3.2半导体存储器
计算机组成原理第三章 第2讲 SRAM存储器

3.2 SRAM存储器
主存(内部存储器)是半导体存储器。根
据信息存储的机理不同可以分为两类:
相对而言 静态读写存储器(SRAM):
• 存取速度快,一般用作Cache
动态读写存储器(DRAM):
• 存储容量大,一般用作主存
3.2 SRAM存储器
一、基本的静态存储元阵列 1、存储元:
例1:图3.5(a)是SRAM的写入时序图。 其中R/W是读/写命令控制线,当R/W 线为低电平时,存储器按给定地址把 数据线上的数据写入存储器。请指出 图3.5(a)写入时序中的错误,并画出正 确的写入时序图。
3.2 SRAM存储器
3.2 SRAM存储器
写使能信号
3.2 SRAM存储器
三、存储器的读写周期 读周期
读出时间Taq 读周期时间Trc 写周期时间Twc 写时间Twd 读周期时间Trc=写时间Twd
写周期
存取周期
3.2 SRAM存储器
片选 读使能
3.2 SRAM存储器
片选 写使能
3.2 SRAM存储器
教材P69
用锁存器实现。 需要加电,无限期保持0或者1状态。
3.2 SRAM存储器
回顾译码器
可参考CAI动画
63
3.2 SRAM存储器
2、三组信号线
地址线:A0-A5,可指定26=64个存储单元 数据线:I/O0,I/O1 ,I/O2 ,I/O3
• 行线,列线 • 存储器的字长4位
控制线:读或写 存储位元、存储单元、字存储单元、最小寻址 单位、最小编址单位。
写入数据:
微机原理与应用教材

存储器的速度是一个很重要的指标,当然是越快越好,但速度较快的 存储器通常功耗大,集成度低,因而成本较高,要根据系统的要求统筹考 虑。
第3章 存储器
第3章 存储器
地
A0
址
A1 A2
反
A3
相
A4
器
X 驱·
译
· ·
动
· ·
码 ·器
32×32=1024 存储单元
器 31
31 0
···
31
I/O电路
三态双向缓冲器
输入 控制
Y译码器
电路R/W CSFra bibliotek地址反相器
A5 A6 A7 A8 A9
图3-2 SRAM结构示意图
输出
第3章 存储器
(1)地址译码电路。地址译码器接受来自CPU的地址信号, 并产生地址译码信号,以便选中存储矩阵中某存储单元,使 其在存储器控制逻辑的控制下进行读/写操作。图5-3中把地 址划分成两组:行地址和列地址,每组地址分别译码,两组 译码输出信号共同选择某个存储单元电路。 (2)控制逻辑电路。接受来自CPU或外部电路的控制信号, 经过组合变换后,对存储、地址译码驱动电路和三态双向缓 冲器进行控制,控制对选中的单元进行读写操作。 (3)三态双向缓冲器。使系统中各存储器芯片的数据输入/ 输出端能方便地挂接到系统数据总线上。对存储器芯片进行 读写操作时,存储器芯片的数据线与系统数据总线经三态双 向缓冲器传送数据。不对存储器进行读写操作时,三态双向 缓冲器对系统数据总线呈现高阻状态,该存储芯片完全与系 统数据总线隔离。
计算机组成原理教案(第三章)

3.主存物理地址的存储空间分布
以奔腾PC机主存为例,说明主存物理地址的存储空间概念
3.3.1只读存储器
1.ROM的分类
只读存储器简称ROM,它只能读出,不能写入。它的最 大优点是具有不易失性。
根据编程方式不同,ROM通常分为三类:
只读存 储器
定
义
优
点
缺
点
掩模式
数据在芯片制造过程中就 确定
可靠性和集成度高,价 不能重写 格便宜
存储 周期 存储 器带 宽
连续启动两次操作所需 间隔的最小时间
单位时间里存储器所存 取的信息量,
主存的速
度
数据传输速率 位/秒,字 技术指标 节/秒
3.2.1 SRAM存储器
1.基本存储元
六管SRAM存储元的电路图及读写操作图
2.SRAM存储器的组成
SRAM存储器的组成框图
存储器对外呈现三组信号线,即地址线、数据线、读/写控制线
主存地址空间分布如图所示。
3.3.2闪速存储器
1.什么是闪速存储器
闪速存储器是一种高密度、非易失性的读/写半导体存储器
2.闪速存储器的逻辑结构
28F256A的逻辑方框图
3.闪速存储器的工作原理
闪速存储器是在EPROM功能基础上增加了电路的电擦除和重新 编程能力。 28F256A引入一个指令寄存器来实现这种功能。其作用是: (1)保证TTL电平的控制信号输入; (2)在擦除和编程过程中稳定供电; (3)最大限度的与EPROM兼容。 当VPP引脚不加高电压时,它只是一个只读存储器。 当VPP引脚加上高电压时,除实现EPROM通常操作外,通过指 令寄存器,可以实现存储器内容的变更。 当VPP=VPPL时,指令寄存器的内容为读指令,使28F256A成 为只读存储器,称为写保护。
第3章 存储系统(三)

动态MOS存储器的刷新需要有硬件电路的支持,包括刷新计数器、刷新/访存裁决、刷新控制逻辑等。这些控制线路可以集中在一个半导体芯片上,形成DRAM控制器。它是CPU和DRAM片子之间的接口电路,即将CPU的信号变换成适合DRAN片子的信号,借助DRAM控制器,可把DRAM看作像SRAM一样使用,为系统设计带来很大方便。
3.DRAM的刷新
动态MOS存储器采用“读出”方式进行刷新。因为在读出过程中恢复了存储单元的MOS栅极电容电荷,并保持原单元的内容,所以读出过程就是再生过程。通常,在再生过程中只改变行选择线地址,每次再生一行。依次对存储器的每一行进行读出,就可完成对整个DRAM的刷新。从上一次对整个存储器刷新结束到下一次对整个存储器全部刷新一遍为止,这一段时间间隔叫刷新周期。一般2ms,4ms或8ms。
采用这种方式的整个存储器的平均读/写周期,与单个存储器片的读/写工作所需的周期相差不多,所以这种刷新方式较适用于高速存储器。
分散式刷新方式的时间分配把一个存储系统周期tC分为两半,周期前半段时间tM用来读/写操作或维持信息,周期后半段时间tR作为刷新操作时间。这样,每经过128个系统周期时间,整个存储器便全部刷新一遍。假如存储器片的读/写周期为0.5μs,则存储器系统周期为1μs。由此可见,整个系统的速度降低了。在这种情况下,只需128μs就可将全部存储单元刷新一遍,这比允许的间隔2ms要短得多。当然,在分散式下,不存在有停止读/写操作的死时间。
2.单管动态存储元
为了进一步缩小存储器的体积,提高它们的集成度,人们又设计了单管动态存储元电路。
单管动态存储元电路如图3-7(b)所示,它由一个管子T1和一个电容C构成。写入时,字选择线为“1”,T1管导通,写入信息由位线(数据线)存入电容C中;读出时,字选择线为“1”,存储在电容C上的电荷,通过T1输出到数据线上,通过读出放大器即可得到存储信息。
3.2 SRAM存储器

A11 A10 A9 A8 A0 片选 译码
8根数据线
CS0
CS1
CS2
CS3
D7
D0 WE
... ..
1K×4
..
1K×4
..
1K×4
..
1K×4
..
1K×4
..
1K×4
..
1K×4
..
1K×4
……
2. 存储器与 CPU 的连接
(1) 地址线的连接 (2) 数据线的连接 (3) 读/写线的连接
3.2 SRAM存储器
• 主存(内部存储器)是半导体存储器。根 据信息存储的机理不同可以分为两类:
– 静态读写存储器(SRAM):存取速度快,存储 容量小 – 动态读写存储器(DRAM):存储容量大,存取 速度慢。
3.2 SRAM存储器
一、基本的静态存储元阵列(64×4位) 1、存储位元 2、三组信号线
00000H 32KB ROM 96KB RAM 07FFFH 08000H
1FFFFH
(2)由题知:ROM区的容量为32KB, RAM区 的容量为96KB,利用32KB×8位RAM芯片和 32KB×4位ROM芯片,设计128KB×8位存储 器,需要RAM芯片:96/32=3(片);需要 ROM芯片:8/4=2(片)。 其中,两片ROM芯片串联后,与3片RAM 芯片并联。17条地址线中,15条低位地址线 连接到芯片,2位高位地址线利用2:4译码器 生成片选信号。存储器与CPU连接的示意图 如下:
• 分散式刷新:把一个存储系统周期tc分为两半,周 期前半段时间tm用来读/写操作或维持信息,周期后 半段时间tr作为刷新操作时间。这样,每经过128个 系统周期时间,整个存储器便全部刷新一遍。
先进半导体存储器-结构、设计与应用__概述说明

先进半导体存储器-结构、设计与应用概述说明1. 引言1.1 概述随着信息技术的快速发展,存储器设备在计算机和移动设备等领域中扮演着至关重要的角色。
在过去的几十年里,人们开发了各种类型的存储器,其中最为先进和广泛应用的是半导体存储器。
半导体存储器以其快速读写操作、高密度数据存储和较低功耗的优势成为主流技术。
1.2 文章结构本文将对先进半导体存储器的结构、设计与应用进行全面深入地探讨。
首先,我们将介绍先进半导体存储器的基本原理和发展历程,包括其在计算机系统中的主要类别和性能指标。
然后,我们将重点探讨先进半导体存储器在计算机系统中主存和缓存系统中的应用以及其在移动设备和云计算中的应用。
此外,我们还将探讨未来先进半导体存储器发展方向及挑战,并分析微细加工技术对其造成的影响与挑战。
最后,在结论部分对该论题进行总结,并展望先进半导体存储器的未来发展方向和挑战。
1.3 目的本文旨在通过对先进半导体存储器的结构、设计与应用进行全面分析,帮助读者深入了解该领域的最新进展和技术趋势。
文章将从基础原理入手,详细介绍各种先进半导体存储器的类型、特点和性能指标,并探讨其在计算机系统中的广泛应用。
此外,文章还将关注微细加工技术对先进半导体存储器的影响和挑战,并展望该技术领域的未来发展方向。
通过阅读本文,读者将深入了解现代存储器技术的发展趋势,为相关研究和应用提供参考依据。
2. 先进半导体存储器的结构与设计2.1 先进半导体存储器的基本原理先进半导体存储器是一种利用电子场效应管和电容来实现数据存储的半导体器件。
它通常由晶体管和电容构成,其中晶体管用于控制电荷在电容中的流动以实现数据的存取。
基本存储单元包括位线、字线、感应线和电容,通过调整位线、字线和感应线上的电势,并利用晶体管对数据进行读写操作。
2.2 先进半导体存储器的发展历程先进半导体存储器起源于上世纪60年代,经历了多个阶段的技术演进。
最初的静态随机访问存储器(SRAM)采用双稳态触发器作为基本单元,具有快速读写速度和较高可靠性。
半导体存储器介绍

04
价格竞争: 各厂商通过 调整产品价 格来争夺市
场份额
05
市场趋势: 随着市场需 求的扩大, 市场竞争将
更加激烈
发展趋势
01
市场规模不断扩大,需 求持续增长
03
市场竞争激烈,企业并 购和整合频繁
05
政策支持,推动半导体 存储器产业发展
02
技术进步,存储密度和 速度不断提高
04
应用领域不断拓展,如 人工智能、物联网等
存储速度:半导体存储器的存储速度取 决于其内部电路的运行速度和数据传输 速度。
存储技术:半导体存储器有多种存储技术, 如DRAM、SRAM、Flash等,每种技术 都有其独特的存储容量和速度特点。
发展趋势:随着技术的进步,半导体存 储器的存储容量和速度也在不断提高, 以满足不断增长的数据存储需求。
半导体存储器市场
0 3 存储单元:由晶体管和电容器组 成,用于存储数据
0 4 存储方式:分为随机存取存储器 (RAM)和只读存储器(ROM)
0 5 存储容量:取决于存储单元的数 量和每个单元的存储能力
0 6 存储速度:取决于存储单元的访 问速度和数据传输速度
存储容量和速度
存储容量:半导体存储器的存储容量取 决于其内部存储单元的数量和每个存储 单元的存储容量。
数据不丢失
EEPROM(电可擦除
4
可编程只读存储器):
可擦除和重新编程,断
电后数据不丢失,速度
较慢
Flash Memory(闪
5
存):可擦除和重新编
程,断电后数据不丢失,
速度快,广泛应用于U
盘、SD卡等设备
半导体存储器特点
01
存储速度快:半导 体存储器的读写速 度远高于磁性存储
半导体存储器原理

半导体存储器原理半导体存储器是一种利用半导体材料来存储数据的设备,它广泛应用于计算机、通讯设备、消费电子产品等领域。
半导体存储器具有体积小、速度快、功耗低等优点,因此在现代电子设备中占据着重要的地位。
要深入了解半导体存储器的原理,首先需要了解半导体存储器的基本结构和工作原理。
半导体存储器主要分为RAM(随机存储器)和ROM(只读存储器)两大类。
RAM主要用于临时存储数据,其特点是读写速度快,但断电后数据会丢失;而ROM主要用于存储固定数据,其特点是数据不易丢失。
这两种存储器都是基于半导体材料制造而成的,其工作原理是利用半导体材料的导电特性来实现数据的存储和读取。
半导体存储器的基本单元是存储单元,每个存储单元可以存储一个数据位。
在RAM中,存储单元通常由一个存储电容和一个存储晶体管组成。
当需要向存储单元写入数据时,控制电路会向存储电容充放电,从而改变存储单元的电荷状态;当需要读取数据时,控制电路会根据存储单元的电荷状态来判断数据位的数值。
而在ROM中,存储单元通常由一个存储晶体管和一个存储栅组成,其工作原理类似于RAM,只是数据的写入是一次性的,无法修改。
半导体存储器的工作原理可以简单概括为存储单元的电荷状态代表数据的数值,通过控制电路来实现数据的写入和读取。
半导体存储器的读写速度快、功耗低、体积小等优点使其成为现代电子设备中不可或缺的部分。
随着科技的不断进步,半导体存储器的容量不断增加,速度不断提高,功耗不断降低,将会为人类带来更多便利和可能性。
总之,半导体存储器是一种基于半导体材料制造的存储设备,其工作原理是利用半导体材料的导电特性来实现数据的存储和读取。
通过对半导体存储器的工作原理的深入了解,可以更好地理解现代电子设备的工作原理,为相关领域的研究和应用提供理论基础。
随着科技的不断进步,相信半导体存储器将会在未来发展中发挥越来越重要的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
半导体存储器(选择、判断共25题)
一、选择题
1.一个容量为1K×8的存储器有个存储单元。
A.8
B.8K
C.8000
D.8192
2.要构成容量为4K×8的RAM,需要片容量为256×4的RAM。
A.2
B.4
C.8
D.32
3.寻址容量为16K×8的RAM需要根地址线。
A.4
B.8
C.14
D.16
E.16K
4.若R A M的地址码有8位,行、列地址译码器的输入端都为4个,则它们的输出线(即字线加位线)共有条。
A.8
B.16
C.32
D.256
5.某存储器具有8根地址线和8根双向数据线,则该存储器的容量为。
A.8×3
B.8K×8
C.256×8
D.256×256
6.采用对称双地址结构寻址的1024×1的存储矩阵有。
A.10行10列
B.5行5列
C.32行32列
D.1024行1024列
7.随机存取存储器具有功能。
A.读/写
B.无读/写
C.只读
D.只写
8.欲将容量为128×1的R A M扩展为1024×8,则需要控制各片选端的辅助译码器的输出端数为。
A.1
B.2
C.3
D.8
9.欲将容量为256×1的R A M扩展为1024×8,则需要控制各片选端的辅助译码器的输入端数为。
A.4
B.2
C.3
D.8
10.只读存储器R O M在运行时具有功能。
A.读/无写
B.无读/写
C.读/写
D.无读/无写
11.只读存储器R O M中的内容,当电源断掉后又接通,存储器中的内容。
A.全部改变
B.全部为0
C.不可预料
D.保持不变
12.随机存取存储器R A M中的内容,当电源断掉后又接通,存储器中的内容。
A.全部改变
B.全部为1
C.不确定
D.保持不变
13.一个容量为512×1的静态RAM具有。
A.地址线9根,数据线1根
B.地址线1根,数据线9根
C.地址线512根,数据线9根
D.地址线9根,数据线512根
14.用若干R A M实现位扩展时,其方法是将相应地并联在一起。
A.地址线
B.数据线
C.片选信号线
D.读/写线
15.P R O M的与陈列(地址译码器)是。
A.全译码可编程阵列
B.全译码不可编程阵列
C.非全译码可编程阵列
D.非全译码不可编程阵列
二、判断题(正确打√,错误的打×)
1.实际中,常以字数和位数的乘积表示存储容量。
()
2. RAM由若干位存储单元组成,每个存储单元可存放一位二进制信息。
()
3.动态随机存取存储器需要不断地刷新,以防止电容上存储的信息丢失。
()4.用2片容量为16K×8的RAM构成容量为32K×8的RAM是位扩展。
()
5.所有的半导体存储器在运行时都具有读和写的功能。
()
6. ROM和RAM中存入的信息在电源断掉后都不会丢失。
()
7. RAM中的信息,当电源断掉后又接通,则原存的信息不会改变。
()
8.存储器字数的扩展可以利用外加译码器控制数个芯片的片选输入端来实现。
()9. PROM的或阵列(存储矩阵)是可编程阵列。
()
10. ROM的每个与项(地址译码器的输出)都一定是最小项。
()
三、填空题
1.存储器的和是反映系统性能的两个重要指标。