【精准解析】山西省太原市2019-2020学年高二上学期期末考试数学(理)试题
2022-2023学年山西省太原市晋源区实验中学高二物理上学期期末试题含解析

2022-2023学年山西省太原市晋源区实验中学高二物理上学期期末试题含解析一、选择题:本题共5小题,每小题3分,共计15分.每小题只有一个选项符合题意1. 如右图所示是一个匀强电场的等势面,每两个相邻等势面相距2 cm,由此可以确定电场强度的方向和数值是()A.竖直向下,E=100 V/mB.水平向左,E=100 V/mC.水平向左,E=200 V/mD.水平向右,E=200 V/m参考答案:B2. 设物体运动的加速度为a、速度为v、位移为x、所受合外力为F。
现有四个不同物体的运动过程中某物理量与时间关系图象,如图所示。
已知t=0时刻物体的速度均为零,则其中表示物体做单向直线运动的图象是()参考答案:C3. 图10-1所示为一列简谐横波在t=23 s时的波形图,图10-2是这列波中P点的振动图线,那么该波的传播速度和传播方向是()A.v=25cm/s,向左传播 B.v=50cm/s,向左传播C.v=25cm/s,向右传播 D.v=50cm/s,向左传播参考答案:B4. 关于摩擦起电,下列说法正确的是()A.摩擦起电就是创造电荷 B.摩擦起电是因为有电荷消失了C.摩擦起电实质是电荷的转移 D.因为摩擦可以吸引周围空间的电荷参考答案:C5. 电磁炮是一种理想的兵器,它的主要原理如图所示.1982年澳大利亚制成了能把2.2kg的弹体(包括金属杆EF的质量)加速到10km/s的电磁炮(常规炮弹的速度约为2km/s).若轨道宽为2m,长100m,通过的电流为10A,则轨道间所加匀强磁场的磁感强度为多大?磁场力的最大功率为多大?(轨道摩擦不计)参考答案:二、填空题:本题共8小题,每小题2分,共计16分6. 如图所示,真空中半径为r的金属球原来不带电,在距其球心O为4r的A处放置一点电荷-Q,则此时球心处的电场强度大小为,球上的感应电荷所产生的电场在球心处的场强大小为,方向。
参考答案:7. 长为L的导体棒原来不带电,现将一带电量为+q的点电荷放在距棒左端R处,如图所示。
山西省太原市2023_2024学年高二上册期中学业诊断数学试题(附答案)

5
,
则 MN MF1 的取值范围为( )
A. 30, 4 6
B. 30, 6 6
C. 4 6, 6 6 D. 6 6,9 6
二、选择题(本题共 4 小题,每小题 3 分,共 12 分.在每小题给出的四个选项中,有多项符
合题目要求.全部选对的得 3 分,部分选对的得 2 分,有选错的得 0 分)
所以直线与圆相交,
故选:A
7.D
【分析】建立空间直角坐标系,利用向量法求得正确答案.
【详解】建立如图所示空间直角坐标系,
D1 0, 0, 2, E 0, 2,1, A2, 0, 0, D1E 0, 2, 1, D1A 2, 0, 2,
所以点 A 到直线 D1E 的距离为
D1 A
2
D1ED 1A
圆 C2 : x2 y2 4x 4 y F 0 即 x 22 y 22 8 F ,
8 F 0
根据对称性可知
8 F 2 ,解得 F 4 ,所以 A 选项错误.
此时 C2 : x 22 y 22 4 ,圆心为 C2 2, 2,半径 r2 2 .
r1 r2 0, r1 r2 4 ,
(1)求直线 DE 的一般式方程; (2)求边 AB 的垂直平分线的斜截式方程. 18.如图,四面体 OABC 各棱的棱长都是 1, D 是 AB 的中点, E 是 CD 的中点,记 OA a,OB b,OC c .
(1)用向量 a,b, c 表示向量 OE ;
(2)利用向量法证明: OE AB .
23 (2)若平面 AB1C1 与平面 ABC 夹角的余弦值为 5 ,求直线 DE 与平面 AB1C1 所成角的正弦值.
1.C 【分析】根据直线的斜率求得倾斜角.
2019-2020学年高二下学期期中考试数学(理)试题 Word版含解析

2019—2020学年第二学期南昌市八一中学高二理科数学期中考试试卷第Ⅰ卷(选择题:共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数z 满足1i 1i z +=-,则||z =( ) A. 2iB. 2C. iD. 1 【★答案★】D【解析】【分析】 根据复数的运算法则,求得复数zi ,即可得到复数的模,得到★答案★. 【详解】由题意,复数11i i z +=-,解得()()()()111111i i i z i i i i +++===--+,所以1z =,故选D . 【点睛】本题主要考查了复数的运算,以及复数的模的求解,其中解答中熟记复数的运算法则是解答的关键,着重考查了推理与运算能力,属于基础题.2. 已知平面α内一条直线l 及平面β,则“l β⊥”是“αβ⊥”的( )A. 充分必要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件【★答案★】B【解析】【分析】根据面面垂直和线面垂直的定义,结合充分条件和必要条件的定义进行判断即可.【详解】解:由面面垂直的定义知,当“l ⊥β”时,“α⊥β”成立,当αβ⊥时,l β⊥不一定成立,即“l β⊥”是“αβ⊥”的充分不必要条件,故选:B .【点睛】本题考查命题充分性和必要性的判断,涉及线面垂直和面面垂直的判定,属基础题.3. 已知水平放置的△ABC 是按“斜二测画法”得到如图所示的直观图,其中B ′O ′=C ′O ′=1,A′O′=32,那么原△ABC的面积是( )A. 3B. 22C.32D.34【★答案★】A【解析】【分析】先根据已知求出原△ABC的高为AO=3,再求原△ABC的面积. 【详解】由题图可知原△ABC的高为AO=3,∴S△ABC=12×BC×OA=12×2×3=3,故★答案★为A【点睛】本题主要考查斜二测画法的定义和三角形面积的计算,意在考察学生对这些知识的掌握水平和分析推理能力.4. 某几何体的三视图如图所示,则这个几何体的体积等于()A. 4B. 6C. 8D. 12【★答案★】A【解析】由三视图复原几何体,是如图所示的四棱锥,它的底面是直角梯形,梯形的上底长为2,下底长为4,高为2,棱锥的一条侧棱垂直底面高为2,所以这个几何体的体积:12422432V+=⨯⨯⨯=,故选A.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.5. 下列命题中,正确的是()A. 经过不同的三点有且只有一个平面B. 分别在两个平面的两条直线一定是异面直线C. 垂直于同一个平面的两条直线是平行直线D. 垂直于同一个平面的两个平面平行【★答案★】C【解析】【分析】根据不在一条直线上的三点确定一个平面,来判断A是否正确;根据分别在两个平面内的两条直线的位置关系不确定,来判断B是否正确;根据垂直于同一平面的两直线平行,来判断C是否正确;根据垂直于同一条直线的两条直线的位置关系是平行、相交或异面,来判断D是否正确.【详解】解:对A,当三点在一条直线上时,平面不唯一,∴A错误;对B,分别在两个平面内的两条直线的位置关系不确定,∴B错误;对C,根据垂直于同一平面的两直线平行,∴C正确;对D,垂直于同一平面的两平面的位置关系是平行、相交,∴D错误.故选C.【点睛】本题考查了空间直线与直线的位置关系及线面垂直的判定与性质,考查了学生的空间想象能力.6. 实数a 使得复数1a i i +-是纯虚数,10b xdx =⎰,1201c x dx =-⎰则a ,b ,c 的大小关系是( ) A. a b c <<B. a c b <<C. b c a <<D. c b a <<【★答案★】C【解析】【分析】 利用复数的乘除运算求出a ,再利用微积分基本定理以及定积分的定义即可求出b ,c ,从而比较其大小关系. 【详解】()()()()11111122a i i a i a a i i i i +++-+==+--+, 1a i i +-是纯虚数, 102a -∴=,1a , 121001122b xdx x ⎛⎫===⎪⎝⎭⎰, 1201c x dx =-⎰表示是以()0,0为圆心, 以1为半径的圆在第一象限的部分与坐标轴围成的14个圆的面积, 21144c ππ∴=⨯⨯=,所以b c a <<. 故选:C【点睛】本题考查了复数的乘除运算、微积分基本定理求定积分、定积分的定义,考查了基本运算求解能力,属于基础题.7. 已知正四棱柱''''ABCD A B C D -的底面是边长为1的正方形,若平面ABCD 内有且仅有1个点到顶点A '的距离为1,则异面直线,AA BC '' 所成的角为 ( ) A. 6π B. 4π C. 3π D. 512π 【★答案★】B【解析】由题意可知,只有点A 到'A 距离为1,即高为1,所以该几何体是个正方体,异面直线11,AA BC 所成的角是4π,故选B.8. 函数3xeyx=的部分图象可能是()A. B.C. D.【★答案★】C【解析】分析:根据函数的奇偶性,及x=1和x=2处的函数值进行排除即可得解.详解:易知函数3xeyx=为奇函数,图象关于原点对称,排除B,当x=1时,y=<1,排除A,当x=4时,4112ey=>,排除D,故选C.点睛:已知函数的解析式判断函数的图象时,可从以下几个方面考虑:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的周期性,判断图象的循环往复;(5)从函数的特征点,排除不合要求的图象.9. 如图所示,三棱锥P ABC -的底面在平面α内,且AC PC ⊥,平面PAC ⊥平面PBC ,点P A B ,,是定点,则动点C 的轨迹是( )A. 一条线段B. 一条直线C. 一个圆D. 一个圆,但要去掉两个点【★答案★】D【解析】 因为平面PAC⊥平面PBC ,AC⊥PC,平面PAC∩平面PBC=PC ,AC ⊂平面PAC ,所以AC⊥平面PBC.又因为BC ⊂平面PBC ,所以AC⊥BC.所以∠ACB=90°.所以动点C 的轨迹是以AB 为直径的圆,除去A 和B 两点.选D.点睛:求轨迹实质是研究线面关系,本题根据面面垂直转化得到线线垂直,再根据圆的定义可得轨迹,注意轨迹纯粹性.10. 如图,以等腰直角三角形ABC 的斜边BC 上的高AD 为折痕,把△ABD 和△ACD 折成互相垂直的两个平面后,某学生得出下列四个结论:①BD ⊥AC ;②△BAC 等边三角形;③三棱锥D -ABC 是正三棱锥;④平面ADC ⊥平面AB C.其中正确的是( )A. ①②④B. ①②③C. ②③④D. ①③④【★答案★】B【解析】【分析】根据翻折后垂直关系得BD ⊥平面ADC ,即得BD ⊥AC ,再根据计算得△BAC 是等边三角形,最后可确定选项.【详解】由题意知,BD ⊥平面ADC ,故BD ⊥AC ,①正确;AD 为等腰直角三角形斜边BC 上的高,平面ABD ⊥平面ACD ,所以AB =AC =BC ,△BAC 是等边三角形,②正确;易知DA =DB =DC ,又由②知③正确;由①知④错.故选B .【点睛】本题考查线面垂直判定与性质,考查推理论证求解能力,属中档题.11. 如图所示,在正三棱锥S —ABC 中,M 、N 分别是SC .BC 的中点,且MN AM ⊥,若侧棱23SA =,则正三棱锥S —ABC 外接球的表面积是()A. 12πB. 32πC. 36πD. 48π【★答案★】C【解析】分析】 根据题目条件可得∠ASB =∠BSC =∠ASC =90∘,以SA ,SB ,SC 为棱构造正方体,即为球的内接正方体,正方体对角线即为球的直径,即可求出球的表面积.【详解】∵M ,N 分别为棱SC ,BC 的中点,∴MN ∥SB∵三棱锥S −ABC 为正棱锥,∴SB ⊥AC (对棱互相垂直)∴MN ⊥AC又∵MN ⊥AM ,而AM ∩AC =A ,∴MN ⊥平面SAC ,∴SB ⊥平面SAC∴∠ASB =∠BSC =∠ASC =90∘以SA ,SB ,SC 为从同一定点S 出发的正方体三条棱,将此三棱锥补成以正方体,则它们有相同的外接球,正方体的对角线就是球的直径. ∴236R SA ==,∴R =3,∴V =36π.故选:C【点睛】本题主要考查了三棱锥的外接球的表面积,考查空间想象能力,由三棱锥构造正方体,它的对角线长就是外接球的直径,是解决本题的关键. 12. 已知椭圆22221(0)x y a b a b+=>>上一点A 关于原点的对称点为点B ,F 为其右焦点,若AF BF ⊥,设ABF α∠=,且,64ππα⎡⎤∈⎢⎥⎣⎦,则该椭圆离心率e 的取值范围为( ) A. 2,312⎡⎤-⎢⎥⎣⎦B. 2,12⎡⎫⎪⎢⎪⎣⎭C. 23,22⎡⎤⎢⎥⎣⎦D. 36,33⎡⎤⎢⎥⎣⎦【★答案★】A【解析】【分析】 根据直角三角形性质得A 在圆上,解得A 点横坐标,再根据条件确定A 横坐标满足条件,解得离心率.【详解】由题意得OA OB OF c ===,所以A 在圆222=x y c +上,与22221x y a b +=联立解得22222()Aa cb xc -=, 因为ABF α∠=,且,64ππα⎡⎤∈⎢⎥⎣⎦, 所以22sin 22sin ()2sin [,]A A a a c a c a c AF c e x c x c e e eααα---=∴-=∴=∈因此2222222()()()a c a c b a c e c e---≤≤, 解得22222222(2)()(2)2()a c c b a c a c c a a c -≤-≤--≤-≤-,,即222,20a c a c ac ≤--≥,即2212,120312e e e e ≤--≥∴≤≤-,选A. 【点睛】本题考查椭圆离心率,考查基本分析化简求解能力,属中档题.第Ⅱ卷(非选择题:共90分)二、填空题:本大题共4小题,每小题5分,共20分.请将★答案★填在答题卡的相应位置.13. ()ππsin cos x x dx -+=⎰__________. 【★答案★】0【解析】【分析】求出被积函数的原函数,然后分别代入积分上限和积分下限作差得出★答案★.【详解】()()ππsin cos cos sin x x dx x x ππ--+=-+⎰()()()cos sin cos sin 110ππππ=-+---+-=-=⎡⎤⎣⎦.故★答案★为:0【点睛】本题主要考查了定积分的计算,解题的关键是确定原函数,属于基础题.14. 在三棱锥P ABC -中,6,3PB AC ==,G 为PAC ∆的重心,过点G 作三棱锥的一个截面,使截面平行于直线PB 和AC ,则截面的周长为_________.【★答案★】8【解析】【分析】如图所示,过点G 作EF ∥AC ,分别交PA ,PC 于点E ,F .过点F 作FM ∥PB 交BC 于点M ,过点E 作EN ∥PB 交AB 于点N .可得四点EFMN 共面,进而得到23EF MN AC AC ==,根据比例可求出截面各边长度,进而得到周长. 【详解】解:如图所示,过点G 作EF ∥AC ,分别交PA ,PC 于点E ,F过点F 作FM ∥PB 交BC 于点M ,过点E 作EN ∥PB 交AB 于点N .由作图可知:EN ∥FM ,∴四点EFMN 共面可得MN ∥AC ∥EF ,EN ∥PB ∥FM . ∴23EF MN AC AC == 可得EF =MN =2.同理可得:EN =FM =2.∴截面的周长为8.故★答案★为:8.【点睛】本题考查了三角形重心的性质、线面平行的判定与性质定理、平行线分线段成比例定理,属于中档题.15. 已知一个正三棱柱,一个体积为4π3的球体与棱柱的所有面均相切,那么这个正三棱柱的表面积是______. 【★答案★】183【解析】【分析】由球的体积可以求出半径,从而得到棱柱的高;由球体与棱柱的所有面均相切,得出球的半径和棱柱底面正三角形边长的关系,求出边长,即求出底面正三角形的面积,得出棱柱的表面积.【详解】由球的体积公式可得24433R ππ=,1R ∴=, ∴正三棱柱的高22h R ==,设正三棱柱的底面边长为a , 则其内切圆的半径为:13132a ⋅=,23a ∴=,∴该正三棱柱的表面积为:21333226183222a R a a a a ⋅+⨯⨯=+=. 故★答案★为:183【点睛】本题考查了球的体积公式、多面体的表面积求法,属于基础题.16. 如图,在矩形ABCD 中,E 为边AB 的中点,将ADE ∆沿直线DE 翻转成1A DE ∆.若M 为线段1A C 的中点,则在ADE ∆翻转过程中,正确的命题是______.(填序号)①BM 是定值;②点M 在圆上运动;③一定存在某个位置,使1DE A C ⊥;④一定存在某个位置,使MB平面1A DE .【★答案★】①②④【解析】【分析】取DC 中点N 再根据直线与平面的平行垂直关系判断即可.【详解】对①, 取DC 中点N ,连接,MN BN ,则1//MN A D ,//NB DE .因为MN NB N ⋂=,1A D DE D ⋂=,故平面1//MNB A DE .易得1MNB A DE ∠=∠为定值,故在ADE ∆翻转过程中MNB ∆的形状不变.故BM 是定值.故①正确.对②,由①得, 在ADE ∆翻转过程中MNB ∆沿着NB 翻折,作MO NB ⊥交NB 于O ,则点M 在以O 为圆心,半径为MO 的圆上运动.故②正确.对③,在DE 上取一点P 使得AP DE ⊥,则1A P DE ⊥,若1DE A C ⊥则因为111A P A C A ⋂=,故DE ⊥面1A CP ,故DE PC ⊥,不一定成立.故③错误.对④,由①有1//MNB A DE ,故MB平面1A DE 成立.综上所述,①②④正确.故★答案★为:①②④ 【点睛】本题主要考查了翻折中线面垂直平行的判定,需要画出对应的辅助线分析平行垂直关系,属于中等题型.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17. 如图,已知点P 是平行四边形ABCD 所在平面外的一点,E ,F 分别是PA ,BD 上的点且PE ∶EA =BF ∶FD ,求证:EF ∥平面PBC .【★答案★】见解析【解析】试题分析:连接AF 并延长交BC 于M .连接PM ,因为AD ∥BC ,∴BF MF FD FA =,又BF PE FD EA =,∴PE MF EA FA=, 所以EF ∥PM ,从而得证.试题解析:连接AF 并延长交BC 于M .连接PM .因为AD ∥BC ,所以=. 又由已知=,所以=. 由平面几何知识可得EF ∥PM ,又EF ⊄平面PBC ,PM ⊂平面PBC ,所以EF ∥平面PBC .18. 如图所示,在长方体ABCD ﹣A 1B 1C 1D 1中,AB =AD =1,AA 1=2,M 是棱CC 1的中点.证明:平面ABM ⊥平面A 1B 1M .【★答案★】证明见解析【解析】【分析】通过长方体的几何性质证得11BM A B ⊥,通过计算证明证得1BM B M ⊥,由此证得BM ⊥平面11A B M ,从而证得平面ABM ⊥平面11A B M .【详解】由长方体的性质可知A 1B 1⊥平面BCC 1B 1,又BM ⊂平面BCC 1B 1,∴A 1B 1⊥BM .又CC 1=2,M 为CC 1的中点,∴C 1M =CM =1.在Rt△B 1C 1M 中,B 1M 2212C M CM =+=, 同理BM 222BC CM =+=,又B 1B =2, ∴B 1M 2+BM 2=B 1B 2,从而BM ⊥B 1M .又A 1B 1∩B 1M =B 1,∴BM ⊥平面A 1B 1M ,∵BM ⊂平面ABM ,∴平面ABM ⊥平面A 1B 1M .【点睛】本小题主要考查面面垂直的证明,考查空间想象能力和逻辑推理能力,属于中档题.19. 以平面直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知点M 的直角坐标为()1,0,若直线l 的极坐标方程为2cos 104ρθπ⎛⎫+-= ⎪⎝⎭,曲线C 的参数方程是244x m y m ⎧=⎨=⎩,(m 为参数).(1)求直线l 的直角坐标方程和曲线C 的普通方程;(2)设直线l 与曲线C 交于,A B 两点,求11MA MB +. 【★答案★】(1)10x y --=,24y x =;(2)1【解析】【试题分析】(1) 2cos 104πρθ⎛⎫+-= ⎪⎝⎭展开后利用公式直接转化为直角坐标方程.对C 消去m 后得到直角坐标方程.(2)求出直线l 的参数方程,代入抛物线,利用直线参数的几何意义求得11MA MB+的值. 【试题解析】(1)由2cos 104πρθ⎛⎫+-= ⎪⎝⎭,得cos sin 10ρθρθ--=, 令cos x ρθ=,sin y ρθ=,得10x y --=.因为244x m y m⎧=⎨=⎩,消去m 得24y x =, 所以直线l 的直角坐标方程为10x y --=,曲线C 的普通方程为24y x =.(2)点M 的直角坐标为()1,0,点M 在直线l 上. 设直线l 的参数方程为21222t x ty ⎧=+⎪⎪⎨⎪=⎪⎩,(t 为参数),代入24y x =,得24280t t --=.设点,A B 对应的参数分别为1t ,2t ,则1242t t +=,128t t =-,所以121211t t MA MB t t -+== ()21212224323218t t t t t t +-+==. 20. 如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,//AD BC ,090ADC ∠=,平面PAD ⊥底面ABCD ,为AD 中点,M 是棱PC 上的点,.(1)求证:平面POB ⊥平面PAD ;(2)若点M 是棱的中点,求证://PA 平面.【★答案★】(1)见解析;(2)见解析【解析】【详解】(1)证明: ∵AD 中点,且,∴DO BC =又//AD BC ,090ADC ∠=,∴ 四边形BCDO 是矩形,∴BO OD ⊥,又平面PAD ⊥平面ABCD ,且平面PAD 平面ABCD OD =,BO ⊂平面ABCD ,∴BO ⊥平面PAD ,又BO ⊂平面POB ,∴ 平面POB ⊥平面PAD .(2)如下图,连接AC 交BO 于点E ,连接EM ,由(1)知四边形BCDO 是矩形,∴//OB CD ,又为AD 中点,∴E 为AC 中点,又是棱AC 的中点,∴//EM PA ,又EM ⊂平面,平面, ∴//PA 平面21. 如图,四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,底面ABCD 为梯形,//AB CD ,223AB DC ==,AC BD F ⋂=.且PAD ∆与ABD ∆均为正三角形,E 为AD 的中点,G 为PAD ∆重心.(1)求证://GF 平面PDC ;(2)求异面直线GF 与BC 的夹角的余弦值.【★答案★】(1)证明见解析;(2)33952. 【解析】试题分析:(1)连接AG 交PD 于H ,连接GH ,由重心性质推导出GFHC ,根据线面平行的判定定理可得GF 平面PDC ;(2)取线段AB 上一点Q ,使得13BQ AB =,可证GFQ ∠ 即是异面直线GF 与BC 的夹角,由余弦定理可得结果.试题解析:(1)方法一:连AG 交PD 于H ,连接CH .由梯形ABCD ,//AB CD 且2AB DC =,知21AF FC = 又E 为AD 的中点,G 为PAD ∆的重心,∴21AG GH =,在AFC ∆中,21AG AF GH FC ==,故GF //HC . 又HC ⊆平面PCD ,GF ⊄ 平面PCD ,∴GF //平面PDC .方法二:过G 作//GN AD 交PD 于N ,过F 作//FM AD 交CD 于M ,连接MN ,G 为PAD ∆的重心,23GN PG ED PE ==,22333GN ED ∴==,又ABCD 为梯形,//AB CD ,12CD AB =,12CF AF ∴=13MF AD ∴=,233MF ∴= ∴GN FM = 又由所作,//FM AD 得GN //FM ,GNMF ∴为平行四边形.//GN AD //,GF MN GF PCD MN PCD ⊄⊆面,面,∴ //GF 面PDC(2) 取线段AB 上一点Q ,使得13BQ AB =,连FQ ,则223FQ BC ==, 1013,33EF GF ==,1316,33EQ GQ == ,在GFQ ∆中 222339cos 2?52GF FQ GQ GFQ GF FQ +-∠== ,则异面直线GF 与BC 的夹角的余弦值为33952. 角函数和等差数列综合起来命题,也正体现了这种命题特点.【方法点晴】本题主要考查线面平行的判定定理、异面直线所成的角、余弦定理,属于中挡题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面. 本题(1)是就是利用方法①证明的.22. 已知函数()1ln (2)(1),f x a x a a R x=+-+∈.(Ⅰ)试求函数()f x 的单调区间;(Ⅱ)若不等式()(ln )x f x a x e ≥-对任意的(0,)x ∈+∞恒成立,求实数a 的取值范围. 【★答案★】(1) 见解析(2) 1,1e ⎡⎫+∞⎪⎢-⎣⎭【解析】 【详解】(Ⅰ)因为()()1ln 21,(,0).f x a x a a R x x ⎛⎫=+-+∈> ⎪⎝⎭所以()()2211.ax a a a f x x x x'-++=-= ①若10a -≤≤,则()0f x '<,即()f x 在区间∞(0,+)上单调递减; ②若0a >,则当10a x a +<<时,()0f x '< ;当1a x a +>时,()0f x '>; 所以()f x 在区间10,a a +⎛⎫ ⎪⎝⎭上单调递减,在区间1,a a +⎛⎫+∞ ⎪⎝⎭上单调递增; ③若1a <-,则当10a x a +<<时,()0f x '>;当1a x a+>时,()0f x '<; 所以函数在区间上单调递增,在区间1,a a +⎛⎫+∞⎪⎝⎭上单调递减. 综上所述,若10a -≤≤,函数在区间上单调递减;; 若,函数在区间上单调递减,在区间1,a a +⎛⎫+∞ ⎪⎝⎭上单调递增; 若1a <-,函数在区间上单调递增,在区间1,a a +⎛⎫+∞⎪⎝⎭上单调递减. (Ⅱ)依题意得()()()1ln 210x x f x a x e ae a x ⎛⎫≥-⇔+-+≥ ⎪⎝⎭, 令()()121x h x ae a x ⎛⎫=+-+ ⎪⎝⎭.因为()10h ≥,则()11a e -≥,即101a e ≥>-. 于是,由()1210x ae a x ⎛⎫+-+≥ ⎪⎝⎭,得1201x a e a x +-≥+, 即211x a x a xe-≥+对任意0x >恒成立. 设函数()21(0)x x F x x xe -=>,则()()()2211x x x F x x e +-='-. 当01x <<时,()0F x '>;当1x >时,()0F x '<;所以函数()F x 在()0,1上单调递增,在()1,+∞上单调递减;所以()()max 11F x F e ⎡⎤==⎣⎦. 于,可知11a a e ≥+,解得11a e ≥-.故a 的取值范围是1,1e ⎡⎫+∞⎪⎢-⎣⎭感谢您的下载!快乐分享,知识无限!不积跬步无以至千里,不积小流无以成江海!。
考点17 分组求和法(1月)(期末复习热点题型)(人教A版2019)(解析版)

考点17 分组求和法一、单选题1.若数列{}n a 的通项公式是()()131nn a n =--,则1210···+a a a ++= A .15 B .12 C .12-D .15-【试题来源】吉林省蛟河市第一中学校2020-2021学年第一学期11月阶段性检测高二(理) 【答案】A【解析】因为()()131nn a n =--,所以12253a a +=-+=,348113a a +=-+=,5614173a a +=-+=,7820233a a +=-+=,91026293a a +=-+=, 因此1210···+3515a a a ++=⨯=.故选A . 2.已知数列{}n a 满足11n n a a λ+=+,且11a =,23a =,则数列{}n a 前6项的和为 A .115 B .118 C .120D .128【试题来源】河南省豫北名校2020-2021学年高二上学期12月质量检测(文) 【答案】C【分析】由题干条件求得2λ=,得到121n n a a +=+,构造等比数列可得数列{}n a 的通项公式,再结合等比数列求和公式即可求得数列{}n a 前6项的和. 【解析】21113a a λλ=+=+=,则2λ=,可得121n n a a +=+,可化为()1121n n a a ++=+,有12nn a +=,得21n n a =-,则数列{}n a 前6项的和为()()6262122226612012⨯-+++-=-=-.故选C .3.设数列{a n }的前n 项和为S n ,且a 1=2,a n +a n +1=2n (n ∈N *),则S 2020=A .2020223-B .202022 3+C .202122 3-D .202122 3+【试题来源】河南省濮阳市2019-2020学年高二下学期升级考试(期末)(文) 【答案】C【分析】根据递推公式a n +a n +1 =2n (n ∈N *)的特点在求S 2020时可采用分组求和法,然后根据等比数列的求和公式即可得到正确选项. 【解析】由题意,可知2020122020123420192020()()()S a a a a a a a a a =+++=++++++132019222=+++2021223-=.故选C . 4.定义:在数列{}n a 中,0n a >,且1n a ≠,若1n an a +为定值,则称数列{}n a 为“等幂数列”.已知数列{}n a 为“等幂数列”,且122,4,n a a S ==为数列{}n a 的前n 项和,则2009S 为 A .6026 B .6024 C .2D .4【试题来源】山西省长治市第二中学2019-2020学年高一下学期期末(文) 【答案】A【分析】根据数列新定义求出数列的前几项,得出规律,然后求和.【解析】因为122,4a a ==,所以334242a a a ==,32a =,4216a =,44a =,所以212n a -=,24n a =,*n N ∈,2009(24)100426026S =+⨯+=.故选A . 【名师点睛】本题考查数列的新定义,解题关键是根据新定义计算出数列的项,然后寻找出规律,解决问题. 5.数列111111,2,3,4,,248162n n +++++的前n 项和等于 A .21122n n n +-++B .2122n n n++C .2122n n n +-+D .【试题来源】四川省三台中学实验学校2019-2020学年高一6月月考(期末适应性) 【答案】A 【解析】因,故,故选A .6.已知一组整数1a ,2a ,3a ,4a ,…满足130m m a a +++=,其中m 为正整数,若12a =,则这组数前50项的和为 A .-50 B .-73 C .-75D .-77【试题来源】四川省自贡市旭川中学2020-2021学年高一上学期开学考试 【答案】C【分析】先利用已知条件写出整数列的前五项,得到其周期性,再计算这组数前50项的和即可.【解析】因为130m m a a +++=,12a =,所以2130a a ++=,得25a =-;3230a a ++=,得32a =-;4330a a ++=,得41a =-;5430a a ++=,得52a =-,由此可知,该组整数从第3项开始,以-2,-1,-2,-1,…的规律循环, 故这组数的前50项和为()()25212475+-+--⨯=-.故选C .7.已知n S 为数列{}n a 的前n 项和,且满足11a =,23a =,23n n a a +=,则2020S = A .1010232⨯-B .101023⨯C .2020312-D .1010312+【试题来源】山西省孝义市第二中学校2019-2020学年高一下学期期末 【答案】A【分析】利用递推关系得出数列的奇数项与偶数项分别成等比数列,对2020S 进行分组求和. 【解析】因为11a =,23a =,23n n a a +=,所以数列{}n a 的奇数项成等比数列,偶数项也成等比数列,且仅比均为3,所以101010102020132019242020133(13)()()1313S a a a a a a --=+++++++=+--1010232=⨯-.故选A .【名师点睛】本题考查等比数列的判定,等比数列的前n 项和公式,考查分组求和法,解题时注意对递推式23n n a a +=的认识,它确定数列的奇数项与偶数项分别成等比数列,而不是数列{}n a 成等比数列.8.已知数列{(1)(21)}n n -+的前n 项和为n S ,*N n ∈,则11S = A .13- B .12- C .11-D .10-【试题来源】山东省青岛胶州市2019-2020学年高二下学期期末考试 【答案】A【分析】本题根据数列通项公式的特点可先求出相邻奇偶项的和,然后运用分组求和法可计算出11S 的值,得到正确选项.【解析】由题意,令(1)(21)nn a n =-+,则当n 为奇数时,1n +为偶数, 1(21)[2(1)1]2n n a a n n ++=-++++=,111211S a a a ∴=++⋯+ 123491011()()()a a a a a a a =++++⋯+++222(2111)=++⋯+-⨯+2523=⨯-13=-.故选A .【名师点睛】本题主要考查正负交错数列的求和问题,考查了转化与化归思想,整体思想,分组求和法,以及逻辑推理能力和数学运算能力.本题属中档题.9.已知数列{}n a 的前n 项和为n S ,且11a =,13nn n a a +=,那么100S 的值为A .()50231-B .5031-C .5032-D .50342-【试题来源】吉林省四平市公主岭范家屯镇第一中学2019-2020学年高一下学期期末考试 【答案】A【分析】根据题中条件,得到23n na a +=,推出数列{}n a 的奇数项和偶数项都是成等比数列,由等比数列的求和公式,分别计算奇数项与偶数项的和,即可得出结果.【解析】因为11a =,13nn n a a +=,所以23a =,1123n n n a a +++=,所以1213n n n n a a a a +++=,即23n na a +=,所以135,,,a a a ⋅⋅⋅成以1为首项、3为公比的等比数列,246,,,a a a ⋅⋅⋅也成以3为首项、3为公比的等比数列,所以()()()5050100139924100313131313Sa a a a a a --=++⋅⋅⋅++++⋅⋅⋅+=+--505050313532322-+⋅-==⋅-.故选A .【名师点睛】本题主要考查等比数列求和公式的基本量运算,考查分组求和,熟记公式即可,属于常考题型.10.已知数列{}n a 满足12321111222n n a a a a n -++++=,记数列{2}n a n -的前n 项和为n S ,则n S =A .2222nn n--B .22122nn n---C .212222n n n +--- D .2222nn n--【试题来源】河北省秦皇岛市第一中学2020-2021学年高二上学期第一次月考 【答案】C【分析】利用递推关系求出数列{}n a 的通项公式,然后利用等差数列和等比数列的前n 项和公式进行求解即可.【解析】因为12321111(1)222n n a a a a n -++++=,所以有11a =, 当2,n n N *≥∈时,有1231221111(2)222n n a a a a n --++++=-,(1)(2)-得,111122n n n n a a --=⇒=,显然当1n =时,也适合,所以12()n n a n N -*=∈,令 2n n a n b -=,所以2n n b n =-,因此有:2323(21)(22)(23)(2)(2222)(123)n n n n S n =-+-+-++-=++++-++++22112(12)(1)222 2.1222222n n n n n n n n n ++-+=-=---=----故选C.【名师点睛】本题考查了由递推关系求数列的通项公式,考查了等差数列和等比数列的前n 项和公式,考查了数学运算能力.11.已知数列{}n a 的前n 项和为n S ,且(),n P n a 为函数221x y x =+-图象上的一点,则n S =A .2122n n ++-B .212n n ++C .22n -D .22n n +【试题来源】四川省仁寿第二中学2020-2021学年高三9月月考(理) 【答案】A【分析】根据已知条件求得n a ,利用分组求和法求得n S【解析】因为(),n P n a 为函数221x y x =+-图象上的一点,所以()212nn a n =-+,则()()121212322121321222nnn S n n =++++⋅⋅⋅+-+=++⋅⋅⋅+-+++⋅⋅⋅+()()212121212nn n -+-=+-1222n n +=+-.故选A .12.数列112、134、158、1716、的前n 项和n S 为A .21112n n -+-B .2122n n +-C .2112n n +-D .21122n n -+-【试题来源】安徽省亳州市涡阳县第四中学2019-2020学年高一下学期线上学习质量检测 【答案】C【分析】归纳出数列的通项公式为1212nn a n ⎛⎫=-+ ⎪⎝⎭,然后利用分组求和法可求得n S . 【解析】数列112、134、158、1716、的通项公式为1212nn a n ⎛⎫=-+ ⎪⎝⎭,所以,2341111113572122222n n S n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++++++++-+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()()231111211111221352112222212n n n n n ⎛⎫- ⎪+-⎛⎫⎝⎭=++++-+++++=+⎡⎤ ⎪⎣⎦⎝⎭-2112n n =+-.故选C .13.若数列{}n a 的通项公式是1(1)(32)n n a n +=-⋅-,则122020a a a ++⋯+=A .-3027B .3027C .-3030D .3030【试题来源】江苏省扬州市宝应中学2020-2021学年高二上学期阶段考试 【答案】C【分析】分组求和,结合等差数列求和公式即可求出122020a a a ++⋯+. 【解析】12202014710...60556058a a a ++⋯+=-+-++-()()101010091010100917...6055410...60551010610104622⨯⨯⎛⎫=+++-+++=+⨯-⨯+⨯ ⎪⎝⎭3030=-.故选C .14.在数列{}n a 中,129a =-,()*13n n a a n +=+∈N ,则1220a a a +++=A .10B .145C .300D .320【试题来源】山西省太原市2021届高三上学期期中 【答案】C【分析】由等差数列的性质可得332n a n =-,结合分组求和法即可得解.【解析】因为129a =-,()*13n n a a n N +=+∈,所以数列{}n a 是以29-为首项,公差为3的等差数列,所以()11332n a a n d n =+-=-,所以当10n ≤时,0n a <;当11n ≥时,0n a >;所以()()12201210111220a a a a a a a a a +++=-++⋅⋅⋅++++⋅⋅⋅+1101120292128101010103002222a a a a ++--+=-⨯+⨯=-⨯+⨯=.故选C . 15.数列{}n a 的通项公式为2π1sin 2n n a n =+,前n 项和为n S ,则100S = A .50 B .-2400 C .4900-D .9900-【试题来源】河南省焦作市2020—2021学年高三年级第一次模拟考试(理) 【答案】C【分析】由πsin2n y =的周期为4,可得22222210010013579799S =+-+-+⋅⋅⋅+-,利用并项求和可得解.【解析】2111a =+,21a =,2313a =-,41a =,…,考虑到πsin2n y =的周期为4, 所以()222222100100135797991002135799S =+-+-+⋅⋅⋅+-=-⨯++++⋅⋅⋅+(199)50100249002+⨯=-⨯=-.故选C .16.已知{}n a 的前n 项和为n S ,11a =,当2n ≥时,12n n a S n -+=,则2019S 的值为 A .1008 B .1009 C .1010D .1011【试题来源】广东省广州市增城区增城中学2020-2021学年高二上学期第一次段考 【答案】C【分析】由2n ≥时,可得1n n n S S a -=-,结合题设条件,推得11n n a a -+=,进而求得2019S 的值,得到答案.【解析】由题意,当2n ≥时,可得1n n n S S a -=-,因为12n n a S n -+=,所以2()n n n S a a n +-=,即2n n S a n =+,当2n ≥时,1121n n S a n --=+-,两式相减,可得121n n n a a a -=-+,即11n n a a -+=, 所以2345671,1,1,a a a a a a +=+=+=,所以()()()12345201820120991201911110102a a a a a a a S -=+++++++=+⨯=.故选C . 17.冬春季节是流感多发期,某地医院近30天每天入院治疗流感的人数依次构成数列{}n a ,已知11a =,22a =,且满足()211+-=+-nn n a a (n *∈N ),则该医院30天入院治疗流感的共有( )人 A .225 B .255 C .365D .465【试题来源】山东省烟台市2020-2021学年高二上学期期末月考 【答案】B【分析】直接利用分类讨论思想的应用求出数列的通项公式,进一步利用分组法求出数列的和【解析】当n 为奇数时,2n n a a +=,当n 为偶数时,22n n a a +-=,所以13291a a a ==⋅⋅⋅==, 2430,,,a a a ⋅⋅⋅是以2为首项,2为公差的等差数列,所以30132924301514()()1515222552S a a a a a a ⨯=++⋅⋅⋅++++⋅⋅⋅+=+⨯+⨯=,故选B 18.意大利数学家斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,…即()()121F F ==,()()()12F n F n F n =-+- (3n ≥,n *∈N ),此数列在现代物理、化学等方面都有着广泛的应用,若此数列的每一项被2除后的余数构成一个新数列{}n a ,则数列{}n a 的前2020项的和为 A .1348 B .1358 C .1347D .1357【试题来源】江苏省镇江市八校2020-2021学年高三上学期期中联考 【答案】C【分析】由题意可知,得数列{}n a 是周期为3的周期数列,前3项和为1102++=,又202067331=⨯+,由此可得答案.【解析】由数列1,1,2,3,5,8,13,21,34,55,…,各项除以2的余数,可得数列{}n a 为1,1,0,1,1,0,1,1,0,⋅⋅⋅,所以数列{}n a 是周期为3的周期数列,前3项和为1102++=, 因为202067331=⨯+,所以数列{}n a 的前2020项的和为673211347⨯+=,故选C. 19.已知数列{}n a 的前n 项和为n S ,11a =,当2n ≥时,12n n a S n -+=,,则S 2019的值为 A .1008 B .1009 C .1010D .1011【试题来源】江苏省南通市2020-2021学年高三上学期期中考前热身 【答案】C【分析】由2n ≥时,12n n a S n -+=,得到121n n a S n ++=+,两式相减,整理得()112n n a a n ++=≥,结合并项求和,即可求解.【解析】当2n ≥时,12n n a S n -+=,①,可得121n n a S n ++=+,②, 由②-①得,112()1n n n n a a S S +--+-=,整理得()112n n a a n ++=≥, 又由11a =,所以20191234520182019()()()1010S a a a a a a a =+++++++=.故选C .20.已知数列{}n a 的前n 项和为n S ,且()11213n n n n S S a n +++=+-+,现有如下说法:①541a a =;②222121n n a a n ++=-;③401220S =. 则正确的个数为 A .0 B .1 C .2D .3【试题来源】百校联盟2021届普通高中教育教学质量监测考试(全国卷11月)(文)试卷 【答案】D【分析】由()11213n n n n S S a n +++=+-+得到()11132n n n a a n ++=-+-,再分n 为奇数和偶数得到21262k k a a k +=-+-,22165k k a a k -=+-,然后再联立递推逐项判断. 【解析】因为()11213n n n n S S a n +++=+-+,所以()11132n n n a a n ++=-+-,所以()212621k k a a k +=-+-,()221652k k a a k -=+-,联立得()212133k k a a +-+=, 所以()232134k k a a +++=,故2321k k a a +-=,从而15941a a a a ===⋅⋅⋅=,22162k k a a k ++=-,222161k k a a k ++=++,则222121k k a a k ++=-,故()()()4012345383940...S a a a a a a a a =++++++++()()()()234538394041...a a a a a a a a =++++++++()()201411820622k k =+⨯=-==∑1220,故①②③正确.故选D.21.已知正项数列{}n a 中,11a =,前n 项和为n S ,且当*2,n n N ≥∈时,2n a =,数列()1cos 12n n n a π⎧⎫-⋅+⎨⎬⎩⎭的前64项和为 A .240 B .256 C .300D .320【试题来源】重庆市第一中学2019-2020学年高一下学期期末【答案】D【分析】由题意结合数列n a 与n S 2-=,由等差数列的性质即可得21n =-,进而可得当2n ≥时,88n a n =-,结合余弦函数的性质、分组求和法可得()()()642664648264T a a a a a a --=+++⋅⋅⋅+-,即可得解.【解析】由题意,当*2,n n N ≥∈时,12n n n S a S -==-,即2=,由0n S >2=,所以数列1=,公差为2的等差数列,()12121n n =+-=-,所以当2n ≥时,()222121188n a n n n ==-+--=-⎡⎤⎣⎦,设数列()1cos12nn n a π⎧⎫-⋅+⎨⎬⎩⎭的前n 项和为数列n T ,所以该数列前64项的和为 164234234cos 1cos 1cos 1cos 12222T a a a a ππππ⎛⎫⎛⎫⎛⎫⎛⎫=-⋅++⋅++-⋅++⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭6464cos 12a π⎛⎫+⋅⋅⋅+⋅+ ⎪⎝⎭ ()()()262642664624486464a a a a a a a a a a =-+-⋅⋅⋅-+=+++⋅⋅⋅--+-641616320=+⨯=.故选D .【名师点睛】本题考查了数列n a 与n S 的关系、等差数列的判断及性质的应用,考查了分组求和法求数列前n 项和的应用,属于中档题. 22.数列{}n a 的前n 项和为n S ,项n a 由下列方式给出1121231234,,,,,,,,,,2334445555⋅⋅⋅⋅⋅⋅.若100k S ≥,则k 的最小值为 A .200 B .202 C .204D .205【试题来源】福建省莆田市第二中学2020-2021学年高二10月阶段性检测 【答案】C【分析】首先观察数列中项的特征,先分组求和,之后应用等差数列求和公式,结合题中所给的条件,建立不等关系式,之后再找其满足的条件即可求得结果. 【解析】11212312112312334442222n n S n nn --⎛⎫⎛⎫⎛⎫=+++++++++⋅⋅⋅+=+++⋅⋅⋅+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (1)1004n n -=≥.所以(1)400n n -≥,21n ≥.而当20n =时,95S =,只需要125212121m++⋅⋅⋅+≥,解得14m ≥. 所以总需要的项数为1231914204+++⋅⋅⋅++=,故选C .【名师点睛】该题考查的是有关数列的问题,涉及到的知识点有等差数列求和公式,分组求和法,属于中档题目.23.已知数列{} n a 中,10a =,21a =,且当n 为奇数时,22n n a a +-=;当n 为偶数时,23n n a a +=,则此数列的前20项的和为A .10311102-+B .1131902-+C .1031902-+D .11311102-+【试题来源】福建省莆田市第二中学2020-2021学年高二10月阶段性检测 【答案】C【分析】根据n 为奇数时,22n n a a +-=;n 为偶数时,23n n a a +=,得到数列{}n a 中所有奇数项构成以0为首项,以2为公差的等差数列;所有偶数项构成以1为首项,以3为公比的等比数列;然后分别利用等差数列和等比数列前n 项和求解.【解析】因为10a =,21a =,且当n 为奇数时,22n n a a +-=;当n 为偶数时,23n n a a +=,则此数列的前20项的和:数列{}n a 中所有奇数项构成以0为首项,以2为公差的等差数列; 数列{}n a 中所有偶数项构成以1为首项,以3为公比的等比数列; 所有()()2013192420......S a a a a a a =+++++++()()10113101012100213⨯-+=⨯++-1031902-=+,故选C . 24.已知数列{}n a 的通项公式为2(1)n n a n =-,设1n n n c a a +=+,则数列{}n c 的前200项和为 A .200- B .0 C .200D .10000【试题来源】安徽省六安市第一中学2019-2020学年高一下学期期中(理)【答案】A【分析】利用分组求和法及等差数列求和公式求解. 【解析】记数列{}n c 的前200项和为n T ,122001223199200200201n T c c c a a a a a a a a =++=++++++++123419920012012[()()()]a a a a a a a a =++++++-+()()()2222[41169200199]1201=-+-++-+-22[3711399]1201=⨯+++++-()2100339921201402004040112002+=⨯+-=-+=-.故选A .25.已知等差数列{}n a 的首项为1a ,公差0d ≠,记n S 为数列(){}1nn a -⋅的前n 项和,且存在*k N ∈,使得10k S +=成立,则 A .10a d > B .10a d < C .1a d >D .1a d <【试题来源】浙江省浙考交流联盟2020-2021学年高三上学期8月线上考试 【答案】B【分析】由题意按照k 为奇数、k 为偶数讨论,利用并项求和法可得1k S +,转化条件得存在*k N ∈且k 为偶数时,102ka d --=,即可得解.【解析】因为等差数列{}n a 的首项为1a ,公差0d ≠,n S 为数列(){}1nn a -⋅的前n 项和,所以当*k N ∈且k 为奇数时,112341k k k S a a a a a a ++=-+-++⋅⋅⋅-+()()()12341102k k k a a a a a a d ++=-++-++⋅⋅⋅+-+=≠; 当*k N ∈且k 为偶数时,1123411k k k k S a a a a a a a +-+=-+-++⋅⋅⋅-+-()()()()1234111122k k k k ka a a a a a a d a kd a d -+=-++-++⋅⋅⋅+-+-=-+=--; 所以存在*k N ∈且k 为偶数时,102k a d --=即102ka d =-≠,当2k =时,1a d =-,此时1a d =,故排除C 、D ;所以1a 与d 异号即10a d <,故A 错误,B 正确.故选B . 26.已知函数()2*()sin2n f n n n N π=∈,且()(1)n a f n f n =++,则1232020a a a a ++++的值为A .4040B .4040-C .2020D .2020-【试题来源】四川省宜宾市叙州区第一中学校2020-2021学年高二上学期开学考试(文) 【答案】A【分析】由题意得2222(1)sin(1)sin sin (1)cos 2222n n n n n a n n n n ππππ+=++=++,从而可求出11a =,222232018201920203,,2019,2021a a a a a ==-⋅⋅⋅==-=,然后通过分组求和可得答案.【解析】因为()2*()sin2n f n n n N π=∈,且()(1)n a f n f n =++, 所以2222(1)sin (1)sin sin (1)cos 2222n n n n n a n n n n ππππ+=++=++, 所以11a =,222223452018201920203,5,,2019,2021a a a a a a a ==-==⋅⋅⋅==-=,所以1232020a a a a ++++13520192462020()()a a a a a a a a =+++++++++22222222222[(13)(57)(20172019)][(35)(79)(20192021)]=-+-+⋅⋅⋅+-+-++-++⋅⋅⋅+-+2(135720172019)2(35720192021)=-++++⋅⋅⋅++++++⋅⋅⋅++10102020101020242222⨯⨯=-⨯+⨯1010202010102024=-⨯+⨯4040=,故选A.27.已知数列{}n a 中,11a =,23a =,*122(3,)n n n a a a n n N --=+≥∈,设211(2)(2)n n n b a a n n --=-≥,则数列{}n b 的前40项的和为A .860B .820C .820-D .860-【试题来源】河南省开封市河南大学附属中学2020-2021学年高二9月质检 【答案】A【分析】本题先对数列{}n a 的递推公式进行转化可发现数列{}12n n a a --是以1为首项,1-为公比的等比数列,通过计算出数列{}12n n a a --的通项公式可得1n b -的表达式,进一步可得数列{}n b 的通项公式,最后在求和时进行转化并应用平方差公式和等差数列的求和公式即可得到前40项的和.【解析】由题意,可知当3n ≥时,122n n n a a a --=+,两边同时减去12n a -,可得112112222(2)n n n n n n n a a a a a a a -------=+-=--,2123211a a -=-⨯=,∴数列{}12n n a a --是以1为首项,1-为公比的等比数列, 11121(1)(1)n n n n a a ---∴-=⋅-=-,*(2,)n n ≥∈N ,21211(2)(1)n n n n b a a n n ---∴==-⋅-,故2(1)(1)n n b n ⋅=-+,令数列{}n b 的前n 项和为n T ,则4012343940T b b b b b b =++++⋯++22222223454041=-+-+-⋯-+222222[(23)(45)(4041)]=--+-+⋯+-[(23)(45)(4041)]=--+-+-⋯-+23454041=++++⋯++40(241)2⨯+=860=.故选A .【名师点睛】本题主要考查数列由递推公式推导出通项公式,以及数列求和问题.考查了转化与化归思想,整体思想,定义法,平方差公式,以及逻辑推理能力和数学运算能力.本题属中档题.28.在数列{}n a 中,122,2a a ==,且11(1)(*),nn n a a n N +-=+-∈则100S =A .5100B .2600C .2800D .3100【试题来源】河南省洛阳市第一中学2020-2021学年高二上学期10月月考 【答案】A【分析】转化条件为22n n a a +-=,进而可得21k a -,2k a ,由分组求和法结合等差数列的前n 项和公式即可得解.【解析】因为11(1)(*)n n n a a n N +-=+-∈,所以1211(1)n n n a a +++-=+-,所以()()122121n n n n a a ++-=+--+=,因为122,2a a ==,所以()211212k a a k k -=+-=,()22212k k a k a =+-=,*k N ∈,所以()()100123499100139924100S a a a a a a a a a a a a =++++⋅⋅⋅++=++⋅⋅⋅++++⋅⋅⋅+()()2100241002410025051002+=++⋅⋅⋅++++⋅⋅⋅+=⨯⨯=.故选A . 【名师点睛】本题考查了等差数列通项公式及前n 项和公式的应用,考查了分组求和法的应用及转化化归思想,属于中档题.29.正项数列{}n a 的前n 项和为n S ,且()2*2n n n S a a n N =+∈,设()2112nn n na c s +=-,则数列{}n c 的前2020项的和为A .20192020-B .20202019-C .20202021-D .20212020-【试题来源】2020届广东省华南师范大学附属中学高三年级月考(三)(理) 【答案】C【分析】先根据和项与通项关系得11n n a a --=,再根据等差数列定义与通项公式、求和公式得,n n a S ,代入化简n c ,最后利用分组求和法求结果. 【解析】因为()2*2,0n n n nS a a n Na=+∈>,所以当1n =时,21112a a a =+,解得11a =,当2n ≥时,()()2211122n n n n n n n a S S a a a a ---=-=+-+,所以 ()()1110n n n n a a a a --+--=, 因为0n a >,所以11n n a a --=,所以数列{}n a 是等差数列,公差为1,首项为1, 所以()()111,2n n n n a n n S +=+-==,所以()()21111121n n n n na c s n n +⎛⎫=-=-+ ⎪+⎝⎭,则数列{}n c 的前2020项的和11111111202011223342020202120212021⎛⎫⎛⎫⎛⎫⎛⎫=-+++-++++=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选C . 30.若数列{}n a 的通项公式为21nn a =-,在一个n 行n 列的数表中,第i 行第j 列的元素为()1,2,,,1,2,,ij i j i j c a a a a i n j n =⋅++=⋅⋅⋅=⋅⋅⋅,则满足11222021nn c c c ++⋅⋅⋅+<的n 的最大值是 A .4B .5C .6D .7【试题来源】山西省运城市2021届高三(上)期中(理) 【答案】B【分析】求得1122nn c c c ++⋅⋅⋅+关于n 的表达式,利用数列的单调性可求得满足11222021nn c c c ++⋅⋅⋅+<的n 的最大值.【解析】数列{}n a 的通项公式为21nn a =-,在一个n 行n 列的数表中,第i 行第j 列的元素为()1,2,,,1,2,,ij i j i j c a a a a i n j n =⋅++=⋅⋅⋅=⋅⋅⋅, 所以()()2121212121iji j i jij i j i j c a a a a +=⋅++=--+-+-=-.令1122n nn S c c c =+++,则()102,n n nn S S c n n N *--=>≥∈,所以,数列{}n S 为递增数列,当11222021nn c c c +++<时,所有的元素之和为246212121212021n n n S +=-+-+-++-<,当4n =时,24684222243362021S =+++-=<, 当5n =时,246810522222513592021S =++++-=<, 当6n =时,246810126222222654542021S =+++++-=>, 故n 的最大值为5,故选B .【点评】关键点【名师点睛】本题考查数列不等式的求解,解题的关键在于求出1122nn c c c ++⋅⋅⋅+关于n 的表达式,在求解数列不等式时,要充分结合数列的单调性求解.31.公元1202年列昂那多·斐波那契(意大利著名数学家)以兔子繁殖为例,引入“兔子数列”{}n a :1,1,2,3,5,8,13,21,34,55,……,即11a =,21a =,()*12,2n n n a a a n n --=+∈>N ,此数列在现代物理、化学等学科都有着十分广泛的应用.若将此数列{}n a 的各项除以2后的余数构成一个新数列{}n b ,设数列{}n b 的前n 项的和为n T ;若数列{}n a 满足:212n n n n c a a a ++=-,设数列{}n c 的前n 项的和为n S ,则20202020T S +=A .1348B .1347C .674D .673【试题来源】浙江省宁波市慈溪市2020-2021学年高三上学期期中 【答案】B【分析】根据题意写出数列{}n a 的前若干项,观察发现此数列是以3为周期的周期数列,可得2020T ,再计算1n nc c +,结合等比数列的通项公式和求和公式,可得2020S ,进而得到所求和. 【解析】“兔子数列”的各项为1,1,2,3,5,8,13,21,34,55,⋯,∴此数列被2除后的余数依次为1,1,0,1,1,0,1,1,0,⋯⋯,即11b =,21b =,30b =,41b =,51b =,60b =,⋯⋯, ∴数列{}n b 是以3为周期的周期数列,20201231673()673211347T b b b b ∴=+++=⨯+=,由题意知22212112221121222121212()()1n n n n n n n n n n n n n n n n n n n n n n c a a a a a a a a a a a c a a a a a a a a a +++++++++++++++++-+---====----, 由于212131c a a a =-=-,所以(1)n n c =-,所以2020(11)(11)(11)0S =-++-++⋯+-+=. 则202020201347T S +=.故选B.【名师点睛】确定数列数列{}n b 是以3为周期的周期数列,利用周期性求出数列的和,摆动数列(1)n n c =-可以利用分组求和,是解决问题的关键,属于中档题. 32.已知函数()()()22,,n n f n n n ⎧⎪=⎨-⎪⎩当为奇数时当为偶数时且()(1)n a f n f n =++,则121100a a a a ++++等于A .0B .100C .-100D .10200【试题来源】广东省普宁市2020-2021学年高二上学期期中质量测试 【答案】B【分析】先求出通项公式n a ,然后两项一组,即可求解数列的前100项的和【解析】()(1)n a f n f n =++,∴由已知条件知,2222(1),(1),n n n n a n n n ⎧-+=⎨-++⎩为奇数为偶数,即()21,21,n n n a n n ⎧-+=⎨+⎩为奇数为偶数,(1)(21)n n a n ∴=-+,12(n n a a n +∴+=是奇数),123100123499100()()()2222100a a a a a a a a a a ∴+++⋯+=++++⋯++=+++⋯+=故选B .【名师点睛】解答本题的关键是求出数列{}n a 的通项(1)(21)n n a n =-+,即得到12(n n a a n ++=是奇数).33.已知数列{}n a 为等差数列,首项为2,公差为3,数列{}n b 为等比数列,首项为2,公比为2,设n n b c a =,n T 为数列{}n c 的前n 项和,则当2020n T <时,n 的最大值是 A .8 B .9 C .10D .11【试题来源】山东省菏泽市2021届高三上学期期中考试(A ) 【答案】A【分析】由已知分别写出等差数列与等比数列的通项公式,求得数列{}n c 的通项公式,利用数列的分组求和法可得数列{}n c 的前n 项和n T ,验证得答案.【解析】由题意得323(1)1n a n n ⨯-=+-=,2nn b =,2321n n n n b c a a ==⨯-=,123n T c c c ∴=+++…n c +123321321321=⨯-+⨯-+⨯-+…321n +⨯-(1233222=⨯+++…)2nn +-()212312n n ⨯-=⨯-- 1326n n +=⨯--,当8n =时,98326815222020T =⨯--=<;当9n =时,109326930572020T =⨯--=>,n ∴的最大值为8.故选A .【名师点睛】本题解题的关键是求出数列{}n c 的通项公式,利用分组求和求出数列{}n c 的前n 项和n T .34.已知数列{}n a 满足11a =,1(1)(1)n n na n a n n +=+++,*n N ∈,且23n n b π=,记n S 为数列{}n b 的前n 项和,则2020S =A .1B .12C .12-D .-1【试题来源】山西省孝义市第二中学校2019-2020学年高一下学期期末 【答案】C【分析】由题设条件以及等差数列的性质得出2n a n =,进而得出2cos3n n b n π=,利用诱导公式求出32313,,k k k b b b --,即可求得2020S . 【解析】1(1)(1)n n na n a n n +=+++,111n na a n n+∴-=+, ∴数列n a n ⎧⎫⎨⎬⎩⎭是等差数列,公差与首项都为1,21(1)n n a n a n n ∴=+-⇒=,2cos3n n b n π∴=,3241(32)cos 2(32)32k b k k k ππ-⎛⎫=--=-- ⎪⎝⎭, 3121(31)cos 2(31)32k b k k k ππ-⎛⎫=--=-- ⎪⎝⎭,33cos 23k b k k k π==, 3231332k k k b b b --+∴=+,20203674212020(36742)101022b b ⨯-=-⨯-=-=-=, ()()()1234562017201820192020202031673101022b b b b b b b b b S b ++++++++++==⨯-=-故选C .35.设()f n ()*n ∈N 的整数, 如()()()()()11,21,324252f f f f f =====,,,若正整数m 满足()()()()11114034123f f f f m ++++=,则m = A .20162017⨯ B .20172018⨯ C .20182019⨯D .20192020⨯【试题来源】陕西省西安市高新一中2018-2019学年高二上学期期末(理) 【答案】B【解析】设()f x j =,,*x j N ∈,n 是整数,则221124n n n ⎛⎫+=++ ⎪⎝⎭不是整数,因此任意正整数的正的平方根不可能是1()2n n Z +∈形式,所以1122j j -<<+,221144j j x j j -+<<++, 因为,*x j N ∈,所以221j j x j j -+≤≤+,故()f x j =时,2221,2,,x j j j j j j =-+-++共2j 个,设222111(1)(2)()p a f j j f j j f j j =+++-+-++,则22p ja j==,*p N ∈, 由题意()()()()11114034123f f f f m ++++=,403422017=⨯, 所以()()()()1111111111123(1)(2)(3)(4)(5)(6)f f f f m f f f f f f ⎡⎤⎡⎤++++=+++++++⎢⎥⎢⎥⎣⎦⎣⎦1114034(220171)(220172)()f m f m f m ⎡⎤+++=⎢⎥-⨯+-⨯+⎣⎦, 故()2017f m =,m 为方程2017f =的最大整数解, 所以22017201720172018m =+=⨯.故选B .【名师点睛】本题主要考查数列与函数的关系、数列的应用,解题关键是设()f x j =,,*x j N ∈,确定x 的范围,得出x 的个数,然后计算出满足()f x j =的所有1()f x 的和为2. 二、多选题1.将2n 个数排成n 行n 列的一个数阵,如下图:111213212223231323331312n n n n n n nna a a a a a a a a a a a a a a a ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中0m >).已知112a =,13611a a =+,记这2n 个数的和为S .下列结论正确的有A .3m =B .767173a =⨯C .1(31)3j ij a i -=-⨯D .()1(31)314n S n n =+- 【试题来源】湖南省长沙市第一中学2020-2021学年高三上学期月考(三) 【答案】ACD【解析】由题意,该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列,且112a =,13611a a =+,可得2213112a a m m ==,6111525a a d m =+=+,所以22251m m =++,解得3m =或12m =-(舍去),所以选项A 是正确的; 又由6666761(253)3173a a m ==+⨯⨯=⨯,所以选项B 不正确;又由1111111(3[((1)][2(1)3]31)3j j j j ij i a ma i m m i i a ----==+-⨯⨯==-⨯+-⨯⨯,所以选项C 是正确的;又由这2n 个数的和为S , 则111212122212()()()n n n n nn S a a a a a a a a a =++++++++++++11121(13)(13)(13)131313n n n n a a a ---=+++---1(231)(31)22nn n +-=-⋅ 1(31)(31)4n n n =+-,所以选项D 是正确的,故选ACD . 【名师点睛】本题主要考查了数表、数阵数列的求解,以及等比数列及其前n 项和公式的应用,其中解答中合理利用等比数列的通项公式和前n 项和公式,准确计算是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.2.将n 2个数排成n 行n 列的一个数阵,如图:该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中m >0).已知a 11=2,a 13=a 61+1,记这n 2个数的和为S .下列结论正确的有A .m =3B .767173a =⨯C .()1313j ij a i -=-⨯D .()()131314n S n n =+- 【试题来源】江苏省扬州市仪征中学2020-2021学年高二上学期期中模拟(2) 【答案】ACD【分析】根据第一列成等差,第一行成等比可求出1361,a a ,列式即可求出m ,从而求出通项ij a ,再按照分组求和法,每一行求和可得S ,由此可以判断各选项的真假. 【解析】因为a 11=2,a 13=a 61+1,所以2m 2=2+5m +1,解得m =3或m 12=-(舍去), 所以a ij =a i 1•3j ﹣1=[2+(i ﹣1)×m ]•3j ﹣1=(3i ﹣1)•3j ﹣1,所以a 67=17×36,所以S =(a 11+a 12+a 13+……+a 1n )+(a 21+a 22+a 23+……+a 2n )+……+(a n 1+a n2+a n 3+……+a nn )11121131313131313nn n n a a a ---=+++---()()()12=(3n ﹣1)•2312n n +-() 14=n (3n +1)(3n ﹣1),故选ACD . 【名师点睛】本题主要考查等差数列,等比数列的通项公式的求法,分组求和法,等差数列,等比数列前n 项和公式的应用,属于中档题. 三、填空题1.已知数列{}n a 的前n 项和为n S ,满足112a =-,且()1222n n a a n N n n *++=∈+,则10S =__________.【试题来源】广西桂林市第十八中学2021届高三上学期第二次月考(理) 【答案】1011【分析】根据题中条件,由裂项的方法得到1112n n a a n n ++=-+,根据裂项相消与并项求和的方法,即可得出结果. 【解析】因为()122211222n n a a n n n n n n ++===-+++,则()()()()()1012345678910S a a a a a a a a a a =+++++++++11111111113355779911⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭11011111=-=.2.设n S 为数列{}n a 的前n 项和,10a =,若11(1)(2)n n n na a +⎡⎤=+-+-⎣⎦(*n N ∈),则100S =__________.【试题来源】江苏省徐州市沛县2020-2021学年高三上学期第一次学情调研【答案】101223- 【分析】分n 为奇数、n 为偶数两种情况讨论,可得数列{}n a 的特点,然后可算出答案. 【解析】当n 为奇数时,()12nn a +=-,则()122a =-,()342a =-,,()991002a =-,当n 为偶数时,()12222nn n n n a a a +=+-=+,则232220a a =+=,454220a a =+=,,989998220a a =+=,又10a =,所以10110024100223S a a a -=+++=. 3.已知数列{}n a 满足:11a =,12n n n a a a +=+,则数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S =__________. 【试题来源】安徽省亳州市涡阳县第四中学2019-2020学年高一下学期第二次质量检测(理) 【答案】122n n +--【分析】根据题中条件,得到11211221n n n a a a +⎛⎫+=+=+ ⎪⎝⎭,判定数列11n a ⎧⎫+⎨⎬⎩⎭是以2为公比的等比数列,求出121n na =-,由分组求和的方法,即可求出结果. 【解析】由12n n n a a a +=+得12121n n n n a a a a ++==+,所以11211221n n n a a a +⎛⎫+=+=+ ⎪⎝⎭, 因此数列11n a ⎧⎫+⎨⎬⎩⎭是以2为公比的等比数列,又11a =,所以1112a +=,因此111222n n n a -+=⨯=,所以121n n a =-,因此()()2121222 (22212)n nn n n n S n +-=+++-=-=---.故答案为122n n +--.【名师点睛】求解本题的关键在于,根据12n n n a a a +=+,由构造法,得到111121n n a a +⎛⎫+=+ ⎪⎝⎭,再根据等比数列的求和公式,以及分组求和的方法求解即可. 4.数列{}n a 的通项公式22cos4n n a n n π=-,其前n 项和为n S ,则2021S =__________. 【试题来源】甘肃省永昌县第一中学2020-2021学年高三上学期第一次月考数学理试题 【答案】1010.【分析】由于22cos(1cos )cos 422n n n n a n n n n n πππ=-=+-=,可得数列{}n a 的所有奇数项为0,前2021项的所有偶数项共有202010102=项,从而可求得其结果 【解析】因为22cos (1cos )cos 422n n n n a n n n n n πππ=-=+-=,所以数列{}n a 的所有奇数项为0,前2021项的所有偶数项共有202010102=项, 所以2021246820182020S a a a a a a =++++⋅⋅⋅++246820182020=-+-+-⋅⋅⋅-+(24)(68)(20182020)=-++-++⋅⋅⋅+-+1010210102=⨯=.故答案为1010 5.2020年疫情期间,某医院30天每天因患新冠肺炎而入院就诊的人数依次构成数列{}n a ,已知11a =,22a =,且满足21(1)nn n a a +-=--,则该医院30天内因患新冠肺炎就诊的人数共有__________.【试题来源】山东省聊城市2020-2021学年高三上学期期中 【答案】255【分析】根据题目所给递推关系式,求得数列{}n a 项的规律,由此进行分组求和,求得数列前30项的和.【解析】由于()211nn n a a +-=--,当n 为偶数时,20n na a +-=,因此前30项中的偶数项构成常数列,各项都等于22a =,共有15项,和为15230⨯=;当n 为奇数时,22n n a a +-=;又11a =,所以前30项中的奇数项构成首项为1,公差为2的等差数列,共有15项,和为151415122252⨯⨯+⨯=. 故30天的总人数为30225255+=.故答案为255. 6.数列{}n a 的前n 项和为n S ,若()*1cos2n n a n n N π=+⋅∈,则2020S =__________.【试题来源】上海市复兴高级中学2021届高三上学期期中 【答案】3030【分析】根据题意,先确定cos2n π的周期,再求出一个周期的和,即可得出结果. 【解析】由()4coscos 2cos 222n n n ππππ+⎛⎫=+= ⎪⎝⎭,知cos 2n π的周期为4,又11cos12a π=+=,212cos 12a π=+=-, 3313cos12a π=+=, 414cos 214a π=+=+,则1234426a a a a +++=+=,所以20202020630304S =⨯=.故答案为3030.7.已知数列{}n a 的前n 项和为n S ,且21n n S a =-.则数列{}n S 的前n 项和n T =__________. 【试题来源】重庆市巴蜀中学2021届高三上学期适应性月考(四) 【答案】122n n +--【分析】通过前n 项和n S 与n a 的关系式以及等比数列的定义得出{}n a 及{}n S 的表达式,进而利用分组求和即可.【解析】由21n n S a =-,得111211a a a =-⇒=,由21n n S a =-,有1121(2)n n S a n --=-≥,两式相减,11222(2)n n n n n a a a a a n --=-⇒=, 故数列{}n a 是首项为1,公比为2的等比数列,12n na ,122112nn n S -==--,()12122212n n n T n n +-∴=-=---.8.设函数()f x 的定义域为R ,满足()()12f x f x +=,且当[)0,1x ∈时,()sin f x x π=,当[)0,x ∈+∞时,函数()f x 的极大值点从小到大依次记为1a 、2a 、3a 、、n a 、,并记相应的极大值为1b 、2b 、3b 、、n b 、,则数列{}n n a b +前9项的和为__________.【试题来源】湖北省荆州中学2020-2021学年高三上学期8月月考 【答案】11032【分析】求出函数()y f x =在区间[)()1,n n n N*-∈上的解析式,利用导数求出函数()y f x =在区间[)()1,n n n N *-∈上的极大值点与极大值,可得出数列{}n n a b +的通项公式,再利用分组求和法可求得数列{}n n a b +的前9项的和. 【解析】函数()f x 的定义域为R ,满足()()12f x f x +=,则()()21=-f x f x ,且当[)0,1x ∈时,()sin f x x π=,则当[)()1,x n n n N *∈-∈,()[)10,1x n --∈,()()()()()2112122212sin 1n n f x f x f x f x n x n ππ--=-=-==--=--⎡⎤⎡⎤⎣⎦⎣⎦,()()12cos 1n f x x n πππ-'=--⎡⎤⎣⎦,当[)()1,x n n n N*∈-∈时,()[)10,1x n --∈,则()[)10,x n πππ--∈⎡⎤⎣⎦,令()0f x '=,可得()12x n πππ--=,解得12x n =-, 当112n x n -<<-时,()0f x '>,当12n x n -<<时,()0f x '<. 所以,函数()y f x =在12x n =-处取得极大值,即1122n n b f n -⎛⎫=-= ⎪⎝⎭,又12n a n =-,1122n n n a b n -∴+=-+,因此,数列{}n n a b +的前9项的和991199121103222122S ⎛⎫+-⨯ ⎪-⎝⎭=+=-. 【名师点睛】本题考查了数列的分组求和,同时也考查了利用导数求函数的极值点和极值,考查计算能力,属于中等题.9.在数列{}n a 中,若121,(1)2nn n a a a +=+-=,记n S 是数列{}n a 的前n 项和,则100S =__________.【试题来源】江苏省盐城市响水中学2020-2021学年高二上学期期中 【答案】2550【分析】当n 为奇数时,可得数列{}n a 的奇数项为公差为2的等差数列,当n 为偶数时,可得偶数项的特征,将所求问题转化为奇数项和偶数项求和即可.【解析】因为121,(1)2nn n a a a +=+-=,所以当n 为奇数时,22n n a a +-=,即数列{}n a 的奇数项为公差为2的等差数列,当n 为偶数时,22n n a a ++=,所以135995049501225002a a a a ⨯++++=⨯+⨯=, ()()()()24681012485022550a a a a a a a a ++++++++=⨯=,所以1002500502550S =+=,故答案为2550.【名师点睛】(1)得到数列{}n a 的奇数项为公差是2的等差数列; (2)得到数列{}n a 的偶数项满足22n n a a ++=.10.已知数列{}n a 的前n 项和为n S ,21122n n a a a =+,=+,则5S 的值为__________. 【试题来源】河南省豫南九校2020-2021学年高二第一学期第二次联考试题 (理) 【答案】732【解析】122n n a a +=+,()1222n n a a +∴+=+,故数列{}2n a +是以2为公比,以223a +=为第二项的等比数列, 故2232n n a -+=⋅,故2322n n a -=⋅-,()5531273225122S -∴=-⨯=-,故答案为732. 【名师点睛】1n n a pa q +=+(1,0p q ≠≠的常数)递推关系求通项,构造等比数列是解题关键,属于基础题. 11.设数列{}n a 是以4为首项,12为公比的等比数列,其前n 项和为{}n S ,则{}n S 的前n 项和为__________.【试题来源】江苏省宿迁中学2020-2021学年高三上学期期中巩固测试 【答案】3288n n -+-【分析】先根据题意得382nn S -=-,由于数列{}32n-是以4为首项,12为公比的等比数列,进而利用分组求和法求和即可得答案.【解析】由等比数列的前n 项和公式得()1314112821112n nn na q S q -⎡⎤⎛⎫-⎢⎥ ⎪-⎝⎭⎢⎥⎣⎦===---, 由于数列{}32n-是以4为首项,12为公比的等比数列,。
2019-2020学年山西省太原市高一下学期期末数学试卷 (解析版)

2019-2020学年山西省太原市高一第二学期期末数学试卷一、选择题(共12小题).1.在等差数列{a n}中,a1=1,d=2,则a4=()A.5B.7C.8D.162.不等式x(x﹣1)>0的解集是()A.(﹣∞,0)B.(0,1)C.(1,+∞)D.(﹣∞,0)∪(1,+∞)3.已知向量=(2,1),=(﹣1,k),⊥,则实数k的值为()A.2B.﹣2C.1D.﹣14.在△ABC中,A=30°,b=,c=1,则a=()A.2B.C.D.15.已知a<b,则下列结论正确的是()A.a2<b2B.<1C.>D.2a<2b6.在等比数列{a n}中,若a1a3a5=8,则a2a4=()A.2B.4C.±2D.±47.cos45°cos15°+sin15°sin45°的值为()A.B.C.D.8.若||=1,||=2,且,的夹角为120°,则|+|的值()A.1B.C.D.29.在数列{a n}中,a1=0,a n+1=(n∈N*),则a2020=()A.0B.C.﹣D.10.已知x>0,y>0,且x+2y=1,则+的最小值是()A.+1B.3+2C.﹣1D.3﹣211.若不等式ax2+2ax﹣1<0对于一切实数x都恒成立,则实数a的取值范围是()A.(﹣∞,﹣1]B.(﹣1,0)C.(﹣1,0]D.[0,+∞)12.已知等差数列{a n}满足a1>0,a2019+a2020>0,a2019•a2020<0.其前n项和为S n,则使S n>0成立时n最大值为()A.2020B.2019C.4040D.4038二、填空题:本大题共4个小题,每个小题3分,共12分,把答案填在横线上.13.已知扇形的半径为1,圆心角为45°,则该扇形的弧长为.14.一船以每小时15km的速度向东航行,船在A处看到一个灯塔B在北偏东60°处;行驶4h后,船到达C处,看到这个灯塔在北偏东15°处.这时船与灯塔的距离为km.15.已知a,b,c成等比数列,a,x,b成等差数列,b,y,c也成等差数列,则+的值为.16.已知数列{a n}满足a n+1+(﹣1)n a n=2n﹣l(n∈N*),则该数列的前80项和为.三、解答题(共3小题,满分30分)17.已知等差数列{a n}中,a2=3,a4=7.等比数列{b n}满足b1=a1,b4=a14.(1)求数列{a n}通项公式a n;(2)求数列{b n}的前n项和S n.18.已知sinα=,α∈(,π).(1)求cosα,tanα;(2)求的值.19.已知△ABC中,A=60°,a=6,B=45°.(1)求b;(2)求△ABC的面积.(请同学们在甲,乙两题中任选一题作答)20.已知向量=(1,cos x),=(1+sin x,1),x∈R,函数f(x)=•﹣1,(1)求函数f(x)的最小正周期和对称中心;(2)若f(x)≥1,求x的取值范围.选做题21.已知向量=(1,cos2x),=(1+sin2x,1),x∈R,函数f(x)=•.(1)求函数f(x)的最小正周期和对称中心;(2)若f(x)≤2,求x的取值范围.(请同学们在甲、乙两题中任选一题作答)22.已知数列{a n}满足a1=3,(n+2)a n+1=(n+3)a n+n2+5n+6(n∈N*).(1)证明:{}为等差数列;(2)设b n=(n∈N*),求数列{b n}的前n项和S n.选做题23.已知数列{a n}满足a1=5,a n+1=2a n+2n+1﹣1(n∈N*),b n=(n∈N*).(1)是否存在实数λ,使得{b n}为等差数列?若存在,求出λ的值;若不存在,请说明理由.(2)利用(1)的结论,求数列{a n}的前n项和S n.参考答案一、选择题:本题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将其字母标号填入下表相应位置.1.在等差数列{a n}中,a1=1,d=2,则a4=()A.5B.7C.8D.16【分析】由已知直接利用等差数列的通项公式求解.解:在等差数列{a n}中,由a1=1,d=2,得a4=a1+3d=1+3×2=7.故选:B.2.不等式x(x﹣1)>0的解集是()A.(﹣∞,0)B.(0,1)C.(1,+∞)D.(﹣∞,0)∪(1,+∞)【分析】可以先求出方程x(x﹣1)=0的根,根据一元二次不等式的解法,进行求解;解:x(x﹣1)=0,可得x=1或0,不等式x(x﹣1)>0,解得{x|x>1或x<0},故选:D.3.已知向量=(2,1),=(﹣1,k),⊥,则实数k的值为()A.2B.﹣2C.1D.﹣1【分析】根据条件便有,进行向量数量积的坐标运算便可得出k的值.解:∵;∴;∴k=2.故选:A.4.在△ABC中,A=30°,b=,c=1,则a=()A.2B.C.D.1【分析】利用余弦定理即可求出a的值.解:因为A=30°,b=,c=1,∴a2=b2+c2﹣2bc cos A==1,故a=1.故选:D.5.已知a<b,则下列结论正确的是()A.a2<b2B.<1C.>D.2a<2b【分析】通过举例利用排除法可得ABC不正确,即可得出结论.解:由a<b,取a=﹣2,b=﹣1,可知A,B不正确;取a=﹣1,b=1,可得C不正确.故选:D.6.在等比数列{a n}中,若a1a3a5=8,则a2a4=()A.2B.4C.±2D.±4【分析】根据等比数列的性质知:a1a3a5=(a2q)3=8,a2q=a3=2,a2a4=a32=4.解:设等比数列{a n}的公比为q,则a1a3a5=•a2q•a2q3=(a2q)3=8,则a2q=a3=2.又a2a4=•a3q=a32=22=4.故选:B.7.cos45°cos15°+sin15°sin45°的值为()A.B.C.D.【分析】直接利用两角差的余弦公式,求得所给式子的值.解:cos45°cos15°+sin15°sin45°=(cos45°﹣15°)=cos30°=,故选:B.8.若||=1,||=2,且,的夹角为120°,则|+|的值()A.1B.C.D.2【分析】根据向量的平方等于模的平方,利用数量积定义和数量积的性质即可得出.解:∵||=1,||=2,且,的夹角为120°,∴=1,=4,•=﹣1,∴|+|2=(+)2=+﹣2•=1+4﹣2=3,故|+|=,故选:B.9.在数列{a n}中,a1=0,a n+1=(n∈N*),则a2020=()A.0B.C.﹣D.【分析】利用数列{a n}的通项公式求出数列{a n}的前4项,得到{a n}是周期为3的周期数列,从而a2020=a1,由此能求出结果.解:在数列{a n}中,a1=0,a n+1=(n∈N*),∴=,=﹣,=0,∴{a n}是周期为3的周期数列,∵2020=673×3+1,∴a2020=a1=0.故选:A.10.已知x>0,y>0,且x+2y=1,则+的最小值是()A.+1B.3+2C.﹣1D.3﹣2【分析】利用“乘1法”与基本不等式的性质即可得出.解:因为x>0,y>0,且x+2y=1,则+=(+)(x+2y)=3+,当且仅当且x+2y=1即y==,x=时取等号,故选:B.11.若不等式ax2+2ax﹣1<0对于一切实数x都恒成立,则实数a的取值范围是()A.(﹣∞,﹣1]B.(﹣1,0)C.(﹣1,0]D.[0,+∞)【分析】由已知对a进行分类讨论,然后结合二次不等式的性质可求.解:当a=0时,﹣1<0恒成立,当a≠0时,可得,解可得,﹣1<a<0,综上可得,﹣1<a≤0,故选:C.12.已知等差数列{a n}满足a1>0,a2019+a2020>0,a2019•a2020<0.其前n项和为S n,则使S n>0成立时n最大值为()A.2020B.2019C.4040D.4038【分析】差数列{a n}的首项a1>0,a2019+a2020>0,a2019•a2020<0,可得a2019>0,a2020<0.再利用求和公式及其性质即可得出..解:∵等差数列{a n}的首项a1>0,a2019+a2020>0,a2019•a2020<0,∴a2019>0,a2020<0.于是S4038==>0,S4039==4039•a2020<0.∴使S n>0成立的最大正整数n是4038.故选:D.二、填空题:本大题共4个小题,每个小题3分,共12分,把答案填在横线上.13.已知扇形的半径为1,圆心角为45°,则该扇形的弧长为.【分析】根据弧长公式进行计算即可.解:由题意得,扇形的半径为8cm,圆心角为45°,故此扇形的弧长为:=.故答案为:.14.一船以每小时15km的速度向东航行,船在A处看到一个灯塔B在北偏东60°处;行驶4h后,船到达C处,看到这个灯塔在北偏东15°处.这时船与灯塔的距离为30 km.【分析】根据题意画出相应的图形,求出∠B与∠BAC的度数,再由AC的长,利用正弦定理即可求出BC的长.解:根据题意画出图形,如图所示,可得出∠B=75°﹣30°=45°,在△ABC中,根据正弦定理得:=,即=,∴BC=30km,则这时船与灯塔的距离为30km.故答案为:3015.已知a,b,c成等比数列,a,x,b成等差数列,b,y,c也成等差数列,则+的值为2.【分析】由题意可得b2=ac,2x=a+b,2y=b+c,代入要求的式子+,化简求得结果.解:∵已知a,b,c成等比数列,a,x,b成等差数列,b,y,c也成等差数列,可得b2=ac,2x=a+b,2y=b+c,∴+=+===2,故答案为2.16.已知数列{a n}满足a n+1+(﹣1)n a n=2n﹣l(n∈N*),则该数列的前80项和为3240.【分析】由数列递推式判断数列的特征,4项一组,求和后得到一个等差数列,然后求和即可.解:设a1=a,由a n+1+(﹣1)n a n=2n﹣l,得a2=a+1,a3=2﹣a,a4=7﹣a,a5=a,a6=a+9,a7=2﹣a,a8=15﹣a,a9=a,a10=a+17,a11=2﹣a,a12=23﹣a.可知:a1+a2+a3+a4=10,a5+a6+a7+a8=26,a9+a10+a11+a12=42,…10,26,42,…是等差数列,公差为16,∴数列{a n}的前80项和为:20×10+×16=3240.故答案为:3240.三、解答题(共3小题,满分30分)17.已知等差数列{a n}中,a2=3,a4=7.等比数列{b n}满足b1=a1,b4=a14.(1)求数列{a n}通项公式a n;(2)求数列{b n}的前n项和S n.【分析】(1)设等差数列{a n}的公差为d,运用等差数列的通项公式,解方程可得首项和公差,进而得到所求通项公式;(2)设等比数列{b n}的公比为q,运用等比数列的通项公式,解方程可得公比,进而得到所求和.解:(1)设等差数列{a n}的公差为d,由a2=3,a4=7,可得a1+d=3,a1+3d=7,解得a1=1,d=2,则a n=1+2(n﹣1)=2n﹣1,n∈N*;(2)设等比数列{b n}的公比为q,由b1=a1=1,b4=a14=q3=27,解得q=3,数列{b n}的前n项和S n==(3n﹣1).18.已知sinα=,α∈(,π).(1)求cosα,tanα;(2)求的值.【分析】(1)由题意利用同角三角函数的基本关系,求得结果.(2)由题意利用诱导公式,求得结果.解:(1)∴已知sinα=,α∈(,π),∴cosα=﹣=﹣,∴tanα==﹣.(2)==﹣cos2α=﹣.19.已知△ABC中,A=60°,a=6,B=45°.(1)求b;(2)求△ABC的面积.【分析】(1)由已知利用正弦定理可得b的值.(2)由已知利用两角和的正弦函数公式可求sin C的值,进而根据三角形的面积公式即可求解.解:(1)∵△ABC中,A=60°,a=6,B=45°.∴由正弦定理,可得b===2.(2)∵A+B+C=180°,A=60°,B=45°.∴sin C=sin(A+B)=sin A cos B+cos A sin B=+=,∴S△ABC=ab sin C=×=9+3.(请同学们在甲,乙两题中任选一题作答)20.已知向量=(1,cos x),=(1+sin x,1),x∈R,函数f(x)=•﹣1,(1)求函数f(x)的最小正周期和对称中心;(2)若f(x)≥1,求x的取值范围.【分析】(1)写出f(x)解析式,根据正弦函数的周期及对称中心可得答案;(2)条件等价于sin(x+)≥,解之即可解:由题可得f(x)==1+sin x+cos x﹣1=sin(x+),(1)由f(x)解析式可得其最小正周期T=2π,令x+=kπ,则x=kπ﹣,k∈Z,即f(x)的对称中心为(kπ﹣,0),k∈Z;(2)由f(x)≥1得sin(x+)≥,解得2kπ+≤x+≤2kπ+π,k∈Z,则2kπ≤x≤2kπ+,k∈Z,所以x的取值范围为[2kπ,2kπ+](k∈Z).选做题21.已知向量=(1,cos2x),=(1+sin2x,1),x∈R,函数f(x)=•.(1)求函数f(x)的最小正周期和对称中心;(2)若f(x)≤2,求x的取值范围.【分析】(1)根据平面向量数量积的运算得到f(x)解析式,结合正弦函数性质即可得到答案;(2)由f(x)≤2得到sin(2x+)≤,解之即可解:由题得f(x)==1+sin2x+cos2x=1+sin(2x+)(1)则函数f(x)的最小正周期为T==π,令2x+=kπ,解得x=(k∈Z),即函数的对称中心为(,1)(k∈Z);(2)当f(x)≤2时,即1+sin(2x+)≤2,所以sin(2x+)≤,则﹣+2kπ≤2x+≤+2kπ,解得﹣+kπ≤x≤kπ(k∈Z),即x的取值范围是[﹣+kπ,kπ](k∈Z)(请同学们在甲、乙两题中任选一题作答)22.已知数列{a n}满足a1=3,(n+2)a n+1=(n+3)a n+n2+5n+6(n∈N*).(1)证明:{}为等差数列;(2)设b n=(n∈N*),求数列{b n}的前n项和S n.【分析】(1)直接利用定义的应用求出结果.(2)利用(1)的应用求出数列的通项公式,进一步利用裂项相消法在数列求和中的应用求出结果.【解答】证明:(1)数列{a n}满足a1=3,(n+2)a n+1=(n+3)a n+n2+5n+6(n∈N*).整理得:(常数),所以数列{}是以为首项,1为公差的等差数列.解:(2)由(1)得:,解得:a n=n(n+2).所以.所以:==选做题23.已知数列{a n}满足a1=5,a n+1=2a n+2n+1﹣1(n∈N*),b n=(n∈N*).(1)是否存在实数λ,使得{b n}为等差数列?若存在,求出λ的值;若不存在,请说明理由.(2)利用(1)的结论,求数列{a n}的前n项和S n.【分析】(1)由a n+1=2a n+2n+1﹣1,得,然后利用累加法求得数列{a n}的通项公式,再由等差数列的定义求使{b n}为等差数列的λ值;(2)由(1)知,,令{(n+1)•2n}的前n项和为T n,利用错位相减法求得T n,进一步求得数列{a n}的前n项和S n.解:由a n+1=2a n+2n+1﹣1,得,∴,得,,,…(n≥2).累加得:==.∴(n≥2).a1=5适合上式,∴.则b n==.=.若{b n}为等差数列,则λ﹣1=0,即λ=1.故存在实数λ=1,使得{b n}为等差数列;(2)由(1)知,.令{(n+1)•2n}的前n项和为T n,则,.∴=,得.∴数列{a n}的前n项和S n=n•2n+1+n.。
2019-2020学年山西省太原市七年级第二学期期末达标测试数学试题含解析

请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每题只有一个答案正确)
【答案】B
【解析】
【分析】
据答对题的得分:10x;答错题的得分:-5(20-x),得出不等关系:得分要超过1分.
【详解】
解:根据题意,得
10x-5(20-x)>1.
故选:B.
【点睛】
本题考查由实际问题抽象出一元一次不等式,要特别注意:答错或不答都扣5分,至少即大于或等于.
8.估计 的值是在( )
A.3和4之间B.4和5之间C.5和6之间D.6和7之间
【点睛】
本题考查了平方根,算术平方根.在做题时,容易忽略根号计算16的平方根造成错误,需注意.
7.某次知识竞赛共有20道题,每答对一道题得10分,答错或不答都扣5分.娜娜得分要超过90分,设她答对了x道题,则根据题意可列不等式为()
A.10x-5(20-x)≥90B.10x-5(20-x)>90
C.20×10-5x>90D.20×10-5x≥90
1.有四条线段,长度分别是4,6,8,10,从中任取三条能构成直角三角形的概率是( )
A. B. C. D.
【答案】B
【解析】
【分析】
从四条线段中任意选取三条,找出所有的可能,以及能构成直角三角形的情况数,即可求出所求的概率.
【详解】
从四条线段中任意选取三条,所有的可能有:4,6,8;4,6,10;6,8,10;4,8,10共4种,
2020学年山西省太原市高二上期末考试通用技术试题及参考答案

2020~2021学年第一学期高二年级期末考试通用技术试卷(考试时间:下午4∶15——5∶15)说明:本试卷为闭卷笔答,答题时间60分钟,满分100一、单项选择题(本题共20小题,每小题2分,共40分。
)1.下列有关结构的说法,正确的是A.结构是指事物的各个组成部分之间的有序搭配和排列B.结构广泛存在于世界各处,且都是由人设计和制造出来的C.从力学角度来看,结构是指可承受一切外力的架构形态D.结构就是指力学角度的结构2.下列事物的结构受自然界启发而设计的是A.缝衣针B.口罩C.防毒面具D.指甲钳3.下图所示自行车结构,下列说法错误..的是A.挡泥板是壳体结构B.车架是框架结构C.车把和前叉整体是框架结构D.车轮是实体结构4.框架结构的抗震性能较好,主要原因是A.框架结构支撑起空间,但没有填充满空间B.框架结构可以承受水平和竖直方向的荷载C.搭建框架结构采用了特殊材料D.框架结构质量比较轻5.下列属于壳体结构的是A.锅盖B.木质砧板C.双层调料架D.羊角锤锤头6.下图所示为两款材质相同的饮料包装瓶。
下列评价错误..的是A.右瓶的花纹设计使瓶身更美观B.右瓶的花纹设计可以提高瓶身的强度C.右瓶的花纹设计可以增加手与瓶之间的摩擦力D.右瓶的花纹设计可以增加瓶中饮料的容量7.下图所示为起重机吊钩的受力示意图,其中销钉受力主要是A.受拉B.受扭转C.受压D.受剪切8.喜欢健身的小王打算用方木条制作两个相同的俯卧撑架,木条间采用榫卯结构连接。
下列是其中一个支架的四种设计方案,从强度角度考虑,其中最为合理的是9.构件之间的连接方式分为刚连接和铰连接两大类。
下列连接方法属于刚连接的是A.松铆连接B.合页连接C.松螺栓连接D.黏结10.下图所示为丝锥的结构示意图,下列关于丝锥说法错误..的是A.攻丝操作时,“柄”受扭转B.此丝锥的可加工半径为6mmC.“方头”的作用是便于扳手夹持D.“槽”的作用是便于铁屑导出11.下图所示为我省应县的佛宫寺释迦塔,俗称应县木塔,是现存最高的全木结构高层塔式建筑。
2019-2020学年山西省太原市第五中学高一上学期期末考试化学试题(解析版)

山西省太原市第五中学2019-2020学年高一上学期期末考试试题1. 山西人民从古代到现代,一直都在创造着辉煌。
下列山西生产或制造的物品中,其主要成分不属于合金的是( )A. 太钢手撕钢B. 西周青铜鸟尊C. 太钢圆珠笔头D. 西周玉鹿 『答案』D『解析』『详解』A .钢是铁的合金,主要成分是铁,含有碳等杂质,故A 不选;B .青铜是铜和锌的合金,故B 不选;C .太钢圆珠笔头为铁的合金,故C 不选;D .玉鹿为西周时期的玉器,主要成分是二氧化硅,其主要成分不属于合金,故D 选; 故选:D 。
2. 下列气体与酸雨的形成无关的是( )A. NOB. 2SOC. 2COD. 2NO 『答案』C『解析』『分析』正常雨水的pH 约为5.6,酸雨是指pH 小于5.6的雨水;酸雨主要由化石燃料燃烧产生的二氧化硫、氮氧化物等酸性气体,经过复杂的大气化学反应,被雨水吸收溶解而成形成酸雨,据此分析解答。
『详解』A .NO 在空气中极易被氧化为二氧化氮,能被雨水吸收溶解而形成硝酸型酸雨,故A 与酸雨的形成有关;B .2SO 是形成酸雨的主要气体之一,可形成硫酸型酸雨,故B 与酸雨的形成有关;C .2CO 是造成温室效应的主要气体,不能形成酸雨,故C 与酸雨的形成无关;D .2NO 是形成酸雨的主要气体之一,可形成硝酸型酸雨,故D 与酸雨的形成有关; 答案选C 。
3. 存放食品和药品的包装盒中常放有一袋半透明的球形颗粒,该颗粒的主要作用是保证食品和药品的干燥,其成分可能是( )A. 活性炭B. 氯化钠C. 硅胶D. 小苏打 『答案』C『解析』『详解』A. 活性炭不能做干燥剂,故A 错误;B. 氯化钠不是干燥剂,故B 错误;C. 硅胶是干燥剂,能吸水,且无毒,故C 正确;D. 小苏打不能做干燥剂,故D 错误;答案选C4. 下列气体中既能用NaOH 固体干燥,又能用浓硫酸干燥的是( )A. HClB. 2NC. SO 2D. 3NH『答案』B『解析』『详解』A .HCl 与NaOH 发生反应,不能用氢氧化钠固体干燥,故A 错误; B .N 2不与氢氧化钠和浓硫酸反应,既能用NaOH 固体干燥,又能用浓硫酸干燥,故B 正确;C .SO 2与氢氧化钠反应,不能用NaOH 固体干燥,故C 错误;D .NH 3与浓硫酸反应,不能用浓硫酸干燥,故D 错误;故选:B 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019~2020学年第一学期高二年级期末考试数学试卷(理科)一、选择题(本题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.命题“若1x =,则21x =”的逆否命题是()A.若21x =,则1x =B.若1x ≠,则21x ≠C.若1x =,则21x ≠D.若21x ≠,则1x ≠【答案】D 【解析】【分析】根据原命题为:若p ,则q ;则其逆否命题为若q ⌝,则p ⌝;即可得到结果.【详解】命题“若1x =,则21x =”的逆否命题是:若21x ≠,则1x ≠.故选:D.【点睛】本题主要考查了原命题和逆否命题之间的关系,属于基础题,2.双曲线22194x y -=的实轴长为()A.9B.6C.25D.4【答案】B 【解析】【分析】根据双曲线实轴的概念,即可得到结果.【详解】由题意可知,双曲线22194x y -=的实轴长为296=.故选:B.【点睛】本题主要考查了双曲线的性质,属于基础题.3.已知(1,1,2)a =- ,(1,,)b m n =-r ,若λa b =,则实数,m n 的值分别是()A.1,2- B.1,2-- C.1,2D.1,2-【答案】A 【解析】【分析】根据空间向量共线的坐标运算公式,即可求出结果.【详解】因为λa b = ,所以112m nλλλ=-⎧⎪-=⎨⎪=⎩,所以12m n =⎧⎨=-⎩.故选:A.【点睛】本题主要考查了空间向量共线的坐标运算,属于基础题.4.已知:p a b >,:q a c b c +>+,则p 是q 的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C 【解析】【分析】根据不等式的性质可知a b a c b c >⇔+>+,再根据充分、必要条件的判断,即可得到结果.【详解】因为a b >,所以a c b c +>+,故p 是q 的充分条件;又a c b c +>+,所以a b >,所以p 是q 的必要条件;综上,p 是q 的充要条件.故选:C.【点睛】本题主要考查了充分、必要条件的判断,属于基础题.5.已知椭圆22:1169x y C +=的左右焦点分别是12,F F ,过1F 的直线l 与椭圆C 相交于,A B 两点则2ABF ∆的周长为()A.B.16-C.8D.16【答案】D 【解析】【分析】根据椭圆的定义,即可求出结果.【详解】连接22,AF BF ,如下图所示:由椭圆的定义可知,12128,8AF AF BF BF +=+=,又222A AB B B F AF F =++∆,11AB AF BF =+,所以2ABF ∆的周长为16.故选:D.【点睛】本题主要考查椭圆定义的应用,属于基础题.6.已知命题“x R ∀∈,210x ax ++>”是假命题,则实数a 的取值范围为()A.(,2]-∞- B.[2,)+∞ C.[2,2]- D.(,2][2,)-∞-+∞ 【答案】D 【解析】【分析】由题意可知,命题“x R ∃∈,210x ax ++≤”是真命题,再利用一元二次不等式的解集与判别式的关系即可求出结果.【详解】由于命题“x R ∀∈,210x ax ++>”是假命题,所以命题“x R ∃∈,210x ax ++≤”是真命题;所以240a ∆=-≥,解得(,2][2,)a ∈-∞-+∞ .故选:D.【点睛】本题考查了简易逻辑的判定、一元二次不等式的解集与判别式的关系,考查了推理能力与计算能力,属于基础题.7.如图,在正方体1111ABCD A B C D -中,,,M N P 分别是111,,A B CC AD 的中点,则异面直线1D N 与MP 所成角的大小是()A.90︒B.60︒C.45︒D.30︒【答案】A 【解析】【分析】取1BB 中点K ,连接1A K ,则11//A K D N ,取1B K 的中点Q ,连接,MQ PQ ,由平行线的传递性可得1//MQ D N ,所以PMQ ∠即为所求异面直线1D N 与MP 所成角,然后再根据勾股定理即可得到结果.【详解】取1BB 中点K ,连接1A K ,则11//A K D N ,取1B K 的中点Q ,连接,MQ PQ ,则1//MQ A K ,所以1//MQ D N ,所以PMQ ∠即为所求异面直线1D N 与MP 所成角;如下图:设正方体的棱长为4,由勾股定理易知,2222229,24,5PQ PB BQ PM MQ =+===,所以222 PQ PM MQ =+,所以90PMQ ∠=︒,即异面直线1D N 与MP 所成角为90︒.故选:A.【点睛】本题主要考查了异面直线成角,这类问题的解题关键是找到两条异面直线中的一条的平行线进行平移,构造三角形,再利用正弦定理或者余弦定理解决,本题属于基础题.8.若双曲线22221(0,0)x y a b a b -=>>的离心率是2,则椭圆22221x y a b +=的离心率是()A.2B.2C.3D.3【答案】A 【解析】【分析】根据双曲线的离心率关系可得222a b =,然后再根据椭圆的离心率为,即可求出结果.【详解】因为双曲线22221(0,0)x y a b a b -=>>的离心率是2,所以22232a b a +=,所以222a b =;因为椭圆22221x y a b +=,所以2==,故椭圆22221x y a b +=的离心率为2.故选:A.【点睛】本题主要考查了椭圆和双曲线的离心率的概念,属于基础题.9.已知(1,1,0)a =- ,(0,1,1)b =r ,(1,2,)c m =r,若,,a b c 共面,则实数m =()A.1-B.3C.1D.2-【答案】B 【解析】【分析】利用空间向量共面的条件,设实数,x y ,使c xa yb =+,列出方程组,求出m 的值即可.【详解】因为向量,,a b c 共面,所以存在实数,x y 使得c xa yb =+,即()(1,2,),,m x x y y =-+,所以12x x y y m =⎧⎪-+=⎨⎪=⎩;解得1,3,3x y m ===.故选:B.【点睛】本题考查了空间向量的共面问题,属于基础题.10.已知直线l 与抛物线24x y =相交于,A B 两个不同点.若线段AB 的中点坐标为(1,2),则直线l 的方程为()A.20x y -= B.10x y -+= C.470x y -+= D.230x y -+=【答案】D 【解析】【分析】设()()1122,,A x y B x y ,,然后利用点差法,即可求出12AB k =,再根据点斜式即可求出结果.【详解】设()()1122,,A x y B x y ,,所以22211121212122122244444x y y y x xx x y y x x x y ⎧=-+⇒-=-⇒=⎨-=⎩又线段AB 的中点坐标为(1,2),所以122x x +=,所以121212AB y y k x x -==-,所以直线l 的方程为()1122y x =-+,即230x y -+=.故选:D.【点睛】本题主要考查了直线和抛物线的位置关系,熟练掌握点差法是解题的关键.11.如图,把边长为1的正方形ABCD 沿对角线BD 折成直二面角,若点P 满足BP BA BC BD=-+,则2||BP = ()A.3B.42C.4D.632+【答案】A 【解析】【分析】取BD 的中点M ,根据正方形的特点和线面垂直的判定定理,可证BD ⊥平面AMC ,进而可得AC BD ⊥;又边长为1的正方形ABCD 沿对角线BD 折成直二面角,可知AC BC AB ==;再根据向量的减法可得BP CA BD =+uu r uu r uu u r,再利用数量积和模的关系即可求出结果.【详解】取BD 的中点M ,连接MC MA ,,如下图所示:则MC BD AM BD ⊥⊥,,又MA MC M ⋂=,所以BD ⊥平面AMC ,所以AC BD ⊥,又边长为1的正方形ABCD 沿对角线BD 折成直二面角,所以CM ⊥平面ABD ,所以AMC ∆为直角三角形,所以2221AC AM MC =+=,所以AC BC AB ==,又BP BA BC BD =-+,所以BP CA BD =+uu r uu r uu u r,所以()2222=+2=1+0+2=3BP CA BD CA CA BD BD =+⋅+uu r uu r uu u r uu r uu r uu u r uu u r .故选:A.【点睛】本题考查了直二面角的定义,线面垂直的判定定理,向量垂直的充要条件,向量数量积的运算,考查了计算能力,属于中档题.12.已知点12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点,点P 在双曲线C 右支上,且22()0PF OP OF ⋅+= ,直线1PF 的斜率为12,则双曲线C 的渐近线方程为()A.y x =±B.y =C.2y x=±D.y =【答案】C 【解析】【分析】取2PF 的中点M ,连接OM ,由向量的加法法则22OP OF OM +=,进而20PF OM ⋅=u u u u r u u u u r ,即2PF OM ⊥,又1//OM PF ,所以12PF PF ⊥,在12Rt PF F ∆中,由题意易知2112PF PF =和2221212PF PF F F +=,再根据双曲线的性质,即可求出结果.【详解】取2PF 的中点M ,连接OM,如下图所示:由向量的加法法则,22OP OF OM +=,又()220PF OP OF ⋅+= ,所以20PF OM ⋅=u u u u r u u u u r,所以2PF OM ⊥,又1//OM PF ,所以12PF PF ⊥,又直线1PF 的斜率为12,所以在12Rt PF F ∆中,2112PF PF =,所以122PF PF =,又122PF PF a -=,所以2124PF a PF a ==,,在12Rt PF F ∆中,2221212PF PF F F +=,所以225c a =,又222c a b =+,所以224b a =,所以2ba=,所以双曲线C 的渐近线方程为2y x =±.故选:C.【点睛】本题主要考查了双曲线的定义和平面向量的加法的几何意义,属于中档题.二、填空题(本题共4个小题,每小题4分,共16分)13.命题“,x R ∀∈sin 1x ≤”的否定是“”.【答案】x ∃R ∈,sin 1x >【解析】【详解】因为全称命题的否定是特称命题,所以命题“,x R ∀∈sin 1x ≤”的否定是x ∃R ∈,sin 1x >14.已知()1,1,0a =r ,(0,1,1)b =r,若()a b a λ+⊥ ,则实数λ=_______.【答案】2-【解析】【分析】根据题意,可知()1,1,a b λλλ+=+r r,再根据垂直的数量积公式,即可求出结果.【详解】因为()1,1,0a =r ,(0,1,1)b =r,所以()1,1,a b λλλ+=+r r ,又()a b a λ+⊥,所以1+1++0=0λ,所以2λ=-.故答案为:2-.【点睛】本题主要考查了空间向量垂直的数量积公式的应用,属于基础题.15.已知12,F F 分别是椭圆2222:1(0)x y C a b a b+=>>的左右焦点,P 为C 上一点,12PF F △的内心为点I ,过I 作平行于x 轴的直线分别交12,PF PF 于点,A B ,若椭圆C 的离心率12e =,则12PABPF F S S ∆∆=_____.【答案】49【解析】【分析】根据椭圆的离心率可知2a c =,根据椭圆的定义可知12PF F ∆的周长为()26a c c +=,设12PF F ∆的内切圆半径为r ,点(),P x y ,利用12121=2PF F S F F y c y pr ∆==(p 为12PF F ∆周长的一半),可得3y r =,再根据122PAB PF F Sy r S y ∆∆⎛⎫-= ⎪⎝⎭,即可求出结果.【详解】设椭圆2222:1(0)x y C a b a b+=>>的焦距为2c ,由题设12c a =,所以2a c =,由椭圆的定义可知,122PF PF a +=,122F F c =,12PF F ∆的周长为()26a c c +=,设12PF F ∆的内切圆半径为r ,点(),P x y .又121212PF F S F F y c y ∆==.设p 为12PF F ∆周长的一半,则123PF F S pr cr ∆==,所以3cr c y =,得3y r =,由题意可知,12PAB PF F ∆~∆得122PAB PF F Sy r S y ∆∆⎛⎫-= ⎪⎝⎭.所以1223439PAB PF F S r r S r ∆∆-⎛⎫== ⎪⎝⎭.故答案为:49.【点睛】本题主要考查了直线与椭圆的位置关系和椭圆的性质,属于中档题.16.已知,A B 是抛物线24y x =上的两个不同动点,点(1,2)P ,若直线PA 和PB 的倾斜角互补,则线段AB 的中点的轨迹方程为__________.【答案】() 2,1y x =->【解析】【分析】设直线PA 的斜率为PA k ,直线PB 的斜率为PB k ,用斜率公式可分别表示PA k 和PB k ,根据倾斜角互补可知PA PB k k =-,设AB 的中点坐标为(),x y ,则()22212121212 2 2 288y y y y x x y y y x +-++=-===,,使用基本不等式求得1x >,进而求出结果.【详解】设直线PA 的斜率为PA k ,直线PB 的斜率为PB k ,()()1122,,,A x y B x y 则1112(1)1PA y k x x -=≠-,2222(1)1PB y k x x -=≠-,∵直线PA 和PB 的斜率存在且倾斜角互补,∴PA PB k k =-.由()()1122,,,A x y B x y 在抛物线上,得2211224,4y x y x ==,∴12221222 111144y y y y -----=,∴()1222y y +=-+,∴124y y +=-.设AB 的中点坐标为(),x y ,则()2221212121212 2 2 2288y y y y y y x x y y y x +-+++==-===,.由题意知,1200y y <<,,()()124y y -+-=>,∴124y y <,∴()212122 1624=188y y y y +--⨯>,即1x >,故线段AB 中点的轨迹方程为() 2,1y x =->.【点睛】本题主要考查了直线、抛物线等基本知识,考查运用解析几何的方法分析问题和解决问题的能力,属于中档题.三、解答题(本题共5个小题,共48分)17.已知:p 函数y ax =是增函数,:q 方程2221(0)xy a a+=>表示焦点在x 轴上的椭圆,若()p q ∧⌝是真命题,求实数a 的取值范围.【答案】01a <≤【解析】【分析】命题:p 函数y ax =是增函数,利用一次函数的单调性可得0a >.命题:q 方程2221(0)x y a a+=>表示焦点在x 轴上的椭圆,可得1a >.由于()p q ∧⌝为真命题,可得p 为真命题,q 为假命题,由此即可求出结果.【详解】命题:p 函数y ax =是增函数,∴0a >;命题:q 方程2221(0)xy a a+=>表示焦点在x 轴上的椭圆,∴1a >;∵()p q ∧⌝为真命题,∴p 为真命题,q 为假命题.∴01a a >⎧⎨≤⎩,解得01a <≤.∴实数a 的取值范围是01a <≤.【点睛】本题考查了椭圆的标准方程及其性质、一次函数的单调性、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.18.已知抛物线2:2(0)C y px p =>的焦点为F ,点(1,2)P 在抛物线C 上.(1)求点F 的坐标和抛物线C 的准线方程;(2)过点F 的直线l 与抛物线C 交于,A B 两个不同点,若AB 的中点为(3,2)M -,求OAB 的面积.【答案】(1)()1,0,1x =-;(2)【解析】【分析】(1)因为()1,2P 在抛物线C 上,可得2p =,由抛物线的性质即可求出结果;(2)由抛物线的定义可知1226AB x x =++=,根据点斜式可求直线AB 的方程为1y x =-+,利用点到直线距离公式求出高,进而求出面积.【详解】(1)∵()1,2P 在抛物线C 上,422p P ∴=∴=,,∴点F 的坐标为()1,0,抛物线C 的准线方程为1x =-;(2)设,A B 的坐标分别为()()1122,,x y x y ,,则1228AB x x =++=,1MF k =-,∴直线AB 的方程为1y x =-+,点O 到直线AB 的距离2d =,12OAB S AB d ∴=⋅=V .【点睛】本题主要考查了抛物线的基本概念,直线与抛物线的位置关系,属于基础题.19.已知三棱柱111ABC A B C -中,侧棱1AA ⊥底面ABC ,记1a AA = ,b AB = ,c AC =.(1)用,,a b c表示111,,AB A C BC ;(2)若11AB BC ⊥,11A C BC ⊥,求证:11AB AC =.【答案】(1)1AB a b =+u u u u r r r ,1A C c a =-u u u r r r ,1BC a c b =+-u u u u r r r r ;(2)见解析【解析】【分析】(1)根据空间向量的加法和减法的运算法则,即可求出结果;(2)由题意可知,0,0a c a b ⋅=⋅=r r r r,由11AB BC ⊥,可得220a b b c -+⋅=r r r r ;同理由11A C BC ⊥可得220c a b c --⋅=r r r r,即可证明结果.【详解】(1)11AB AA AB a b =+=+u u u u r u u u r u u u r r r ,11A C AC AA c a =-=-u u u r u u u r u u u r r r ,111BC AC AB AA AC AB a c b =-=+-=+-u u u u r u u u u r u u u r u u u r u u u r u u u r r r r ;(2)证明:∵1AA ⊥底面ABC ,∴1,AA AC AA AB ⊥⊥,∴0,0a c a b ⋅=⋅=r r r r,()()110AB BC a b a c b ⊥∴+⋅+-=r r r r rQ ,,22220a b a c b c a b b c -+⋅+⋅=-+⋅∴=r r r r r r r r r r,()()221100A C BC c a a c b c a b c ⊥∴-⋅+-=∴--⋅=r r r r r r r r rQ ,,,22b c ∴=r r ,b c ∴=r r ,即11AB AC =【点睛】本题主要考查了空间向量的加法(减法)运算法则,以及空间向量数量积的应用,属于基础题.说明:请考生在两个小题中任选一题作答.20.已知点P 是菱形ABCD 所在平面外一点,PA PD ==2PB AB BD ===,(1)求证:平面PAD ⊥平面ABCD ;(2)求二面角A PB C --的余弦值.【答案】(1)见解析;(2)7-【解析】【分析】(1)因为ABCD 是菱形,可得OB AD OB ⊥=,,进而证明1OP AD OP ⊥=,,在由勾股定可证明OP OB ⊥,根据线面垂直的判定定理可证OP ⊥平面ABCD ,再根据面面垂直的判定定理,即可证明结果;(2)根据题意建立空间直角坐标系O xyz -,再利用空间向量的坐标运算公式求出二面角A PBC --的余弦值.【详解】(1)证明:设O 是AD 的中点,连接,OP OB ,∵ABCD 是菱形,2,AB BD OB AD OB ==∴⊥=,∴PA PD ==1OP AD OP ⊥=,,∴2224PB OP OB OP OB =+=∴⊥,,又OB AD D =I ∴OP ⊥平面ABCD ,又OP ⊂平面PAD ,∴平面PAD ⊥平面ABCD ;(2)由(1)得OB AD OP OA OP OB ⊥⊥⊥,,,以点O 为坐标原点,OA 的方向为x 轴的正方向,OB 的方向为y 轴的正方向,建立如图的空间直角坐标系O xyz -,则()()()()1,0,0,0,3,0,2,3,0,0,0,1A B C P -设()111,,m x y z =是平面PAB 的一个法向量,则m PA m AB ⎧⊥⎨⊥⎩,∴1111030x z x -=⎧⎪⎨+=⎪⎩令13x =3,1,3m =,设()222,,n x y z =是平面PBC 的一个法向量,则n PC n BC ⎧⊥⎨⊥⎩ ,∴222223020x z x ⎧-+=⎪⎨-=⎪⎩,令23z =(3n =,∴27cos ,==7m n m n m n⋅<>⋅u r ru r r u r r 又二面角A PB C --为钝二面角,∴二面角A PB C --的余弦值77-.【点睛】本题主要考查了线面垂直和面面垂直判定定理的应用,同时考查了空间向量在求二面角中的应用,属于基础题.21.如图,四棱锥P ABCD -的底面ABCD 是菱形,60BAD ︒∠=,F 是BC 中点,PA PD =,PA PD ⊥,平面PAD ⊥平面ABCD .(1)求证:DF ⊥平面PAD ;(2)求二面角A PB F --的余弦值.【答案】(1)见解析;(2)7-【解析】【分析】(1)设2AB a =,则CF a =,由余弦定理可知223DF a =,再根据勾股定理可证DF BC ⊥,由题意易知DF AD ⊥,又平面PAD ⊥平面ABCD ,再根据面面垂直的性质定理即可证明结果;(2)根据题意建立空间直角坐标系O xyz -,再利用空间向量的坐标运算公式求出二面角A PB F --的余弦值.【详解】(1)证明:设2AB a =,则CF a =,由题意得22222222cos 42cos 603DF CD CF CD CF DCF a a a a =+-⋅∠=+-︒=,22224DF CF CD a ∴+==,DF BC ∴⊥,ABCD ∴是菱形,//AD BC DF AD∴∴⊥,∵平面PAD ⊥平面ABCD ,平面PAD 平面ABCD AD =,∴DF ⊥平面PAD(2)由(1)得DF AD ⊥,以点D 为坐标原点,DA的方向为x 轴的正方向,DF 的方向为y 轴的正方向,建立如图的空间直角坐标系D xyz -,设2AB a =,则()()()()2,0,0,,3,0,0,3,0,,0,A a B a a F a P a a 设()111,,m x y z =是平面PAB 的一个法向量,则m PA m AB ⎧⊥⎨⊥⎩ ,∴1111030ax az ax ay -+=⎧⎪⎨-=⎪⎩令13x =3,1,3m =,设()222,,n x y z =是平面PBF 的一个法向量,则n PF n BF ⎧⊥⎨⊥⎩ ,∴2222300ax ay az ax ⎧+=⎪⎨-=⎪⎩,令23z =(3n =,∴27cos ,==7m n m n m n⋅<>⋅u r ru r r u r r 又二面角A PB F --为钝二面角,∴二面角A PB F --的余弦值77-.【点睛】本题主要考查了面面垂直性质定理的应用,同时考查了空间向量在求二面角中的应用,属于基础题.说明请考生在两个小题中任选一题作答.22.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为33,其右焦点F 到直线30x y -+=的距离为22(1)求椭圆C 的方程;(2)若过F 作两条互相垂直的直线12,l l ,,A B 是1l 与椭圆C 的两个交点,,C D 是2l 与椭圆C 的两个交点,,M N 分别是线段,AB CD 的中点,试判断直线MN 是否过定点?若过定点,求出该定点的坐标;若不过定点.请说明理由.【答案】(1)22132x y +=;(2)直线MN 过定点3,05⎛⎫ ⎪⎝⎭【解析】【分析】(1)由题意得3c a=⎪=⎪⎩,求出,a b ,即可求出椭圆方程;(2)设直线1l 的方程为1x my =+,①当0m ≠时,联立方程组221132x my x y =+⎧⎪⎨+=⎪⎩,化简可得122122432432m y y m y y m ⎧+=-⎪⎪+⎨⎪⋅=-⎪+⎩,进而求出2232,3232m M m m ⎛⎫- ⎪++⎝⎭,同理可得22232,3232m m N m m ⎛⎫ ⎪++⎝⎭,进而求出()2531MN m k m =-,求出直线MN 的方程,求出必过的定点3,05⎛⎫ ⎪⎝⎭;②当0m =时,易知直线MN 过定点3,05⎛⎫ ⎪⎝⎭;综上即可求出结果.【详解】解:(1)由题意得3c a =⎪=⎪⎩,∴a b ⎧=⎪⎨=⎪⎩,∴椭圆C 的方程为22132x y +=;(2)由(1)得()10F ,,设直线1l 的方程为1x my =+,点,A B 的坐标分别为()()1122,,,x y x y ,①当0m ≠时,由221132x my x y =+⎧⎪⎨+=⎪⎩,得()2232440m y my ++-=,∴122122432432m y y m y y m ⎧+=-⎪⎪+⎨⎪⋅=-⎪+⎩,∴2232,3232m M m m ⎛⎫- ⎪++⎝⎭同理,由2211132x y mx y ⎧=-+⎪⎪⎨⎪+=⎪⎩,可得22232,3232m m N m m ⎛⎫⎪++⎝⎭()222222225323233313232MNm mm m m k m m m m +++==--++∴直线MN 的方程为()253531m y x m ⎛⎫=- ⎪-⎝⎭,过定点3,05⎛⎫ ⎪⎝⎭;②当0m =时,则直线1l 的方程为()()11,00,0x M N =,,,∴直线MN 过定点3,05⎛⎫ ⎪⎝⎭综上,直线MN 过定点3,05⎛⎫ ⎪⎝⎭.【点睛】本题主要考查了椭圆的性质,以及直线与椭圆的位置关系的应用,属于中档题.23.已知椭圆2222:1(0)x y C a b a b+=>>的右焦点F 到直线30x y -+=的距离为,P ⎛ ⎝⎭在椭圆C 上.(1)求椭圆C 的方程;(2)若过F 作两条互相垂直的直线12,l l ,,A B 是1l 与椭圆C 的两个交点,,C D 是2l 与椭圆C 的两个交点,,M N 分别是线段,AB CD 的中点试,判断直线MN 是否过定点?若过定点求出该定点的坐标;若不过定点,请说明理由.【答案】(1)22132x y +=;(2)直线MN 过定点3,05⎛⎫ ⎪⎝⎭【解析】【分析】(1)由题意得221413a b =⎪+=⎪⎩,求出,a b ,即可求出椭圆方程;(2)设直线1l 的方程为1x my =+,①当0m ≠时,联立方程组221132x my x y =+⎧⎪⎨+=⎪⎩,化简可得122122432432m y y m y y m ⎧+=-⎪⎪+⎨⎪⋅=-⎪+⎩,进而求出2232,3232m M m m ⎛⎫- ⎪++⎝⎭,同理可得22232,3232m m N m m ⎛⎫ ⎪++⎝⎭,进而求出()2531MN m k m =-,求出直线MN 的方程,求出必过的定点3,05⎛⎫ ⎪⎝⎭;②当0m =时,易知直线MN 过定点3,05⎛⎫ ⎪⎝⎭;综上即可求出结果.【详解】解:(1)由题意得221413a b =⎪+=⎪⎩,∴a b ⎧=⎪⎨=⎪⎩,∴椭圆C 的方程为22132x y +=;(2)由(1)得()10F ,,设直线1l 的方程为1x my =+,点,A B 的坐标分别为()()1122,,,x y x y ,①当0m ≠时,由221132x my x y =+⎧⎪⎨+=⎪⎩,得()2232440m y my ++-=,∴122122432432m y y m y y m ⎧+=-⎪⎪+⎨⎪÷=-⎪+⎩,∴2232,3232m M m m ⎛⎫- ⎪++⎝⎭同理,由2211132x y m x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,可得22232,3232m m N m m ⎛⎫ ⎪++⎝⎭()222222225323233313232MN m m m m m k m m m m +++==--++∴直线MN 的方程为()253531m y x m ⎛⎫=- ⎪-⎝⎭,过定点3,05⎛⎫ ⎪⎝⎭;②当0m =时,则直线1l 的方程为()()11,00,0x M N =,,,∴直线MN 过定点3,05⎛⎫ ⎪⎝⎭综上,直线MN 过定点3,05⎛⎫ ⎪⎝⎭【点睛】本题主要考查了椭圆的性质,以及直线与椭圆的位置关系的应用,属于中档题.。