线2C 的方程为:213331164242y x x ''⎛⎫⎛⎫-=+-++ ⎪ ⎪⎝⎭⎝⎭',即2y x ¢¢=.曲线2C 的方程为2y x =.如图由题意可设M ,N 所在的直线方程为y kx b =+,由2y x y kx b⎧=⎨=+⎩消去y 得20x kx b --=,令()11,M x y ,()()2212,N x y x x ≠,则1212x x kx x b +=⎧⎨=-⎩,()()21111,,OM x y x x ∴== ,()()22222,,ON x y x x == ,又MON ∠ 为锐角,cos 0||||OM ONMON OM ON ⋅∴∠=>⋅,即2212120||||x x x x OM ON +>⋅ ,2212120x x x x ∴+>,又12x x b =-,2()0b b ∴-+->,得0b <或1b >.(3)当2b =时,由(2)可得12122x x kx x b +=⎧⎨=-=-⎩,对2y x =求导可得2y x '=,∴抛物线2C 在点,()211,M x x ∴=,()222,N x x 处的切线的斜率分别为12M k x =,22N k x =,∴在点M ,N 处的切线方程分别为()2111:2M l y x x x x -=-,()2222:2N l y x x x x -=-,由()()()211112222222y x x x x x x y x x x x ⎧-=-⎪≠⎨-=-⎪⎩,解得交点R 的坐标(,)x y .满足12122x x x y x x +⎧=⎪⎨⎪=⋅⎩即22k x y ⎧=⎪⎨⎪=-⎩,R ∴点在定直线=2y -上.【点睛】关键点点睛:本题主要考查了曲线的轨迹方程问题以及切线问题,难度较大,解答本题的关键在于联立方程结合韦达定理计算以及转化为坐标运算.9.(2024·江苏南通·二模)已知双曲线E 的渐近线为y =,左顶点为()A .(1)求双曲线E 的方程;(2)直线:l x t =交x 轴于点D ,过D 点的直线交双曲线E 于B ,C ,直线AB ,AC 分别交l 于G ,H ,若O ,A ,G ,H 均在圆P 上,①求D 的横坐标;②求圆P 面积的取值范围.【答案】(1)2213x y -=(2)①⎫⎪⎪⎭;②27π16S >且7π4S ≠【分析】(1)根据渐近线方程及顶点求出,a b 得双曲线方程;(2)①设(),0D t ,由四点共圆可得1AG OH k k ⋅=,根据斜率公式转化为,B C 点坐标表示形式,由直线与双曲线联立得出根与系数的关系,据此化简即可求出t ;②求出G 点坐标得出OG ,利用正弦定理求出外接圆的半径,根据均值不等式求出半径的最值,即可得出圆面积的最值.【详解】(1)因为双曲线的渐近线关于坐标轴及原点对称,又顶点在x 轴上,可设双曲线的方程为22221x y a b-=(0a >,0b >),从而渐近线方程为:b y x a =±,由题条件知:b a =因为双曲线的左顶点为()A ,所以a =1b =,所以双曲线的方程为:2213x y -=.(2)如图,①(),0D t ,设直线BC 的方程为:my x t =-,将x my t =+代入方程:22330x y --=,得()2223230m y mty t -++-=,当230m -≠且()22Δ1230t m =+->时,设()11,B x y ,()22,C x y ,则12223mt y y m +=--,212233t y y m -=-.设直线AG 的倾斜角为α,不妨设π02α<<,则π2AGH α∠=-,由于O ,A ,G ,H 四点共圆知:HOD AGH ∠=∠,所以直线OH 的倾斜角为π2α-,πsin πsin 2tan tan 1π2cos cos 2AG OH k k αααααα⎛⎫- ⎪⎛⎫⎝⎭⋅=⋅-=⨯= ⎪⎛⎫⎝⎭- ⎪⎝⎭.直线AC的方程为:y x =,令x t =,则y =H t ⎛ ⎝,所以OH k=AGABk k==1=((1212t y y t x x ⇒=,又11x my t =+,22xmy t =+代入上式得:((1212t y yt my t my t =++,((()(22121212t y y t m y y m t y y t ⎡⎤⇒=+++⎢⎥⎣⎦,(((2222222332333t t mtt t m m t t m m m ⎛⎤---⇒⋅=⋅+⋅++ ⎥---⎝⎦,化简得:2430t +-=,解得:t =(舍)或t =故点D 的坐标为⎫⎪⎪⎭.②直线AG 的方程为(tan y x α=⋅,由①知:t =所以G α⎫⎪⎪⎭.直线OH 方程;1tan y x α=,所以H ,若G ,H 在x 轴上方时,G 在H 的上方,即tan 0α>α>若G ,H 在x 轴下方时,即t an 0α<α<所以tan α>tan α<又直线AG 与渐近线不平行,所以tan α≠所以0πα<<,tan α>tan α<tan α≠因为OG ==设圆P 的半径为R ,面积为S ,则2sin OG R α==所以()()()2222222125tan 125tan sin cos 3164sin 64sin R αααααα+⋅++=⨯=⨯()()22222125tan 1tan 33125tan 2664tan 64tan ααααα++⎛⎫=⨯=++ ⎪⎝⎭327266416⎛⎫≥= ⎪ ⎪⎝⎭,当且仅当22125tan tan αα=即tan α=tan α>tan α<tan α≠所以22716R >且274R ≠,从而27π16S >且7π4S ≠.【点睛】关键点点睛:本题的关键点在于利用直线的倾斜角与圆的内接四边形的角的关系,得出πsin πsin 2tan tan 1π2cos cos 2AG OHk k αααααα⎛⎫- ⎪⎛⎫⎝⎭⋅=⋅-=⨯= ⎪⎛⎫⎝⎭- ⎪⎝⎭这一关键数量关系,再转化为直线与双曲线相交,利用根与系数的关系化简求参数的常规问题.10.(2024·江苏南京·二模)已知抛物线2:2(0)C y px p =>与双曲线2222:1x y E a b-=(0a >,0b >)有公共的焦点F ,且4p b =.过F 的直线1与抛物线C 交于A ,B 两点,与E 的两条近线交于P ,Q 两点(均位于y 轴右侧).(1)求E 的渐近线方程;(2)若实数λ满足1111||||||||OP OQ AF BF λ⎛⎫+=- ⎪⎝⎭,求λ的取值范围.【答案】(1)y x =(2)10,2⎡⎫⎪⎢⎣⎭【分析】(1)由两曲线有公共的焦点F ,且4p b =,得2c b =,a ,可求渐近线方程;(2)通过设直线方程,联立方程组,借助韦达定理,表示出11||||OP OQ +和11||||AF BF -,由1111OP OQ AF BF λ⎛⎫+=- ⎪⎪⎝⎭求λ的取值范围.【详解】(1)抛物线2:2(0)C y px p =>与双曲线2222:1x y E a b-=(0a >,0b >)有公共的焦点F ,设双曲线E 的焦距为2c ,则有2pc =,又4p b =,则2c b =.由222+=a b c,得a ,所以E的渐近线的方程为y =(2)设:l x my c =+,()()1122,,,P x y Q x y ,1与E 的两条近线交于P ,Q 两点均位于y 轴右侧,有23m <,由x my cy x =+⎧⎪⎨=⎪⎩,解得1y =2y =,11112OP OQ y +=+设()()3344,,,A x y B x y , 由22x my cy px=+⎧⎨=⎩,消去x 得2220y pmx p --=,则有234342,y y pm y y p +==-,1AF2p =由1111OP OQ AF BF λ⎛⎫+=- ⎪⎪⎝⎭,2pc =,有2p λ==由23m <⎡∈⎢⎣,所以10,2λ⎡⎫∈⎪⎢⎣⎭.【点睛】方法点睛:解答直线与圆锥曲线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系,涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形,强化有关直线与圆锥曲线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.11.(2024·重庆·三模)已知()2,0F ,曲线C 上任意一点到点F 的距离是到直线12x =的距离的两倍.(1)求曲线C 的方程;(2)已知曲线C 的左顶点为A ,直线l 过点F 且与曲线C 在第一、四象限分别交于M ,N 两点,直线AM 、AN 分别与直线12x =交于P ,H 两点,Q 为PH 的中点.(i )证明:QF MN ⊥;(ii )记PMQ ,HNQ ,MNQ 的面积分别为1S ,2S ,3S ,则123S S S +是否为定值?若是,求出这个定值;若不是,请说明理由.【答案】(1)2213y x -=(2)(i )证明见解析;(ii )是,12【分析】(1)设曲线C 上任意一点坐标为(),x y ,利用坐标可得曲线C 的方程;(2)(i)设直线MN :2x my =+,()11,M x y ,()22,N x y ,联立方程组可得1221231my y m +=--,122931y y m =-,求得直线AM :()1111y y x x =++,求得P ,H ,进而可得Q 的坐标,求得FQ 的坐标,直线MN 的方向向量的坐标,利用向量法可证结论.(ii) 法一:利用(i )可求得()226113mMN m +=-;QF=()()322329112213m S MN QF m+=⋅=-,进而求得()1212114S S PH x x +=⋅+-,代入运算可求得()()32212291413m S S m++=-,可求结论.法二:(利用双曲线的第二定义)由(1)知,1122MF x ⎛⎫=- ⎪⎝⎭,同理2122NF x ⎛⎫=- ⎪⎝⎭,计算可得1218S S PH MN +=⋅,又312S MN QF =⋅,12314PH S S S QF +=,进而计算可得结论成立.【详解】(1)设曲线C 上任意一点坐标为(),x y ,则由题意可知:()2222222212444441123y x y x x x y x x x ⎛⎫-+=-⇒-++=-+⇒-= ⎪⎝⎭,故曲线C 的方程为2213y x -=.(2)(i)设直线MN :2x my =+,()11,M x y ,()22,N x y ,其中m <<且11x >,21x >()22222311290330x my m y my x y =+⎧⇒-++=⎨--=⎩,故1221231my y m +=--,122931y y m =-;直线AM :()1111y y x x =++,当12x =时,()11321y y x =+,故()1131,221y P x ⎛⎫⎪ ⎪+⎝⎭,同理()2231,221y H x ⎛⎫⎪ ⎪+⎝⎭,Q 为PH 中点,故()()()()1221121212111332211411Q y x y x y y y x x x x +++⎛⎫=⋅+=⋅ ⎪++++⎝⎭;()()()()()()222212121212293693111333931m m m x x my my m y y m y y m -+-++=++=+++=-2931m =--;(*)()()()()()122112211212221836181133233131m m my x y x y my y my my y y y m m -+++=+++=++==---;故3183492Q m m y =⋅=,即13,22m Q ⎛⎫⎪⎝⎭,则33,22m FQ ⎛⎫=- ⎪⎝⎭ ,直线MN 的方向向量(),1a m =,33022m m a FQ ⋅=-+= ,故QF MN ⊥.(ii)法一:12y y -===(**)故()2226113m MN y m +=-=-;QF==又QF MN ⊥,故()()322329112213mSMN QF m+=⋅=-.()12121211111122224S S PQ x HQ x PH x x ⎛⎫⎛⎫+=⋅-+⋅-=⋅+- ⎪ ⎪⎝⎭⎝⎭;()()222121222311293133113m m m x x m y y m m +-+-+-=++==--;()()()()()()1221121212113332121211y x y x y y PH x x x x +-+=-=++++,()()()()()()12211212123339211211y my y my y y x x x x +-+-==++++,由(*)知()()12291113x x m ++=-,由(**)知12y y -=,故291329m PH -==故()()()3222122231911413413m mS S m m+++=⋅=--,则12312S S S +=.法二:(利用双曲线的第二定义)由(1)知,1122MF x ⎛⎫=- ⎪⎝⎭,同理2122NF x ⎛⎫=- ⎪⎝⎭,故()()12121111488S S PH x x PH MF NF PH MN +=+-=⋅+=⋅,又312S MN QF =⋅,故12314PH S S S QF +=,又()()12129411P H y y y y x x =++,且由(*)知229993194431P Hm y y m -==--,记直线PH 与x 轴相交于点K ,由94P Hy y =可得2PK HK FK ⋅=,即PK FK FK HK =,即PKF PFH ∽△△,故PF HF ⊥;又Q 为PH 的中点,故12QF PH =,即1231142PH S S S QF +==.【点睛】方法点睛:直线与双曲线联立问题第一步:设直线方程:有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,都可设出直线方程.。
圆锥曲线大题精选(含答案解析)(适合文理科)

1.过抛物线外一点M 作抛物线的两条切线,两切点的连线段称为点M 对应的切点弦已知抛物线为24x y =,点P ,Q 在直线l :1y =-上,过P ,Q 两点对应的切点弦分别为AB ,CD()1当点P 在l 上移动时,直线AB 是否经过某一定点,若有,请求出该定点的坐标;如果没有,请说明理由()2当AB CD ⊥时,点P ,Q 在什么位置时,PQ 取得最小值?详解:()1设()11,A x y ,()22,B x y ,()0,1P x -,则2114x y =,2224x y =,抛物线的方程可变形为214y x =,则'2x y =, ∴直线PA 的斜率为01'|2PA x x xk y ===,∴直线PA 的方程()1112xy y x x -=-,化简()112x x y y =+,同理可得直线PB 的方程为()222x x y y =+,由()0,1P x -可得()()011x 2102221x y x x y =-⎧⎪=-⎨⎪⎩,∴直线AB 的方程为()021x x y =-,则{1x y ==是方程的解, ∴直线AB 经过定点()0,1.()2设(),1P P x -,(),1Q Q x -,由()1可知2PAB x k =,2Q CD x k =, AB CD ⊥,14P Q AB CD x x k k ∴⋅==-,即4P Q x x =-,P x ∴,Q x 异号,不妨设0P x >,则0Q x <,且4Q Px x =-, 44P Q P Q P PPQ x x x x x x ∴=-=-=+≥,当且仅当2P x =,2Q x =-时取等号, 即当()2,1P --,()2,1Q --时,PQ 取得最小值42.已知椭圆()2222:10x y C a b a b +=>>A ,下顶点为B ,定点()0,2C ,ABC ∆的面积为3,过点C 作与y 轴不重合的直线l 交椭圆C 于,P Q 两点,直线,BP BQ 分别与x 轴交于,M N 两点.(1)求椭圆C 的方程;(2)试探究,M N 的横坐标的乘积是否为定值,说明理由. 【详解】(1)由已知,,A B 的坐标分别是()(),0,0,A a B b -由于ABC ∆的面积为3,1(2)32b a ∴+=,又由e =2a b =, 解得:=1b ,或=3b -(舍去),2,=1a b ∴=∴椭圆方程为2214x y +=;(2)设直线PQ 的方程为2y kx =+,,P Q 的坐标分别为()()1122,,,P x y Q x y则直线BP 的方程为1111y y x x +=-,令0y =,得点M 的横坐标111M xx y =+ 直线BQ 的方程为2211y y x x +=-,令0y =,得点N 的横坐标221N x x y =+ 1212(1)(1)M N x x x x y y ∴⋅=++1212(3)(3)x x kx kx =++12212123()9x x k x x k x x =+++把直线2y kx =+代入椭圆2214x y +=得22(14)16120k x kx +++=由韦达定理得1221214x x k =+,1221614kx x k +=-+ ∴222221214124891414M N k x x k k k k +==-+++22212412489363k k k =-++,是定值.3.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,,F F M 为椭圆上一动点,当12MF F ∆的面积最大时,其内切圆半径为3b,设过点2F 的直线l 被椭圆C 截得线段RS ,当l x ⊥轴时,3RS =. (1)求椭圆C 的标准方程;(2)若点A 为椭圆C 的左顶点,,P Q 是椭圆上异于左、右顶点的两点,设直线,AP AQ 的斜率分别为12,k k ,若1214k k =-,试问直线PQ 是否过定点?若过定点,求该定点的坐标;若不过定点,请说明理由. 详解:(1)由题意及三角形内切圆的性质可得112(22)223b c b a c ⋅⋅=+⋅,得12c a =①将x c =代入22221x y a b+=,结合222a b c =+②,得2b y a =±,所以223b a =③,由①②③得2,a b ==故椭圆C 的标准方程为22143x y +=(2)设点,P Q 的坐标分别为11,x y (),22,x y (). ①当直线PQ 的斜率不存在时,由题意得331122P Q -(,),(,)或331122P Q -(,),(,),直线PQ 的方程为1x =②当直线PQ 的斜率存在时,设直线PQ 的方程为y kx m =+,联立得22143x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 得2224384120k x kmx m +++-=(), 由222222644(43)(412)48(43)0k m k m k m ∆=-+-=-+>,得2243k m +>21212228412,.(1)4343km m x x x x k k -+=-=++) 由1212121,(2)(2)4y y k k x x ==-++可得12124(2)(2)0y y x x +++=,得12124()()(2)(2)0kx m kx m x x +++++=,整理得221212(41)(42)()440,(2)k x x km x x m ++++++= 由(1)和(2)得2220m km k --=,解得2m k =或m k =-当2m k =时,直线PQ 的方程为2y kx k =+,过定点(2,0)-,不合题意; 当m k =-时,直线PQ 的方程为y kx k =-,过定点(1,0), 综上直线PQ 过定点,定点坐标为(1,0).4.已知椭圆()2222:10x y C a b a b+=>>的焦距为4,且过点(P .(1)求椭圆C 的标准方程;(2)设()()0000,0Q x y x y ≠为椭圆C 上一点,过点Q 作x 轴的垂线,垂足为E,取点(0,A ,连接AE ,过点A 作AE 的垂线交x 轴于点D ,点G 是点D 关于y 轴的对称点,作直线QG ,问这样作出的直线QG 是否与椭圆C 一定有唯一的公共点?并说明理由. 详解:(1)因为焦距为4,所以224a b -=,又因为椭圆C过点(P ,所以22421a b +=,故28a =,24b =,从而椭圆C 的方程为22184x y +=已知椭圆()2222:10x y C a b a b+=>>的焦距为4,且过点(P .(2)由题意,E 点坐标为()0,0x ,设(),0D D x ,则(0,AE x =-,(,D AD x =-,再由AD AE ⊥知,0AE AD ⋅=,即080D x x +=. 由于000x y ≠,故08D x x =-,因为点G 是点D 关于y 轴的对称点,所以点08,0G x ⎛⎫ ⎪⎝⎭. 故直线QG 的斜率00020088QG y x y k x x x =--=.又因()00,Q x y 在椭圆C 上,所以220028x y +=.①从而002QG x k y =-,故直线QG 的方程为00082x y x y x ⎛⎫=-- ⎪⎝⎭② 将②代入椭圆C 方程,得()222200021664160nxy x x x y +-+-=③再将①代入③,化简得:220020x x x x -+=解得0x x =,0y y =,即直线OG 与椭圆C 一定有唯一的公共点.5.在平面直角坐标系xOy 中,已知过点()4,0D 的直线l 与椭圆22:14x C y +=交于不同的两点()11,A x y ,()22,B x y ,其中120y y ≠.(1)若10x =,求OAB 的面积;(2)在x 轴上是否存在定点T ,使得直线TA 、TB 与y 轴围成的三角形始终为等腰三角形. 【详解】(1)当10x =时,代入椭圆方程可得A 点坐标为()0,1或()0,1- 若A 点坐标为()0,1,此时直线l :440x y +-=联立2244044x y x y +-=⎧⎨+=⎩,消x 整理可得25830y y -+= 解得11y =或235y =,故B 83,55⎛⎫ ⎪⎝⎭ 所以OAB 的面积为1841255⨯⨯= ()0,1A -若点坐标为,由对称性知OAB 的面积也是45,综上可知,当10x =时,OAB 的面积为45. (2)显然直线l 的斜率不为0,设直线l :4x my =+联立22444x my x y =+⎧⎨+=⎩,消去x 整理得()2248120m y my +++= 由()226441240m m =-⨯+>,得212m >则12284m y y m +=-+,122124y y m =+ , 因为直线TA 、TB 与y 轴围成的三角形始终为等腰三角形,所以0TA TB k k += 设(),0T t ,则()()()()()()()()122112121212111224TA TB y x t y x t my y t y y y y k k x t x t x t x t x t x t -+-+-++=+==------,即()()()()1212222848124240444m t m t m my y t y y m m m --+-+=+==+++,解得1t =.故x 轴上存在定点()1,0T ,使得直线TA 、TB 与y 轴围成的三角形始终为等腰三角形.6.已知椭圆2222:1x y C a b +=(0a b >>⎛- ⎝⎭. (1)求椭圆C 的方程; (2)过点)作直线l 与椭圆C 交于不同的两点A ,B ,试问在x 轴上是否存在定点Q使得直线QA 与直线QB 恰关于x 轴对称?若存在,求出点Q 的坐标;若不存在,说明理由. 【详解】 (1)ca =,22131a4b +=,又222a b c -=,解得2a 4=,2b 1=.所以,椭圆C 的方程为22x y 14+=(2)存在定点Q ⎫⎪⎪⎝⎭,满足直线QA 与直线QB 恰关于x 轴对称. 设直线l的方程为x my 0+=,与椭圆C 联立,整理得,()224m y 10+--=.设()22B x ,y ,11x xy y 12+=,定点()Q t,0.(依题意12t x ,t x )≠≠则由韦达定理可得,12y y +=,1221y y 4m -=+.直线QA 与直线QB 恰关于x 轴对称,等价于AQ,BQ 的斜率互为相反数.所以,1212y y0x t x t+=--,即得()()1221y x t y x t 0-+-=.又11x my 0+=,22x my 0+=,所以,))1221y my t y my t 0-+-=,)()1212t y y 2my y 0+-=.从而可得,)21t 2m 04m-⋅=+,即()2m 40=,所以,当t =,即Q ⎫⎪⎪⎝⎭时,直线QA 与直线QB 恰关于x 轴对称成立. 特别地,当直线l 为x轴时,Q ⎫⎪⎪⎝⎭也符合题意. 综上所述,存在x轴上的定点Q ⎫⎪⎪⎝⎭,满足直线QA 与直线QB 恰关于x 轴对称.7.设椭圆22:182x y C +=,过点()2,1A 的直线AP ,AQ 分别交C 于不同的两点P 、Q ,直线PQ 恒过点()4,0B(1)证明:直线AP ,AQ 的斜率之和为定值;(2)直线AP ,AQ 分别与x 轴相交于M ,N 两点,在x 轴上是否存在定点G ,使得GM GN ⋅为定值?若存在,求出点G 的坐标,若不存在,请说明理由.【详解】(1)设()()()()112234,,,,,0,,0P x y Q x y M x N x ,直线PQ AP AQ 、、的斜率分别为12,,k k k ,由()22448y k x x y ⎧=-⎨+=⎩得()222214326480k x k x k +-+-= >0∆,可得:222121222132648,,41414k k k x x x x k k -<+==++,()()()()12121212121212121241412(61)16411222224k x k x kx x k x x k y y k k x x x x x x x x -----++++--+=+=+=-----++2222222222648322(61)16416414814164832164241414k k k k k k k k k k k k k-⋅-+⋅++-++-+===----⋅+++(2)由()112y k x -=-,令0y =,得3112x k =-,即112,0M k ⎛⎫- ⎪⎝⎭ 同理4212x k =-,即212,0N k ⎛⎫- ⎪⎝⎭,设x 轴上存在定点()0,0G x 则 ()()20000121212111112222GM GN x x x x k k k k k k ⎛⎫⎛⎫⎛⎫⋅=--⋅--=-+-⋅++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()212001212122k k x x k k k k ⎛⎫+=-+-⋅+ ⎪⎝⎭()()20012121122x x k k k k ⎛⎫-=-+-⋅+⎪⎝⎭,要使GM GN ⋅为定值,即0021,3x x -==故x 轴上存在定点()3,0G 使GM GN ⋅为定值,该定值为18.如图,已知抛物线E :y 2=4x 与圆M :(x -3)2+y 2=r 2(r>0)相交于A ,B ,C ,D 四个点.(1)求r 的取值范围;(2)设四边形ABCD 的面积为S ,当S 最大时,求直线AD 与直线BC 的交点P 的坐标. 【详解】(1)联立抛物线与圆的方程22224,(3),y x x y r ⎧=⎨-+=⎩消去y ,得x 2-2x+9-r 2=0.由题意可知x 2-2x+9-r 2=0在(0,+∞)上有两个不等的实数根,所以2244(9)0,90,r r ⎧∆=-->⎨->⎩解得3,即r. (2)根据(1)可设方程x 2-2x+9-r 2=0的两个根分别为x 1,x 2(0<x 1<x 2),则A (x 1),B (x 1, -C (x 2, -D (x 2且x 1+x 2=2,x 1x 2=9-r 2, 所以S=12(AB +CD )·(x 2-x 1)=12x 2-x 1) ==令∴(0,1),f (t )=S 2=4(2+2t )(4-4t 2)= -32(t 3+t 2-t -1), f'(t )= -32(3t 2+2t -1)= -32(t+1)(3t -1),可得f (t )在(0,13)上单调递增,在(13,1)上单调递减,即当t=13时,四边形ABCD 的面积取得最大值. 根据抛物线与圆的对称性,可设P 点坐标为(m ,0),由P ,A ,D 三点共线,21=1整理得m=--t=-13, 所以点P 的坐标为(-13,0).9.设椭圆()2222:10,0x y C a b a b +=>>,离心率e =,短轴2b =点,以坐标轴为对称轴,焦点为()0,1, (1)求椭圆和抛物线的方程;(2)设坐标原点为O ,A 为抛物线上第一象限内的点,B 为椭圆是一点,且有OA OB ⊥,当线段AB 的中点在轴上时,求直线AB 的方程. 【详解】 (1)由2e =得a =,又有b =222a b c =+,解得a = 所以椭圆方程为2212010y x +=由抛物线的焦点为()0,1得,抛物线焦点在y 轴,且12p=, 抛物线的方程为:24x y =(2)由题意点A 位于第一象限,可知直线OA 的斜率一定存在且大于0 设直线OA 方程为:y kx =,0k >联立方程24y kx x y=⎧⎨=⎩得:24x kx =,可知点A 的横坐标4A x k =,即()24,4A k k因为OA OB ⊥,可设直线OB 方程为:1y x k=-连立方程22112010y x k y x ⎧=-⎪⎪⎨⎪+=⎪⎩得:2222012k x k =+,从而得x =若线段AB 的中点在y轴上,可知B x =B ⎛ ⎝有4k =0k >,解得k =从而得12A ⎫⎪⎭,()B 直线AB的方程:8180y +-=10.已知中心在原点的椭圆C 1和抛物线C 2有相同的焦点(1,0),椭圆C 1过点31,2G ⎛⎫⎪⎝⎭,抛物线2C 的顶点为原点.(1)求椭圆C 1和抛物线C 2的方程;(2)设点P 为抛物线C 2准线上的任意一点,过点P 作抛物线C 2的两条切线PA ,PB ,其中A 、B 为切点.设直线PA ,PB 的斜率分别为k 1,k 2,求证:k 1k 2为定值;②若直线AB 交椭圆C 1于C ,D 两点,S ∴PAB ,S ∴PCD 分别是∴PAB ,∴PCD 的面积,试问:PAB PCDSS是否有最小值?若有,求出最小值;若没有,请说明理由. 【详解】(1)因为抛物线C 2有相同的焦点(1,0),且顶点为原点,所以12p=,所以2p =, 所以抛物线2C 的标准方程为24y x =,设椭圆方程为22221x ya b +=,则1c =且222211914a b ab ⎧-=⎪⎨+=⎪⎩,解得224,3a b ==, 所以椭圆1C 的方程为:22143x y +=.(2)①证明:设(1,)P t -,过点P 与抛物线24y x =相切的直线为(1)y t k x -=+,由2(1)4y t k x y x -=+⎧⎨=⎩,消去x 得24440t y y k k -++=, 由∴=244()4(4)0tkk--+=,得210k tk +-=, 则121k k =-.②设1122(,),(,)A x y B x y 由①得112,y k =222y k =,则12221211,x x k k ==,所以直线AB 的方程为211121()y y y y x x x x --=--,所以211222122(1)11k k y y x k k --=--,即122(1)y x k k =--+,即直线AB 恒过定点(1,0),设点P 到直线AB 的距离为d ,所以PAB PCDS S1||||21||||2d AB AB CD d CD ⋅==⋅,当直线AB 的斜率存在时,设直线AB 的方程为(1)y k x =-, 设3344(,),(,)C x y D x y ,由24(1)y xy k x ⎧=⎨=-⎩,消去y 得2222(24)0k x k x k -++=, 0k ≠时,∴0>恒成立,||AB == 224(1)k k+=, 由22143(1)x y y k x ⎧+=⎪⎨⎪=-⎩消去y 得2222(34)84120k x k x k +-+-=,∴0>恒成立,则||CD == 2212(1)34k k+=+. 所以22224(1)12(1)34PAB PCD k S k k S k+=++22234144333k k k +==+>, 当直线AB 的斜率不存在时,直线AB 的方程为1x =,此时||4AB =,||3CD =,PAB PCDS S43=, 所以PAB PCDS S的最小值为43.11.已知过圆1C :221x y +=上一点12E ⎛ ⎝⎭的切线,交坐标轴于A 、B 两点,且A 、B 恰好分别为椭圆2C :()222210x y a b a b+=>>的上顶点和右顶点.(1)求椭圆2C 的方程;(2)已知P 为椭圆的左顶点,过点P 作直线PM 、PN 分别交椭圆于M 、N 两点,若直线MN 过定点()1,0Q -,求证:PM PN ⊥. 【详解】(1)直线OE l的方程为y ,则直线AB l的斜率AB k =. 所以AB l:y x =A ⎛ ⎝⎭,()2,0B ,椭圆方程为:221443x y +=; (2)①当MN k 不存在时,()1,1M -,()1,1N --,因为()()1,11,10PM PN ⋅=-⋅--=,所以PM PN ⊥.②当MN k 存在时,设()11,M x y ,()22,N x y ,MN l :()1y k x =+,联立()2211443y k x x y ⎧=+⎪⎪⎨+=⎪⎪⎩得:()2222136340k x k x k +++-=.所以2122613k x x k +=-+,21223413k x x k-=+,又已知左顶点P 为()2,0-, ()()()11221212122,2,24x y x y x x x x y y PM PN +⋅+=+++⋅=+,又()()()212121212111y y k x k x k x x x x =++=+++22313k k-=+, 所以222222341234131313k k k PM PN k k k --⋅=-+++++2222234124123013k k k k k --++-==+,所以PM PN ⊥.综上PM PN ⊥得证.12.已知椭圆C :()222210x y a b a b+=>>的左右顶点分别为(),0A a -,(),0B a ,点P 是椭圆C 上异于A 、B 的任意一点,设直线PA ,PB 的斜率分别为1k 、2k ,且1213k k ⋅=-,椭圆的焦距长为4. (1)求椭圆C 的离心率;(2)过右焦点F 且倾斜角为30的直线l 交椭圆C 于M 、N 两点,分别记ABM ∆,ABN ∆的面积为1S 、2S ,求12S S -的值. 【详解】(1)设点()()000,P x y x a ≠,则2200221x y a b+=,①∵2000122200013y y y k k x a x a x a ⋅=⋅==-+--,②∴联立①②得()()222230b a x a --=,∴()2203a a b x =≠,∴22222212133a b e a a c -===-=,∴e =. (2)由题意知,24c =,即2c =,由(1)知,223a b ,∴22224a b c b =+=+,∴22b =,26a =,∴椭圆C 的方程为:22162x y +=,由已知得l:)2y x =-.联立)2223162y x x y ⎧=-⎪⎪⎨⎪+=⎪⎩,可得2210x x --=.设()11,M x y ,()22,N x y ,根据韦达定理,得122x x +=,于是)12121212S S y x x -=⨯+=+13.(本小题满分12分)记抛物线2::2C y x =-的焦点为F ,点M 在抛物线上,(3,1)N -,斜率为k 的直线l 与抛物线C 交于P Q ,两点.(1)求||||MN MF +的最小值;(2)若(2,2)M -,直线MP MQ ,的斜率都存在,且20MP MQ k k ++=;探究:直线l 是否过定点,若是,求出定点坐标;若不是,请说明理由. 【解析】(1)设抛物线C 的准线为l ',过点M 作1MM l '⊥,垂足为1M ,过点N 作1NN l '⊥,垂足为1N ,如图:则117||||||2MN MF MN MM NN +=+=,即||||MN MF +的最小值为72. (2)设直线l 的方程为()11,,y kx b P x y =+,()22,Q x y ,将直线l 与抛物线C 的方程联立得22y kx b y x=+⎧⎨=-⎩,222(22)0k x kb x b +++=,212122222,kb b x x x x k k --+== ① 又121222222MP MQ y y k k x x --+=+=-++, 即()()()()()()1221122222222kx b x kx b x x x +-+++-+=-++,()()()()12121212121222248248kx x k x x b x x x x bx x x x ++++-++-=--+-,将①代入得,222(1)0b b k b ---+=,即(1)(22)0b b k +--=,得1b =-或22b k =+, 当1b =-时,直线l 为1y kx =-,此时直线恒过(0,1)-;当22b k =+时,直线l 为22(2)2y kx k k x =++=++,此时直线恒过(2,2)M -(舍去). 综上所述,直线l 过定点(0,1)-.14.(本小题满分12分)已知抛物线2(:0)y ax a >Γ=的焦点为F ,若过F 且倾斜角为4π的直线交Γ于M ,N 两点,满足||4MN =. (I )求抛物线Γ的方程;(II )若P 为Γ上动点,B ,C 在y 轴上,圆22(1)1x y -+=内切于PBC ,求PBC 面积的最小值. 【解析】(I )抛物线2(:0)y ax a >Γ=的焦点为,04a F ⎛⎫⎪⎝⎭,则过点F 且斜率为1的直线方程为4ay x =-, 联立抛物线方程2y ax =,消去y 得:2230216a ax x -+=,设()()1122,,,M x y N x y ,则1232a x x +=, 由抛物线的定义可得12||242aMN x x a =++==,解得2a =,∴抛物线的方程为2:2y x Γ=.(II )设()00,P x y ,()0,B b ,()0,C c ,不妨设b c >,00:PB y bl y b x x --=,化简得:()0000y b x x y x b --+=,圆心()1,0到直线PB 的距离为11=,即()()()222220000002y b x y b x b y b x b -+=-+-+,不难发现02x >,上式又可化为()2000220x b y b x -+-=,同理有()2000220x c y c x -+-=,∴,b c 可以看做关于t 的一元二次方程()2000220x t y t x -+-=的两个实数根,0022y b c x -∴+=-,()()220002020042,()22x y x x bc b c x x +--=∴-=--, 由条件:2002y x =()2220042()22x x b c b c x x ∴-=∴-=--,, ()()20000014()248222PBCx S b c x x x x ∆=-==-++≥--,当且仅当04x =时取等号, ∴PBC S △面积的最小值为8.15.(本小题满分12分)已知抛物线C 的顶点为坐标原点O ,焦点F 在y 轴的正半轴上,过点F 的直线l 与抛物线相交于A ,B 两点,且满足3.4OA OB ⋅=- (1)求抛物线C 的方程;(2)若P 是抛物线C 上的动点,点,M N 在x 轴上,圆2211x y +-=()内切于PMN ∆,求PMN ∆面积的最小值. 【解析】(1)由题意,设抛物线C 的方程为22(0)x py p =>,则焦点F 的坐标为02p(,).设直线l 的方程为()()11222py kx A x y B x y =+,,,,, 联立方程得222x py p y kx ⎧=⎪⎨=+⎪⎩,消去y 得2222220,440x pkx p p k p --=∆=+>,∴221212122.4p x x pk x x p y y +==-=,,∵121234OA OB x x y y ⋅=+=-,∴ 1.p =故抛物线的方程为22x y =.(2)设()()()()0000000P x y x y M m N n ≠,,,,,,易知点M N ,的横坐标与P 的横坐标均不相同,不妨设m n >,易得直线PM 的方程为()00y y x m x m=--化简得()0000y x x m y my ---=,又圆心(0,1)到直线PM 的距离为11=,∴()()()222220000002x m y x m my x m m y -+=-+-+,不难发现02y >,故上式可化为()2000220y m x m y -+-=,同理可得()2000220y n x n y -+-=,,m n ∴可以看作是()2000220y t x t y -+-=的两个实数根,则0000222x y m n mn y y --+==--,,∴()()()2222000204484.2x y y m n m n mn y +--=+-=- ∵()00P x y ,是抛物线C 上的点,∴2002x y =,则()()222042y m n y -=-,又02y >,∴02,2y mn y =- 从而()02000000014242222PMNy y S m n y y y y y y ∆=-=⋅==-++---48≥=,当且仅当()2024y-=时取得等号,此时004,y x ==±故△PMN 面积的最小值为8.16.(12分)已知直线与抛物线:交于,两点,且2x p =C ()220y px p =>P Q POQ∆的面积为16(为坐标原点). (1)求的方程;(2)直线经过的焦点且不与轴垂直,与交于,两点,若线段的垂直平分线与轴交于点,证明:为定值.【解析】(1)将代入,得,所以的面积为. 因为,所以,故的方程为.(2)证明:由题意设直线的方程为,由,得.设,,则,所以.因为线段的中点的横坐标为,纵坐标为,所以线段的垂直平分线的方程为,令,得,所以的横坐标为,所以,故为定值.17.(12分)已知椭圆2.(1)求椭圆C 的方程;(2)设直线与椭圆C交于点E ,F ,过点E 作轴于点M ,直线FM 交椭圆C 于另一点N ,证明:. 【解析】(1)由题,,∴,, 故椭圆方程为; O C l C F l x C A B AB x D AB DF2x p =22y px =2y p =±POQ ∆21244162p p p ⨯⨯==0p >2p =C 24y x =l ()()10y k x k =-≠()214y k x y x⎧=-⎨=⎩()2222240k x k x k -++=()11,A x y ()22,B x y 212224k x x k ++=212244k x x p AB k +=++=AB 212222x x k k ++=2kAB 22212k y x k k k ⎛⎫+-=-- ⎪⎝⎭0y =223x k =+D 223k +2222312k D kF =+-=+2AB DF =2222:1(0)x y C a b a b +=>>y kx =EM x ⊥EF EN ⊥2c a =22c =a =1e =1b =2212x y +=(2)设,,,则,与椭圆方程联立得,由得,, ∴,即.18.(12分)如图,设抛物线21C x y =与()22:20C y px p =>的公共点M 的横坐标为()0t t >,过M 且与1C 相切的直线交2C 于另一点A ,过M 且与2C 相切的直线交1C 于另一点B ,记S 为MBA ∆的面积.(∴)求p 的值(用t 表示); (∴)若1,24S ⎡⎤∈⎢⎥⎣⎦,求t 的取值范围.注:若直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行也不重合,则称该直线与抛物线相切. 【解析】00(,)E x y ()00,F x y --00(),M x 000:()2FM y l y x x x =-()22222220002240x y x x y x x y x +-+-=2000220022N F N x y x x x x x y +=-=+230002200322N x y x x x y +=+()0000000000022N N ENN N N y x x y y y y y x k x x x x x x x ---===----00230000022003222y y x y x x x x y =-+-+2200000222220000000222224y y y x y x x x x y x y +=-=⋅+-+2220000000000022222y x y x x x x y x y y +-=-==-00001EN EF x y k k y x ⋅=-⋅=-EF EN⊥(∴)因点M 在抛物线1C :2x y =上,故()()2,0M t tt >,又点M 在抛物线2C :()220y px p =>上,故()222tpt =,则32t p =(∴)设点()11,A x y ,直线MA 的方程为()2y k x t t =-+,联立方程组22(),,y k x t t x y ⎧=-+⎨=⎩消去y ,得220x kx kt t -+-=,则()()222420k kt tk t ∆=--=-=,因此2k t ,即直线MA的方程为22y tx t =-则直线MA 的斜率223112211132y t y t t k t y x t y t t t --====-+-,从而212t y =-,即2,42t t A ⎛⎫- ⎪⎝⎭,同理,直线MB 的方程为222t t y x =+,点2,24t t B ⎛⎫- ⎪⎝⎭,因此2t MB t =-=2,42t t A ⎛⎫- ⎪⎝⎭到直线MB :2022t t x y -+=的距离29t d ==MBA ∆的面积23911272232t t S MB d ===,即32732t S =,因为1,24S ⎡⎤∈⎢⎥⎣⎦,即31272432t ≤≤,解得24,33t ⎡⎤∈⎢⎥⎣⎦.19.已知椭圆2222:1x y C a b+=(0a b >>)C 的短轴为直径的圆与直线:3450l x y +-=相切.(1)求C 的方程;(2)直线y x m =+交椭圆C 于()11,M x y ,()22,N x y 两点,且12x x >.已知l 上存在点P ,使得PMN △是以PMN ∠为顶角的等腰直角三角形.若P 在直线MN 右下方,求m 的值. 【解析】 (1)依题意,1b =,因为离心率c e a ===,=a = 所以椭圆C 的标准方程为2213x y +=.(2)因为直线y x m =+的倾斜角为45︒,且PMN △是以PMN ∠为顶角的等腰直角三角形,P 在直线MN 右下方,所以NP x ∥轴.过M 作NP 的垂线,垂足为Q ,则Q 为线段NP 的中点,所以()12,Q x y ,故()1222,P x x y -, 所以()12232450x x y -+-=, 即()()12232450x x x m -++-=, 整理得126450x x m ++-=.①由2233,x y y x m⎧+=⎨=+⎩得2246330x mx m ++-=. 所以223648480m m ∆=-+>,解得22m -<<, 所以1232x x m +=-,②()212314x x m =-,③ 由①-②得,112mx =-,④ 将④代入②得21x m =--,⑤将④⑤代入③得()()()3111124m m m m ⎛⎫-+=-+ ⎪⎝⎭,解得1m =-.综上,m 的值为1-.20.(12分)已知直线2x p =与抛物线C :()220y px p =>交于P ,Q 两点,且POQ∆的面积为16(O 为坐标原点). (1)求C 的方程.(2)直线l 经过C 的焦点F 且l 不与x 轴垂直,l 与C 交于A ,B 两点,若线段AB 的垂直平分线与x 轴交于点D ,试问在x 轴上是否存在点E ,使AB DE为定值?若存在,求该定值及E 的坐标;若不存在,请说明理由. 【解析】(1)将2x p =代入22y px =,得2y p =±,所以POQ ∆的面积为21244162p p p ⨯⨯==. 因为0p >,所以2p =,故C 的方程为24y x =. (2)由题意设直线l 的方程为()()10y k x k =-≠,由()21,4,y k x y x ⎧=-⎨=⎩得()2222240k x k x k -++=.设()11,A x y ,()22,B x y ,则212224k x x k ++=,所以212244||k AB x x p k+=++=. 因为线段AB 的中点的横坐标为212222x x k k++=,纵坐标为2k , 所以线段AB 的垂直平分线的方程为22212k y x k k k ⎛⎫+-=-- ⎪⎝⎭, 令0y =,得223x k =+,所以D 的横坐标为223k +,设(),0E t ,则()2223223t k DE t k k-+=+-=,()224432AB k DE t k +∴=-+, 所以当且仅当32t -=,即1t =时,AB DE为定值,且定值为2,故存在点E ,且E 的坐标为()1,0.21.已知直线l 与抛物线()2:20C x py p =>相交于,A B 两个不同点,点M 是抛物线C 在点,A B 处的切线的交点。
高三圆锥曲线复习(基础和大题含答案)

考纲要求(1)圆锥曲线①了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用;②掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质;③了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质;④了解圆锥曲线的简单应用;⑤理解数形结合的思想。
(2)曲线与方程了解方程的曲线与曲线的方程的对应关系。
基本知识回顾(1)椭圆①椭圆的定义设F1,F2是定点(称焦点),P为动点,则满足|PF1|+|PF2|=2a (其中a为定值,且2a >|F1F2|)的动点P的轨迹称为椭圆,符号表示:|PF1|+|PF2|=2a(2a>| F1F2|)。
②椭圆的标准方程和几何性质例题例1:椭圆22192x y+=的焦点为12,F F,点P在椭圆上,若1||4PF=,则2||PF=;12F PF ∠的大小为 。
变式1:已知12F 、F 是椭圆的两个焦点,p 为椭圆C 上的一点,且→→⊥21PF PF 。
若12PF F ∆的面积为9,则b = 。
例2:若点P 到点F (4,0)的距离比它到定直线x +5=0的距离小1,则P 点的轨迹方程是( )A .y 2=16-xB .y 2=32-xC .y 2=16xD .y 2=32x 变式2:动圆与定圆A :(x +2)2+y 2=1外切,且与直线∶x =1相切,则动圆圆心P 的轨迹是( ) A .直线 B .椭圆 C .双曲线 D .抛物线变式3:抛物线的顶点在原点,焦点在y 轴上,其上的点)3,(-m P 到焦点的距离为5,则抛物线方程为( ) A .y x 82=B .y x 42=C .y x 42-=D . y x 82-=变式4:在抛物线y 2=2x 上有一点P ,若 P 到焦点F 与到点A (3,2)的距离之和最小,则点P 的坐标是 。
课后作业1.已知椭圆162x +92y =1, F 1、F 2分别为它的左右焦点,CD 为过F 1的弦,则△F 2CD 的周长是( )A .10B .12C .16D .不能确定2.设P 为双曲线22112y x -=上的一点,12F F ,是该双曲线的两个焦点,若12||:||3:2PF PF =,则12PF F △的面积为( )A .B .12C .D .243.已知直线1:4360l x y -+=和直线2:1l x =-,抛物线24y x =上一动点P 到直线1l 和直线2l 的距离之和的最小值是( ) A .2 B .3 C .115D .3716答案: 例题例1、2,120°解:∵229,3a b ==,∴c ===12F F =又1124,26PF PF PF a =+==,∴22PF =,又由余弦定理,得(22212241cos 2242F PF +-∠==-⨯⨯,∴12120F PF ︒∠=,故应填2,120°。
2024高考巴蜀圆锥曲线解答题解析

2024高考巴蜀圆锥曲线解答题解析一、解答题1.(23-24高三下·重庆·阶段练习)已知抛物线()2:20E y px p =>,O 是坐标原点,过()4,0的直线与E 相交于A ,B 两点,满足OA OB ⊥.(1)求抛物线E 的方程;(2)若()0,2P x 在抛物线E 上,过()4,2Q -的直线交抛物线E 于M ,N 两点,直线PM ,PN 的斜率都存在,分别记为1k ,2k ,求12k k ⋅的值.3【点睛】方法点睛:求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.2.(23-24高三下·重庆·阶段练习)已知抛物线2:4,,C x y M N =为抛物线C 上两点,,M N 处的切线交于点()00,P x y ,过点P 作抛物线C 的割线交抛物线于,A B 两点,Q 为AB 的中点.(1)若点P 在抛物线C 的准线上,(i )求直线MN 的方程(用含0x 的式子表示);(ii )求PMN 面积的取值范围.(2)若直线MQ 交抛物线C 于另一点D ,试判断并证明直线ND 与AB 的位置关系.【答案】(1)(i )012y x =【详解】(1)(i )设点221212,,,44x x M x N x ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,因为抛物线2:4C x y =,得12y x '=,则()21111:42MP x l y x x x -=-,整理得2111124y x x x =-①,()22221:42NP x l y x x x -=-,整理得2221124y x x x =-②,联立①②得()0120121214x x x y x x ⎧=+⎪⎪⎨⎪=⎪⎩,因为点P 在抛物线C 的准线上,即直线1y =-上,所以124x x =-,设直线MN 的方程为y kx b =+,斜率必存在,联立24=+⎧⎨=⎩y kx bx y ,消去y 得2440x kx b --=,所以212012Δ161604244k b x xk x x x b ⎧=+>⎪+==⎨⎪=-=-⎩,得0121k x b ⎧=⎪⎨⎪=⎩.所以直线MN 的方程为0112y xx =+;(ii )由(i )得21x x -=(2)直线ND 与AB 平行,证明:直线AB 斜率必存在,设消去y 得20444x kx kx -++=则()2034340161610444k kx x x k x x kx ⎧-+>⎪+=⎨⎪=+⎩,得则直线(21:4MQ x l y k x x '-=-()2122011214442x k k x x x k x ----=-整理得()(221284k x x k ---则2211112842D kx k x kx x x k x -+-=-则2101284142D kx k kx y k x ⎛-+-= -⎝【点睛】方法点睛:对于直线和圆锥曲线相交的问题,我们一般联立方程,然后用韦达定理来解决问题,特别是当一个交点知道的情况下,3.(23-24高三下·重庆·阶段练习)已知()()122,0,2,0C C -,动点P 满足1PC 与2PC 的斜率之积为定值14.(1)求动点P 的轨迹Γ的方程;(2)过点()4,0M 的直线l 与曲线Γ交于,A B 两点,且,A B 均在y 轴右侧,过点A 作直线:1l x '=的垂线,垂足为D .(i )求证:直线BD 过定点;(ii )求MBD 面积的最小值.【答案】(1)(22104x y y -=≠(2)(i )证明见解析;(ii )3【分析】(1)设动点P 的坐标,由题意列式并化简,即可得答案;(2)(i )设直线方程:l x my =结合题意有(2212212240Δ644884124m m m m y y m y y m ⎧-≠⎪=-⎪⎪-⎨+=⎪-⎪⎪⋅=<-⎩解得22m -<<,且122my y =又直线BD 的方程为1y y -=令0y =,则()122111y x x y y -=--()(122121235422=y y y y y y y y ++-=-4.(23-24高三上·重庆·阶段练习)已知点00(,)P x y 是椭圆E :221(0)a b a b +=>>上的动点,离心率2e =设椭圆左、右焦点分别为12,F F ,且12|||4|PF PF +=(1)求椭圆E 的标准方程;(2)若直线12,PF PF 与椭圆C 的另一个交点分别为A ,B ,问PAB 面积是否存在最大值,若存在,求出最大值;若不存在,请说明理由.【点睛】方法点睛:圆锥曲线中最值或范围问题的常见解法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,(2)代数法,若题目的条件和结论能体现某种明确的函数关系,则可首先建立目标函数,再求这个函数的最值或范围.5.(23-24高三上·重庆·期中)已知椭圆C :()2210a b a b+=>>的左、右焦点分别为()()121,01,0F F -,,椭圆C 上一动点A 在第二象限内,点A 关于x 轴的对称点为点B ,当AB 过焦点1F 时,直线2AF 过点30,4⎛⎫⎪⎝⎭.(1)求椭圆C 的方程;(2)点B 与焦点2F 所在直线交椭圆C 于另一点P ,直线AP 交x 轴于点T ,求TAB △面积最大时,点A 横坐标的值.【答案】(1)22143x y +=(2)13-设直线PB 的方程为1x my =+,联立得()2234690m y my ++-=,由于直线则12122269,343m y y y y m m -+=-=++直线PA 的方程为(21121y y y y x x ++=-令0y =,得(1121212y my y x y x x y y ==++即(4,0)T ;()()1114||432TABS x AB x =-⋅=-6.(23-24高三上·重庆渝中·阶段练习)已知椭圆C :()2210a b a b +=>>的上、下顶点分别为A ,B ,左顶点为D ,ABD △(1)求椭圆C 的方程;(2)过椭圆外一点(),0M m 的直线交椭圆于P ,Q 两点,已知点P 与点P '关于x 轴对称,直线P Q '与x 轴交于点K ;若AKB ∠是钝角,求m 的取值范围.【点睛】方法点睛:求解椭圆的方程,关键是求得所以需要两个条件,如本题中,等边三角形以及等边三角形的面积,一共两个条件,用这两个条件列方程组,即可求得,a 7.(23-24高三上·重庆渝中·阶段练习)如图3所示,点1F ,A 分别为椭圆2222:1(0)x y E a b a b+=>>的左焦点和右顶点,点F 为抛物线2:16C y x =的焦点,且124OF OA OF ==(O 为坐标原点).(1)求椭圆E 的方程;(2)过点1F 作直线l 交椭圆E 于B ,D 两点,连接AB ,AD 并延长交抛物线的准线于点M ,N ,求证:1MF N ∠为定值.8.(23-24高三上·重庆渝中·阶段练习)已知椭圆()22:10x y C a b a b +=>>的离心率为e =,且经过点()1,e .(1)求椭圆C 的方程;(2)若A ,F 分别为椭圆C 的上顶点和右焦点,直线()3:0l y kx k =->与椭圆C 交于点B ,D ,F 到直线AB ,AD 的距离分别为1d 和2d ,求证:12d d =.。
2024年高考数学专项复习圆锥曲线九大题型归纳(解析版)

题型一:弦的垂直平分线问题题型二:动弦过定点的问题题型三:过已知曲线上定点的弦的问题题型四:向量问题题型五:面积问题题型六:弦或弦长为定值、最值问题题型七:直线问题圆锥曲线九大题型归纳题型八:对称问题题型九:存在性问题:(存在点,存在直线y =kx +m ,存在实数,存在图形:三角形(等比、等腰、直角),四边形(矩形、菱形、正方形),圆)题型一:弦的垂直平分线问题1过点T (-1,0)作直线l 与曲线N :y 2=x 交于A 、B 两点,在x 轴上是否存在一点E (x 0,0),使得ΔABE 是等边三角形,若存在,求出x 0;若不存在,请说明理由。
2024年高考数学专项复习圆锥曲线九大题型归纳(解析版)【涉及到弦的垂直平分线问题】这种问题主要是需要用到弦AB 的垂直平分线L 的方程,往往是利用点差或者韦达定理产生弦AB 的中点坐标M ,结合弦AB 与它的垂直平分线L 的斜率互为负倒数,写出弦的垂直平分线L 的方程,然后解决相关问题,比如:求L 在x 轴y 轴上的截距的取值范围,求L 过某定点等等。
有时候题目的条件比较隐蔽,要分析后才能判定是有关弦AB 的中点问题,比如:弦与某定点D 构成以D 为顶点的等腰三角形(即D 在AB 的垂直平分线上)、曲线上存在两点AB 关于直线m 对称等等。
2例题分析1:已知抛物线y =-x 2+3上存在关于直线x +y =0对称的相异两点A 、B ,则|AB |等于题型二:动弦过定点的问题1已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为32,且在x 轴上的顶点分别为A 1(-2,0),A 2(2,0)。
(I )求椭圆的方程;(II )若直线l :x =t (t >2)与x 轴交于点T ,点P 为直线l 上异于点T 的任一点,直线PA 1,PA 2分别与椭圆交于M 、N 点,试问直线MN 是否通过椭圆的焦点?并证明你的结论题型三:过已知曲线上定点的弦的问题1已知点A 、B 、C 是椭圆E :x 2a 2+y 2b 2=1(a >b >0)上的三点,其中点A (23,0)是椭圆的右顶点,直线BC 过椭圆的中心O ,且AC ∙BC =0,BC =2AC ,如图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年高考圆锥曲线大题一.解答题(共13小题)1.已知斜率为k的直线l与椭圆C:+=1交于A,B两点,线段AB的中点为M(1,m)(m>0).(1)证明:k<﹣;(2)设F为C的右焦点,P为C上一点,且++=.证明:||,||,||成等差数列,并求该数列的公差.2.已知斜率为k的直线l与椭圆C:+=1交于A,B两点,线段AB的中点为M(1,m)(m>0).(1)证明:k<﹣;(2)设F为C的右焦点,P为C上一点,且++=,证明:2||=||+||.3.双曲线﹣=1,F1、F2为其左右焦点,C是以F2为圆心且过原点的圆.(1)求C的轨迹方程;(2)动点P在C上运动,M满足=2,求M的轨迹方程.4.设椭圆C:+y2=1的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).(1)当l与x轴垂直时,求直线AM的方程;(2)设O为坐标原点,证明:∠OMA=∠OMB.5.已知椭圆M:+=1(a>b>0)的离心率为,焦距为2.斜率为k的直线l与椭圆M有两个不同的交点A,B.(Ⅰ)求椭圆M的方程;(Ⅱ)若k=1,求|AB|的最大值;(Ⅲ)设P(﹣2,0),直线PA与椭圆M的另一个交点为C,直线PB与椭圆M的另一个交点为D.若C,D和点Q(﹣,)共线,求k.6.设常数t>2.在平面直角坐标系xOy中,已知点F(2,0),直线l:x=t,曲线Γ:y2=8x(0≤x≤t,y≥0).l与x轴交于点A、与Γ交于点B.P、Q分别是曲线Γ与线段AB上的动点.(1)用t表示点B到点F的距离;(2)设t=3,|FQ|=2,线段OQ的中点在直线FP上,求△AQP的面积;(3)设t=8,是否存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上?若存在,求点P的坐标;若不存在,说明理由.7.已知抛物线C:y2=2px经过点P(1,2),过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N.(Ⅰ)求直线l的斜率的取值范围;(Ⅱ)设O为原点,=λ,=μ,求证:+为定值.8.设椭圆+=1(a>b>0)的右顶点为A,上顶点为B.已知椭圆的离心率为,|AB|=.(Ⅰ)求椭圆的方程;(Ⅱ)设直线l:y=kx(k<0)与椭圆交于P,Q两点,1与直线AB交于点M,且点P,M均在第四象限.若△BPM的面积是△BPQ面积的2倍,求k的值.9.设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B两点,|AB|=8.(1)求l的方程;(2)求过点A,B且与C的准线相切的圆的方程.10.设椭圆+=1(a>b>0)的左焦点为F,上顶点为B.已知椭圆的离心率为,点A的坐标为(b,0),且|FB|•|AB|=6.(Ⅰ)求椭圆的方程;(Ⅱ)设直线l:y=kx(k>0)与椭圆在第一象限的交点为P,且l与直线AB交于点Q.若=sin∠AOQ(O为原点),求k的值.11.已知椭圆C:,直线l:y=kx+1(k≠0)与椭圆C相交于A,B两点,D为AB的中点.(1)若直线l与直线OD(O为坐标原点)的斜率之积为,求椭圆..的方程;(2)在(1)的条件下,y轴上是否存在定点M使得当k变化时,总有∠AMO=∠BMO(O为坐标原点).若存在,求出定点M的坐标;若不存在,请说明理由.12.已知椭圆Γ:的离心率为,椭圆的四个顶点围成的四边形的面积为4.(Ⅰ)求椭圆Γ的标准方程;(Ⅱ)直线l与椭圆Γ交于A,B两点,AB的中点M在圆x2+y2=1上,求△AOB(O为坐标原点)面积的最大值.13.如图,在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的离心率为,两条准线之间的距离为4.(1)求椭圆的标准方程;(2)已知椭圆的左顶点为A,点M在圆x2+y2=上,直线AM与椭圆相交于另一点B,且△AOB的面积是△AOM的面积的2倍,求直线AB的方程.2018年高考圆锥曲线大题参考答案与试题解析一.解答题(共13小题)1.已知斜率为k的直线l与椭圆C:+=1交于A,B两点,线段AB的中点为M(1,m)(m>0).(1)证明:k<﹣;(2)设F为C的右焦点,P为C上一点,且++=.证明:||,||,||成等差数列,并求该数列的公差.【解答】解:(1)设A(x1,y1),B(x2,y2),∵线段AB的中点为M(1,m),∴x1+x2=2,y1+y2=2m将A,B代入椭圆C:+=1中,可得,两式相减可得,3(x1+x2)(x1﹣x2)+4(y1+y2)(y1﹣y2)=0,即6(x1﹣x2)+8m(y1﹣y2)=0,∴k==﹣=﹣点M(1,m)在椭圆内,即,解得0<m∴.(2)证明:设A(x1,y1),B(x2,y2),P(x3,y3),可得x1+x2=2,∵++=,F(1,0),∴x1﹣1+x2﹣1+x3﹣1=0,y1+y2+y3=0,∴x3=1,y3=﹣(y1+y2)=﹣2m∵m>0,可得P在第四象限,故y3=﹣,m=,k=﹣1由椭圆的焦半径公式得则|FA|=a﹣ex1=2﹣x1,|FB|=2﹣x2,|FP|=2﹣x3=.则|FA|+|FB|=4﹣,∴|FA|+|FB|=2|FP|,联立,可得|x1﹣x2|=所以该数列的公差d满足2d=|x1﹣x2|=,∴该数列的公差为±.2.已知斜率为k的直线l与椭圆C:+=1交于A,B两点,线段AB的中点为M(1,m)(m>0).(1)证明:k<﹣;(2)设F为C的右焦点,P为C上一点,且++=,证明:2||=||+||.【解答】解:(1)设A(x1,y1),B(x2,y2),∵线段AB的中点为M(1,m),∴x1+x2=2,y1+y2=2m将A,B代入椭圆C:+=1中,可得,两式相减可得,3(x1+x2)(x1﹣x2)+4(y1+y2)(y1﹣y2)=0,即6(x1﹣x2)+8m(y1﹣y2)=0,∴k==﹣=﹣点M(1,m)在椭圆内,即,解得0<m∴k=﹣.(2)证明:设A(x1,y1),B(x2,y2),P(x3,y3),可得x1+x2=2∵++=,F(1,0),∴x1﹣1+x2﹣1+x3﹣1=0,∴x3=1由椭圆的焦半径公式得则|FA|=a﹣ex1=2﹣x1,|FB|=2﹣x2,|FP|=2﹣x3=.则|FA|+|FB|=4﹣,∴|FA|+|FB|=2|FP|,3.双曲线﹣=1,F1、F2为其左右焦点,C是以F2为圆心且过原点的圆.(1)求C的轨迹方程;(2)动点P在C上运动,M满足=2,求M的轨迹方程.【解答】解:(1)由已知得a2=12,b2=4,故c==4,所以F1(﹣4,0)、F2(4,0),因为C是以F2为圆心且过原点的圆,故圆心为(4,0),半径为4,所以C的轨迹方程为(x﹣4)2+y2=16;(2)设动点M(x,y),P(x0,y0),则=(x+4,y),,由,得(x+4,y)=2(x0﹣x,y0﹣y),即,解得,因为点P在C上,所以,代入得,化简得.4.设椭圆C:+y2=1的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).(1)当l与x轴垂直时,求直线AM的方程;(2)设O为坐标原点,证明:∠OMA=∠OMB.【解答】解:(1)c==1,∴F(1,0),∵l与x轴垂直,∴x=1,由,解得或,∴A(1.),或(1,﹣),∴直线AM的方程为y=﹣x+,y=x﹣,证明:(2)当l与x轴重合时,∠OMA=∠OMB=0°,当l与x轴垂直时,OM为AB的垂直平分线,∴∠OMA=∠OMB,当l与x轴不重合也不垂直时,设l的方程为y=k(x﹣1),k≠0,A(x1,y1),B(x2,y2),则x1<,x2<,直线MA,MB的斜率之和为k MA,k MB之和为k MA+k MB=+,由y1=kx1﹣k,y2=kx2﹣k得k MA+k MB=,将y=k(x﹣1)代入+y2=1可得(2k2+1)x2﹣4k2x+2k2﹣2=0,∴x1+x2=,x1x2=,∴2kx1x2﹣3k(x1+x2)+4k=(4k3﹣4k﹣12k3+8k3+4k)=0从而k MA+k MB=0,故MA,MB的倾斜角互补,∴∠OMA=∠OMB,综上∠OMA=∠OMB.5.已知椭圆M:+=1(a>b>0)的离心率为,焦距为2.斜率为k的直线l与椭圆M有两个不同的交点A,B.(Ⅰ)求椭圆M的方程;(Ⅱ)若k=1,求|AB|的最大值;(Ⅲ)设P(﹣2,0),直线PA与椭圆M的另一个交点为C,直线PB与椭圆M的另一个交点为D.若C,D和点Q(﹣,)共线,求k.【解答】解:(Ⅰ)由题意可知:2c=2,则c=,椭圆的离心率e==,则a=,b2=a2﹣c2=1,∴椭圆的标准方程:;(Ⅱ)设直线AB的方程为:y=x+m,A(x1,y1),B(x2,y2),联立,整理得:4x2+6mx+3m2﹣3=0,△=(6m)2﹣4×4×3(m2﹣1)>0,整理得:m2<4,x1+x2=﹣,x1x2=,∴|AB|==,∴当m=0时,|AB|取最大值,最大值为;(Ⅲ)设直线PA的斜率k PA=,直线PA的方程为:y=(x+2),联立,消去y整理得:(x12+4x1+4+3y12)x2+12y12x+(12y12﹣3x12﹣12x1﹣12)=0,由代入上式得,整理得:(4x1+7)x2+(12﹣4x12)x﹣(7x12+12x1)=0,x1•x C=﹣,x C=﹣,则y C=(﹣+2)=,则C(﹣,),同理可得:D(﹣,),由Q(﹣,),则=(,),=(,),由与三点共线,则×=×,整理得:y2﹣x2=y1﹣x1,则直线AB的斜率k==1,∴k的值为1.6.设常数t>2.在平面直角坐标系xOy中,已知点F(2,0),直线l:x=t,曲线Γ:y2=8x(0≤x≤t,y≥0).l与x轴交于点A、与Γ交于点B.P、Q分别是曲线Γ与线段AB上的动点.(1)用t表示点B到点F的距离;(2)设t=3,|FQ|=2,线段OQ的中点在直线FP上,求△AQP的面积;(3)设t=8,是否存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上?若存在,求点P的坐标;若不存在,说明理由.【解答】解:(1)方法一:由题意可知:设B(t,2t),则|BF|==t+2,∴|BF|=t+2;方法二:由题意可知:设B(t,2t),由抛物线的性质可知:|BF|=t+=t+2,∴|BF|=t+2;(2)F(2,0),|FQ|=2,t=3,则|FA|=1,∴|AQ|=,∴Q(3,),设OQ的中点D,D(,),k QF==﹣,则直线PF方程:y=﹣(x﹣2),联立,整理得:3x2﹣20x+12=0,解得:x=,x=6(舍去),∴△AQP的面积S=××=;(3)存在,设P(,y),E(,m),则k PF==,k FQ=,直线QF方程为y=(x﹣2),∴y Q=(8﹣2)=,Q(8,),根据+=,则E(+6,),∴()2=8(+6),解得:y2=,∴存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上,且P(,).7.已知抛物线C:y2=2px经过点P(1,2),过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N.(Ⅰ)求直线l的斜率的取值范围;(Ⅱ)设O为原点,=λ,=μ,求证:+为定值.【解答】解:(Ⅰ)∵抛物线C:y2=2px经过点P(1,2),∴4=2p,解得p=2,设过点(0,1)的直线方程为y=kx+1,设A(x1,y1),B(x2,y2)联立方程组可得,消y可得k2x2+(2k﹣4)x+1=0,∴△=(2k﹣4)2﹣4k2>0,且k≠0解得k<1,且k≠0,x1+x2=﹣,x1x2=,又∵PA、PB要与y轴相交,∴直线l不能经过点(1,﹣2),即k≠﹣3,故直线l的斜率的取值范围(﹣∞,﹣3)∪(﹣3,0)∪(0,1);(Ⅱ)证明:设点M(0,y M),N(0,y N),则=(0,y M﹣1),=(0,﹣1)因为=λ,所以y M﹣1=﹣y M﹣1,故λ=1﹣y M,同理μ=1﹣y N,直线PA的方程为y﹣2=(x﹣1)=(x﹣1)=(x﹣1),令x=0,得y M=,同理可得y N=,因为+=+=+======2,∴+=2,∴+为定值.8.设椭圆+=1(a>b>0)的右顶点为A,上顶点为B.已知椭圆的离心率为,|AB|=.(Ⅰ)求椭圆的方程;(Ⅱ)设直线l:y=kx(k<0)与椭圆交于P,Q两点,1与直线AB交于点M,且点P,M均在第四象限.若△BPM的面积是△BPQ面积的2倍,求k的值.【解答】解:(1)设椭圆的焦距为2c,由已知可得,又a2=b2+c2,解得a=3,b=2,∴椭圆的方程为:,(Ⅱ)设点P(x1,y1),M(x2,y2),(x2>x1>0).则Q(﹣x1,﹣y1).∵△BPM的面积是△BPQ面积的2倍,∴|PM|=2|PQ|,从而x2﹣x1=2[x1﹣(﹣x1)],∴x2=5x1,易知直线AB的方程为:2x+3y=6.由,可得>0.由,可得,⇒,⇒18k2+25k+8=0,解得k=﹣或k=﹣.由>0.可得k,故k=﹣,9.设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B两点,|AB|=8.(1)求l的方程;(2)求过点A,B且与C的准线相切的圆的方程.【解答】解:(1)方法一:抛物线C:y2=4x的焦点为F(1,0),设直线AB的方程为:y=k(x﹣1),设A(x1,y1),B(x2,y2),则,整理得:k2x2﹣2(k2+2)x+k2=0,则x1+x2=,x1x2=1,由|AB|=x1+x2+p=+2=8,解得:k2=1,则k=1,∴直线l的方程y=x﹣1;方法二:抛物线C:y2=4x的焦点为F(1,0),设直线AB的倾斜角为θ,由抛物线的弦长公式|AB|===8,解得:sin2θ=,∴θ=,则直线的斜率k=1,∴直线l的方程y=x﹣1;(2)由(1)可得AB的中点坐标为D(3,2),则直线AB的垂直平分线方程为y﹣2=﹣(x﹣3),即y=﹣x+5,设所求圆的圆心坐标为(x0,y0),则,解得:或,因此,所求圆的方程为(x﹣3)2+(y﹣2)2=16或(x﹣11)2+(y+6)2=144.10.设椭圆+=1(a>b>0)的左焦点为F,上顶点为B.已知椭圆的离心率为,点A的坐标为(b,0),且|FB|•|AB|=6.(Ⅰ)求椭圆的方程;(Ⅱ)设直线l:y=kx(k>0)与椭圆在第一象限的交点为P,且l与直线AB交于点Q.若=sin ∠AOQ(O为原点),求k的值.【解答】解:(Ⅰ)设椭圆+=1(a>b>0)的焦距为2c,由椭圆的离心率为e=,∴=;又a2=b2+c2,∴2a=3b,由|FB|=a,|AB|=b,且|FB|•|AB|=6;可得ab=6,从而解得a=3,b=2,∴椭圆的方程为+=1;(Ⅱ)设点P的坐标为(x1,y1),点Q的坐标为(x2,y2),由已知y1>y2>0;∴|PQ|sin∠AOQ=y1﹣y2;又|AQ|=,且∠OAB=,∴|AQ|=y2,由=sin∠AOQ,可得5y1=9y2;由方程组,消去x,可得y1=,∴直线AB的方程为x+y﹣2=0;由方程组,消去x,可得y2=;由5y1=9y2,可得5(k+1)=3,两边平方,整理得56k2﹣50k+11=0,解得k=或k=;∴k的值为或.11.已知椭圆C:,直线l:y=kx+1(k≠0)与椭圆C相交于A,B两点,D为AB的中点.(1)若直线l与直线OD(O为坐标原点)的斜率之积为,求椭圆..的方程;(2)在(1)的条件下,y轴上是否存在定点M使得当k变化时,总有∠AMO=∠BMO(O为坐标原点).若存在,求出定点M的坐标;若不存在,请说明理由.【解答】解:(1)由得(4+a2k2)x2+2a2kx﹣3a2=0,显然△>0,设A(x1,y1),B(x2,y2),D(x0,y0),则,,∴,.∴=.∴a2=8.所以椭圆C的方程为.(2)假设存在定点M,且设M(0,m),由∠AMO=∠BMO得k AM+k BM=0.∴.即y1x2+y2x1﹣m(x1+x2)=0,∴2kx1x2+x1+x2﹣m(x1+x2)=0.由(1)知,,∴.∴m=4.所以存在定点M(0,4)使得∠AMO=∠BMO.12.已知椭圆Γ:的离心率为,椭圆的四个顶点围成的四边形的面积为4.(Ⅰ)求椭圆Γ的标准方程;(Ⅱ)直线l与椭圆Γ交于A,B两点,AB的中点M在圆x2+y2=1上,求△AOB(O为坐标原点)面积的最大值.【解答】解:(Ⅰ)根据题意,椭圆Γ:的离心率为,则,得,,所以,由椭圆Γ的四个顶点围成的四边形的面积为4,得2ab=4,所以a=2,b=1,椭圆Γ的标准方程为.(Ⅱ)根据题意,直线l与椭圆Γ交于A,B两点,当直线l的斜率不存在时,令x=±1,得,,当直线l的斜率存在时,设l:y=kx+m,A(x1,y1),B(x2,y2),M(x0,y0),由,得(1+4k2)x2+8kmx+4m2﹣4=0,则,,所以,,将代入x2+y2=1,得,又因为=,原点到直线l的距离,所以==×==.当且仅当12k2=1+4k2,即时取等号.综上所述,△AOB面积的最大值为1.13.如图,在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的离心率为,两条准线之间的距离为4.(1)求椭圆的标准方程;(2)已知椭圆的左顶点为A,点M在圆x2+y2=上,直线AM与椭圆相交于另一点B,且△AOB的面积是△AOM的面积的2倍,求直线AB的方程.【解答】解:(1)设椭圆的焦距为2c,由题意得,=,=4,解得a=2,c=b=.∴椭圆的方程为:+=1.(2)△AOB的面积是△AOM的面积的2倍,∴AB=2AM,∴点M为AB的中点.精品文档∵椭圆的方程为:+=1.∴A(﹣2,0).设M(x0,y0),则B(2x0+2,2y0).由+=,+=1,化为:﹣18x0﹣16=0,≤x0≤.解得:x0=﹣.代入解得:y0=,∴k AB =,因此,直线AB的方程为:y=(x+2).精品文档。