数学建模论文

合集下载

数学建模竞赛优秀大学生论文

数学建模竞赛优秀大学生论文

数学建模竞赛优秀大学生论文随着科学技术的高速发展,数学的应用价值越来越得到众人的重视,因此数学建模也被逐渐的引起重视了。

下面是店铺为大家整理的数学建模优秀论文,供大家参考。

数学建模优秀论文篇一:《数学建模用于生物医学论文》1数学建模的过程1.1模型准备首先要了解实际背景,寻找内在规律,形成一个比较清晰的轮廓,提出问题。

1.2模型假设在明确目的、掌握资料的基础上,抓住问题的本质,舍弃次要因素,对实际问题做出合理的简化假设。

1.3模型建立在所作的假设条件下,用适当的数学方法去刻画变量之间的关系,得出一个数学结构,即数学模型。

原则上,在能够达到预期效果的基础上,选择的数学方法应越简单越好。

1.4模型求解建模后要对模型进行分析、求解,求解会涉及图解、定理证明及解方程等不同数学方法,有时还需用计算机求数值解。

1.5模型分析、检验、应用模型的结果应当能解释已存的现象,处理方法应该是最优的决策和控制方案,所以,对模型的解需要进行分析检验。

把求得的数学结果返回到实际问题中去,检验其合理性。

如果理论结果符合实际情况,那么就可以用它来指导实践,否则需再重新提出假设、建模、求解,直到模型结果与实际相符,才能进行实际应用。

总之,数学建模是一项富有创造性的工作,不可能用一些条条框框的规则规定的十分死板,只要是能够做到全面兼顾、能抓住问题的本质、最终检验结果合理,都是一个好的数学模型。

2数学建模在生物医学中的应用2.1DNA序列分类模型DNA分子是遗传信息存储的基本单位,许多生命科学中的重大问题都依赖于对这种特殊分子的深入了解。

因此,关于DNA分子结构与功能的问题,成为二十一世纪最重大的课题之一。

DNA序列分类问题是研究DNA分子结构的基础,它常用的方法是聚类分析法。

聚类分析是使用数据建模简化数据的一种方法,它将数据分成不同的类或者簇,同一个簇中的数据有很大的同质性,而不同的簇中的数据有很大的相异性。

在对DNA序列进行分类时,需首先引入样品变量,比如说单个碱基的丰度、两碱基丰度之比等;然后计算出每条DNA序列的样品变量值,存入到向量中;最后根据相似度度量原理,计算出所有序列两两之间的Lance与Williams距离,依据距离的远近进行分类。

优秀的数学建模论文范文(通用8篇)

优秀的数学建模论文范文(通用8篇)

优秀的数学建模论文范文第1篇摘要:将数学建模思想融入高等数学的教学中来,是目前大学数学教育的重要教学方式。

建模思想的有效应用,不仅显著提高了学生应用数学模式解决实际问题的能力,还在培养大学生发散思维能力和综合素质方面起到重要作用。

本文试从当前高等数学教学现状着手,分析在高等数学中融入建模思想的重要性,并从教学实践中给出相应的教学方法,以期能给同行教师们一些帮助。

关键词:数学建模;高等数学;教学研究一、引言建模思想使高等数学教育的基础与本质。

从目前情况来看,将数学建模思想融入高等教学中的趋势越来越明显。

但是在实际的教学过程中,大部分高校的数学教育仍处在传统的理论知识简单传授阶段。

其教学成果与社会实践还是有脱节的现象存在,难以让学生学以致用,感受到应用数学在现实生活中的魅力,这种教学方式需要亟待改善。

二、高等数学教学现状高等数学是现在大学数学教育中的基础课程,也是一门必修的课程。

他能为其他理工科专业的学生提供很多种解题方式与解题思路,是很多专业,如自动化工程、机械工程、计算机、电气化等必不可少的基础课程。

同时,现实生活中也有很多方面都涉及高数的运算,如,银行理财基金的使用问题、彩票的概率计算问题等,从这些方面都可以看出人们不能仅仅把高数看成是一门学科而已,它还与日常生活各个方面有重要的联系。

但现在很多学校仍以应试教育为主,采取填鸭式教学方式,加上高数的教材并没有与时俱进,将其与生活的关系融入教材内,使学生无法意识到高数的重要性以及高数在日常生活中的魅力,因此产生排斥甚至对抗的心理,只是在临考前突击而已。

因此,对高数进行教学改革是十分有必要的,而且怎么改,怎么让学生发现高数的魅力,并积极主动学习高数也是作为教师所面临的一个重大问题。

三、将数学建模思想融入高等数学的重要性第一,能够激发学生学习高数的兴趣。

建模思想实际上是使用数学语言来对生活中的实际现象进行描述的过程。

把建模思想应用到高等数学的学习中,能够让学生们在日常生活中理解数学的实际应用状况与解决日常生活问题的方便性,让学生们了解到高数并不只是一门课程,而是整个日常生活的基础。

数学模型方面的论文

数学模型方面的论文

数学模型方面的论文数学模型方面的论文数学模型方面的论文一摘要:有一句话说得好“生活处处有数学”,其实数学并不只是书本中的公式计算,也是联系实际生活的重要桥梁。

而如何用数学的数据来表达现实生活中的实际问题,“数学建模”解决了这个问题。

如今,“数学建模”被社会上各个领域所使用,体现了它的重要价值。

关键词:实际问题;数学建模;教学模式;探索这几年来,社会经济飞速发展,高新技术产业在社会上占领主导地位,而数学也成为了推动高新技术发展强有力的推手。

而数学建模是数学解决实际问题的关键,所以,在社会各个领域,都对数学建模加以高度重视。

数学人才的培养依赖于高校的教育,于是乎高校便开始开展数学建模教学,为国家培养应用型数学人才。

1数学建模概述通过运用数学的数据,公式,思维等方法,将现实生活中的实际问题笼统话,简单化,将问题转化成数学语言,建立数学模型,来解决实际问题,这就是数学建模的构建。

虽然在国外数学建模炙手可热,但是在中国依旧是个新型学科。

在20世纪八十年代,中国才渐渐开始开展数学建模课堂。

现在由于高等教育的普遍化,数学建模教学渐渐出现在人们视野中,开始大热。

2高校对于数学建模教学的探索因为数学建模课程是一个非常抽象的课程[1],对于非专业的学生来说难度很大,不是那么容易被理解的。

同样,对于老师的标准也严苛了许多。

因为要用语言去描述抽象的理论课程,对老师的语言表达能力是个挑战。

而且在课堂上老师不能像传统教学那样一味教理论,应该将数学和实际生活有机结合起来,所以增大了老师授课难度。

在对数学建模教学的探索上,学校同样下了不少的功夫。

一方面加大对数学建模教学的宣传力度,鼓励学生们利用自己的数学思维和建模思想来进行实际问题的解决,例如,学校举办讲座可以让学生更好的了解建模的重要性,举办一些数学建模大赛,通过激烈的赛制和诱惑性的奖品,最大程度地激发学生的无限潜能。

又或者带领学生到高新技术产业基地进行参观,让学生更加切身的体会到数学建模的对社会,对于高新技术的重要性。

数学建模经典论文五篇

数学建模经典论文五篇

1、 血样的分组检验在一个很大的人群中通过血样检验普查某种疾病,假定血样为阳性的先验概率为p(通常p 很小).为减少检验次数,将人群分组,一组人的血样混合在一起化验.当某组的混合血样呈阴性时,即可不经检验就判定该组每个人的血样都为阴性;而当某组的混合血样呈阳性时,则可判定该组至少有一人血样为阳性,于是需要对这组的每个人再作检验.(1)、当p 固定时(如0.01%,…,0.1%,…,1%)如何分组,即多少人一组,可使平均总检验次数最少,与不分组的情况比较. (2)、当p 多大时不应分组检验.(3)、当p 固定时如何进行二次分组(即把混合血样呈阳性的组再分成小组检验,重复一次分组时的程序).模型假设与符号约定1 血样检查到为阳性的则患有某种疾病,血样呈阴性时的情况为正常2 血样检验时仅会出现阴性、阳性两种情况,除此之外无其它情况出现,检验血样的药剂灵敏度很高,不会因为血样组数的增大而受影响. 3 阳性血样与阳性血样混合也为阳性 4 阳性血样与阴性血样混合也为阳性 5 阴性血样与阴性血样混合为阴性 n 人群总数 p 先验概率血样阴性的概率q=1-p血样检验为阳性(患有某种疾病)的人数为:z=np 发生概率:x i P i ,,2,1, = 检查次数:x i R i ,,2,1, = 平均总检验次数:∑==xi i i R P N 1解1设分x 组,每组k 人(n 很大,x 能整除n,k=n/x ),混合血样检验x 次.阳性组的概率为k q p -=11,分组时是随机的,而且每个组的血样为阳性的机率是均等的,阳性组数的平均值为1xp ,这些组的成员需逐一检验,平均次数为1kxp ,所以平均检验次数1kxp x N +=,一个人的平均检验次数为N/n,记作:k k p kq k k E )1(1111)(--+=-+=(1) 问题是给定p 求k 使E(k)最小. p 很小时利用kp p k -≈-1)1(可得kp kk E +=1)( (2) 显然2/1-=p k 时E(k)最小.因为K 需为整数,所以应取][2/1-=p k 和1][2/1+=-p k ,2当E (k )>1时,不应分组,即:1)1(11>--+k p k,用数学软件求解得k k p /11-->检查k=2,3,可知当p>0.307不应分组.3将第1次检验的每个阳性组再分y 小组,每小组m 人(y 整除k,m=k/y ).因为第1次阳性组的平均值为1xp ,所以第2次需分小组平均检验1yxp 次,而阳性小组的概率为m q p -=12(为计算2p 简单起见,将第1次所有阳性组合在一起分小组),阳性小组总数的平均值为21yp xp ,这些小组需每人检验,平均检验次数为21yp mxp ,所以平均总检验次数211yp mxp yxp x N ++=,一个人的平均检验次数为N/n,记作(注意:n=kx=myx)p q q q mk p p m p k m k E m k -=-+-+=++=1),1()1(111),(211 (3) 问题是给定p 求k,m 使E (k,m )最小.P 很小时(3)式可简化为21),(kmp mkpk m k E ++≈ (4)对(4)分别对k,m 求导并令其等于零,得方程组:⎪⎪⎩⎪⎪⎨⎧=+-=++-0012222kp m kp mp mp k 舍去负数解可得:2/14/3,21--==p m p k (5)且要求k,m,k/m 均为整数.经在(5)的结果附近计算,比较E(k,m),得到k,m 的最与表1比较可知,二次分组的效果E(k,m)比一次分组的效果E(k)更好.2、铅球掷远问题铅球掷远比赛要求运动员在直径2.135m 的圆内将重7.257kg 的铅球投掷在 45的扇形区域内,建立模型讨论以下问题1.以出手速度、出手角度、出手高度 为参数,建立铅球掷远的数学模型;2.考虑运动员推铅球时用力展臂的动 作,改进以上模型.3.在此基础上,给定出手高度,对于 不同的出手速度,确定最佳出手角度 问题1模型的假设与符号约定1 忽略空气阻力对铅球运动的影响.2 出手速度与出手角度是相互独立的.3 不考虑铅球脱手前的整个阶段的运动状态. v 铅球的出手速度 θ 铅球的出手角度 h 铅球的出手高度 t 铅球的运动时间 L 铅球投掷的距离g 地球的重力加速度(2/8.9s m g=)铅球出手后,由于是在一个竖直平面上运动.我们,以铅球出手点的铅垂方向为y 轴,以y 轴与地面的交点到铅球落地点方向为x 轴构造平面直角坐标系.这样,铅球脱手后的运动路径可用平面直角坐标系表示,如图.因为,铅球出手后,只受重力作用(假设中忽略空气阻力的影响),所以,在x 轴上的加速度0=,在y 轴上的加速度g a y -=.如此,从解析几何角度上,以时间 t 为参数,易求得铅球的运动方程:⎪⎩⎪⎨⎧+-==h gt t v y t v x 221sin cos θθ 对方程组消去参数t ,得h x x v gy ++-=)(tan cos 2222θθ……………………………………………(1) 当铅球落地时,即是0=y ,代入方程(1)解出x 的值v ggh gh v g v x θθθθθ2222sin 22cos sin cos sin 2-++=对以上式子化简后得到铅球的掷远模型θθθ22222cos 22sin 222sin g v h g v g v L +⎪⎪⎭⎫ ⎝⎛+=………………………………(2) 问题2我们观察以上两个阶段,铅球从A 点运动到B 点,其运动状态是匀加速直线运动的,加速距离是2L 段.且出手高度与手臂长及出手角度是有一定的联系,进而合理地细化各个因素对掷远成绩的约束,改进模型Ⅰ.在投掷角度为上进行受力分析,如图(3)由牛顿第二定 律可得,ma mg F =-θsin 再由上式可得,θsin g mFa -=………………………………………(3) 又,22022aL v v =-,即22022aL v v += (4)将(3)代入(4)可得,θsin 2222202g L m FL v v -⎪⎭⎫⎝⎛+= ………………………(5) (5)式进一步说明了,出手速度v 与出手角度θ有关,随着θ的增加而减小.模型Ⅰ假设出手速度与出手角度相互独立是不合理的. 又根据图(2),有θsin 1'L h h += (6)由模型Ⅰ,同理可以得到铅球脱手后运动的距离θθθ22222cos 22sin 222sin g v h g v g v L +⎪⎪⎭⎫ ⎝⎛+= 将 (4)、(5)、(6)式代入上式整理,得到铅球运动的距离()⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡-⎪⎭⎫⎝⎛++++-⎪⎭⎫ ⎝⎛+=θθθθθ22220'2220sin sin 22sin 2112sin 2sin 22g L m FL v h g g g L m FL v L 对上式进行化简:将m=7.257kg,2/8.9s m g = 代入上式,再令m h 60.1'= (我国铅球运动员的平均肩高),代入上式进一步化简得,()⎪⎪⎭⎫ ⎝⎛-++-++⨯θθθθθ2222232222sin sin 6.192756.06.19sin 6.19sin 2756.0sin 1L FL v L FL v ………………(7) 所以,运动员投掷的总成绩θcos 1L L S +=问题3给定出手高度,对于不同的出手速度,要确定最佳的出手角度.显然,是求极值的问题,根据微积分的知识,我们要先求出驻点,首先,模型一中L 对θ求导得,g hv g v g hv v g v d dL θθθθθθθθ22224242cos 82sin sin cos 42cos 2sin 2cos +-+=令0=θd dL,化简后为, 0sin cos 42cos 2sin cos 82sin 2cos 2422242=-++θθθθθθθhgv v hgv v v根据倍角与半角的三角关系,将以上方程转化成关于θ2cos 的方程,然后得,hv g g vgh gh222cos +=+=θ (3)()θθ2sin sin 6.192756.051.0222L FL v L -+=从(3)式可以看出,给定铅球的出手高度h ,出手速度v 变大,相应的最佳出手角度θ也随之变大.对(3)式进行分析,由于0,0>>θh ,所以02cos >θ,则40πθ≤<.所以,最佳出手角度为)arccos(212vgh gh +=θ θ是以π2为周期变化的,当且仅当N k k ∈⎪⎭⎫⎝⎛∈±,4,02ππθ时,πθk 2±为最佳出手角度.特别地,当h=0时(即出手点与落地点在同一高度),最佳出手角度︒=45α3、零件的参数设计粒子分离器某参数(记作y )由7个零件的参数(记作x x 12,,…x 7)决定,经验公式为:y x x x x x x x x x x x =⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪⨯--⎛⎝ ⎫⎭⎪⎡⎣⎢⎢⎤⎦⎥⎥⎛⎝ ⎫⎭⎪-17442126210361532108542056324211667......y 的目标值(记作y 0)为1.50。

大学生数学建模论文(专业推荐范文10篇)

大学生数学建模论文(专业推荐范文10篇)

大学生数学建模是一项基础性得学科竞赛,可以交流更多得经验,学习更多得知识,所以大学生数学建模很受学者们得欢迎,本篇文章就向大家介绍一些大学生数学建模论文,供给大家作为一个参考。

大学生数学建模论文专业推荐范文10篇之第一篇:数学建模对大学生综合素质影响得调查研究---------------------------------------------------------------------------------------------------------------------感谢使用本套资料,希望本套资料能带给您一些思维上的灵感和帮助,个人建议您可根据实际情况对内容做适当修改和调整,以符合您自己的风格,不太建议完全照抄照搬哦。

---------------------------------------------------------------------------------------------------------------------摘要:文章通过问卷网以调查问卷得形式和线下访谈得方法 ,对笔者所在学校参加过数学建模竞赛得同学和未参加过数学建模竞赛得同学对数学建模对自身综合素质得影响进行了调查研究。

调查表明,大部分学生都能认识到数学建模学习和竞赛对其自身综合素质得提升是有帮助得,但是大多数学生对数学建模得意义认识还不到位。

文章对调查结果进行分析,结合笔者得切身体会对地方高校数学建模课程教学及学生参加竞赛提出某些建议。

关键词:数学建模; 大学生; 综合素质; 研究;一、前言随着社会得不断进步和发展,大学生想要在激烈得人才竞争中脱颖而出,就必须要不断提高自己得综合素质,而良好得综合素质不仅应具有坚实得理论基础,扎实得专业知识,还应该具有较强得创新能力、与他人合作得能力、较强得语言表达能力、以及稳定得心理状态。

许多科学家断言未来科学技术得竞争是数学技术得竞争,这无疑对数学能力提出了更高得要求,不可否认数学建模课程教学及建模竞赛是提升大学生数学能力得有效途径。

数学建模论文(最新9篇)

数学建模论文(最新9篇)

数学建模论文(最新9篇)大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。

数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。

因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和创新思维,提高其素质和创新能力,实现向素质教育的转化和深入。

一、数学建模的含义及特点数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学方法及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。

一般来说",数学建模"包含五个阶段。

1、准备阶段主要分析问题背景,已知条件,建模目的等问题。

2、假设阶段做出科学合理的假设,既能简化问题,又能抓住问题的本质。

3、建立阶段从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。

4、求解阶段对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。

5、验证阶段用实际数据检验模型,如果偏差较大,就要分析假设中一些因素的合理性,修改模型,直至吻合或接近现实。

如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。

二、加强数学建模教育的作用和意义(一)加强数学建模教育有助于激发学生学习数学的兴趣,提高数学修养和素质数学修养和素质自然而然得以培养并提高。

(二)加强数学建模教育有助于提高学生的分析解决问题能力、综合应用能力因此通过数学建模活动学生的视野将会得以拓宽,应用意识、解决复杂问题的能力也会得到增强和提高。

[数学建模论文范文]数学建模论文优秀范文2篇

[数学建模论文范文]数学建模论文优秀范文2篇

[数学建模论文范文]数学建模论文优秀范文2篇数学建模论文范文一:建模在高等数学教学中的作用及其具体运用一、高等数学教学的现状(一) 教学观念陈旧化就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。

作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。

(二) 教学方法传统化教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。

一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。

这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。

二、建模在高等数学教学中的作用对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。

最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。

虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。

如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。

高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。

数学建模论文生活中的数学建模问题

数学建模论文生活中的数学建模问题

数学建模论文生活中的数学建模问题
1. 路径规划:如何在城市道路网中找出最短路径或最优路径,以最小化行程时间或消耗燃料等资源。

2. 交通流量预测:如何根据历史交通流量数据预测未来的交通流量,并为市政管理者提供合理的城市规划方案。

3. 电力系统规划:如何设计电力网的结构、调度方案,以保证稳定的供电,减少能源消耗和排放。

4. 财务风险评估:如何通过数学模型分析数据,判断公司的财务风险等级,并制定相应的措施来应对风险。

5. 健康医疗:如何利用数学模型分析人体生理数据,提前诊断或预测各种疾病,提高医疗效果。

6. 环境污染:如何利用数学模型模拟大气、水体等环境污染的扩散和影响范围,制定合理的污染防治措施。

7. 供应链管理:如何通过数学模型优化供应链管理流程,提高资源利用效率和降低成本。

8. 社交网络分析:如何通过数学模型分析社交网络中的关系和交互模式,预测市场趋势和消费者需求。

9. 自然资源分配:如何利用数学模型优化自然资源的分配方案,平衡各类资源的利用率,保护自然环境。

10. 工业生产效率:如何通过数学模型分析工业生产过程中的各个环节,优化生产效率,提高产品质量,降低浪费。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
0
8
9
9
16:53:32-16:54:02
0
1
8
9.5
9.5
16:54:02-16:54:32
0
0
9
9
9
16:54:32-16:55:02
2
1
8
10.5
10.5
16:55:02-16:55:32
1
0
9
9.5
9.5
16:55:32-16:56:02
6
0
9
12
12
16:56:02-16:56:32
3
1
问题三的分析:
问题:构建数学模型,分析视频一中交通事故所影响的路段车辆排队长度与事故横截面实际通行能力、事故持续时间、路段上游车流量间的关系。
分析:排队长度是与持续时间、上游车流量、事故处横截面的实际通行能力有关的。上游车流量越大,事故横截面实际通行能力越小,排队长度越长,而因红绿灯的原因,事故持续时间对排队长度的影响是周期性变化的:上游路口绿灯亮时事故上游车流量突然增大,容易在事故横截面形成堵塞,从而形成排队,而红灯亮时事故上游只有小区路口,上游右转车辆经过事故路段,俩处的车流量总和不大,一般小于事故横截面处的实际通行能力,所以队长缩短,排队逐渐消失,把时间分为30s一个周期,在一个周期内建立模型,据此估计排队长度。
问题四的分析:
问题:视频1(附件1)中的交通事故所处横断面距离上游路口变为140米,路段下游方向需求不变,路段上游车流量为1500pcu/h,事故发生时车辆初始排队长度为零,且事故持续不撤离。请估算,从事故发生开始,经过多长时间,车辆排队长度将到达上游路口。
分析:事故所处横截面距离上游路口的距离由240米变为140米会导致车辆平均到达事故处的时间减小,从而导致队伍更容易形成和延长,以30s为周期测量。所以对问题三的模型做适当修改,由此算出排队到达路口的时间。
3、经典型实际通行能力计算模型的介绍
a)、作为理想的道路条件,主要是车道宽度应不小于3. 65 m ,路旁的侧向余宽不小于1. 75 m ,纵坡平缓并有开阔的视野、良好的平面线形和路面状况.作为交通的理想条件,主要是车辆组成单一的标准车型汽车,在一条车道上以相同的速度,连续不断的行驶,各车辆之间保持与车速相适应的最小车头间隔,且无任何方向的干扰.
0
7
9.5
9.5
16:44:32-16:45:02
2
0
8
9
9
16:45:02-16:45:32
1
0
8
8.5
8.5
16:45:32-16:46:02
4
0
8
10
10
16:46:02-16:46:32
1
1
9
11
11
16:46:32-16:47:02
3
0
8
9.5
9.5
16:47:02-16:47:32
3
0
6
2.相位
红绿灯是有相位的。一个十字路口两个方向的直行和左转都完成后所用的时间和过程。
3.排队
排队长度是与持续时间、上游车流量、事故处横截面的实际通行能力有关的。上游车流量越大,事故横截面实际通行能力越小,排队长度越长,而因红绿灯的原因,事故持续时间对排队长度的影响是周期性变化的。
4、最大堵塞车流量
在排队过程中通过指定截面处的最大交通流量。
4.假如视频1(附件1)中的交通事故所处横断面距离上游路口变为140米,路段下游方向需求不变,路段上游车流量为1500pcu/h,事故发生时车辆初始排队长度为零,且事故持续不撤离。请估算,从事故发生开始,经过多长时间,车辆排队长度将到达上游路口。
二、专有名词解释
1.通行能力:
基本通行能力是指道路与交通处于理想情况下 ,每一条车道 (或每一条道路) 在单位时间内能够通过的最大交通量
7.5
7.5
16:47:32-16:48:02
2
0
9
10
10
16:48:02-16:48:32
3
0
10
11.5
11.5
16:48:32-16:49:02
1
0
9
9.5
9.5
16:49:02-16:49:32
3
0
10
11.5
11.5
16:49:32-16:50:02
8
0
9
13
13
16:50:02-16:50:32
1.根据视频1(附件1),描述视频中交通事故发生至撤离期间,事故所处横断面实际通行能力的变化过程。
2.根据问题1所得结论,结合视频2(附件2),分析说明同一横断面交通事故所占车道不同对该横断面实际通行能力影响的差异。
3.构建数学模型,分析视频1(附件1)中交通事故所影响的路段车辆排队长度与事故横断面实际通行能力、事故持续时间、路段上游车流量间的关系。
车道被占用的情况种类繁多、复杂,正确估算车道被占用对城市道路通行能力的影响程度,将为交通管理部门正确引导车辆行驶、审批占道施工、设计道路渠化方案、设置路边停车位和设置非港湾式公交车站等提供理论依据。
视频1(附件1)和视频2(附件2)中的两个交通事故处于同一路段的同一横断面,且完全占用两条车道。请研究以下问题:
2
1
7
9.5
9.5
16:50:32-16:51:02
2
0
11
12
12
16:51:02-16:51:32
0
0
9
9
9
16:51:32-16:52:02
5
0
9
11.5
11.5
16:52:02-16:52:32
0
1
7
8.5
8.5
16:52:32-16:53:02
0
1
9
10.5
10.5
16:53:02-16:53:32
对应的临界车速为
(3)
相应的临界密度为
(3)
相应的临界车头间距为
(4)
将不同的自由车速值代入上式,可算得相应的实际通行能力及临界车速等值见表二。
表2:不同情况下的实际通行能力
自由车速 (Km/h)
120
100
80
60
40
20
实际通行能力 (pcu/h)
2400
2280
2100
1800
1250
625
23.5
(注:标准车型换算比例:公共汽车1:1.5,电瓶车2:1)
2、根据车流量的变化可得如图一:车流量统计图所示的车流量与时间的关系,即为交通事故发生至撤离期间,事故所处横断面实际通行能力的变化过程。
图1:
注:在上表中针对16:49:32--16:50:32、16:56:02—17:01:32进行线性插值拟合。
四、假设与符号约定
1、假设:
(1)、离事故发生点较远的小区路口车流量较小,忽略不计;
(2)事故上游红灯过后,到来的车辆分布均匀;
(3)忽略视频跳跃的部分对本题的影响;
(4)假设路面状况良好;
(5)假设所属车辆在最小误差之内。
2、符号的约定:
一条车道单位时间所能通过的最大的车辆数
在完全理想条件下的最大自由车速
3
0
12
13.5
13.5
16:59:32-17:00:02
3
0
12.5
14
14
17:00:02-17:00:32
3
0
13
14.5
14.5
17:00:32-17:01:02
3
0
01:02-17:01:32
2
2.5
12
16.5
16.5
17:01:32-17:02:02
4
3
17
23.5
9
12
12
16:56:32-16:57:02
1
0
10.5
11
11
16:57:02-16:57:32
3
1
10
13
13
16:57:32-16:58:02
3
0.5
10.5
12.5
12.5
16:58:02-16:58:32
2
0
11
12
12
16:58:32-16:59:02
3
0
11.5
13
13
16:59:02-16:59:32
4、
基本通行能力即为在理想的道路、交通、驾驶员条件和满足基本安全需求的前提下,一条车道单位时间所能通过的最大的车辆数,本题记为 单位为pcu/h。
参见图1设在完全理想条件下的最大自由车速为 (Km/h),
(1)
根据试验观测,对标准型的小客车,其最小车头间距为6.5-8.0m,驾驶员的反应时间通常在0.8-1.2s之间。考虑到问题一只要求描述视频中交通事故发生至撤离期间,事故所处横截面实际通行能力的变化,并且视频中涉及到的车型种类很多,因此,我们选取取 =8m, =1.2s, =120Km/h,以方便计算。
ii.交通条件的修正主要是指车辆的组成,特别是混合交通情况下,车辆类型众多,大小不一,占用道路面积不同,性能不同,速度不同,相互干扰大,严重地影响了道路的通行能力.一般记交通条件修正系数为 。
于是,道路路段的可能通行能力为
= (辆/h)(1.2)
C)、 = ×服务交通量÷通行能力(辆/h)(1.3)
表1:视频一车流量数据统计表
时间段(s)
电瓶车
公交车
小轿车
总车辆(标准车型)
车流量(标准车型)/30s
相关文档
最新文档