2018年中考数学解析版试卷分类汇编专题19:直角三角形与勾股定理

合集下载

【2018中考数学真题+分类汇编】三期23直角三角形与勾股定理试题含解析394【2018数学中考真题分项汇编系列】

【2018中考数学真题+分类汇编】三期23直角三角形与勾股定理试题含解析394【2018数学中考真题分项汇编系列】

直角三角形与勾股定理一.选择题(2018·广西贺州·3分)如图,在△ABC中,∠BAC=90°,AD⊥BC,垂足为D,E是边BC 的中点,AD=ED=3,则BC的长为()A.3 B.3 C.6 D.6【解答】解:∵AD=ED=3,AD⊥BC,∴△ADE为等腰直角三角形,根据勾股定理得:AE==3,∵Rt△ABC中,E为BC的中点,∴AE=BC,则BC=2AE=6,故选:D.二.填空题1. (2018·湖北荆州·3分)为了比较+1与的大小,可以构造如图所示的图形进行推算,其中∠C=90°,BC=3,D在BC上且BD=AC=1.通过计算可得+1 .(填“>”或“<”或“=”)【解答】解:∵∠C=90°,BC=3,BD=AC=1,∴CD=2,AD==,AB==,∴BD+AD=+1,又∵△ABD中,AD+BD>AB,∴+1>,故答案为:>.2.(2018·云南省曲靖·3分)如图:在△ABC中,AB=13,BC=12,点D,E分别是AB,BC 的中点,连接DE,CD,如果DE=2.5,那么△ACD的周长是18 .【解答】解:∵D,E分别是AB,BC的中点,∴AC=2DE=5,AC∥DE,AC2+BC2=52+122=169,AB2=132=169,∴AC2+BC2=AB2,∴∠ACB=90°,∵AC∥DE,∴∠DEB=90°,又∵E是BC的中点,∴直线DE是线段BC的垂直平分线,∴DC=BD,∴△ACD的周长=AC+AD+CD=AC+AD+BD=AC+AB=18,故答案为:18.3.(2018·云南省·3分)在△ABC中,AB=,AC=5,若BC边上的高等于3,则BC边的长为9或1 .【分析】△ABC中,∠ACB分锐角和钝角两种:①如图1,∠ACB是锐角时,根据勾股定理计算BD和CD的长可得BC的值;②如图2,∠ACB是钝角时,同理得:CD=4,BD=5,根据BC=BD﹣CD代入可得结论.【解答】解:有两种情况:①如图1,∵AD是△ABC的高,∴∠ADB=∠ADC=90°,由勾股定理得:BD===5,CD===4,∴BC=BD+CD=5+4=9;②如图2,同理得:CD=4,BD=5,∴BC=BD﹣CD=5﹣4=1,综上所述,BC的长为9或1;故答案为:9或1.【点评】本题考查了勾股定理的运用,熟练掌握勾股定理是关键,并注意运用了分类讨论的思想解决问题.三.解答题1. (2018•广安•8分)下面有4张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长都是1,请在方格纸中分别画出符合要求的图形,所画图形各顶点必须与方格纸中小正方形的顶点重合,具体要求如下:(1)画一个直角边长为4,面积为6的直角三角形.(2)画一个底边长为4,面积为8的等腰三角形.(3)画一个面积为5的等腰直角三角形.(4)画一个边长为2,面积为6的等腰三角形.【分析】(1)利用三角形面积求法以及直角三角形的性质画即可;(2)利用三角形面积求法以及等腰三角形的性质画出即可.(3)利用三角形面积求法以及等腰直角三角形的性质画出即可;(4)利用三角形面积求法以及等腰三角形的性质画出即可.【解答】解:(1)如图(1)所示:(2)如图(2)所示:(3)如图(3)所示;(4)如图(4)所示.【点评】此题主要考查了等腰三角形的性质、等腰直角三角形的性质以及作图;熟练掌握等腰三角形的性质是关键.。

5.14三角形综合题(第4部分)-2018年中考数学试题分类汇编(word解析版)

5.14三角形综合题(第4部分)-2018年中考数学试题分类汇编(word解析版)

第五部分图形的性质5.14 三角形综合题【一】知识点清单三角形综合题【二】分类试题汇编及参考答案与解析一、选择题1.(2018年湖北省孝感市-第10题-3分)如图,△ABC是等边三角形,△ABD是等腰直角三角形,∠BAD=90°,AE⊥BD于点E,连CD分别交AE,AB于点F,G,过点A作AH⊥CD交BD于点H.则下列结论:①∠ADC=15°;②AF=AG;③AH=DF;④△AFG∽△CBG;⑤AF=﹣1)EF.其中正确结论的个数为()A.5 B.4 C.3 D.2【知识考点】相似三角形的判定与性质;全等三角形的判定与性质;等边三角形的性质;等腰直角三角形.【思路分析】①由等边三角形与等腰直角三角形知△CAD是等腰三角形且顶角∠CAD=150°,据此可判断;②求出∠AFP和∠FAG度数,从而得出∠AGF度数,据此可判断;③证△ADF≌△BAH 即可判断;④由∠AFG=∠CBG=60°、∠AGF=∠CGB即可得证;⑤设PF=x,则AF=2x、AP= =x,设EF=a,由△ADF≌△BAH知BH=AF=2x,根据△ABE是等腰直角三角形之BE=AE=a+2x,据此得出EH=a,证△PAF∽△EAH得=,从而得出a与x的关系即可判断.【解答过程】解:∵△ABC为等边三角形,△ABD为等腰直角三角形,∴∠BAC=60°、∠BAD=90°、AC=AB=AD,∠ADB=∠ABD=45°,∴△CAD是等腰三角形,且顶角∠CAD=150°,∴∠ADC=15°,故①正确;∵AE⊥BD,即∠AED=90°,∴∠DAE=45°,∴∠AFG=∠ADC+∠DAE=60°,∠FAG=45°,∴∠AGF=75°,由∠AFG≠∠AGF知AF≠AG,故②错误;记AH与CD的交点为P,由AH⊥CD且∠AFG=60°知∠FAP=30°,则∠BAH=∠ADC=15°,在△ADF和△BAH中,∵,∴△ADF≌△BAH(ASA),∴DF=AH,故③正确;∵∠AFG=∠CBG=60°,∠AGF=∠CGB,∴△AFG∽△CBG,故④正确;在Rt△APF中,设PF=x,则AF=2x、AP==x,设EF=a,∵△ADF≌△BAH,∴BH=AF=2x,△ABE中,∵∠AEB=90°、∠ABE=45°,∴BE=AE=AF+EF=a+2x,∴EH=BE﹣BH=a+2x﹣2x=a,∵∠APF=∠AEH=90°,∠FAP=∠HAE,∴△PAF∽△EAH,∴=,即=,整理,得:2x2=(﹣1)ax,由x≠0得2x=(﹣1)a,即AF=(﹣1)EF,故⑤正确;故选:B.【总结归纳】本题主要考查相似三角形的判定与性质,解题的关键是掌握等腰三角形与等边三角形的性质、全等三角形与相似三角形的判定与性质等知识点.2.(2018年湖北省荆门市-第11题-3分)如图,等腰Rt△ABC中,斜边AB的长为2,O为AB的中点,P为AC边上的动点,OQ⊥OP交BC于点Q,M为PQ的中点,当点P从点A运动到点C时,点M所经过的路线长为()A B C.1 D.2【知识考点】轨迹;等腰直角三角形【思路分析】连接OC,作PE⊥AB于E,MH⊥AB于H,QF⊥AB于F,如图,利用等腰直角三角形的性质得AC=BC=,∠A=∠B=45°,OC⊥AB,OC=OA=OB=1,∠OCB=45°,再证明Rt△AOP≌△COQ得到AP=CQ,接着利用△APE和△BFQ都为等腰直角三角形得到PE=AP=CQ,QF=BQ,所以PE+QF=BC=1,然后证明MH为梯形PEFQ的中位线得到MH=,即可判定点M到AB的距离为,从而得到点M的运动路线为△ABC的中位线,最后利用三角形中位线性质得到点M所经过的路线长.【解答过程】解:连接OC,作PE⊥AB于E,MH⊥AB于H,QF⊥AB于F,如图,∵△ACB为到等腰直角三角形,∴AC=BC=AB=,∠A=∠B=45°,∵O为AB的中点,∴OC⊥AB,OC平分∠ACB,OC=OA=OB=1,∴∠OCB=45°,∵∠POQ=90°,∠COA=90°,∴∠AOP=∠COQ,在Rt△AOP和△COQ中,∴Rt△AOP≌△COQ,∴AP=CQ,易得△APE和△BFQ都为等腰直角三角形,∴PE=AP=CQ,QF=BQ,∴PE+QF=(CQ+BQ)=BC=×=1,∵M点为PQ的中点,∴MH为梯形PEFQ的中位线,∴MH=(PE+QF)=,即点M到AB的距离为,而CO=1,∴点M的运动路线为△ABC的中位线,∴当点P从点A运动到点C时,点M所经过的路线长=AB=1.故选:C.【总结归纳】本题考查了轨迹:通过计算确定动点在运动过程中不变的量,从而得到运动的轨迹.也考查了等腰直角三角形的性质.3.(2018年江苏省扬州市-第8题-3分)如图,点A在线段BD上,在BD的同侧做等腰Rt△ABC 和等腰Rt△ADE,CD与BE、AE分别交于点P,M.对于下列结论:①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的是()A.①②③B.①C.①②D.②③【知识考点】相似三角形的判定与性质;全等三角形的判定与性质;等腰直角三角形.【思路分析】(1)由等腰Rt△ABC和等腰Rt△ADE三边份数关系可证;(2)通过等积式倒推可知,证明△PAM∽△EMD即可;(3)2CB2转化为AC2,证明△ACP∽△MCA,问题可证.【解答过程】解:由已知:AC=AB,AD=AE∴∵∠BAC=∠EAD∴∠BAE=∠CAD∴△BAE∽△CAD所以①正确∵△BAE∽△CAD∴∠BEA=∠CDA∵∠PME=∠AMD∴△PME∽△AMD∴∴MP•MD=MA•ME所以②正确∵∠BEA=∠CDA∠PME=∠AMD∴P、E、D、A四点共圆∴∠APD=∠EAD=90°∵∠CAE=180°﹣∠BAC﹣∠EAD=90°∴△CAP∽△CMA∴AC2=CP•CM∵AC=AB∴2CB2=CP•CM所以③正确故选:A.【总结归纳】本题考查了相似三角形的性质和判断.在等积式和比例式的证明中应注意应用倒推的方法寻找相似三角形进行证明,进而得到答案.二、填空题1.(2018年江苏省泰州市-第14题-3分)如图,四边形ABCD中,AC平分∠BAD,∠ACD=∠ABC=90°,E、F分别为AC、CD的中点,∠D=α,则∠BEF的度数为(用含α的式子表示).【知识考点】三角形中位线定理;角平分线的性质;直角三角形斜边上的中线.【思路分析】根据直角三角形的性质得到∠DAC=90°﹣α,根据角平分线的定义、三角形的外角的性质得到∠CEB=180°﹣2α,根据三角形中位线定理、平行线的性质得到∠CEF=∠D=α,结合图形计算即可.【解答过程】解:∵∠ACD=90°,∠D=α,∴∠DAC=90°﹣α,∵AC平分∠BAD,∴∠DAC=∠BAC=90°﹣α,∵∠ABC=90°,EAC的中点,∴BE=AE=EC,∴∠EAB=∠EBA=90°﹣α,∴∠CEB=180°﹣2α,∵E、F分别为AC、CD的中点,∴EF∥AD,∴∠CEF=∠D=α,∴∠BEF=180°﹣2α+90°﹣α=270°﹣3α,故答案为:270°﹣3α.【总结归纳】本题考查的是三角形中位线定理、直角三角形的性质、角平分线的定义,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.三、解答题1.(2018年湖北省荆门市-第19题-9分)如图,在Rt△ABC中,(M2,N2),∠BAC=30°,E为AB 边的中点,以BE为边作等边△BDE,连接AD,CD.(1)求证:△ADE≌△CDB;(2)若AC边上找一点H,使得BH+EH最小,并求出这个最小值.【知识考点】轴对称﹣最短路线问题;坐标与图形性质;全等三角形的判定与性质;等边三角形的性质【思路分析】(1)只要证明△DEB是等边三角形,再根据SAS即可证明;(2)如图,作点E关于直线AC点E',连接BE'交AC于点H.则点H即为符合条件的点.【解答过程】(1)证明:在Rt△ABC中,∠BAC=30°,E为AB边的中点,∴BC=EA,∠ABC=60°.∵△DEB为等边三角形,∴DB=DE,∠DEB=∠DBE=60°,∴∠DEA=120°,∠DBC=120°,∴∠DEA=∠DBC∴△ADE≌△CDB.(2)解:如图,作点E关于直线AC点E',连接BE'交AC于点H.则点H即为符合条件的点.由作图可知:EH=HE',AE'=AE,∠E'AC=∠BAC=30°.∴∠EAE'=60°,∴△EAE'为等边三角形,∴,∴∠AE'B=90°,在Rt△ABC中,∠BAC=30°,,∴,,∴,∴BH+EH的最小值为3.【总结归纳】本题考查轴对称最短问题、等边三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.2.(2018年湖北省江汉油田/潜江市/天门市/仙桃市-第24题-10分)问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.【知识考点】三角形综合题.【思路分析】(1)证明△BAD≌△CAE,根据全等三角形的性质解答;(2)连接CE,根据全等三角形的性质得到BD=CE,∠ACE=∠B,得到∠DCE=90°,根据勾股定理计算即可;(3)作AE⊥AD,使AE=AD,连接CE,DE,证明△BAD≌△CAE,得到BD=CE=9,根据勾股定理计算即可.【解答过程】解:(1)BC=DC+EC,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE,∴BD=CE,∴BC=BD+CD=EC+CD,故答案为:BC=DC+EC;(2)BD2+CD2=2AD2,理由如下:连接CE,由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B,∴∠DCE=90°,∴CE2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴BD2+CD2=2AD2;(3)作AE⊥AD,使AE=AD,连接CE,DE,∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAD′,在△BAD 与△CAE 中,,∴△BAD ≌△CAE (SAS ), ∴BD=CE=9,∵∠ADC=45°,∠EDA=45°, ∴∠EDC=90°, ∴DE==6,∵∠DAE=90°, ∴AD=AE=DE=6.【总结归纳】本题考查的是全等三角形的判定和性质、勾股定理、以及旋转变换的性质,掌握全等三角形的判定定理和性质定理是解题的关键.3.(2018年湖南省岳阳市-第23题-10分)已知在Rt △ABC 中,∠BAC=90°,CD 为∠ACB 的平分线,将∠ACB 沿CD 所在的直线对折,使点B 落在点B′处,连结AB',BB',延长CD 交BB'于点E ,设∠ABC=2α(0°<α<45°).(1)如图1,若AB=AC ,求证:CD=2BE ;(2)如图2,若AB≠AC ,试求CD 与BE 的数量关系(用含α的式子表示);(3)如图3,将(2)中的线段BC 绕点C 逆时针旋转角(α+45°),得到线段FC ,连结EF 交BC 于点O ,设△COE 的面积为S 1,△COF 的面积为S 2,求12S S (用含α的式子表示). 【知识考点】几何变换综合题.【思路分析】(1)由翻折可知:BE=EB′,再利用全等三角形的性质证明CD=BB′即可; (2)如图2中,结论:CD=2•BE•tan2α.只要证明△BAB′∽△CAD ,可得==,推出=,可得CD=2•BE•tan2α;(3)首先证明∠ECF=90°,由∠BEC+∠ECF=180°,推出BB′∥CF,推出===sin(45°﹣α),由此即可解决问题;【解答过程】解:(1)如图1中,∵B、B′关于EC对称,∴BB′⊥EC,BE=EB′,∴∠DEB=∠DAC=90°,∵∠EDB=∠ADC,∴∠DBE=∠ACD,∵AB=AC,∠BAB′=∠DAC=90°,∴△BAB′≌CAD,∴CD=BB′=2BE.(2)如图2中,结论:CD=2•BE•tan2α.理由:由(1)可知:∠ABB′=∠ACD,∠BAB′=∠CAD=90°,∴△BAB′∽△CAD,∴==,∴=,∴CD=2•BE•tan2α.(3)如图3中,在Rt△ABC中,∠ACB=90°﹣2α,∵EC平分∠ACB,∴∠ECB=(90°﹣2α)=45°﹣α,∵∠BCF=45°+α,∴∠ECF=45°﹣α+45°+α=90°,∴∠BEC+∠ECF=180°,∴BB′∥CF,∴===sin(45°﹣α),∵=,∴=sin(45°﹣α).【总结归纳】本题考查几何变换综合题、等腰直角三角形的性质、全等三角形的判定和性质、相似三角形的判定和性质、平行线等分线段定理、锐角三角函数等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考压轴题.4.(2018年江苏省南通市-第26题-12分)如图,△ABC中,AB=6cm,AC=,BC=,点P以1cm/s的速度从点B出发沿边BA→AC运动到点C停止,运动时间为t s,点Q是线段BP 的中点.(1)若CP⊥AB时,求t的值;(2)若△BCQ是直角三角形时,求t的值;(3)设△CPQ的面积为S,求S与t的关系式,并写出t的取值范围.【知识考点】三角形综合题.【思路分析】(1)如图1中,作CH⊥AB于H.设BH=x,利用勾股定理构建方程求出x,当点P 与H重合时,CP⊥AB,此时t=2;(2)分两种情形求解即可解决问题;(3)分两种情形:①如图4中,当0<t≤6时,S=×PQ×CH;②如图5中,当6<t<6+4时,作BG⊥AC于G,QM⊥AC于M.求出QM即可解决问题;【解答过程】解:(1)如图1中,作CH⊥AB于H.设BH=x,∵CH⊥AB,∴∠CHB=∠CHB=90°,∴AC2﹣AH2=BC2﹣BH2,∴(4)2﹣(6﹣x)2=(2)2﹣x2,解得x=2,∴当点P与H重合时,CP⊥AB,此时t=2.(2)如图2中,当点Q与H重合时,BP=2BQ=4,此时t=4.如图3中,当CP=CB=2时,CQ⊥PB,此时t=6+(4﹣2)=6+4﹣2.(3)①如图4中,当0<t≤6时,S=×PQ×CH=×t×4=t.②如图5中,当6<t<6+4时,作BG⊥AC于G,QM⊥AC于M.易知BG=AG=3,CG=.MQ=BG=.∴S=×PC×QM=••(6+4﹣t)=+6﹣t.综上所述,s=.【总结归纳】本题考查三角形综合题、勾股定理、等腰三角形的判定和性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.5.(2018年江苏省连云港市-第27题-14分)在数学兴趣小组活动中,小亮进行数学探究活动.△ABC 是边长为2的等边形,E是AC上一点,小亮以BE为边向BE的右侧作等边三角形BEF,连接CF.(1)如图1,当点E在线段AC上时,EF、BC相交于点D,小亮发现有两个三角形全等,请你找出来,并证明.(2)当点E在线段上运动时,点F也随着运动,若四边形ABFC AE的长.(3)如图2,当点E在AC的延长线上运动时,CF、BE相交于点D,请你探求△ECD的面积S1与△DBF的面积S2之间的数量关系.并说明理由.S 时,求AE的长.(4)如图2,当△ECD的面积16【知识考点】三角形综合题.【思路分析】(1)结论:△ABE≌△CBF.理由等边三角形的性质,根据SAS即可证明;(2)由△ABE≌△CBF,推出S△ABE=S△BCF,推出S四边形BECF=S△BEC+s△BCF=S△BCE+S△ABE=S△ABC=,由S四边形ABCF=,推出S△ABE=,再利用三角形的面积公式求出AE即可;(3)结论:S2﹣S1=.利用全等三角形的性质即可证明;(4)首先求出△BDF的面积,由CF∥AB,则△BDF的BF边上的高为,可得DF=,设CE=x,则2+x=CD+DF=CD+,推出CD=x﹣,由CD∥AB,可得=,即=,求出x即可;【解答过程】解:(1)结论:△ABE≌△CBF.理由:如图1中,∴∵△ABC,△BEF都是等边三角形,∴BA=BC,BE=BF,∠ABC=∠EBF,∴∠ABE=∠CBF,∴△ABE≌△CBF.(2)如图1中,∵△ABE≌△CBF,∴S△ABE=S△BCF,∴S四边形BECF=S△BEC+s△BCF=S△BCE+S△ABE=S△ABC=,∵S四边形ABCF=,∴S△ABE=,∴•AE•AB•siin60°=,∴AE=.(3)结论:S2﹣S1=.理由:如图2中,∵∵△ABC,△BEF都是等边三角形,∴BA=BC,BE=BF,∠ABC=∠EBF,∴∠ABE=∠CBF,∴△ABE≌△CBF,∴S△ABE=S△BCF,∵S△BCF﹣S△BCE=S2﹣S1,∴S2﹣S1=S△ABE﹣S△BCE=S△ABC=.(4)由(3)可知:S△BDF﹣S△ECD=,∵S△ECD=,∴S△BDF=,∵△ABE≌△CBF,∴AE=CF,∠BAE=∠BCF=60°,∴∠ABC=∠DCB,∴CF∥AB,则△BDF的BF边上的高为,可得DF=,设CE=x,则2+x=CD+DF=CD+,∴CD=x﹣,∵CD∥AB,∴=,即=,化简得:3x2﹣x﹣2=0,解得x=1或﹣(舍弃),∴CE=1,AE=3.【总结归纳】本题考查三角形综合题、全等三角形的判定和性质、平行线等分线段定理、解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题,学会理由参数构建方程解决问题,属于中考压轴题.6.(2018年江苏省扬州市-第27题-12分)问题呈现如图1,在边长为1的正方形网格中,连接格点D,N和E,C,DN和EC相交于点P,求tan∠CPN 的值.方法归纳求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中∠CPN 不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点M,N,可得MN∥EC,则∠DNM=∠CPN,连接DM,那么∠CPN就变换到Rt△DMN中.问题解决(1)直接写出图1中tan∠CPN的值为;(2)如图2,在边长为1的正方形网格中,AN与CM相交于点P,求cos∠CPN的值;思维拓展(3)如图3,AB⊥BC,AB=4BC,点M在AB上,且AM=BC,延长CB到N,使BN=2BC,连接AN交CM的延长线于点P,用上述方法构造网格求∠CPN的度数.【知识考点】三角形综合题.【思路分析】(1)连接格点M,N,可得MN∥EC,则∠DNM=∠CPN,连接DM,那么∠CPN就变换到Rt△DMN中.(2)如图2中,取格点D,连接CD,DM.那么∠CPN就变换到等腰Rt△DMC中.(3)利用网格,构造等腰直角三角形解决问题即可;【解答过程】解:(1)如图1中,∵EC∥MN,∴∠CPN=∠DNM,∴tan∠CPN=tan∠DNM,∵∠DMN=90°,∴tan∠CPN=tan∠DNM===2,故答案为2.(2)如图2中,取格点D,连接CD,DM.∵CD∥AN,∴∠CPN=∠DCM,∵△DCM是等腰直角三角形,∴∠DCM=∠D=45°,∴cos∠CPN=cos∠DCM=.(3)如图3中,如图取格点M,连接AN、MN.∵PC∥MN,∴∠CPN=∠ANM,∵AM=MN,∠AMN=90°,∴∠ANM=∠MAN=45°,∴∠CPN=45°.【总结归纳】本题考查三角形综合题、平行线的性质、勾股定理、直角三角形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,学会用转化的思想思考问题,属于中考压轴题.7.(2018年江苏省常州市-第27题-10分)(1)如图1,已知EK垂直平分BC,垂足为D,AB与EK相交于点F,连接CF.求证:∠AFE=∠CFD.(2)如图2,在Rt△GMN中,∠M=90°,P为MN的中点.①用直尺和圆规在GN边上求作点Q,使得∠GQM=∠PQN(保留作图痕迹,不要求写作法);②在①的条件下,如果∠G=60°,那么Q是GN的中点吗?为什么?【知识考点】线段垂直平分线的性质;直角三角形斜边上的中线;作图—复杂作图.【思路分析】(1)只要证明FC=FB即可解决问题;(2)①作点P关于GN的对称点P′,连接P′M交GN于Q,连接PQ,点Q即为所求.②结论:Q是GN的中点.想办法证明∠N=∠QMN=30°,∠G=∠GMQ=60°,可得QM=QN,QM=QG;【解答过程】(1)证明:如图1中,∵EK垂直平分线段BC,∴FC=FB,∴∠CFD=∠BFD,∵∠BFD=∠AFE,∴∠AFE=∠CFD.(2)①作点P关于GN的对称点P′,连接P′M交GN于Q,连接PQ,点Q即为所求.②结论:Q是GN的中点.理由:设PP′交GN于K.∵∠G=60°,∠GMN=90°,∴∠N=30°,∵PK⊥KN,∴PK=KP′=PN,∴PP′=PN=PM,∴∠P′=∠PMP′,∵∠NPK=∠P′+∠PMP′=60°,∴∠PMP′=30°,∴∠N=∠QMN=30°,∠G=∠GMQ=60°,∴QM=QN,QM=QG,∴QG=QN,∴Q是GN的中点.【总结归纳】本题考查作图﹣复杂作图、线段的垂直平分线的性质、直角三角形斜边中线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.。

中考数学直角三角形与勾股定理专题训练(含答案)

中考数学直角三角形与勾股定理专题训练(含答案)

中考数学直角三角形与勾股定理专题训练一、选择题1. 如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD 的面积为()A.B.3 C.D.52. 如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则sin∠BAC的值为()A.B.C.D.3. 如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米4. 如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点,则点D的个数共有()B,C),若线段AD长为正整数...A. 5个B. 4个C. 3个D. 2个5.小明学了在数轴上画出表示无理数的点的方法后,进行练习:首先画数轴,原点为O,在数轴上找到表示数2的点A,然后过点A作AB⊥OA,使AB=3(如图).以O为圆心,OB的长为半径作弧,交数轴正半轴于点P,则点P所表示的数介于A.1和2之间B.2和3之间C.3和4之间D.4和5之间6. 如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE ⊥AB,垂足为E.若DE=1,则BC的长为()A.2+B.+C.2+D.37. 如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()A. x-y2=3B. 2x-y2=9C. 3x-y2=15D. 4x-y2=218. 已知等边三角形的边长为3,点P为等边三角形内任意一点,则点P到三边的距离之和为()A.32B.332C.32D. 不能确定二、填空题9. 如图所示的网格是正方形网格,则∠P AB+∠PBA=°(点A,B,P是网格线交点).10. 如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8.分别以点A,B为圆心,大于线段AB长度一半的长为半径作弧,相交于点E,F.过点E,F作直线EF,交AB于点D,连接CD,则CD的长是________.11. 三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点C 在FD 的延长线上,点B 在ED 上,AB ∥CF ,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,则CD 的长度是 .12. 如图,△ABC中,∠ABC=90°,BA=BC=2,将△ABC 绕点C 逆时针旋转60°得到△DEC ,连接BD ,则BD 2的值是 .13. (2019•通辽)腰长为5,高为4的等腰三角形的底边长为__________.14. 如图,在Rt △ABC 中,∠BAC =90°,AB =15,AC =20,点D 在边AC 上,AD =5,DE ⊥BC 于点E ,连接AE ,则△ABE 的面积等于________.15. 在等腰直角三角形ABC 中,∠ACB =90°,AC =3,点P 为边BC 的三等分点,连接AP ,则AP 的长为________.16. (2019•伊春)一张直角三角形纸片ABC ,90ACB ∠=︒,10AB =,6AC =,点D 为BC 边上的任一点,沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的△是直角三角形时,则CD的长为__________.点E处,当BDE三、解答题17. 如图,已知AC⊥BC,垂足为C,AC=4,BC=3,将线段AC绕点A按逆时针方向旋转60°,得到线段AD,连接DC,DB.(1)线段DC=;(2)求线段DB的长度.18. 已知:整式A=(n2-1)2+(2n)2,整式B>0.[尝试] 化简整式A.[发现] A=B2,求整式B.[联想] 由上可知,B2=(n2-1)2+(2n)2,当n>1时,n2-1,2n,B为直角三角形的三边长,如图.填写下表中B的值:直角三角形三边n2-1 2n B勾股数组Ⅰ8勾股数组Ⅱ3519. 如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF ∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF;(2)当AD⊥BC,AE=1,CF=2时,求AC的长.20. 在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完.............成解答过程.....21.如图,一艘船由A港沿北偏东60°方向航行10 km至B港,然后再沿北偏西30°方向航行10 km至C港.(1)求A,C两港之间的距离(结果保留到0.1 km,参考数据:2≈1.414,3≈1. 732);(2)确定C港在A港的什么方向.22. 已知,如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)求证:2CD2=AD2+DB2.答案一、选择题1. 【答案】B2. 【答案】D[解析]如图,过C作CD⊥AB于D,则∠ADC=90°,∴AC===5.∴sin∠BAC==.故选D.3. 【答案】C[解析]在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A'BD中,∵∠A'DB=90°,A'D=2米,BD2+A'D2=A'B2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2(米).4. 【答案】C【解析】如解图,当AD⊥BC时,∵AB=AC,∴D为BC的中点,BD=CD=12BC=4,∴AD=AB2-BD2=3;又∵AB=AC=5,∴在BD和CD之间一定存在AD=4的两种情况,∴点D的个数共有3个.5. 【答案】C【解析】由作法过程可知,OA=2,AB=3,∵∠OAB=90°,∴OB=22222313+=+=,∴P点所表示的数就是OA AB13,∵91316<<,<<,∴3134即点P所表示的数介于3和4之间,故选C.6. 【答案】A[解析]过点D作DF⊥AC于F,如图所示,∵AD为∠BAC的平分线,且DE⊥AB于E,DF⊥AC于F,∴DE=DF=1.在Rt△BED中,∠B=30°,∴BD=2DE=2.在Rt△CDF中,∠C=45°,∴△CDF为等腰直角三角形,∴CD=DF=,∴BC=BD+CD=2+.7. 【答案】B【解析】连接DE,过点A作AF⊥BC,垂足为F,过E作EG⊥BC,垂足为G.∵AB=AC,AF⊥BC,BC=12,∴BF=FC=6,又∵E是AC的中点,EG⊥BC,∴EG∥AF,∴CG=FG=12CF=3,∵在Rt△CEG中,tan C=EG CG,∴EG=CG×tan C=3y;∴DG=BF+FG-BD=6+3-x=9-x,∵HD是BE的垂直平分线,∴BD=DE=x,∵在Rt△EGD中,由勾股定理得,ED2=DG2+EG2,∴x2=(9-x)2+(3y)2,化简整理得,2x-y2=9.8. 【答案】B【解析】如解图,△ABC是等边三角形,AB=3,点P是三角形内任意一点,过点P分别向三边AB,BC,CA作垂线,垂足依次为D,E,F,过点A作AH⊥BC于点H,则BH=32,AH=AB2-BH2=332.连接P A,PB,PC,则S△P AB+S△PBC+S△PCA=S△ABC,∴12AB·PD+12BC·PE+12CA·PF=12BC·AH,∴PD+PE+PF=AH=332.二、填空题9. 【答案】45[解析]本题考查三角形的外角,可延长AP交正方形网格于点Q,连接BQ,如图所示,经计算PQ=BQ=,PB=,∴PQ2+BQ2=PB2,即△PBQ为等腰直角三角形,∴∠BPQ=45°,∴∠P AB+∠PBA=∠BPQ=45°,故答案为45.10. 【答案】5【解析】由题意知EF垂直平分AB,∴点D是AB的中点,∵∠ACB=90°,∴CD为斜边AB的中线,∴CD=12AB.∵BC=6,AC=8,∴AB=AC2+BC2=82+62=10,∴CD=5.11. 【答案】15-5[解析]过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=60°,AC=10,∴∠ABC=30°,BC=10×tan60°=10.∵AB∥CF,∴∠BCM=∠ABC=30°,∴BM=BC×sin30°=10=5,CM=BC×cos30°=15.在△EFD中,∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM-MD=15-5.12. 【答案】8+4[解析]如图,连接AD,设AC与BD交于点O,由题意得CA=CD,∠ACD=60°,∴△ACD为等边三角形,∴AD=CD,∠DAC=∠DCA=∠ADC=60°.∵∠ABC=90°,AB=BC=2,∴AC=CD=2.∵AB=BC,CD=AD,∴BD垂直平分AC,∴BO=AC=,OD=CD·sin60°=,∴BD=,∴BD 2=()2=8+4.13. 【答案】6或25或45【解析】①如图1,当5AB AC ==,4AD =,则3BD CD ==,∴底边长为6;②如图2,当5AB AC ==,4CD =时,则3AD =,∴2BD =,∴222425BC =+=,∴此时底边长为25;③如图3,当5AB AC ==,4CD =时,则223AD AC CD =-=,∴8BD =,∴45BC = ∴此时底边长为56或54514. 【答案】78 【解析】如解图,过A 作AH ⊥BC ,∵AB =15,AC =20,∠BAC=90°,∴由勾股定理得,BC =152+202=25,∵AD =5,∴DC =20-5=15,∵DE ⊥BC ,∠BAC =90°,∴△CDE ∽△CBA ,∴CE CA =CD CB ,∴CE =1525×20=12.法一:BC·AH =AB·AC ,AH =AB·AC BC =15×2025=12,S △ABE =12×12×13=78.法二:DE =152-122=9,由△CDE ∽△CAH 可得,CD CA =ED HA ,∴AH =9×2015=12,S △ABE =12×12×13=78.15. 【答案】13 或10 【解析】(1)如解图①所示,当P 点靠近B 点时,∵AC =BC =3,∴CP =2,在Rt △ACP 中,由勾股定理得AP =13;(2)如解图②所示,当P 点靠近C 点时,∵AC =BC =3,∴CP =1,在Rt △ACP 中,由勾股定理得AP =10.综上可得:AP 长为13 或10.16. 【答案】3或247【解析】分两种情况:①若90DEB ∠=︒,则90AED C ∠=︒=∠,CD ED =,连接AD ,则Rt Rt ACD EAD △≌△,∴6AE AC ==,1064BE =-=,设CD DE x ==,则8BD x =-,∵Rt BDE △中,222DE BE BD +=,∴2224(8)x x +=-,解得3x =,∴3CD =;②若90BDE ∠=︒,则90CDE DEF C ∠=∠=∠=︒,CD DE =,∴四边形CDEF 是正方形,∴90AFE EDB ∠=∠=︒,AEF B ∠=∠, ∴AEF EBD △∽△,∴AF EF ED BD=, 设CD x =,则EF DF x ==,6AF x =-,8BD x =-, ∴68x x x x -=-,解得247x =,∴247CD =, 综上所述,CD 的长为3或247,故答案为:3或247.三、解答题17. 【答案】解:(1)4(2)∵AC=AD ,∠CAD=60°,∴△CAD 是等边三角形,∴CD=AC=4,∠ACD=60°.过点D 作DE ⊥BC 于E ,∵AC ⊥BC ,∠ACD=60°,∴∠BCD=30°.在Rt △CDE 中,CD=4,∠BCD=30°,∴DE=CD=2,CE=2,∴BE=,在Rt△DEB中,由勾股定理得DB=.18. 【答案】解:[尝试] A=(n2-1)2+(2n)2=n4-2n2+1+4n2=n4+2n2+1=(n2+1)2. [发现] ∵A=B2,B>0,∴B==n2+1.[联想] ∵2n=8,∴n=4,∴B=n2+1=42+1=17.∵n2-1=35,∴B=n2+1=37.∴填表如下:直角三角形三n2-1 2n B边勾股数组Ⅰ8 17勾股数组Ⅱ35 3719. 【答案】解:(1)证明:∵CF∥AB,∴∠B=∠FCD,∠BED=∠F.∵AD是BC边上的中线,∴BD=CD,∴△BDE≌△CDF.(2)∵△BDE≌△CDF,∴BE=CF=2,∴AB=AE+BE=1+2=3.∵AD⊥BC,BD=CD,∴AC=AB=3.20. 【答案】解:如解图,过点A作AD⊥BC,垂足为点D,设BD=x,则CD=14-x,根据勾股定理可得:AD2=AB2-BD2=AC2-CD2,即152-x2=132-(14-x)2,解得x=9.(3分)∴AD2=152-x2=152-92=144.(5分)∵AD>0,∴AD=12.(8分)∴S△ABC=12BC·AD=12×14×12=84.(10分)21. 【答案】(1)由题意可得,∠PBC=30°,∠MAB=60°,∴∠CBQ=60°,∠BAN=30°,∴∠ABQ=30°,∴∠ABC=90°.∵AB=BC=10,∴22AB BC102.答:A、C两地之间的距离为14.1 km.(2)由(1)知,△ABC为等腰直角三角形,∴∠BAC=45°,∴∠CAM=15°,∴C港在A港北偏东15°的方向上.22. 【答案】13证明:(1)∵△ACB 和△ECD 都是等腰直角三角形,∴CD =CE ,AC =BC ,∠ECD =∠ACB =90°,∴∠ECD -∠ACD =∠ACB -∠ACD ,即∠ACE =∠BCD ,(1分) 在△ACE 与△BCD 中,⎩⎪⎨⎪⎧EC =DC ∠ACE =∠BCD AC =BC,(3分)∴△ACE ≌△BCD(SAS ).(4分)(2)∵△ACE ≌△BCD ,∴AE =BD ,∠EAC =∠B =45°,(6分)∴∠EAD =∠EAC +∠CAD =90°,在Rt △EAD 中,ED 2=AD 2+AE 2,∴ED 2=AD 2+BD 2,(8分)又ED 2=EC 2+CD 2=2CD 2,∴2CD 2=AD 2+DB 2.(10分)。

全国2018年中考数学试卷精选汇编直角三角形与勾股定理(含解析)

全国2018年中考数学试卷精选汇编直角三角形与勾股定理(含解析)

直角三角形与勾股定理一、选择题1.(2018•山西•3分)“算经十书”是指 汉唐一千多年间的 十 部著名数学著作,它 们曾经是隋唐时期 国 子监算学科 的 教 科 书 , 这 些 流 传 下 来 的 古 算 书 中 凝 聚 着 历 代 数 学 家 的 劳 动 成 果 .下 列 四 部 著 作 中 , 不 属 于 我 国古代数学著作的 是 ()A.《九章算术》B. 《几何原本》C. 《 海 岛 算 经 》D. 《 周 髀 算 经 》【答案】 B【考点】 数学文化【解析 】《 几 何 原 本 》 的 作 者 是 欧 几 里 得2. (2018•山东滨州•3分)在直角三角形中,若勾为3,股为4,则弦为( )A .5B .6C .7D .8【分析】直接根据勾股定理求解即可.【解答】解:∵在直角三角形中,勾为3,股为4, ∴弦为=5. 故选:A .【点评】本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.3. (2018·湖北省孝感·3分)如图,菱形ABCD 的对角线AC ,BD 相交于点O ,AC=10,BD=24,则菱形ABCD 的周长为( )全国2018年中考数学试卷精选汇编A.52 B.48 C.40 D.20【分析】由勾股定理即可求得AB的长,继而求得菱形ABCD的周长.【解答】解:∵菱形ABCD中,BD=24,AC=10,∴OB=12,OA=5,在Rt△ABO中,AB==13,∴菱形ABCD的周长=4AB=52,故选:A.【点评】此题考查了菱形的性质、勾股定理等知识,解题的关键是熟练掌握菱形的性质,属于中考常考题型.4. (2018·山东青岛·3分)如图,三角形纸片ABC,AB=AC,∠BAC=90°,点E为AB中点.沿过点E的直线折叠,使点B与点A重合,折痕现交于点F.已知EF=,则BC的长是()A.B.C.3 D.【分析】由折叠的性质可知∠B=∠EAF=45°,所以可求出∠AFB=90°,再直角三角形的性质可知EF=AB,所以AB=AC的长可求,再利用勾股定理即可求出BC的长.【解答】解:∵沿过点E的直线折叠,使点B与点A重合,∴∠B=∠EAF=45°,∴∠AFB=90°,∵点E为AB中点,∴EF=AB,EF=,∴AB=AC=3,∵∠BAC=90°,∴BC==3,故选:B.【点评】本题考查了折叠的性质、等腰直角三角形的判断和性质以及勾股定理的运用,求出∠AFB=90°是解题的关键.5. (2018·四川自贡·4分)如图,若△ABC内接于半径为R的⊙O,且∠A=60°,连接OB、OC,则边BC的长为()A.B.C.D.【分析】延长BO交圆于D,连接CD,则∠BCD=90°,∠D=∠A=60°;又BD=2R,根据锐角三角函数的定义得BC=R.【解答】解:延长BO交⊙O于D,连接CD,则∠BCD=90°,∠D=∠A=60°,∴∠CBD=30°,∵BD=2R,∴DC=R,∴BC=R,故选:D.【点评】此题综合运用了圆周角定理、直角三角形30°角的性质、勾股定理,注意:作直径构造直角三角形是解决本题的关键.6. (2018·台湾·分)如图1的矩形ABCD中,有一点E在AD上,今以BE为折线将A点往右折,如图2所示,再作过A点且与CD垂直的直线,交CD于F点,如图3所示,若AB=6,BC=13,∠BEA=60°,则图3中AF的长度为何?()A.2 B.4 C.2 D.4【分析】作AH⊥BC于H.则四边形AFCH是矩形,AF=CH,AH=CF=3.在Rt△ABH中,解直角三角形即可解决问题;【解答】解:作AH⊥BC于H.则四边形AFCH是矩形,AF=CH,AH=CF=3.在Rt△AHB中,∠ABH=30°,∴BH=AB•cos30°=9,∴CH=BC﹣BH=13﹣9=4,∴AF=CH=4,故选:B.【点评】本题考查翻折变换、矩形的性质、勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.7. (2018·台湾·分)如图,坐标平面上,A、B两点分别为圆P与x轴、y轴的交点,有一直线L通过P点且与AB垂直,C点为L与y轴的交点.若A、B、C的坐标分别为(a,0),(0,4),(0,﹣5),其中a<0,则a的值为何?()A.﹣2B.﹣2C.﹣8 D.﹣7【分析】连接AC,根据线段垂直平分线的性质得到AC=BC,根据勾股定理求出OA,得到答案.【解答】解:连接AC,由题意得,BC=OB+OC=9,∵直线L通过P点且与AB垂直,∴直线L是线段AB的垂直平分线,∴AC=BC=9,在Rt△AOC中,AO==2,∵a<0,∴a=﹣2,故选:A.【点评】本题考查的是垂径定理、坐标与图形的性质以及勾股定理,掌握垂径定理的推论是解题的关键.8.(2018•湖北黄冈•3分)如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,CE为AB 边上的中线,AD=2,CE=5,则CD=A.2B.3C.4D.23(第5题图)【考点】直角三角形斜边上的中线的性质,勾股定理。

全国2018年中考数学真题分类汇编 第19讲 解直角三角形(无答案)

全国2018年中考数学真题分类汇编 第19讲 解直角三角形(无答案)

第19讲解直角三角形知识点1 锐角三角函数的定义知识点2 特殊角的三角函数值知识点3 解直角三角形知识点4 解直角三角形的实际应用知识点1 锐角三角函数的定义(2018·滨州)(2018·孝感)答案:A(2018·云南)(2018·柳州)知识点2 特殊角的三角函数值(2018·天津)答案:B(2018·大庆)(2018·烟台)(2018·白银)计算:2018112sin 30(1)()2-+--= . (2018·烟台)知识点3 解直角三角形 (2018·荆州)答案:D(2018·哈尔滨)答案:C(2018·娄底)如图,由四个全等的直角三角形围成的大正方形的面积是169,小正方形的面积为49,则sin cos a a -=( D )A .513B .513-C .713D .713-(2018·广西六市同城)答案:C(2018·陕西)答案:C(2018·丽水)如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为( B )A. tantanαβB.sinsinβαC.sinsinαβD.coscosβα(2018·枣庄)如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是( A )A. B. C. D.(2018·无锡)答案:A(2018·贵阳)(2018·德州)答案:5(2018·湖州)(2018·苏州)(2018·齐齐哈尔)答案:(2018·宁波)(2018·泰安)(2018·眉山)如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD= .知识点4 解直角三角形的实际应用(2018·济宁)(2018·绵阳)(2018·重庆A卷)如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底部E 点处测得旗杆顶端的仰角58i=,DE=米,升旗台坡面CD的坡度1:0.75AED∠=︒,升旗台底部到教学楼底部的距离7坡长2CD=米,若旗杆底部到坡面CD的水平距离1︒≈,BC=米,则旗杆AB的高度约为 B(参考数据:sin580.85︒≈)cos580.53︒≈,tan58 1.6A.12.6米B.13.1米C.14.7米D.16.3米(2018·淄博)一辆小车沿着如图所示的斜坡向上行驶了100米,其铅直高度上升了15米.在用科学计算器求坡角α的度数时,具体按键顺序是()A.B.C.D.(2018·宜昌)如图,要测量小河两岸相对的两点,P A的距离,可以在小河边取PA的垂线PB上的一点C,测得PC=米,35100∠=,则小河宽PA等于( C )PCAA.100sin35米B.100sin55米C.100tan35米D.100tan55米(2018·长春)(2018·重庆B卷)如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB 的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)( A )A.21.7米B.22.4米C.27.4米D.28.8米(2018·苏州)(2018·枣庄)(2018·荆州)(2018·仙桃)我国海域辽阔,渔业资源丰富.如图,现有渔船B在海岛A,C附近捕鱼作业,已知海岛C位于海岛A的北偏东45°方向上.在渔船B上测得海岛A位于渔船B的北偏西30°的方向上,此时海岛C恰好位于渔船B的正北方向18(1n mile处,则海岛A,C之间的距离为 n mile.(2018·咸宁)如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为45°,测得底部C的俯角为60°,此时3航拍无人机与该建筑物的水平距离AD为110m,那么该建筑物的高度BC约为 300 m.(结果保留整数, 1.73).(2018·黄石)如图,无人机在空中C处测得地面A、B两点的俯角分别为60°、45°,如果无人机距地面高度CD为A、D、E在同一水平直线上,则A、B两点间的距离是____________米.(结果保留根号)(2018·广西六市同城)(2018·广州)(2018·潍坊)答案:。

2018年中考数学试题分类汇编:知识点30 直角三角形、勾股定理

2018年中考数学试题分类汇编:知识点30  直角三角形、勾股定理

一、选择题1. (2018山东滨州,1,3分)在直角三角形中,若勾为3,股为4,则弦为( )A .5B .6C .7D .8【答案】A 【解析】∵三角形为直角三角形,∴三边满足勾股定理,∴弦为:223+4=5.【知识点】勾股定理2. (2018四川泸州,8题,3分) “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图3所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a ,较短直角边长为b ,若ab =8,大正方形的面积为25,则小正方形的边长为( )A. 9B.6C. 4D.3第8题图【答案】D【解析】因为ab=8,所以三角形的面积为21ab=4,则小正方形的面积为25-4×4=9,边长为3 【知识点】勾股定理,三角形面积,平方根3. (2018年山东省枣庄市,12,3分)如图,在ABC Rt ∆中,090=∠ACB ,AB CD ⊥,垂足为D ,AF 平分CAB ∠,交CD 于点E ,交CB 于点F .若5,3==AB AC ,则CE 的长为( )A .23B .34C .35D .58 【答案】A【思路分析】在ABC Rt ∆中, AB CD ⊥, AF 平分CAB ∠,可知CE=CF ,过F 作FH 垂直于AB ,FH=CF ,在R t △FBH 中设CF=x ,利用勾股定理列方程求出CF 的长,从而得到CE 的长.【解题过程】解:在ABC Rt ∆中, AB CD ⊥,∴∠ACD =∠B ,∵AF 平分CAB ∠,∴∠CAF =∠BAF ,∴∠CEF=∠CFE ,CE=CF ,如图,过点F 作F G ⊥AB ,∵AF 平分CAB ∠,∴CF=FG ,AG=AC=3,BG=2,设CF=FG=x , ∵5,3==AB AC ,∴BC=4,则BF=4-x ,在R t △FBG 中,2222(4)x x +=-,解得23=x ,即CE=CF=23,故选A. ECA BF 【知识点】勾股定理;角平分线的性质;等腰三角形4. (2018湖南长沙,11题,3分)我国南宋著名数学家秦久韶的著作《数书九章》里记载有这样一道题目:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三边长分别为5里,12里,13里,问这块沙田面积有多大?题中的“里”是我国市制长度单位,1里=500米,则该沙田的面积为( )A.7.5平方千米B.15平方千米C.75平方千米D.750平方千米【答案】A【解析】将里换算为米为单位,则三角形沙田的三边长为2.5千米,6千米,6.5千米,因为2.52+62=6.52,所以这个三角形为直角三角形,直角边长为2.5千米和6千米,所以S=12×6×2.5=7.5(平方千米),故选A 【知识点】勾股定理的逆定理,三角形面积5. (2018山东青岛中考,6,3分)如图,三角形纸片ABC ,AB=AC ,∠BAC=90°,点E 为AB 中点.沿过点E 的直线折叠,使点B 与点A 重合,折痕EF 交BC 于点F .已知32EF ,则BC 的长是( )A 32B .32C .3D .33 【答案】B【解析】∵AB=AC ,∠BAC=90°,∴∠B=45°.由折叠的性质可得∠BEF=90°,∴∠BFE=45°,∴BE=EF=32. ∵点E 为AB 中点,∴AB=AC=3.在Rt △ABC 中,22AB AC +2233+32B .【知识点】折叠的性质;等腰三角形的性质与判定;勾股定理;6.(2018山东省淄博市,12,4分)如图,P 为等边三角形ABC 内的一点,且P 到三个顶点A 、B 、C 的距离分别为3、4、5,则△ABC 的面积为(A )253 (B )253 (C )18+253 (D )253(第12题图)BC【答案】A 【思路分析】将△APB 绕点A 逆时针旋转60°得到△AHC ,作AI ⊥CH 交CH 延长线于点I ,则△APH 为等边三角形,利用已知线段证明△PHC 为直角三角形,从而得到∠AHC =150°,∠AHI =30°,求得AI 、IH ,进而求得IC ,利用勾股定理求出AC ,再利用正三角形面积公式求出三角形ABC 的面积.(第12题答案图)B【解题过程】将△APB 绕点A 逆时针旋转60°得到△AHC ,作AI ⊥CH 交CH 延长线于点I ,则△APH 为等边三角形,HA =HP =P A =3,HC =PB =4,∵PC =5,∴PC 2=PH 2+CH 2,∴∠PHC =90°,∴∠AHI =30°,∴AI =32,HI=32∴CI =32+4,∴AC 2=(32)2+(32+4)2,∴S △ABC =4AC 2=4()=9+4. 【知识点】图形的旋转的性质;解直角三角形;正三角形的面积;勾股定理及逆定理1. (2018湖北黄冈,5题,3分)如图,在Rt △ABC 中,∠ACB=90°,CD 为AB 边上的高,CE 为AB 边上的中线,AD=2,CE=5,则CD=()A.2B.3C.4D.第5题图【答案】C【解析】在Rt △ABC 中,CE 为AB 边上的中线,所以CE=12AB=AE ,因为CE=5,AD=2,所以DE=3,因为CD 为AB 边上的高,所以在Rt △CDE 中,22CD CE DE =+,故选C【知识点】直角三角形斜边上的中线等于斜边的一半,勾股定理2. (2018四川凉山州,3,4分)如图,数轴上点A 对应的数为2,AB ⊥OA 于A ,且AB =1,以O 为圆心,OB 长为半径作弧,交数轴于点C ,则OC 长为( )A.3 235【答案】D【解析】∵AB ⊥OA 于A ,∴∠OAB=90°.在Rt △OAB 中,由勾股定理得2222521OA AB ++=.∴5.故选择D.【知识点】直角三角形的判定,勾股定理,尺规作图.二、填空题1. (2018年山东省枣庄市,15,4分) 我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式.即:如果一个三角形的三边长分别为c b a ,,,则该三角形的面积为 2222221()42a b c s a b ⎡⎤+-=-⎢⎥⎣⎦,已知ABC ∆的三边长分别为1,2,5,则ABC ∆的面积为 . 【答案】1【解析】方法一:把1,2,5代入三角形的面积得[]21541154()20161424s +-⎡⎤=⨯-=-=⎢⎥⎣⎦,故填 1. 方法二:由ABC ∆的三边长分别为1,2,5,根据勾股定理的逆定理得ABC ∆是直角三角形,其面积为12112⨯⨯=,故填 1. 【知识点】二次根式;勾股定理的逆定理2. (2018四川省成都市,14,4)如图,在矩形ABCD 中,按以下步骤作图:①分别以点A 和C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交CD 于点E ,若DE =2,CE =3,则矩形的对角线AC 的长为 .30【思路分析】因为由作图可知MN 为线段AC 的垂直平分线,则有AE =CE =3,在Rt △ADE 中,由勾股定理可以求出AD 的长,然后再在Rt △ADC 中用勾股定理求出AC 即可.【解析】解:连接AE ,由作图可知MN 为线段AC 的垂直平分线,∴AE =CE =3,在Rt △ADE 中,2AE =2AD +2DE ,∴AD =22AE DE -=5,在Rt △ADC 中,2AC =2AD +2CD ,∵CD =DE +CE =5,∴AC =()2255+=30.【知识点】尺规作图;线段垂直平分线的性质;勾股定理3. (2018天津市,18,3)如图,在每个小正方形的边长为1的网格中,△ABC 的顶点A ,B ,C 均在格点上.(1)∠ACB 的大小为 (度);(2)在如图所示的网格中,P 是BC 边上任意一点.A 为中心,取旋转角等于∠BAC ,把点P 逆时针旋转,点P 的对应点为P ′.当C P ′最短时,请用无刻度...的直尺,画出点P ′,并简要说明点P ′的位置是如何找到的(不要求证明) .【答案】90°; 如图,取格点D ,E ,连接DE 交AB 于点T ;取格点M ,N ,连接MN 交BC 延长线于点G ;取格点F ,连接FG 交TC 延长线于点P ′,则点P ′即为所求.【解析】分析:本题考查了勾股定理及其逆定理.解题的关键是分析题意并构造出如图所示的三对格点.解:(1)在网格中由勾股定理得:222222222505055AB,3244BC,1833=ACABBCAC==+∴=+==+==+∴△ABC为直角三角形,∴∠ACB=90°(2)如图,取格点D,E,连接DE交AB于点T;取格点M,N,连接MN交BC延长线于点G;取格点F,连接FG交TC延长线于点'P,则点'P即为所求.【知识点】勾股定理定理及逆定理;格点作图4.(2018浙江湖州,16,4)在每个小正方形的边为1的网格图形中,每个小正方形的顶点为格点.以顶点都是格点的正方形ABCD的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E,F,G,H都是格点,且四边形EFGH为正方形,我们把这样的图形称为格点弦图.例如,在图1所示的格点弦图中,正方形ABCD 的边长为65,此时正方形EFGH的面积为5.问:当格点弦图中的正方形ABCD的边长为65时,正方形EFGH的面积的所有可能值是(不包括5).【答案】9,13和49【解析】设图中直角三角形的长直角边为a,短直角边为b,则a2+b2=65.小正方形的面积为(a-b)2.∴只要能把长为a和b的线段在网格中画出来,并且a和b的端点都在格点上即可.∵65可以写作64+1或49+16,所以a,b的值分别为8,1或7,4.此时小正方形的面积为49或9.另外,∵长为13和5的线段也可以在网格中画出,所以65还可以写成52+13或45+20,此时a,b的值分别为213,13和35,25.此时小正方形的面积为13和5.小正方形的面积为9,13和49对应的图形分别为下图的①②③.故填9,13和49.【知识点】勾股定理1. (2018湖北黄冈,13题,3分)如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为______cm (杯壁厚度不计)第13题图【答案】20 【解析】如图,点E 与点A 关于直线l 对称,连接EB ,即为蚂蚁爬行的最短路径,过点B 做BC ⊥AE 于点C ,则Rt △EBC 中,BC=32÷2=16cm ,EC=3+14-5=12cm ,所以2220EB EC BC cm +=第13题解图【知识点】轴对称,勾股定理2. (2018·重庆A 卷,16,4)如图,把三角形纸片折叠,使点B 、点C 都与点A 重合,折痕分别为DE 、FG ,得到∠AGE =30°,若AE =EG =3ABC 的边BC 的长为 厘米.【答案】43+6. 【解析】如下图,过点E 作EM⊥AG 于点M ,则由AE =EG ,得AG =2MG .∵∠AGE =30°,EG =23厘米,∴EM =12EG =3(cm ). 在Rt △EMG 中,由勾股定理,得MG =22(23)(3)-=3(cm ),从而AG =6cm .由折叠可知,BE =AE =23(cm ),GC =AG =6cm .∴BC =BE +EG +GC =23+23+6=43+6(cm ).M 30︒F G DCB A【知识点】翻折;轴对称;勾股定理;直角三角形的性质;等腰三角形3. (2018江苏淮安,15,3) 如图,在份Rt △ABC 中,∠C=90°,AC=3, BC=5,分别以A 、B 为圆心,大于21AB 的长为半径画弧,两弧交点分别为点P 、Q,过P 、Q 两点作直线交BC 于点D ,则CD 的长是 .(第15题)【答案】1.6【解析】本题考查勾股定理和基本作图,连结AD,由线段的垂直平分线的性质可知AD=BD,再由勾股定理可求得CD.解:连结AD由作法可知AD=BD,在Rt △ACD 中设CD=x,则AD=BD=5-x,AC=3.由勾股定理得,CD 2+AC 2=AD 2即x 2+32=(5-x)2解得x=1.6故答案为1.6【知识点】勾股定理;轴对称;线段的垂直平分线;基本作图4. (2018山东德州,15,4分)如图,OC 为AOB ∠的平分线,CM OB ⊥,5OC =,4OM =,则点C 到射线OA 的距离为 .【答案】3【解析】因为CM OB ⊥,5OC =,4OM =,所以CM =3,过点C 作CM ⊥OA 于N ,又因为OC 为AOB ∠的平分线,所以CN = CM =3,即点C 到射线OA 的距离为3.【知识点】勾股定理,角平分线的性质5. (2018福建A 卷,13,4)如图,在Rt △ABC 中,∠ACB=90°,AB=6,D 为AB 的中点,则CD= _______.【答案】3【思路分析】根据直角三角形斜边上的中线等于斜边的一半,可得出CD 的值.【解析】解:在△ABC 中,以∠ACB 为直角的直角三角形的斜边AB=6,∵CD 是AB 边上的中线,∴CD=12AB=3. 【知识点】直角三角形6.(2018福建A 卷,15,4)把两个相同大小的含45°角的三角板如图所示放置,其中一个三角板的锐角顶点与另一个的直角顶点重合于点A ,另外三角板的锐角顶点B 、C 、D 在同一直线上,若AB=2,则CD=_______.【答案】31-【思路分析】首先利用勾股定理计算出BC 、AD 的长,过点A 作AF ⊥BC ,由“三线合一”及等腰直直角三角形的性质易求得AF=CF ,在直角三角形ADF 中,再次利用勾股定理计算出DF 的长度,问题便获得解决.【解析】解:过点A 作AF ⊥BC ,垂足为点F ,∵ AB=AC ,∴CF=12BC ,∵ AB=AC=2,∴AD=222BC AB AC =+=,∴CF=1,∵∠C =45°,∴AF=CF=1,∴223DF AD AF =-=,∴31CD DF CF =-=-.【知识点】等腰三角形的性质,勾股定理7. (2018福建B 卷,13,4)如图,在Rt △ABC 中,∠ACB=90°,AB=6,D 为AB 的中点,则CD= _______.【答案】3【思路分析】根据直角三角形斜边上的中线等于斜边的一半,可得出CD 的值.【解题过程】解:在△ABC 中,以∠ACB 为直角的直角三角形的斜边AB=6,∵CD 是AB 边上的中线,∴CD=12AB=3. 【知识点】直角三角形8. (2018福建B 卷,15,4)把两个相同大小的含45°角的三角板如图所示放置,其中一个三角板的锐角顶点与另一个的直角顶点重合于点A ,另外三角板的锐角顶点B 、C 、D 在同一直线上,若AB=2,则CD=_______. 【答案】31-【思路分析】首先利用勾股定理计算出BC 、AD 的长,过点A 作AF ⊥BC ,由“三线合一”及等腰直直角三角形的性质易求得AF=CF ,在直角三角形ADF 中,再次利用勾股定理计算出DF 的长度,问题便获得解决.【解析】解:过点A 作AF ⊥BC ,垂足为点F ,∵ AB=AC ,∴CF=12BC ,∵ AB=AC=2,∴AD=222BC AB AC =+=,∴CF=1,∵∠C =45°,∴AF=CF=1,∴223DF AD AF =-=,∴31CD DF CF =-=-.【知识点】等腰三角形的性质,勾股定理9.(2018湖北省襄阳市,15,3分)已知CD 是△ABC 的边AB 上的高,若CD=3,AD=1,AB=2AC ,则BC 的长为= ▲ .【答案】7232或【解析】解:分两种情况讨论:①当CD 在△ABC 内部时,如图在Rt △ACD 中,由勾股定理得AC =22CD AD +=2. ∴AB =2AC =4,∴BD =AB -AD =3.在Rt △BCD 中,由勾股定理得,BC =22CB CD +=32.②当CD 在△ABC 外部时,如图此时,AB =4,BD =BA +AD =5,在Rt △ABD 中,由勾股定理得,BC =22CB CD +=72.综上所述,BC 的长为7232或.故答案为7232或.【知识点】勾股定理,分类讨论思想10. (2018广西玉林,17题,3分)如图,在四边形ABCD 中,∠B=∠D=90°,∠A=60°,AB=4,则AD 的取值范围是_______第17题图【答案】2<AD<8【解析】由题,∠A=60°,AB=4,已确定,AD的长度可以变化,如下图(1),是AD最短的情况,此时AD=ABcos60°=2,如下图(2),是AD最长的情况,此时AD=AB/cos60°=8,而这两种情况四边形ABCD就变成了三角形,故都不能达到,故AD的取值范围是2<AD<8第17题图(1)第17题图(2)【知识点】动态问题,特殊的三角函数值三、解答题1.(2018四川广安,题号24,分值8)下面有4张形状,大小完全相同的方格纸,方格纸中的每个小正方形的边长都是1,请在方格纸中分别画出符合要求的图形,所画图形各顶点必须与方格纸中小正方形的顶点重合,具体要求如下:(1)画一个直角边为4,面积为6的直角三角形.(2)画一个底边为4,面积为8的等腰三角形.(3)画一个面积为5的等腰直角三角形.(4)画一个边长为2,面积为6的等腰三角形.第24题图【思路分析】对于(1),根据面积公式求出两条直角边即可画出图形;对于(2),根据面积公式求出底边上的高,再画出图形即可;对于(3),根据面积公式求出直角边,即可画出图形;对于(4)根据腰长为2不成立,可知以2为底边,再求出底边上的高,可画出图形.【解题过程】如图所示.(1)直角边为4,3的直角三角形;………………………….2分(2)底边为4,底边上的高为4的等腰三角形;………………………………………..4分(3)直角边为的等腰直角三角形;…………………………………………………..6分(4)底边为2,底边上的高为3的等腰三角形……………………………………8分第24题答图【知识点】勾股定理,三角形的面积1. (2018湖北荆门,19,9分) 如图,在Rt ABC ∆中,90ACB ∠=o ,30BAC ∠=o ,E 为AB 边的中点,以BE 为边作等边BDE ∆,连接AD ,CD .(1)求证:ADE CDB ∆∆≌;(2)若3BC =,在AC 边上找一点H ,使得BH EH +最小,并求出这个最小值.【思路分析】(1)首先根据E 为AB 边的中点可得BC=AE ,根据△DEB 为等边三角形可得DB=DE ,∠DEA=∠DBC ,然后根据全等三角形的判定即可证明出结论;(2)作点E 关于直线AC 对称点E ′,连接BE ′交AC 于点H ,由作图可知:EH+BH=BE ′,根据勾股定理计算即可.【解题过程】(1)证明:在Rt △ABC 中,∠BAC=30°,E 为AB 边为中点,∴BC=EA ,∠ABC=60°.∵△DEB 为等边三角形,∴DB=DE ,∠DEB=∠DBE=60°,∴∠DEA=120°,∠DBC=120°,∴∠DEA=∠DBC ,∴△ADE ≌△CDB.(2)解:如图,作点E 关于直线AC 对称点E ′,连接BE ′交AC 于点H.则点H 即为符合条件的点.由作图可知:EH+BH=BE ′,AE ′=AE ,∠E ′AC=∠BAC=30°,∴∠EAE ′=60°,∴△EAE ′为等边三角形,∴EE ′=EA=21AB , ∴∠AE ′B=90°,在Rt △ABC 中,∠BAC=30°,BC=3,∴AB=23,AE ′=AE=3,∴BE ′=2222)3()32(-='-AE AB =3,∴BH+EH 的最小值为3.【知识点】等边三角形的性质,含30°角的直角三角形的性质,全等三角形的判定,利用轴对称作图,勾股定理。

中考数学真题分类汇编第三期专题23直角三角形与勾股定理试题含解析

中考数学真题分类汇编第三期专题23直角三角形与勾股定理试题含解析

直角三角形与勾股定理一. 选择题(2018 ·广西贺州· 3 分)如图、在△ ABC 中、∠ BAC=90°、 AD⊥BC、垂足为D、 E 是边 BC 的中点、 AD=ED=3、则 BC的长为()A. 3 B . 3 C . 6D. 6【解答】解:∵ AD=ED=3、AD⊥BC、∴△ ADE为等腰直角三角形、依照勾股定理得: AE==3 、∵Rt△ABC中、 E 为 BC的中点、∴AE=BC、则 BC=2AE=6、应选: D.二. 填空题1. ( 2018·湖北荆州· 3 分)为了比较+1 与的大小、可以构造以下列图的图形进行计算、其中∠ C=90°、 BC=3、D 在 BC上且 BD=AC=1.经过计算可得+1.(填“>”或“<”或“ =”)【解答】解:∵∠ C=90°、BC=3、 BD=AC=1、∴CD=2、 AD==、AB==、∴B D+AD= +1、又∵△ ABD中、 AD+BD> AB、∴+1>、故答案为:>.2.( 2018·云南省曲靖· 3 分)如图:在△ ABC 中、 AB=13、 BC=12、点 D、 E 分别是 AB、 BC 的中点、连接DE、 CD、若是、那么△ ACD的周长是18.【解答】解:∵ D、 E 分别是 AB、 BC的中点、∴A C=2DE=5、AC∥DE、2222AC+BC=5 +12 =169、22AB =13 =169、222∴AC+BC=AB、∴∠ ACB=90°、∵AC∥DE、∴∠ DEB=90°、又∵E是 BC的中点、∴直线 DE是线段 BC的垂直均分线、∴DC=BD、∴△ ACD的周长 =AC+AD+CD=AC+AD+BD=AC+AB=18、故答案为: 18.3. ( 2018·云南省· 3 分)在△ ABC 中、 AB=、AC=5、若BC边上的高等于3、则 BC边的长为9或1.【分析】△ ABC 中、∠ ACB 分锐角和钝角两种:①如图 1、∠ ACB是锐角时、依照勾股定理计算BD和 CD的长可得 BC的值;②如图 2、∠ ACB是钝角时、同理得:CD=4、 BD=5、依照 BC=BD﹣ CD代入可得结论.【解答】解:有两种情况:①如图 1、∵ AD是△ ABC的高、∴∠ ADB=∠ADC=90°、由勾股定理得:BD===5、CD===4、∴B C=BD+CD=5+4=9;②如图 2、同理得: CD=4、 BD=5、∴BC=BD﹣ CD=5﹣ 4=1、综上所述、 BC的长为 9 或 1;故答案为: 9 或 1.【谈论】此题观察了勾股定理的运用、熟练掌握勾股定理是要点、并注意运用了分类谈论的思想解决问题.三. 解答题1.(2018?广安?8 分)下面有 4 张形状、大小完好相同的方格纸、方格纸中的每个小正方形的边长都是 1、请在方格纸中分别画出吻合要求的图形、所画图形各极点必定与方格纸中小正方形的极点重合、详尽要求以下:(1)画一个直角边长为 4、面积为 6 的直角三角形.(2)画一个底边长为 4、面积为 8 的等腰三角形.(3)画一个面积为 5 的等腰直角三角形.(4)画一个边长为 2 、面积为 6 的等腰三角形.【分析】( 1)利用三角形面积求法以及直角三角形的性质画即可;(2)利用三角形面积求法以及等腰三角形的性质画出即可.(3)利用三角形面积求法以及等腰直角三角形的性质画出即可;(4)利用三角形面积求法以及等腰三角形的性质画出即可.【解答】解:( 1)如图( 1)所示:(2)如图( 2)所示:(3)如图( 3)所示;(4)如图( 4)所示.【谈论】此题主要观察了等腰三角形的性质、等腰直角三角形的性质以及作图;熟练掌握等腰三角形的性质是要点.。

2018年全国各地中考数学真题汇编:三角形(江苏专版)(解析版)

2018年全国各地中考数学真题汇编:三角形(江苏专版)(解析版)

2018年全国各地中考数学真题汇编(江苏专版)三角形参考答案与试题解析一.选择题(共4小题)1.(2018•南京)如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD的长为()A.a+c B.b+c C.a﹣b+c D.a+b﹣c解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE,∴AF=CE=a,BF=DE=b,∵EF=c,∴AD=AF+DF=a+(b﹣c)=a+b﹣c,故选:D.2.(2018•扬州)在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,则下列结论一定成立的是()A.BC=EC B.EC=BE C.BC=BE D.AE=EC解:∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,∴∠BCD=∠A.∵CE平分∠ACD,∴∠ACE=∠DCE.又∵∠BEC=∠A+∠ACE,∠BCE=∠BCD+∠DCE,∴∠BEC=∠BCE,∴BC=BE.故选:C.3.(2018•淮安)如图,菱形ABCD的对角线AC、BD的长分别为6和8,则这个菱形的周长是()A.20 B.24 C.40 D.48解:由菱形对角线性质知,AO=AC=3,BO=BD=4,且AO⊥BO,则AB==5,故这个菱形的周长L=4AB=20.故选:A.4.(2018•宿迁)如图,菱形ABCD的对角线AC、BD相交于点O,点E为边CD的中点,若菱形ABCD的周长为16,∠BAD=60°,则△OCE的面积是()A.B.2 C.2D.4解:过点D作DH⊥AB于点H,∵四边形ABCD是菱形,AO=CO,∴AB=BC=CD=AD,∵菱形ABCD的周长为16,∴AB=AD=4,∵∠BAD=60°,∴DH=4×=2,∴S菱形ABCD=4×2=8,∴S△ABD=×8=4,∵点E为边CD的中点,∴OE为△ADC的中位线,∴OE∥AD,∴△CEO∽△CDA,∴△OCE的面积=×4=,故选:A.二.填空题(共5小题)5.(2018•连云港)如图,△ABC中,点D、E分別在AB、AC上,DE∥BC,AD:DB=1:2,则△ADE与△ABC的面积的比为1:9.解:∵DE∥BC,∴△ADE∽△ABC,∵AD:DB=1:2,∴AD:AB=1:3,∴S△ADE :S△ABC是1:9.故答案为:1:9.6.(2018•南京)如图,在△ABC中,用直尺和圆规作AB、AC的垂直平分线,分别交AB、AC于点D、E,连接DE.若BC=10cm,则DE=5cm.解:∵用直尺和圆规作AB、AC的垂直平分线,∴D为AB的中点,E为AC的中点,∴DE是△ABC的中位线,∴DE=BC=5cm.故答案为:5.7.(2018•盐城)如图,在直角△ABC中,∠C=90°,AC=6,BC=8,P、Q分别为边BC、AB上的两个动点,若要使△APQ是等腰三角形且△BPQ是直角三角形,则AQ=或.解:①如图1中,当AQ=PQ,∠QPB=90°时,设AQ=PQ=x,∵PQ∥AC,∴△BPQ∽△BCA,∴=,∴=,∴x=,∴AQ=.②当AQ=PQ,∠PQB=90°时,设AQ=PQ=y.∵△BQP∽△BCA,∴=,∴=,∴y=.综上所述,满足条件的AQ的值为或.8.(2018•泰州)如图,▱ABCD中,AC、BD相交于点O,若AD=6,AC+BD=16,则△BOC 的周长为14.解:∵四边形ABCD是平行四边形,∴AD=BC=6,OA=OC,OB=OD,∵AC+BD=16,∴OB+OC=8,∴△BOC的周长=BC+OB+OC=6+8=14,故答案为14.9.(2018•无锡)如图,已知∠XOY=60°,点A在边OX上,OA=2.过点A作AC⊥OY于点C,以AC为一边在∠XOY内作等边三角形ABC,点P是△ABC围成的区域(包括各边)内的一点,过点P作PD∥OY交OX于点D,作PE∥OX交OY于点E.设OD=a,OE=b,则a+2b的取值范围是2≤a+2b≤5.解:过P作PH⊥OY交于点H,∵PD∥OY,PE∥OX,∴四边形EODP是平行四边形,∠HEP=∠XOY=60°,∴EP=OD=a,Rt△HEP中,∠EPH=30°,∴EH=EP=a,∴a+2b=2(a+b)=2(EH+EO)=2OH,当P在AC边上时,H与C重合,此时OH的最小值=OC=OA=1,即a+2b的最小值是2;当P在点B时,OH的最大值是:1+=,即(a+2b)的最大值是5,∴2≤a+2b≤5.三.解答题(共9小题)10.(2018•无锡)如图,平行四边形ABCD中,E、F分别是边BC、AD的中点,求证:∠ABF=∠CDE.解:在▱ABCD中,AD=BC,∠A=∠C,∵E、F分别是边BC、AD的中点,∴AF=CE,在△ABF与△CDE中,∴△ABF≌△CDE(SAS)∴∠ABF=∠CDE11.(2018•南京)如图,为了测量建筑物AB的高度,在D处树立标杆CD,标杆的高是2m,在DB上选取观测点E、F,从E测得标杆和建筑物的顶部C、A的仰角分别为58°、45°.从F测得C、A的仰角分别为22°、70°.求建筑物AB的高度(精确到0.1m).(参考数据:tan22°≈0.40,tan58°≈1.60,tan70°≈2.75.)解:在Rt△CED中,∠CED=58°,∵tan58°=,∴DE=,在Rt△CFD中,∠CFD=22°,∵tan22°=,∴DF=,∴EF=DF﹣DE=,同理:EF=BE﹣BF=,∴,解得:AB≈5.9(米),答:建筑物AB的高度约为5.9米.12.(2018•淮安)已知:如图,▱ABCD的对角线AC、BD相交于点O,过点O的直线分别与AD、BC相交于点E、F.求证:AE=CF.证明:∵▱ABCD的对角线AC,BD交于点O,∴AO=CO,AD∥BC,∴∠EAC=∠FCO,在△AOE和△COF中,∴△AOE≌△COF(ASA),∴AE=CF.13.(2018•淮安)为了计算湖中小岛上凉亭P到岸边公路l的距离,某数学兴趣小组在公路l上的点A处,测得凉亭P在北偏东60°的方向上;从A处向正东方向行走200米,到达公路l上的点B处,再次测得凉亭P在北偏东45°的方向上,如图所示.求凉亭P到公路l的距离.(结果保留整数,参考数据:≈1.414,≈1.732)解:作PD⊥AB于D.设BD=x,则AD=x+200.∵∠EAP=60°,∴∠PAB=90°﹣60°=30°.在Rt△BPD中,∵∠FBP=45°,∴∠PBD=∠BPD=45°,∴PD=DB=x.在Rt△APD中,∵∠PAB=30°,∴CD=tan30°•AD,即DB=CD=tan30°•AD=x=(200+x),解得:x≈273.2,∴CD=273.2.答:凉亭P到公路l的距离为273.2m.14.(2018•泰州)如图,∠A=∠D=90°,AC=DB,AC、DB相交于点O.求证:OB=OC.证明:在Rt△ABC和Rt△DCB中,∴Rt△ABC≌Rt△DCB(HL),∴∠OBC=∠OCB,∴BO=CO.15.(2018•宿迁)如图,在▱ABCD中,点E、F分别在边CB、AD的延长线上,且BE=DF,EF分别与AB、CD交于点G、H.求证:AG=CH.证明:∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,AD∥BC,∴∠E=∠F,∵BE=DF,∴AF=EC,在△AGF和△CHE中,∴△AGF≌△CHE(ASA),∴AG=CH.16.(2018•连云港)如图1,水坝的横截面是梯形ABCD,∠ABC=37°,坝顶DC=3m,背水坡AD的坡度i(即tan∠DAB)为1:0.5,坝底AB=14m.(1)求坝高;(2)如图2,为了提高堤坝的防洪抗洪能力,防汛指挥部决定在背水坡将坝顶和坝底同时拓宽加固,使得AE=2DF,EF⊥BF,求DF的长.(参考数据:sin37°≈,cos37°≈,tan37°≈)解:(1)作DM⊥AB于M,CN⊥AN于N.由题意:tan∠DAB==2,设AM=x,则DM=2x,∵四边形DMNC是矩形,∴DM=CN=2x,在Rt△NBC中,tan37°===,∴BN=x,∵x+3+x=14,∴x=3,∴DM=6,答:坝高为6m.(2)作FH⊥AB于H.设DF=y,设DF=y,则AE=2y,EH=3+2y﹣y=3+y,BH=14+2y﹣(3+y)=11+y,由△EFH∽△FBH,可得=,即=,解得y=﹣7+2或﹣7﹣2(舍弃),∴DF=2﹣7,答:DF的长为(2﹣7)m.17.(2018•盐城)在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示.(1)求证:△ABE≌△ADF;(2)试判断四边形AECF的形状,并说明理由.证明:(1)∵正方形ABCD,∴AB=AD,∴∠ABD=∠ADB,∴∠ABE=∠ADF,在△ABE与△ADF中,∴△ABE≌△ADF(SAS);(2)连接AC,四边形AECF是菱形.理由:∵正方形ABCD,∴OA=OC,OB=OD,AC⊥EF,∴OB+BE=OD+DF,即OE=OF,∵OA=OC,OE=OF,∴四边形AECF是平行四边形,∵AC⊥EF,∴四边形AECF是菱形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.
1,2,3
B.
1,1,
C.
1,1,
D.
1,2,
考点:
解直角三角形
专题:
新定义.
分析:
A、根据三角形三边关系可知,不能构成三角形,依此即可作出判定;
B、根据勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定;
C、解直角三角形可知是顶角120°,底角30°的等腰三角形,依此即可作出判定;
D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,依此即可作出判定.
故选:D.
点评:
考查了解直角三角形,涉及三角形三边关系,勾股定理的逆定理,等腰直角三角形的判定,“智慧三角形”的概念.
4.(2014•扬州,第7题,3分)如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=( )
(第4题图)
A.
3
B.
4
C.
5
D.
∴ME= = ,
∴tan∠MCN= =
故选A.
点评:
此题考查了全等三角形的判定与性质,勾股定理以及解直角三角函数,熟练掌握全等三角形的判定与性质是解本题的关键.
6.(2014•安徽省,第8题4分)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为( )
解答:
解:A、∵1+2=3,不能构成三角形,故选项错误;
B、∵12+12=( )2,是等腰直角三角形,故选项错误;
C、底边上的高是 = ,可知是顶角120°,底角30°的等腰三角形,故选项错误;
D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定义,故选项正确.
解得x=4.
故线段BN的长为4.
故选:C.
点评:考查了翻折变换(折叠问题),涉及折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强,但是难度不大.
7.(2014•广西贺州,第11题3分)如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE= ,CE=1.则弧BD的长是( )
A.
B.
C.
直角三角形与勾股定理
一、选择题
1.(2014•湘潭,第7题,3分)以下四个命题正确的是( )
A.
任意三点可以确定一个圆
B.
菱形对角线相等
C.
直角三角边形的四条边相等
考点:
命题与定理
分析:
利用确定圆的条件、菱形的性质、直角三角形的性质及平行四边形的性质分别对每个选项判断后即可确定答案.
解答:
解:A、不在同一直线上的三点确定一个圆,故错误;
B、菱形的对角线垂直但不一定相等,故错误;
C、正确;
D、平行四边形的四条边不一定相等.
故选C.
点评:
本题考查了命题与定理的知识,解题的关键是了解确定圆的条件、菱形的性质、直角三角形的性质及平行四边形的性质,难度一般.
2.(2014•湘潭,14题,3分)如图,⊙O的半径为3,P是CB延长线上一点,PO=5,PA切⊙O于A点,则PA=4.
3BC2=AB2,
∴BC=2 ,
在Rt△BMC中,CM= = =2 .
∵AN=AM,∠MAN=60°,
∴△MAN是等边三角形,
∴MN=AM=AN=2,
过M点作ME⊥ON于E,设NE=x,则CE=2 ﹣x,
∴MN2﹣NE2=MC2﹣EC2,即4﹣x2=(2 )2﹣(2 ﹣x)2,
解得:x= ,
∴EC=2 ﹣ = ,
D.
考点:
垂径定理;勾股定理;勾股定理的逆定理;弧长的计算.
(第5题图)
A.
B.
C.
D.
﹣2
考点:
全等三角形的判定与性质;三角形的面积;角平分线的性质;含30度角的直角三角形;勾股定理
专题:
计算题.
分析:
连接AC,通过三角形全等,求得∠BAC=30°,从而求得BC的长,然后根据勾股定理求得CM的长,
连接MN,过M点作ME⊥ON于E,则△MNA是等边三角形求得MN=2,设NF=x,表示出CF,根据勾股定理即可求得MF,然后求得tan∠MCN.
A. B. C.4D.5
考点:翻折变换(折叠问题).
分析:设BN=x,则由折叠的性质可得DN=AN=9﹣x,根据中点的定义可得BD=3,在Rt△ABC中,根据勾股定理可得关于x的方程,解方程即可求解.
解答:解:设BN=x,由折叠的性质可得DN=AN=9﹣x,
∵D是BC的中点,
∴BD=3,
在Rt△ABC中,x2+32=(9﹣x)2,
(第2题图)
考点:
切线的性质;勾股定理.
分析:
先根据切线的性质得到OA⊥PA,然后利用勾股定理计算PA的长.
解答:
解:∵PA切⊙O于A点,
∴OA⊥PA,
在Rt△OPA中,OP=5,OA=3,
∴PA= =4.
故答案为4.
点评:
本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了勾股定理.
3.(2014•泰州,第6题,3分)如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是( )
解答:
解:∵AB=AD=6,AM:MB=AN:ND=1:2,
∴AM=AN=2,BM=DN=4,
连接MN,连接AC,
∵AB⊥BC,AD⊥CD,∠BAD=60°
在Rt△ABC与Rt△ADC中,

∴Rt△ABC≌Rt△ADC(LH)
∴∠BAC=∠DAC= ∠BAD=30°,MC=NC,
∴BC= AC,
∴AC2=BC2+AB2,即(2BC)2=BC2+AB2,
6
考点:
含30度角的直角三角形;等腰三角形的性质
分析:
过P作PD⊥OB,交OB于点D,在直角三角形POD中,利用锐角三角函数定义求出OD的长,再由PM=PN,利用三线合一得到D为MN中点,根据MN求出MD的长,由OD﹣MD即可求出OM的长.
解答:
解:过P作PD⊥OB,交OB于点D,
在Rt△OPD中,cos60°= = ,OP=12,
∴OD=6,
∵PM=PN,PD⊥MN,MN=2,
∴MD=ND= MN=1,
∴OM=OD﹣MD=6﹣1=5.
故选C.
点评:
此题考查了含30度直角三角形的性质,等腰三角形的性质,熟练掌握直角三角形的性质是解本题的关键.
5.(2014•扬州,第8题,3分)如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=( )
相关文档
最新文档