伺服

合集下载

伺服驱动器原理_伺服驱动器的作用

伺服驱动器原理_伺服驱动器的作用

伺服驱动器原理_伺服驱动器的作用伺服驱动器原理:伺服驱动器是指驱动伺服电机运动的设备。

伺服电机是由伺服控制器控制的特殊电机,通过伺服驱动器将控制信号转化为电机所需的功率信号,从而实现精准的位置和速度控制。

伺服驱动器主要由功率电路、控制电路和保护电路组成。

1.实现精准位置控制:伺服驱动器可以根据输入的位置指令控制电机的转动,精确到毫米级别。

通过反馈装置感知电机的转动情况,控制器可以动态修正指令,从而实现高精度的位置控制。

这种能力使得伺服驱动器在需要精准定位和定点移动的应用中得到广泛应用,比如自动化设备、机器人、印刷机等。

2.实现精准速度控制:伺服驱动器可以控制电机的转速,实现精准的速度控制。

通过反馈装置感知电机的速度,控制器可以根据输入的速度指令,调整电机的输出功率,使其保持所需的速度。

这种能力使得伺服驱动器在需要精确调节速度的应用中得到广泛应用,比如纺织设备、包装设备、输送带等。

3.实现负载控制:伺服驱动器可以根据负载的变化调整电机的输出功率,保持电机在负载范围内稳定运行。

通过反馈装置感知负载的变化,控制器可以调整电机的输出扭矩和速度,使其适应不同的负载情况。

这种能力使得伺服驱动器在需要处理不同负载的应用中得到广泛应用,比如起重机械、搬运设备、机床等。

4.提高系统的稳定性和响应速度:伺服驱动器具有良好的动态特性和响应速度,能够在较短的时间内响应控制信号,实现快速的跟踪和调节。

通过反馈装置感知电机的实际情况,控制器可以及时调整控制信号,使电机保持稳定运行。

这种能力使得伺服驱动器在需要高动态响应和控制精度的应用中得到广泛应用,比如自动调节系统、精密加工设备等。

总之,伺服驱动器是将控制信号转化为电机所需的功率信号,实现精准的位置和速度控制的设备。

它在工业自动化、机器人技术、机床加工等领域中起着举足轻重的作用,有效地提高了生产力和生产质量,促进了工业的发展。

伺服应用案例

伺服应用案例

伺服应用案例
伺服应用案例
伺服是一种能够对运动进行精确控制的设备,它在许多领域中得到了广泛的应用。

下面将介绍一个关于伺服应用的案例。

案例一:飞机模型控制
小明是一个热爱玩飞机模型的爱好者,他使用了伺服来控制飞机模型的舵面。

通过遥控器发送指令,伺服将舵面精确地转动到指定的角度,从而使飞机模型改变飞行姿态。

小明通过学习和试验,不断调整伺服的参数,使得飞机模型的控制更加灵敏准确。

通过这个案例,我们可以看到伺服在模型控制领域的重要性。

案例二:机床加工
在机械加工领域,伺服也得到了广泛的应用。

以车床为例,伺服被用来控制刀具和工件的运动。

通过调整伺服的参数,可以实现工件的精确加工。

伺服可以根据刀具的位置和速度,精确地控制工件的运动轨迹,从而确保加工的质量和精度。

在数控机床中,伺服技术被广泛采用,使得机床加工更加高效、精确。

案例三:机器人
伺服在机器人领域也有着重要的应用。

机器人需要对关节进行精确的控制,这就需要用到伺服技术。

通过伺服的控制,机器人可以精确地进行移动和操作。

在工业生产中,机器人可以代替人工进行危险和重复的工作,提高生产效率和安全性。

在服务机器人领域,伺服的应用也非常广泛,例如助老机器人、医
疗机器人等。

通过这些案例,我们可以看到伺服技术在机器人领域的广泛应用。

以上是关于伺服应用的三个案例,分别涵盖了模型控制、机械加工和机器人领域。

伺服在这些领域中发挥了重要的作用,提高了工作效率和产品质量。

随着科技的不断进步,伺服技术也将不断发展和创新,为各个领域带来更多的应用和改进。

伺服电机的控制原理有哪些

伺服电机的控制原理有哪些

伺服电机的控制原理有哪些伺服电机是一种能够实现精确控制和定位的电机。

它通常由电机、编码器、控制器和驱动器等组成。

伺服电机的控制原理涉及到控制理论和电机驱动技术等多方面知识。

下面将介绍几种常见的伺服电机控制原理。

1.位置控制原理:伺服电机的位置控制是指控制电机达到特定位置的能力。

在位置控制中,编码器用于检测电机的实际位置,并将其与目标位置进行比较。

控制器根据差异信息计算出控制信号,将其发送至驱动器,驱动器根据控制信号驱动电机转动,直到实际位置与目标位置相等。

2.速度控制原理:伺服电机的速度控制是指控制电机达到特定速度的能力。

在速度控制中,编码器用于检测电机的实际速度,并将其与目标速度进行比较。

控制器根据差异信息计算出控制信号,将其发送至驱动器,驱动器根据控制信号调整供电电压以调整电机的转速。

3.力/力矩控制原理:伺服电机的力/力矩控制是指控制电机施加特定力或力矩的能力。

在力/力矩控制中,需要将引导反馈的传感器与编码器配合使用。

控制器通过对比输入的期望力/力矩信号和传感器反馈的实际力/力矩信息,计算出控制信号,以调整电机的输出力或力矩。

4.增量式控制原理:5.PID控制原理:伺服电机的PID控制是指使用PID控制器对电机进行闭环控制。

PID 控制器通过比较目标值和反馈值的差异,计算出比例、积分和微分三个方面的控制信号,以调整电机的输出。

通过调整PID参数,可以实现快速响应、稳定性和抗干扰能力。

总结:伺服电机的控制原理涉及到位置、速度、力/力矩、增量式和PID控制等方面。

不同的应用场景和要求可能需要采用不同的控制原理。

通过合理选择编码器、控制器和驱动器等组件,并设置合适的控制参数,可以实现对伺服电机的精确控制。

什么叫伺服

什么叫伺服

什么叫伺服?一、伺服就是一个提供闭环反馈信号来控制位置和转速.伺服在半导体设备中的应用极其广泛,例如在涂胶机,光刻机等设备上均有,下面就关于伺服电机的相关问题作出了整理,希望在今后的工作中能带来帮助.1.伺服电机为什么不会丢步?伺服电机驱动器接收电机编码器的反馈信号,并和指令脉冲进行比较,从而构成了一个位置的半闭环控制。

所以伺服电机不会出现丢步现象,每一个指令脉冲都可以得到可靠响应。

2.对伺服电机进行机械安装时,应特别注意什么?由于每台伺服电机后端部都安装有旋转编码器,它是一个十分易碎的精密光学器件,过大的冲击力肯定会使其损坏。

3.如何调节伺服电机,调节伺服电机有几种方式?答:使用Twin Line软件对电机的PID参数、电机参数、电子齿轮比等进行调节。

4.我们想用伺服电机替换产品中的步进电机,应注意哪些问题?A.为了保证控制系统改变不大,应选用数字式伺服系统,仍可采用原来的脉冲控制方式;B.由于伺服电机都有一定过载能力,所以在选择伺服电机时,经验上可以按照所使用的步进电机输出扭矩的1/3来参考确定伺服电机的额定扭矩C.伺服电机的额定转速比步进电机的转速要高的多,为了充分发挥伺服电机的性能,最好增加减速装置,让伺服电机工作在接近额定转速下,这样也可以选择功率更小的电机,以降低成本。

5.用脉冲方式控制伺服电机的优点?1、可靠性高,不易发生飞车事故。

用模拟电压方式控制伺服电机时,如果出现接线接错或使用中元件损坏等问题时,有可能使控制电压升至正的最大值。

这种情况是很危险的。

如果用脉冲作为控制信号就不会出现这种问题。

2、信号抗干扰性能好。

数字电路抗干扰性能是模拟电路难以比拟的。

当然目前由于伺服驱动器和运动控制器的限制,用脉冲方式控制伺服电机也有一些性能方面的弱点。

一是伺服驱动器的脉冲工作方式脱离不了位置工作方式,二是运动控制器和驱动器如何用足够高的脉冲信号传递信息。

这两个根本的弱点使脉冲控制伺服电机有很大限制。

伺服的工作原理

伺服的工作原理

伺服的工作原理
伺服的工作原理是通过传感器检测并测量系统的状态,然后将这些测量值与预设的目标值进行比较。

如果测量值与目标值存在偏差,控制器会发出控制信号,使电机根据反馈信号做出相应的调整,使系统恢复到目标值附近。

伺服系统通常由三个基本组件组成:控制器、执行器和反馈装置。

控制器是系统的核心,负责接收来自传感器的反馈信息,并将其与目标值进行比较,然后计算出控制信号。

执行器是控制信号的接收者,通常是电机或液压装置,它们将接收到的控制信号转化为机械运动。

反馈装置用于监测执行器的运动状态,并将其转化为反馈信号,反馈给控制器进行实时调整。

在伺服系统中,控制器的设计是至关重要的。

控制器通常采用比例积分微分(PID)控制器,通过对误差的比例、积分和微
分进行加权,来计算控制信号。

其工作原理是根据当前的误差状态和误差变化率来调整控制信号,使系统能够稳定地接近目标值。

伺服系统的关键在于反馈机制,它实现了系统的闭环控制。

反馈装置通过监测执行器的运动状态,将实际测量值反馈给控制器。

控制器根据反馈信号进行实时调整,以便使系统尽可能地接近目标值。

通过持续的反馈和调整,伺服系统能够响应外部干扰,并保持系统在变化之间稳定运行。

总而言之,伺服的工作原理是通过传感器检测系统的状态,并与预设的目标值进行比较,然后通过控制器计算控制信号,使
执行器根据反馈信号进行调整,以使系统接近目标值。

通过持续的反馈和调整,伺服系统能够实现闭环控制,稳定地运行并应对外部干扰。

伺服电机工作原理

伺服电机工作原理

伺服电机工作原理引言概述:伺服电机是一种常用于自动控制系统中的电机,它通过精确的位置和速度反馈机制,能够实现高精度的运动控制。

本文将介绍伺服电机的工作原理及其相关知识。

一、伺服电机的基本原理1.1 反馈系统伺服电机的工作原理基于反馈系统。

反馈系统由编码器或传感器组成,用于测量电机的位置和速度。

编码器将电机的运动转化为数字信号,传感器则通过物理量的变化来反馈电机的状态。

1.2 控制器伺服电机的控制器是控制电机运动的核心部件。

它根据反馈系统提供的信息,计算出电机应该采取的动作,如调整电机的转速、位置或力矩。

控制器通常采用PID控制算法,通过不断调整控制信号来使电机达到期望的运动状态。

1.3 电机驱动器电机驱动器是将控制信号转化为电机动作的装置。

它接收控制器发出的信号,并将其转化为适合电机的电流或电压信号。

电机驱动器负责控制电机的转速和力矩,确保电机按照控制器的指令进行精确的运动。

二、伺服电机的工作过程2.1 目标设定在使用伺服电机之前,需要设定电机的目标位置、速度或力矩。

这些目标由控制系统提供,可以通过人机界面或计算机软件进行设定。

2.2 反馈信号获取一旦设定了目标,伺服电机开始工作。

编码器或传感器测量电机的实际位置和速度,并将这些信息反馈给控制器。

2.3 控制信号计算控制器根据目标位置和实际位置之间的差异,计算出电机应该采取的动作。

通过PID算法,控制器调整控制信号的大小和方向,以使电机逐渐接近目标状态。

三、伺服电机的应用领域3.1 机器人技术伺服电机广泛应用于机器人技术中。

机器人需要精确的运动控制,伺服电机能够提供高精度的位置和速度控制,使机器人能够完成复杂的任务。

3.2 自动化生产线在自动化生产线上,伺服电机被用于控制各种运动装置,如传送带、机械臂等。

伺服电机的高精度和可靠性,能够确保生产线上的产品质量和生产效率。

3.3 医疗设备伺服电机在医疗设备中的应用越来越广泛。

例如,手术机器人需要精确的运动控制来帮助医生进行手术操作,伺服电机能够提供所需的高精度运动控制。

最完整的伺服培训教程

最完整的伺服培训教程

组成。通过控制电机的电枢电流或励磁电流,实现对电机转速和位置的
高精度控制。
02
优点
直流伺服系统具有调速范围宽、低速性能好、控制精度高等优点。同时
,直流电机具有良好的启动、制动和调速性能,适用于对动态响应要求
高的场合。
03
缺点
直流伺服系统需要使用电刷和换向器,维护较为麻烦,且容易产生火花
干扰。此外,直流电机的体积和重量相对较大,限制了其在某些场合的
2024/1/25
22
安装注意事项和步骤说明
A
环境要求
确保安装环境干燥、通风且温度适宜,避免潮 湿、高温和腐蚀性气体对伺服系统的影响。
安装准备
检查伺服电机、驱动器和编码器等部件是 否完好无损,准备好安装所需的工具和材 料。
B
C
安装步骤
按照厂家提供的安装手册,逐步完成伺服电 机与机械设备的连接、驱动器和编码器的接 线以及控制系统的配置等工作。
熟悉伺服驱动器的功能、参数设 置及调试方法。
伺服系统控制策略
学习伺服系统的控制策略,如位 置控制、速度控制、力矩控制等 。
伺服系统基本原理
伺服系统优化与调试
掌握伺服系统的组成、工作原理 及性能指标等基础知识。
掌握伺服系统性能优化、故障排 查及日常维护等技能。
2024/1/25
31
行业应用前景展望
01
替换法
在怀疑某个部件出现故障时,用正常 的部件进行替换,观察故障是否消除 ,以确定故障点。
2024/1/25
仪器检测法
使用专业的检测仪器对伺服系统的各 个部分进行检测,如电压、电流、转 速等参数,以精确定位故障。
逐步排查法
按照伺服系统的组成部分,从电源、 驱动器、电机、传感器等逐一排查, 逐步缩小故障范围。

常见的伺服驱动器故障及处理方法

常见的伺服驱动器故障及处理方法

常见的伺服驱动器故障及处理方法伺服驱动器是一种用于控制伺服电机的装置,通常用于工业自动化领域。

由于长时间运行和受各种条件的影响,伺服驱动器可能会出现各种故障。

以下是一些常见的伺服驱动器故障及其处理方法。

1.电压不稳定:当电压波动较大时,可能导致伺服驱动器无法正常工作。

解决方法是使用稳压器来稳定电压,或者使用电压稳定器来提供稳定的电压。

2.过载保护:当负载超过伺服驱动器的额定功率时,可能会触发过载保护,导致伺服驱动器停止工作。

解决方法是检查负载是否超过额定功率,并相应调整负载或更换更高功率的伺服驱动器。

3.温度过高:长时间运行或工作环境温度过高可能导致伺服驱动器过热,从而影响其性能和寿命。

解决方法是确保伺服驱动器安装在通风良好的位置,并定期清理散热器或风扇,以确保良好的散热。

4.通信故障:伺服驱动器通常通过串口或以太网进行通信。

当通信线路中断或存在故障,伺服驱动器可能无法接收或发送指令。

解决方法是检查通信线路是否连接良好,并确保使用可靠的通信设备。

5.编码器故障:编码器是伺服驱动器用于检测电机位置和速度的关键部件。

编码器故障可能导致伺服电机无法准确运动。

解决方法是检查编码器连接是否正确,并进行必要的校准或更换编码器。

6.电源故障:伺服驱动器的电源故障可能导致其无法正常工作。

解决方法是检查电源连接是否稳定,并检查电源是否符合伺服驱动器的要求。

7.控制信号故障:伺服驱动器的控制信号故障可能导致无法实现所需的运动。

解决方法是检查控制信号线路是否连接正确,并确保使用可靠的控制设备。

8.软件故障:伺服驱动器的软件故障可能导致其无法正常运行或反应迟缓。

解决方法是重新启动伺服驱动器,并更新或重新安装软件。

9.机械故障:伺服驱动器与机械设备紧密结合,机械故障可能导致伺服驱动器无法正常工作。

解决方法是检查机械部件是否损坏,并进行必要的修复或更换。

总之,及时识别和解决伺服驱动器故障是确保其正常工作和延长寿命的关键。

通过定期维护、良好的使用环境和合理操作,可以减少伺服驱动器故障的发生,并确保其在工业自动化生产中的稳定运行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

永磁交流伺服系统概述
现代高性能的伺服系统,大多数采用永磁交流伺服系统,其中,包括永磁同步交流伺服电动机和全数字交流永磁同步伺服驱动器两部分。

1、交流伺服电机的工作原理:伺服电机的转子是永磁铁,驱动器控制的U/V/W三相电形成旋转电磁场,转子在此磁场的作用下跟随转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。

伺服电机的精度决定于编码器的精度(线数)。

交流永磁同步伺服驱动器主要有伺服控制单元、功率驱动单元、通讯接口单元、伺服电动机及相应的反馈检测器件组成,其中伺服控制单元包括位置控制器、速度控制器、转矩和电流控制器等等。

结构组成如图所示。

图系统控制结构
伺服驱动器均采用数字信号处理器(DSP)作为控制核心,其优点是可以实现比较复杂的控制算法,实现数字化、网络化和智能化。

功率器件普遍采用以智能功率模块(IPM)为核心设计的驱动电路,IPM内部集成了驱动电路,同时具有过电压、过电流、过热、欠压等故障检测保护电路,在主回路中还加入软启动电路,以减小启动过程对驱动器的冲击。

功率驱动单元首先通过整流电路对输入的三相电或者市电进行整流,得到相应的直流电。

再通过三相正弦PWM电压型逆变器变频来驱动三相永磁式同步交流伺服电机。

逆变部分(DC-AC)采用功率器件集成驱动电路,保护电路和功率开关于一体的智能功率模块(IP M),主要拓扑结构是采用了三相桥式电路,原理图见图7-16。

利用了脉宽调制技术即PWM,(Pulse Width Modulation)通过改变功率晶体管交替导通的时间来改变逆变器输出波形的频率,改变每半周期内晶体管的通断时间比,也就是说通过改变脉冲宽度来改变逆变器输出电压副值的大小以达到调节功率的目的。

图 -16 三相逆变电路
2、交流伺服系统的位置控制模式
图 -16和图 -15说明如下两点:
⑴伺服驱动器输出到伺服电机的三相电压波形基本是正弦波(高次谐波被绕组电感滤除),而不是象步进电机那样是三相脉冲序列,即使从位置控制器输入的是脉冲信号。

⑵伺服系统用作定位控制时,位置指令输入到位置控制器,速度控制器输入端前面的电子开关切换到位置控制器输出端,同样,电流控制器输入端前面的电子开关切换到速度控制器输出端。

因此,位置控制模式下的伺服系统是一个三闭环控制系统,两个内环分别是电流环和速度环。

由自动控制理论可知,这样的系统结构提高了系统的快速性、稳定性和抗干扰能力。

在足够高的开环增益下,系统的稳态误差接近为零。

这就是说,在稳态时,伺服电机以指令脉冲和反馈脉冲近似相等时的速度运行。

反之,在达到稳态前,系统将在偏差信号作用下驱动电机加速或减速。

若指令脉冲突然消失(例如紧急停车时,PLC立即停止向伺服驱动器发出驱动脉冲),伺服电机仍会运行到反馈脉冲数等于指令脉冲消失前的脉冲数才停止。

3、位置控制模式下电子齿轮的概念
位置控制模式下,等效的单闭环系统方框图如图7-17所示。

图7-17 等效的单闭环位置控制系统方框图
图中,指令脉冲信号和电机编码器反馈脉冲信号进入驱动器后,均通过电子齿轮变换才进行偏差计算。

电子齿轮实际是一个分-倍频器,合理搭配它们的分-倍频值,可以灵活地设置指令脉冲的行程。

例如,松下MINAS A4系列AC伺服电机驱动器,电机编码器反馈脉冲为2500pulse/rev,缺省情况下,驱动器反馈脉冲电子齿轮分-倍频值为4倍频,即得到10000pulse/rev脉冲值。

如果希望指令脉冲为6000 pulse/rev,那末就应把指令脉冲电子
齿轮的分-倍频值设置为10000/6000。

从而实现PLC每输出6000个脉冲,伺服电机旋转一
周,恰好移动60mm的整数倍关系。

7.3.2.2 松下MINAS A4系列AC伺服电机•驱动器
在YL-335B的输送单元上中,采用了松下
MHMD022P1U永磁同步交流伺服电机,及
MADDT1207003全数字交流永磁同步伺服驱动装
置作为运输机械手的运动控制装置。

MHMD022P1U的含义:MHMD表示电机类
型为大惯量,02表示电机的额定功率为200W,2
表示电压规格为200V,P表示编码器为增量式编
码器,脉冲数为2500p/r,分辨率10000,输出信
号线数为5根线。

MADDT1207003的含义:MADDT表示松下
图7-18 伺服电机结构概图A4系列A型驱动器,T1表示最大瞬时输出电流为10A,2
表示电源电压规格为单相200V,07表示电流监测器额定电流为7.5A,003表示脉冲控制专
用。

驱动器的外观和面板如图7-19所示。

图7-19 伺服驱动器的面板图
2、接线:
MADDT1207003伺服驱动器面板上有多个接线端口,其中:
X1:电源输入接口,AC220V电源连接到L1、L3主电源端子,同时连接到控制电源端子L1C、L2C上。

X2:电机接口和外置再生放电电阻器接口。

U、V、W端子用于连接电机。


须注意,电源电压务必按照驱动器铭牌上的指示,电机接线端子(U、V、W)不
可以接地或短路,交流伺服电机的旋转方向不象感应电动机可以通过交换三相相
序来改变,必须保证驱动器上的U、V、W、E接线端子与电机主回路接线端子按
规定的次序一一对应,否则可能造成驱动器的损坏。

电机的接线端子和驱动器的
接地端子以及滤波器的接地端子必须保证可靠的连接到同一个接地点上。

机身也
必须接地。

RB1、RB2、RB3端子是外接放电电阻,MADDT1207003的规格为
100Ω/10W,YL-335B没有使用外接放电电阻。

X6:连接到电机编码器信号接口,连接电缆应选用带有屏蔽层的双绞电缆,
屏蔽层应接到电机侧的接地端子上,并且应确保将编码器电缆屏蔽层连接到插头
的外壳(FG)上。

X5:I/O控制信号端口,其部分引脚信号定义与选择的控制模式有关,不同
模式下的接线请参考《松下A 系列伺服电机手册》。

YL-335B输送单元中,伺服
电机用于定位控制,选用位置控制模式。

所采用的是简化接线方式,如图7-20
所示。

来自PLCQ0.1
图7-20 伺服驱动器电气接线图
3、伺服驱动器的参数设置与调整
松下的伺服驱动器有七种控制运行方式,即位置控制、速度控制、转矩控制、位置/速度控制、位置/转矩、速度/转矩、全闭环控制。

位置方式就是输入脉冲串来使电机定位运行,电机转速与脉冲串频率相关,电机转动的角度与脉冲个数相关;速度方式有两种,一是通过输入直流-10V 至—+10V 指令电压调速,二是选用驱动器内设置的内部速度来调速;转矩方式是通过输入直流-10V 至—+10V 指令电压调节电机的输出转矩,这种方式下运行必须要进行速度限制,有如下两种方法:1)设置驱动器内的参数来限制,2)输入模拟量电压限速。

3、参数设置方式操作说明
MADDT1207003伺服驱动器的参数共有128个,Pr00-Pr7F ,可以通过与PC 连接后在专门的调试软件上进行设置,也可以在驱动器上的面板上进行设置。

在PC 上安装,通过与伺服驱动器建立起通信,就可将伺服驱动器的参数状态读出或写入,非常方便,见图7-21。

当现场条件不允许,或修改少量参数时,也可通过驱动器上操作面板来完成。

操作面板如下图7-22所示。

各个按钮的说明如表7-3。

图7-21
驱动器参数设置软件Panaterm 图7-22 驱动器参数设置面板
面板操作说明:
1.参数设置,先按“Set”键,再按“Mode”键选择到“Pr00”后,按向上、下或向左的方向键选择通用参数的项目,按“Set”键进入。

然后按向上、下或向左的方向键调整参数,调整完后,按“S”键返回。

选择其它项再调整。

2.参数保存,按“M”键选择到“EE-SET”后按“Set”键确认,出现“EEP -”,然后按向上键3秒钟,出现“FINISH”或“reset”,然后重新上电即保存。

3.手动JOG运行,按“Mode”键选择到“AF-ACL”,然后按向上、下键选择到“AF-JOG”按“Set”键一次,显示“JOG -”,然后按向上键3秒显示“ready”,再按向左键3秒出现“sur-on”锁紧轴,按向上、下键,点击正反转。

注意先将S-ON断开。

4、部分参数说明
在YL-335B上,伺服驱动装置工作于位置控制模式,S7-226的Q0.0输出脉冲作为伺服驱动器的位置指令,脉冲的数量决定伺服电机的旋转位移,脉冲的频率决定了伺服电机的旋转速度,S7-226的Q0.1输出脉冲作为伺服驱动器的方向指令。

对于控制要求较为简单,伺服驱动器可采用自动增益调整模式。

根据上述要求,伺服驱动器参数设置如下表7-4。

注:其它参数的说明及设置请参看松下Ninas A4系列伺服电机、驱动器使用说明书。

相关文档
最新文档