2020届山东省济宁市中考数学模拟试卷有答案(word版)(已纠错)
2020年山东省济宁市任城区中考数学一模试卷(附答案详解)

2020年山东省济宁市任城区中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.−12的绝对值为()A. −2B. −12C. 12D. 12.目前世界上能制造的芯片最小工艺水平是5纳米,而我国能制造芯片的最小工艺水平是16纳米,已知1纳米=10−9米,用科学记数法将16纳米表示为()A. 1.6×10−9米B. 1.6×10−7米C. 1.6×10−8米D. 16×10−7米3.如图是由6个大小相同的小正方体组成的几何体,它的主视图是()A.B.C.D.4.下列计算正确的是()A. 5ab−3a=2bB. (−3a2b)2=6a4b2C. (a−1)2=a2−1D. 2a2b÷b=2a25.下列二次根式中属于最简二次根式的是()A. 2√xyB. √ab2C. √0.5D. √2x26.如图,AB//CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于点E、F,再分别以E、F为圆心,大于12EF的同样长为半径作圆弧,两弧交于点P,作射线AP,交CD于点M,若∠ACD=110°,则∠CMA的度数为()A. 30°B. 35°C. 70°D. 45°7.关于x的一元一次不等式m−2x3≤−2的解集为x≥4,则m的值为()A. 14B. 7C. −2D. 28.如图,已知⊙O上三点A,B,C,半径OC=1,∠ABC=30°,切线PA交OC延长线于点P,则PA的长为()A. 2B. √3C. √2D. 129.如图,四个直角边分别是6和8的全等直角三角形拼成“赵爽弦图”,随机往大正方形区域内投针一次,则针扎在小正方形GHEF部分的概率是()A. 34B. 14C. 124D. 12510.如图,正方形ABCD的边长为4,点E是AB的中点,点P从点E出发,沿E→A→D→C移动至终点C.设P点经过的路径长为x,△CPE的面积为y,则下列图象能大致反映y与x函数关系的是()A.B.C.D.二、填空题(本大题共5小题,共15.0分)11.分解因式:x3y−2x2y+xy=______.12.若关于x的分式方程xx−2+2m2−x=2m有增根,则m的值为______.13.在平面直角坐标系中,Rt△OAB的顶点A的坐标为(√3,1),若将△OAB绕O点,逆时针旋转60°后,B点到达B′点,则点B′的坐标是______.14.如图,将矩形ABCD绕点A旋转至矩形AEFG的位置,此时点D恰好与AF的中点重合,AE交CD于点H,若BC=2√3,则HC的长为______ .15.如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角顶点P1(3,3),P2,P3,…均在直线y=−13x+4上,设△P1OA1,△P2A1A2,△P3A2A3,…的面积分别为S1,S2,S3,…依据图形所反映的规律,S2020=______.三、解答题(本大题共7小题,共55.0分)16. 先化简,再求值(1−4x+3)÷x 2−2x+12x+6,其中x =√2+1.17. 某市明年的初中毕业升学考试,拟将“引体向上”作为男生体育考试的一个必考项目,满分为10分.有关部门为提前了解明年参加初中毕业升学考试的男生的“引体向上”水平,在全市八年级男生中随机抽取了部分男生,对他们的“引体向上”水平进行测试,并将测试结果绘制成如下统计图表(部分信息未给出):请你根据统计图表中的信息,解答下列问题:抽取的男生“引体向上”成绩统计表(1)填空:m =______,n =______.(2)求扇形统计图中D 组的扇形圆心角的度数;(3)目前该市八年级有男生3600名,请估计其中“引体向上”得零分的人数.18.如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤AM,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20米,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)若a=70米,求矩形菜园ABCD面积的最大值.19.如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=m的图象在第二象限交于点B,与xx轴交于点C,点A在y轴上,满足条件:CA⊥CB,且CA=CB,点C的坐标为(−3,0),cos∠ACO=√5.5(1)求反比例函数的表达式;(2)直接写出当x<0时,kx+b<m的解集.x20.在平面直角坐标系中,⊙M过坐标原点O且分别交x轴、y轴于点A,B,点C为第一象限内⊙M上一点.若点A(6,0),∠BCO=30°.(1)求点B的坐标;(2)若点D的坐标为(−2,0),试猜想直线DB与⊙M的位置关系,并说明理由.21.(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=3√3,BO:CO=1:3,求AB的长.经过社团成员讨论发现,过点B作BD//AC,交AO的延长线于点D,通过构造△ABD 就可以解决问题(如图2).请回答:∠ADB=______°,AB=______.(2)请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=3√3,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.22.如图,抛物线y=ax2−5ax+c与坐标轴分别交于点A,C,E三点,其中A(−3,0),C(0,4),点B在x轴上,AC=BC,过点B作BD⊥x轴交抛物线于点D,点M,N 分别是线段CO,BC上的动点,且CM=BN,连接MN,AM,AN.(1)求抛物线的解析式及点D的坐标;(2)当△CMN是直角三角形时,求点M的坐标;(3)试求出AM+AN的最小值.答案和解析1.【答案】C【解析】解:∵|−12|=12,∴−12的绝对值为12.故选:C.计算绝对值要根据绝对值的定义求解,第一步列出绝对值的表达式,第二步根据绝对值定义去掉这个绝对值的符号.本题主要考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,比较简单.2.【答案】C【解析】【分析】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:∵1纳米=10−9米,∴16纳米表示为:16×10−9米=1.6×10−8米.故选C.3.【答案】C【解析】解:该主视图是:底层是3个正方形横放,右上角有一个正方形,左边有一个正方形.故选:C.根据组合体的形状即可求出答案.本题考查了学生的思考能力和对几何体三种视图的空间想象能力.解题的关键是根据组合体的形状进行判断,4.【答案】D【解析】【分析】此题主要考查合并同类项,幂的乘方与积的乘方,完全平方公式,整式的除法,熟记运算法则是解题的关键.运用相应的公式或运算法则进行计算即可.【解答】解:A选项,5ab与3a不属于同类项,不能合并,选项错误,B选项,(−3a2b)2=(−3)2a4b2=9a4b2,选项错误,C选项,完全平方公式(a−1)2=a2−2a+1,选项错误,D选项,整式除法,计算正确.故选:D.5.【答案】A【解析】解:A、2√xy是最简二次根式,此选项正确;B、√ab2=√2ab2,此选项错误;C、√0.5=√22,此选项错误;D、√2x2=√2|x|,此选项错误;故选:A.根据最简二次根式的定义逐一判断即可得.本题主要考查最简二次根式,掌握(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式是解题的关键.6.【答案】B【解析】【分析】此题主要考查了基本作图以及平行线的性质,正确得出∠CAM=∠BAM是解题关键.直接利用平行线的性质结合角平分线的作法得出∠CAM=∠BAM=35°,即可得出答案.【解答】解:∵AB//CD,∠ACD=110°,∴∠CAB=70°,∵以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于点E、F,再分别以E、EF的同样长为半径作圆弧,两弧交于点P,作射线AP,交CD于点M,F为圆心,大于12∴AP平分∠CAB,∴∠CAM=∠BAM=35°,∵AB//CD,∴∠CMA=∠MAB=35°.故选:B.7.【答案】D≤−2,【解析】解:m−2x3m−2x≤−6,−2x≤−m−6,x≥1m+3,2≤−2的解集为x≥4,∵关于x的一元一次不等式m−2x3m+3=4,∴12解得m=2.故选:D.本题是关于x的不等式,应先只把x看成未知数,求得不等式的解集,再根据x≥4,求得m的值.考查了不等式的解集,当题中有两个未知字母时,应把关于某个字母的不等式中的字母当成未知数,求得解集,再根据解集进行判断,求得另一个字母的值.8.【答案】B【解析】【分析】本题考查了切线的性质和圆周角定理、解直角三角形等知识点,能熟记切线的性质是解此题的关键,注意:圆的切线垂直于过切点的半径.连接OA,根据圆周角定理求出∠AOC,根据切线的性质求出∠OAP=90°,解直角三角形求出AP即可.【解答】解:连接OA,∵∠ABC=30°,∴∠AOC=2∠ABC=60°,∵PA是⊙O的切线,∴∠OAP=90°,∵OA=OC=1,∴AP=OA·tan60°=1×√3=√3,故选:B.9.【答案】D【解析】【分析】本题考查了几何概率:某事件的概率=相应事件所占的面积与总面积之比.也考查了勾股定理.先利用勾股定理计算AB的长,然后用小正方形的面积除以大正方形的面积即可.【解答】解:AB=√62+82=10,所以小正方形的面积=102−4×12×6×8=4,所以针扎在小正方形GHEF部分的概率=4100=125.故选:D.10.【答案】C【解析】解:通过已知条件可知,当点P与点E重合时,△CPE的面积为0;当点P在EA上运动时,△CPE的高BC不变,则△CPE的面积y是x的一次函数,面积y随x增大而增大,当x=2时有最大面积为4,当P在AD边上运动时,△CPE的底边EC不变,则△CPE的面积y是x的一次函数,面积y随x增大而增大,当x=6时,有最大面积为8,当点P在DC边上运动时,△CPE的底边EC不变,则△CPE的面积y是x的一次函数,面积y随x增大而减小,最小面积为0;故选:C.根据题意,分类讨论,即可得解.本题考查了动点问题的函数图象,难度不大.11.【答案】xy(x−1)2【解析】解:原式=xy(x2−2x+1)=xy(x−1)2.故答案为:xy(x−1)2原式提取公因式,再利用完全平方公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.【答案】1【解析】解:方程两边都乘x−2,得x−2m=2m(x−2)∵原方程有增根,∴最简公分母x−2=0,解得x=2,当x=2时,m=1故m的值是1,故答案为1增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x −2=0,得到x =2,然后代入化为整式方程的方程算出m 的值. 本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.13.【答案】(√32,32)【解析】解:将△OAB 绕O 点,逆时针旋转60°后,位置如图所示,作B′C′⊥y 轴于C′点,∵A 的坐标为(√3,1),∴OB =√3,AB =1,∠AOB =30°,∴OB′=√3,∠B′OC′=30°,∴B′C′=√32,OC′=32,∴B′(√32,32). 根据A 点坐标可知∠AOB =30°,因此旋转后OA 在y 轴上.如图所示.作B′C′⊥y 轴于C′点,运用三角函数求出B′C′、OC′的长度即可确定B′的坐标.本题涉及图形旋转,体现了新课标的精神,抓住旋转的三要素:旋转中心O ,旋转方向逆时针,旋转角度60°,通过画图计算得B′坐标.14.【答案】4【解析】解:由旋转的性质可知:AC =AF ,∵D 为AF 的中点,∴AD =12AC , ∵四边形ABCD 是矩形,∴AD ⊥CD ,∴∠ACD =30°,∵AB//CD ,∴∠CAB =30°,∴∠EAF =∠CAB =30°,∴∠EAC =30°,∴AH=CH,∴DH=12AH=12CH,∴CH=2DH,∵CD=√3AD=√3BC=6,∴HC=23CD=4.故答案为:4.根据旋转后AF的中点恰好与D点重合,利用旋转的性质得到直角三角形ACD中,∠ACD=30°,再由旋转后矩形与已知矩形全等及矩形的性质得到∠DAE为30°,进而得到∠EAC=∠DCA,利用等角对等边得到AH=CH,根据BC、AD的长,即可得到CH 的长.本题考查了旋转的性质、矩形的性质、特殊角的三角函数等知识点,熟练掌握旋转的性质是解题的关键.15.【答案】942019【解析】解:过点P n作P n E n⊥x轴于点E n,如图所示.∵△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,∴OA1=2P1E1,A1A2=2P2E2,A2A3=2P3E3,…,A n−1A n=2P n E n.∵点P1的坐标为(3,3),∴S1=12OA1⋅P1E1=P1E12=9;设点P n的坐标为(x n,y n),则点P2的坐标为(6+y2,y2).∵点P2在直线y=−13x+4上,∴y2=−13(6+y2)+4,∴y2=32,∴S2=12A1A2⋅P2E2=P2E22=y22=94,∴点P3的坐标为(6+2y2+y3,y3),即(9+y3,y3).∵点P 3在直线y =−13x +4上,∴y 3=−13(9+y 3)+4, ∴y 3=34,∴S 3=12A 2A 3⋅P 3E 3=P 3E 32=y 32=916.∵y 1=3,y 2=32,y 3=34,…,∴y n =32n−1,∴S n =12A n−1A n ⋅P n E n =P n E n 2=y n 2=(32n−1)2=94n−1,∴S 2020=942019. 故答案为:942019.过点P n 作P n E n ⊥x 轴于点E n ,利用等腰直角三角形的性质可得出A n−1A n =2P n E n ,结合点P 1的坐标可求出S 1的值,设点P n 的坐标为(x n ,y n ),利用一次函数图象上点的坐标特征可得出y 2,y 3,…,y n 的值,再利用三角形的面积公式即可得出S 1,S 2,…,S n 的值,代入n =2020即可求出结论.本题考查了一次函数图象上点的坐标特征、等腰直角三角形以及规律型:点的坐标,利用点的变化,找出点P n 纵坐标的变化规律“y n =32n−1”是解题的关键.16.【答案】解:(1−4x+3)÷x 2−2x+12x+6 =x +3−4x +3⋅2(x +3)(x −1)2 =x −11⋅2(x −1)2=2x−1, 当x =√2+1时,原式=√2+1−1=√2.【解析】根据分式的减法和除法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.17.【答案】解:(1)8;20 ;(2)11120×360°=33°,即扇形统计图中D组的扇形圆心角是33°;(3)3600×32120=960(人),答:“引体向上”得零分的有960人.【解析】【分析】本题考查扇形统计图、统计表、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答,注意n和n%的区别.(1)根据题意和表格、统计图中的数据可以计算出m、n的值;(2)根据(1)中的结论和统计图中的数据可以求得扇形统计图中D组的扇形圆心角的度数;(3)根据统计图中的数据可以估计其中“引体向上”得零分的人数.【解答】解:(1)由题意可得,本次抽查的学生有:30÷25%=120(人),m=120−32−30−24−11−15=8,n%=24÷120×100%=20%,故答案为8;20;(2)见答案;(3)见答案.18.【答案】解:(1)设AB=xm,则BC=(100−2x)m,由题意得:x(100−2x)=450解得:x1=5,x2=45当x=5时,100−2x=90>20,不合题意舍去;当x=45时,100−2x=10<20答:AD的长为10m;(2)设AB=xm,则S=12x(100−x)=−12(x−50)2+1250,(0<x≤70)∴x=50时,S的最大值是1250.答:当x=50时,矩形菜园ABCD面积的最大值为1250.【解析】(1)设AB=xm,则BC=(100−2x)m,列方程求解即可;(2)设AB=xm,由题意得关于x的二次函数,利用二次函数的性质即可解决问题.本题考查了一元二次方程和二次函数在实际问题中的应用,根据题意正确列式并明确二次函数的相关性质,是解题的关键.19.【答案】解:(1)过点B作BD⊥x轴于点D,∵CA⊥CB,∴∠BCD+∠ACO=∠BCD+∠CBD=90°,∴∠ACO=∠CBD,∵∠BDC=∠AOC=90°,AC=BC,∴△AOC≌△CDB(AAS),∴OC=DB=3,CD=AO,∵cos∠ACO=√5.5=3√5,∴AC=OCcos∠ACO∴CD=AO=√AC2−OC2=6,∴OD=OC+CD=3+6=9,∴B(−9,3),把B(−9,3)代入反比例函数y=m中,得m=−27,x∴反比例函数为y=−27;x(2)当x<0时,由图象可知一次函数y=kx+b的图象在反比例函数y=m图象的下方时,x自变量x的取值范围是−9<x<0,∴当x<0时,kx+b<m的解集为−9<x<0.x【解析】(1)过点B作BD⊥x轴于点D,证明△AOC≌△CDB得到BD与CD的长度,便可求得B点的坐标,进而求得反比例函数解析式;(2)观察函数图象,当一次函数图象在反比例函数图象下方时的自变量x的取值范围便是结果.本题考查了反比例函数和一次函数的交点问题,熟练掌握函数解析式的求法以及利用数形结合根据函数图象的上下位置关系得出不等式的解集是重点.20.【答案】(1)如图,连接AB,∵∠BAO=∠BCO=30°,∠AOB=90°,∴AB为⊙M的直径,∵A(6,0),∴OA=6.∵tan∠BAO=OBOA,∴OB=2√3,∴B(0,2√3);(2)DB与⊙M相切,理由如下:∵D(−2,0),∴OD=2,在Rt△BOD中,tan∠DBO=ODOB =22√3=√33,∴∠DBO=30°,连接OM,∵∠BOM=2∠BCO=2×30°=60°,MO=MA,∴△MOA是等边三角形,∴∠MBO=60°,∴∠DBM=∠DBO+∠MBO=30°+60°=90°,∴DB是⊙M的切线,即DB与⊙M相切.【解析】(1)连接AB,可得出AB就是直径,利用圆周角定理可得出△OAB是含有30°的直角三角形,通过解直角三角形求出OB即可;(2)根据直角三角形的边角关系可求出∠DBO=30°,再根据等边三角形的性质可求出∠MBO=60°,进而得出∠MBD=90°,得出结论.本题考查圆周角定理,等边三角形的判断和性质,直角三角形的边角关系,掌握直角三角形的边角关系和圆周角定理是解决问题的关键.21.【答案】75 4√3【解析】解:(1)∵BD//AC,∴∠ADB=∠OAC=75°.∵∠BOD=∠COA,∴△BOD∽△COA,∴ODOA =OBOC=13.又∵AO=3√3,∴OD=13AO=√3,∴AD=AO+OD=4√3.∵∠BAD=30°,∠ADB=75°,∴∠ABD=180°−∠BAD−∠ADB=75°=∠ADB,∴AB=AD=4√3.故答案为:75;4√3.(2)过点B作BE//AD交AC于点E,如图所示.∵AC⊥AD,BE//AD,∴∠DAC=∠BEA=90°.∵∠AOD=∠EOB,∴△AOD∽△EOB,∴BODO =EOAO=BEDA.∵BO:OD=1:3,∴EOAO =BEDA=13.∵AO=3√3,∴EO=√3,∴AE=4√3.∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC,∴AB=2BE.在Rt△AEB中,BE2+AE2=AB2,即(4√3)2+BE2=(2BE)2,解得:BE=4,∴AB=AC=8,AD=12.在Rt△CAD中,AC2+AD2=CD2,即82+122=CD2,解得:CD =4√13.(1)根据平行线的性质可得出∠ADB =∠OAC =75°,结合∠BOD =∠COA 可得出△BOD∽△COA ,利用相似三角形的性质可求出OD 的值,进而可得出AD 的值,由三角形内角和定理可得出∠ABD =75°=∠ADB ,由等角对等边可得出AB =AD =4√3,此题得解;(2)过点B 作BE//AD 交AC 于点E ,同(1)可得出AE =4√3,在Rt △AEB 中,利用勾股定理可求出BE 的长度,再在Rt △CAD 中,利用勾股定理可求出DC 的长,此题得解. 本题考查了相似三角形的性质、等腰三角形的判定与性质、勾股定理以及平行线的性质,解题的关键是:(1)利用相似三角形的性质求出OD 的值;(2)利用勾股定理求出BE 、CD 的长度.22.【答案】解:(1)把A(−3,0),C(0,4)代入y =ax 2−5ax +c 得{9a +15a +c =0c =4,解得{a =−16c =4, ∴抛物线解析式为y =−16x 2+56x +4;∵AC =BC ,CO ⊥AB ,∴OB =OA =3,∴B(3,0),∵BD ⊥x 轴交抛物线于点D ,∴D 点的横坐标为3,当x =3时,y =−16×9+56×3+4=5,∴D 点坐标为(3,5);(2)在Rt △OBC 中,BC =√OB 2+OC 2=√32+42=5,设M(0,m),则BN =4−m ,CN =5−(4−m)=m +1,∵∠MCN =∠OCB ,∴当CM CO =CN CB 时,△CMN∽△COB ,则∠CMN =∠COB =90°,即4−m 4=m+15,解得m =169,此时M 点坐标为(0,169);当CM CB =CN CO 时,△CMN∽△CBO ,则∠CNM =∠COB =90°,即4−m 5=m+14,解得m =119,此时M 点坐标为(0,119);综上所述,M 点的坐标为(0,169)或(0,119);(3)连接DN,AD,如图,∵AC=BC,CO⊥AB,∴OC平分∠ACB,∴∠ACO=∠BCO,∵BD//OC,∴∠BCO=∠DBC,∵DB=BC=AC=5,CM=BN,∴△ACM≌△DBN,∴AM=DN,∴AM+AN=DN+AN,而DN+AN≥AD(当且仅当点A、N、D共线时取等号),∴DN+AN的最小值=√62+52=√61,∴AM+AN的最小值为√61.【解析】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和相似三角形的判定与性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.(1)利用待定系数法求抛物线解析式;利用等腰三角形的性质得B(3,0),然后计算自变量为3所对应的二次函数值可得到D点坐标;(2)利用勾股定理计算出BC=5,设M(0,m),则BN=4−m,CN=5−(4−m)=m+1,由于∠MCN=∠OCB,根据相似三角形的判定方法,当CMCO =CNCB时,△CMN∽△COB,于是有∠CMN=∠COB=90°,即4−m4=m+15;当CMCB=CNCO时,△CMN∽△CBO,于是有∠CNM=∠COB=90°,即4−m5=m+14,然后分别求出m的值即可得到M点的坐标;(3)连接DN,AD,如图,先证明△ACM≌△DBN,则AM=DN,所以AM+AN=DN+AN,利用三角形三边的关系得到DN+AN≥AD(当且仅当点A、N、D共线时取等号),然后计算出AD即可.。
济宁市2020年中考数学模拟试题(七)有答案精析

2020年山东省济宁市中考数学模拟试卷(七)一、选择题:本大题共l0小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项符合题目要求.1.在0,2,(﹣3)0,﹣5这四个数中,最大的数是()A.0 B.2 C.(﹣3)0D.﹣52.在下列单项式中,与2xy是同类项的是()A.2x2y2 B.3y C.xy D.4x3.已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值()A.11 B.5 C.2 D.14.若代数式在实数范围内有意义,则x的取值范围是()A.x≥﹣2 B.x>﹣2 C.x≥2 D.x≤25.当1<a<2时,代数式+|1﹣a|的值是()A.﹣1 B.1 C.2a﹣3 D.3﹣2a6.如图,在△ABC中,∠C=90°,∠B=30°,边AB的垂直平分线DE交AB于点E,交BC于点D,CD=3,则BC的长为()A.6 B.6 C.9 D.37.为了解某社区居民的用电情况,随机对该社区10户居民进行调查,表是这l0户居民2020年4月份用电量的调查结果:居民 1 2 3 4月用电量(度/户)30 42 50那么关于这10户居民月用电量(单位:度),下列说法错误的是()A.中位数是50 B.众数是51 C.方差是42 D.平均数为46.88.如图是某几何体的三视图,根据图中所标的数据求得该几何体的体积为()A.236πB.136πC.132πD.120π9.如图,在等腰△ABC中,直线l垂直底边BC,现将直线l沿线段BC从B点匀速平移至C点,直线l与△ABC的边相交于E、F两点.设线段EF的长度为y,平移时间为t,则下图中能较好反映y 与t的函数关系的图象是()A. B.C. D.10.如图,在△ABC中,AB=AC,BC=24,tanC=2,如果将△ABC沿直线l翻折后,点B落在边AC的中点E处,直线l与边BC交于点D,那么BD的长为()A.13 B. C. D.12二、填空题:本大题共5小题,每小题3分,共15分•11.分解因式:m3n﹣4mn= .12.计算:(﹣3)2020•(﹣)2020= .13.如图,已知点A(0,1),B(0,﹣1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则∠BAC等于度.14.点A(﹣l,1)是反比例函数y=的图象上一点,则m的值为.15.在直角坐标系中,直线y=x+1与y轴交于点A,按如图方式作正方形A1B1C1O、A2B2C2C1、A3B3C3C2…,A1、A2、A3…在直线y=x+1上,点C1、C2、C3…在x轴上,图中阴影部分三角形的面积从左到右依次记为S1、S2、S3、…S n,则S n的值为(用含n的代数式表示,n为正整数).三、解答题:本大题共7小题,共55分.16.先化简,再求值:•,其中a=5.17.某商场统计了今年1~5月A,B两种品牌冰箱的销售情况,并将获得的数据绘制成折线统计图(1)分别求该商场这段时间内A,B两种品牌冰箱月销售量的中位数和方差;(2)根据计算结果,比较该商场1~5月这两种品牌冰箱月销售量的稳定性.18.如图,⊙O的直径AB=4,∠ABC=30°,BC交⊙O于D,D是BC的中点.(1)求BC的长;(2)过点D作DE⊥AC,垂足为E,求证:直线DE是⊙O的切线.19.如图所示,港口B位于港口O正西方向120km处,小岛C位于港口O北偏西60°的方向.一艘游船从港口O出发,沿OA方向(北偏西30°)以vkm/h的速度驶离港口O,同时一艘快艇从港口B 出发,沿北偏东30°的方向以60km/h的速度驶向小岛C,在小岛C用1h加装补给物资后,立即按原来的速度给游船送去.(1)快艇从港口B到小岛C需要多长时间?(2)若快艇从小岛C到与游船相遇恰好用时1h,求v的值及相遇处与港口O的距离.20.某商店购进一种商品,每件商品进价30元.试销中发现这种商品每天的销售量y(件)与每件销售价x(元)的关系数据如下:x 30 32 34 36y 40 36 32 28(1)已知y与x满足一次函数关系,根据上表,求出y与x之间的关系式(不写出自变量x的取值范围);(2)如果商店销售这种商品,每天要获得150元利润,那么每件商品的销售价应定为多少元?(3)设该商店每天销售这种商品所获利润为w(元),求出w与x之间的关系式,并求出每件商品销售价定为多少元时利润最大?21.如图,矩形纸片ABCD,将△AMP和△BPQ分别沿PM和PQ折叠(AP>AM),点A和点B都与点E 重合;再将△CQD沿DQ折叠,点C落在线段EQ上点F处.(1)判断△AMP,△BPQ,△CQD和△FDM中有哪几对相似三角形?(不需说明理由)(2)如果AM=1,sin∠DMF=,求AB的长.22.如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3).(1)求抛物线的函数表达式;(2)若点P在抛物线上,且S△AOP=4S BOC,求点P的坐标;(3)如图b,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,求线段DQ长度的最大值.2020年山东省济宁市中考数学模拟试卷(七)参考答案与试题解析一、选择题:本大题共l0小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项符合题目要求.1.在0,2,(﹣3)0,﹣5这四个数中,最大的数是()A.0 B.2 C.(﹣3)0D.﹣5【考点】实数大小比较;零指数幂.【分析】先利用a0=1(a≠0)得(﹣3)0=1,再利用两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小即可得出结果.【解答】解:在0,2,(﹣3)0,﹣5这四个数中,最大的数是2,故选B.【点评】本题考查了有理数的大小比较和零指数幂,掌握有理数大小比较的法则和a0=1(a≠0)是解答本题的关键.2.在下列单项式中,与2xy是同类项的是()A.2x2y2 B.3y C.xy D.4x【考点】同类项.【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,同类项与字母的顺序无关,与系数无关.【解答】解:与2xy是同类项的是xy.故选:C.【点评】此题考查同类项,关键是根据同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关,与系数无关.3.已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值()A.11 B.5 C.2 D.1【考点】三角形三边关系.【分析】直接利用三角形三边关系得出AC的取值范围,进而得出答案.【解答】解:根据三角形的三边关系可得:AB﹣BC<AC<AB+BC,∵AB=6,BC=4,∴6﹣4<AC<6+4,即2<AC<10,则边AC的长可能是5.故选:B.【点评】此题主要考查了三角形三边关系,正确得出AC的取值范围是解题关键.4.若代数式在实数范围内有意义,则x的取值范围是()A.x≥﹣2 B.x>﹣2 C.x≥2 D.x≤2【考点】二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于等于0,就可以求解.【解答】解:根据题意得:x﹣2≥0,解得x≥2.故选:C.【点评】本题考查了二次根式有意义的条件,知识点为:二次根式的被开方数是非负数.5.当1<a<2时,代数式+|1﹣a|的值是()A.﹣1 B.1 C.2a﹣3 D.3﹣2a【考点】二次根式的性质与化简.【分析】利用a的取值范围,进而去绝对值以及开平方得出即可.【解答】解:∵1<a<2,∴+|1﹣a|=2﹣a+a﹣1=1.故选:B.【点评】此题主要考查了二次根式的性质与化简,正确开平方得出是解题关键.6.如图,在△ABC中,∠C=90°,∠B=30°,边AB的垂直平分线DE交AB于点E,交BC于点D,CD=3,则BC的长为()A.6 B.6 C.9 D.3【考点】含30度角的直角三角形;线段垂直平分线的性质.【分析】根据线段垂直平分线上的点到线段两端距离相等可得AD=BD,可得∠DAE=30°,易得∠ADC=60°,∠CAD=30°,则AD为∠BAC的角平分线,由角平分线的性质得DE=CD=3,再根据直角三角形30°角所对的直角边等于斜边的一半可得BD=2DE,得结果.【解答】解:∵DE是AB的垂直平分线,∴AD=BD,∴∠DAE=∠B=30°,∴∠ADC=60°,∴∠CAD=30°,∴AD为∠BAC的角平分线,∵∠C=90°,DE⊥AB,∴DE=CD=3,∵∠B=30°,∴BD=2DE=6,∴BC=9,故选C.【点评】本题主要考查了垂直平分线的性质,角平分线上的点到角的两边距离相等的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟记各性质是解题的关键.7.为了解某社区居民的用电情况,随机对该社区10户居民进行调查,表是这l0户居民2020年4月份用电量的调查结果:居民 1 2 3 4月用电量(度/户)30 42 50那么关于这10户居民月用电量(单位:度),下列说法错误的是()A.中位数是50 B.众数是51 C.方差是42 D.平均数为46.8【考点】方差;算术平均数;中位数;众数.【分析】根据表格中的数据,求出平均数,中位数,众数,极差与方差,即可做出判断.【解答】解:10户居民2020年4月份用电量为30,42,42,50,50,50,51,51,51,51,中位数为50;众数为51,平均数为(30+42+42+50+50+50+51+51+51+51)=46.8,方差为 [(30﹣46.8)2+2(42﹣46.8)2+3(50﹣46.8)2+4(51﹣46.8)2]=42.96,故选:C.【点评】此题考查了方差,中位数,众数,以及极差,熟练掌握各自的求法是解本题的关键.8.如图是某几何体的三视图,根据图中所标的数据求得该几何体的体积为()A.236πB.136πC.132πD.120π【考点】由三视图判断几何体.【分析】根据给出的几何体的三视图可知几何体是由大小两个圆柱组成,从而根据三视图的特点得知高和底面直径,代入体积公式计算即可.【解答】解:由三视图可知,几何体是由大小两个圆柱组成,故该几何体的体积为:π×22×2+π×42×8=8π+128π=136π.故选:B.【点评】本题考查的是由三视图判断几何体的形状并计算几何体的体积,由该三视图中的数据确定圆柱的底面直径和高是解本题的关键,本题体现了数形结合的数学思想.9.如图,在等腰△ABC中,直线l垂直底边BC,现将直线l沿线段BC从B点匀速平移至C点,直线l与△ABC的边相交于E、F两点.设线段EF的长度为y,平移时间为t,则下图中能较好反映y 与t的函数关系的图象是()A. B. C. D.【考点】动点问题的函数图象.【专题】数形结合.【分析】作AD⊥BC于D,如图,设点F运动的速度为1,BD=m,根据等腰三角形的性质得∠B=∠C,BD=CD=m,当点F从点B运动到D时,如图1,利用正切定义即可得到y=tanB•t(0≤t≤m);当点F从点D运动到C时,如图2,利用正切定义可得y=tanC•CF=﹣tanB•t+2mtanB(m≤t≤2m),即y与t的函数关系为两个一次函数关系式,于是可对四个选项进行判断.【解答】解:作AD⊥BC于D,如图,设点F运动的速度为1,BD=m,∵△ABC为等腰三角形,∴∠B=∠C,BD=CD,当点F从点B运动到D时,如图1,在Rt△BEF中,∵tanB=,∴y=tanB•t(0≤t≤m);当点F从点D运动到C时,如图2,在Rt△CEF中,∵tanC=,∴y=tanC•CF=tanC•(2m﹣t)=﹣tanB•t+2mtanB(m≤t≤2m).故选B.【点评】本题考查了动点问题的函数图象:利用三角函数关系得到两变量的函数关系,再利用函数关系式画出对应的函数图象.注意自变量的取值范围.10.如图,在△ABC中,AB=AC,BC=24,tanC=2,如果将△ABC沿直线l翻折后,点B落在边AC的中点E处,直线l与边BC交于点D,那么BD的长为()A.13 B. C. D.12【考点】翻折变换(折叠问题).【专题】计算题.【分析】利用三线合一得到G为BC的中点,求出GC的长,过点A作AG⊥BC于点G,在直角三角形AGC中,利用锐角三角函数定义求出AG的长,再由E为AC中点,求出EC的长,进而求出FC的长,利用勾股定理求出EF的长,在直角三角形DEF中,利用勾股定理求出x的值,即可确定出BD的长.【解答】解:过点A作AG⊥BC于点G,∵AB=AC,BC=24,tanC=2,∴=2,GC=BG=12,∴AG=24,∵将△ABC沿直线l翻折后,点B落在边AC的中点处,过E点作EF⊥BC于点F,∴EF=AG=12,∴=2,∴FC=6,设BD=x,则DE=x,∴DF=24﹣x﹣6=18﹣x,∴x2=(18﹣x)2+122,解得:x=13,则BD=13.故选A.【点评】此题主要考查了翻折变换的性质以及勾股定理和锐角三角函数关系,根据已知表示出DE的长是解题关键.二、填空题:本大题共5小题,每小题3分,共15分•11.分解因式:m3n﹣4mn= mn(m﹣2)(m+2).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式mn,再利用平方差公式分解因式得出即可.【解答】解:m3n﹣4mn=mn(m2﹣4)=mn(m﹣2)(m+2).故答案为:mn(m﹣2)(m+2).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确运用平方差公式是解题关键.12.计算:(﹣3)2020•(﹣)2020= ﹣3 .【考点】幂的乘方与积的乘方.【分析】直接利用幂的乘方运算法则将原式变形,进而利用积的乘方运算法则求出答案.【解答】解:(﹣3)2020•(﹣)2020=(﹣3)×(﹣3)2020×(﹣)2020=﹣3×[(﹣3)×(﹣)]2020=﹣3×1=﹣3.故答案为:﹣3.【点评】此题主要考查了幂的乘方与积的乘方,正确掌握运算法则是解题关键.13.如图,已知点A(0,1),B(0,﹣1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则∠BAC等于60 度.【考点】垂径定理;坐标与图形性质;等边三角形的判定与性质;勾股定理.【分析】求出OA、AC,通过余弦函数即可得出答案.【解答】解:∵A(0,1),B(0,﹣1),∴AB=2,OA=1,∴AC=2,在Rt△AOC中,cos∠BAC==,∴∠BAC=60°,故答案为60.【点评】本题考查了垂径定理的应用,关键是求出AC、OA的长.14.点A(﹣l,1)是反比例函数y=的图象上一点,则m的值为﹣2 .【考点】反比例函数图象上点的坐标特征.【分析】直接把点A(﹣l,1)代入反比例函数y=,求出m的值即可.【解答】解:∵点A(﹣l,1)是反比例函数y=的图象上一点,∴m+1=1×(﹣1)=﹣1,解得m=﹣2.故答案为:﹣2.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.15.在直角坐标系中,直线y=x+1与y轴交于点A,按如图方式作正方形A1B1C1O、A2B2C2C1、A3B3C3C2…,A1、A2、A3…在直线y=x+1上,点C1、C2、C3…在x轴上,图中阴影部分三角形的面积从左到右依次记为S1、S2、S3、…S n,则S n的值为22n﹣3(用含n的代数式表示,n为正整数).【考点】一次函数图象上点的坐标特征;正方形的性质.【专题】压轴题;规律型.【分析】根据直线解析式先求出OA1=1,得出第一个正方形的边长为1,求得A2B1=A1B1=1,再求出第二个正方形的边长为2,求得A3B2=A2B2=2,第三个正方形的边长为22,求得A4B3=A3B3=22,得出规律,根据三角形的面积公式即可求出S n的值.【解答】方法一:解:∵直线y=x+1,当x=0时,y=1,当y=0时,x=﹣1,∴OA1=1,OD=1,∴∠ODA1=45°,∴∠A2A1B1=45°,∴A2B1=A1B1=1,∴S1=×1×1=,∵A2B1=A1B1=1,∴A2C1=2=21,∴S2=×(21)2=21同理得:A3C2=4=22,…,S3=×(22)2=23∴S n=×(2n﹣1)2=22n﹣3故答案为:22n﹣3.方法二:∵y=x+1,正方形A1B1C1O,∴OA1=OC1=1,A2C1=2,B1C1=1,∴A2B1=1,S1=,∵OC2=1+2=3,∴A3C2=4,B2C2=2,∴A3B2=2,S2=2,∴q==4,∴S n=.【点评】本题考查了一次函数图象上点的坐标特征以及正方形的性质;通过求出第一个正方形、第二个正方形和第三个正方形的边长得出规律是解决问题的关键.三、解答题:本大题共7小题,共55分.16.先化简,再求值:•,其中a=5.【考点】分式的化简求值.【专题】计算题.【分析】原式约分得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=•=,当a=5时,原式=.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.17.某商场统计了今年1~5月A,B两种品牌冰箱的销售情况,并将获得的数据绘制成折线统计图(1)分别求该商场这段时间内A,B两种品牌冰箱月销售量的中位数和方差;(2)根据计算结果,比较该商场1~5月这两种品牌冰箱月销售量的稳定性.【考点】折线统计图;中位数;方差.【专题】计算题.【分析】(1)根据折线统计图得出A,B两种品牌冰箱的销售台数,分别求出中位数与方差即可;(2)根据(1)的结果比较即可得到结果.【解答】解:(1)A品牌冰箱月销售量从小到大的排列为:13,14,15,16,17,B品牌冰箱月销售量从小到大排列为:10,14,15,16,20,∴A品牌冰箱月销售量的中位数为15台,B品牌冰箱月销售量的中位数为15台,∵==15(台);==15(台),则S A2==2,S B2==10.4;(2)∵S A2<S B2,∴A品牌冰箱的月销售量稳定.【点评】此题考查了折线统计图,中位数,以及方差,熟练掌握各自的求法是解本题的关键.18.如图,⊙O的直径AB=4,∠ABC=30°,BC交⊙O于D,D是BC的中点.(1)求BC的长;(2)过点D作DE⊥AC,垂足为E,求证:直线DE是⊙O的切线.【考点】切线的判定;含30度角的直角三角形;圆周角定理.【分析】(1)根据圆周角定理求得∠ADB=90°,然后解直角三角形即可求得BD,进而求得BC即可;(2)要证明直线DE是⊙O的切线只要证明∠EDO=90°即可.【解答】证明:(1)解:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,又∵∠ABC=30°,AB=4,∴BD=2,∵D是BC的中点,∴BC=2BD=4;(2)证明:连接OD.∵D是BC的中点,O是AB的中点,∴DO是△ABC的中位线,∴OD∥AC,则∠EDO=∠CED又∵DE⊥AC,∴∠CED=90°,∠EDO=∠CED=90°∴DE是⊙O的切线.【点评】此题主要考查了切线的判定以及含30°角的直角三角形的性质.解题时要注意连接过切点的半径是圆中的常见辅助线.19.如图所示,港口B位于港口O正西方向120km处,小岛C位于港口O北偏西60°的方向.一艘游船从港口O出发,沿OA方向(北偏西30°)以vkm/h的速度驶离港口O,同时一艘快艇从港口B 出发,沿北偏东30°的方向以60km/h的速度驶向小岛C,在小岛C用1h加装补给物资后,立即按原来的速度给游船送去.(1)快艇从港口B到小岛C需要多长时间?(2)若快艇从小岛C到与游船相遇恰好用时1h,求v的值及相遇处与港口O的距离.【考点】解直角三角形的应用-方向角问题.【分析】(1)要求B到C的时间,已知其速度,则只要求得BC的路程,再利用路程公式即可求得所需的时间;(2)过C作CD⊥OA,垂足为D,设相会处为点E.求出OC=OB•cos30°=60,CD=OC=30,OD=OC•cos30°=90,则DE=90﹣3v.在直角△CDE中利用勾股定理得出CD2+DE2=CE2,即(30)2+(90﹣3v)2=602,解方程求出v=20或40,进而求出相遇处与港口O的距离.【解答】解:(1)∵∠CBO=60°,∠COB=30°,∴∠BCO=90°.在Rt△BCO中,∵OB=120,∴BC=OB=60,∴快艇从港口B到小岛C的时间为:60÷60=1(小时);(2)过C作CD⊥OA,垂足为D,设相会处为点E.则OC=OB•cos30°=60,CD=OC=30,OD=OC•cos30°=90,∴DE=90﹣3v.∵CE=60,CD2+DE2=CE2,∴(30)2+(90﹣3v)2=602,∴v=20或40,∴当v=20km/h时,OE=3×20=60km,当v=40km/h时,OE=3×40=120km.【点评】此题考查了解直角三角形的应用﹣方向角问题,锐角三角函数的定义,勾股定理等知识,理解方向角的定义,得出∠BCO=90°是解题的关键,本题难易程度适中.20.某商店购进一种商品,每件商品进价30元.试销中发现这种商品每天的销售量y(件)与每件销售价x(元)的关系数据如下:x 30 32 34 36y 40 36 32 28(1)已知y与x满足一次函数关系,根据上表,求出y与x之间的关系式(不写出自变量x的取值范围);(2)如果商店销售这种商品,每天要获得150元利润,那么每件商品的销售价应定为多少元?(3)设该商店每天销售这种商品所获利润为w(元),求出w与x之间的关系式,并求出每件商品销售价定为多少元时利润最大?【考点】二次函数的应用.【分析】(1)根据待定系数法解出解析式即可;(2)根据题意列出方程解答即可;(3)根据题意列出函数解析式,利用函数解析式的最值解答即可.【解答】解:(1)设该函数的表达式为y=kx+b,根据题意,得,解得:.故该函数的表达式为y=﹣2x+100;(2)根据题意得,(﹣2x+100)(x﹣30)=150,解这个方程得,x1=35,x2=45,故每件商品的销售价定为35元或45元时日利润为150元;(3)根据题意,得w=(﹣2x+100)(x﹣30)=﹣2x2+160x﹣3000=﹣2(x﹣40)2+200,∵a=﹣2<0 则抛物线开口向下,函数有最大值,即当x=40时,w的值最大,∴当销售单价为40元时获得利润最大.【点评】此题考查二次函数的应用,关键是根据题意列出方程和函数解析式,利用函数解析式的最值分析.21.如图,矩形纸片ABCD,将△AMP和△BPQ分别沿PM和PQ折叠(AP>AM),点A和点B都与点E 重合;再将△CQD沿DQ折叠,点C落在线段EQ上点F处.(1)判断△AMP,△BPQ,△CQD和△FDM中有哪几对相似三角形?(不需说明理由)(2)如果AM=1,sin∠DMF=,求AB的长.【考点】翻折变换(折叠问题);相似三角形的判定;解直角三角形.【分析】(1)由矩形的性质得∠A=∠B=∠C=90°,由折叠的性质和等角的余角相等,可得∠BPQ=∠AMP=∠DQC,所以△AMP∽△BPQ∽△CQD;(2)先证明MD=MQ,然后根据sin∠DMF==,设DF=3x,MD=5x,表示出AP、BP、BQ,再根据△AMP ∽△BPQ,列出比例式解方程求解即可.【解答】解:(1)△AMP∽△BPQ∽△CQD,∵四边形ABCD是矩形,∴∠A=∠B=∠C=90°,根据折叠的性质可知:∠APM=∠EPM,∠EPQ=∠BPQ,∴∠APM+∠BPQ=∠EPM+∠EPQ=90°,∵∠APM+∠AMP=90°,∴∠BPQ=∠AMP,∴△AMP∽△BPQ,同理:△BPQ∽△CQD,根据相似的传递性,△AMP∽△CQD;(2)∵AD∥BC,∴∠DQC=∠MDQ,根据折叠的性质可知:∠DQC=∠DQM,∴∠MDQ=∠DQM,∴MD=MQ,∵AM=ME,BQ=EQ,∴BQ=MQ﹣ME=MD﹣AM,∵sin∠DMF==,∴设DF=3x,MD=5x,∴BP=PA=PE=,BQ=5x﹣1,∵△AMP∽△BPQ,∴,∴,解得:x=(舍)或x=2,∴AB=6.【点评】本题主要考查了相似三角形的判定与性质、矩形的性质、翻折的性质以及锐角三角函数的综合运用,在求AB长的问题中,关键是恰当的设出未知数表示出一对相似三角形的对应边列比例式.22.如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3).(1)求抛物线的函数表达式;(2)若点P在抛物线上,且S△AOP=4S BOC,求点P的坐标;(3)如图b,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,求线段DQ长度的最大值.【考点】二次函数综合题.【专题】压轴题.【分析】(1)把点A、C的坐标分别代入函数解析式,列出关于系数的方程组,通过解方程组求得系数的值;(2)设P点坐标为(x,﹣x2﹣2x+3),根据S△AOP=4S△BOC列出关于x的方程,解方程求出x的值,进而得到点P的坐标;(3)先运用待定系数法求出直线AC的解析式为y=x+3,再设Q点坐标为(x,x+3),则D点坐标为(x,x2+2x﹣3),然后用含x的代数式表示QD,根据二次函数的性质即可求出线段QD长度的最大值.【解答】解:(1)把A(﹣3,0),C(0,3)代入y=﹣x2+bx+c,得,解得.故该抛物线的解析式为:y=﹣x2﹣2x+3.(2)由(1)知,该抛物线的解析式为y=﹣x2﹣2x+3,则易得B(1,0).∵S△AOP=4S△BOC,∴×3×|﹣x2﹣2x+3|=4××1×3.整理,得(x+1)2=0或x2+2x﹣7=0,解得x=﹣1或x=﹣1±2.则符合条件的点P的坐标为:(﹣1,4)或(﹣1+2,﹣4)或(﹣1﹣2,﹣4);(3)设直线AC的解析式为y=kx+t,将A(﹣3,0),C(0,3)代入,得,解得.即直线AC的解析式为y=x+3.设Q点坐标为(x,x+3),(﹣3≤x≤0),则D点坐标为(x,﹣x2﹣2x+3),QD=(﹣x2﹣2x+3)﹣(x+3)=﹣x2﹣3x=﹣(x+)2+,∴当x=﹣时,QD有最大值.【点评】此题考查了待定系数法求二次函数、一次函数的解析式,二次函数的性质以及三角形面积、线段长度问题.此题难度适中,解题的关键是运用方程思想与数形结合思想.。
2020-2021学年最新济宁市中考数学模拟试卷及答案

数学中考模拟试卷一、单选题1.一元二次方程x(x﹣1)=0的解是()A.x=0B.x=1C.x=0或x=﹣1D.x=0或x=1【答案】D【考点】解一元二次方程﹣因式分解法【解析】【解答】解:方程x(x﹣1)=0,可得x=0或x﹣1=0,解得:x=0或x=1.故选:D.【分析】方程利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.2.下列图标中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.【答案】D【考点】轴对称图形,中心对称及中心对称图形【解析】【解答】A既不是轴对称图形,也不是中心对称图形,故不符合题意;B不是轴对称图形,但是中心对称图形,故不符合题意;C是轴对称图形,但不是中心对称图形,故不符合题意;D即是轴对称图形,也是中心对称图形,故符合题意.故答案为:D.【分析】轴对称图形是指图像沿某一直线对折,两部分能完全重合;中心对称图形是指图形沿某一点旋转后两部分完全重合。
根据定义可知D符合题意。
3.下列随机事件的概率,既可以用列举法求得,又可以用频率估计获得的是()A.某种幼苗在一定条件下的移植成活率B.某种柑橘在某运输过程中的损坏率C.某运动员在某种条件下“射出9环以上”的概率D.投掷一枚均匀的骰子,朝上一面为偶数的概率【答案】D【考点】列表法与树状图法,利用频率估计概率【解析】【解答】A.某种幼苗在一定条件下的移植成活率,只能用频率估计,不能用列举法;故不符合题意;B.某种柑橘在某运输过程中的损坏率,只能用列举法,不能用频率求出;故不符合题意;C.某运动员在某种条件下“射出9环以上”的概率,只能用频率估计,不能用列举法;故不符合题意;D.∵一枚均匀的骰子只有六个面,即:只有六个数,不是奇数,便是偶数,∴能一一的列举出来,∴既可以用列举法求得,又可以用频率估计获得概率;故符合题意.故答案为:D.【分析】(1)幼苗的移植具有一定的破坏性、且环境、气候影响较大,所以不能用列举法;(2)因为柑橘在某运输过程中气候、环境的影响,所以不能用列举法;(3)因为运动员的射击次数越多,越接近概率,所以可用频率估计,若用列举法,不准确;(4)一枚均匀的骰子只有六个面,奇数和偶数各占一半,所以既可以用列举法求得,又可以用频率估计获得概率。
【真题】2020年济宁市中考数学试卷含答案解析(Word版)

山东省济宁市2020 年中考数学试卷一、选择题:本大题共10 小题,每小题 3 分,共30 分。
在每小题给出的四个选项中,只有一项符合题目要求。
1.31-的值是()A.1 B.﹣1 C.3 D.﹣3【解答】解:31-=-1.故选B.2.为贯彻落实觉中央、国务院关于推进城乡义务教育一体化发展的部署,教育部会同有关部门近五年来共新建、改扩建校舍186000000 平方米,其中数据186000000 用科学记数法表示是()A.1.86×107 B.186×106 C.1.86×108 D.0.186×109【解答】解:将186000000 用科学记数法表示为:1.86×108.故选:C.3.下列运算正确的是()A.a8÷a4=a2 B.(a2)2=a4 C.a2•a3=a6 D.a2+a2=2a4【解答】解:A、a8÷a6=a4,故此选项错误;B、(a2)2=a4,故原题计算正确;C、a2•a3=a5,故此选项错误;D、a2+a2=2a2,故此选项错误;故选:B.4.如图,点B,C,D 在⊙O 上,若∠BCD=130°,则∠BOD 的度数是()A.50°B.60°C.80°D.100°【解答】解:圆上取一点A,连接AB,AD,∵点A、B,C,D 在⊙O 上,∠BCD=130°,∴∠BAD=50°,∴∠BOD=100°,故选:D.5.多项式4a﹣a3 分解因式的结果是()A.a(4﹣a2)B.a(2﹣a)(2+a)C.a(a﹣2)(a+2)D.a(2﹣a)2【解答】解:4a﹣a3=a(4﹣a2)=a(2-a)(2+a).故选:B.6..如图,在平面直角坐标系中,点A,C 在x 轴上,点C 的坐标为(﹣1,0),AC=2.将Rt△ABC 先绕点 C 顺时针旋转90°,再向右平移 3 个单位长度,则变换后点 A 的对应点坐标是()A.(2,2)B.(1,2)C.(﹣1,2)D.(2,﹣1)【解答】解:∵点C 的坐标为(﹣1,0),AC=2,∴点 A 的坐标为(﹣3,0),如图所示,将Rt△ABC 先绕点 C 顺时针旋转90°,则点A′的坐标为(﹣1,2),再向右平移 3 个单位长度,则变换后点A′的对应点坐标为(2,2),故选:A.7.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是()A.众数是5 B.中位数是5 C.平均数是6 D.方差是3.6【解答】解:A、数据中 5 出现 2 次,所以众数为5,此选项正确;B、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;C、平均数为(7+5+3+5+10)÷5=6,此选项正确;D、方差为15×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;故选:D.8.如图,在五边形ABCDE 中,∠A+∠B+∠E=300°,DP、CP 分别平分∠EDC、∠BCD,则∠P=()A.50°B.55°C.60°D.65°【解答】解:∵在五边形ABCDE 中,∠A+∠B+∠E=300°,∴∠ECD+∠BCD=240°,又∵DP、CP 分别平分∠EDC、∠BCD,∴∠PDC+∠PCD=120°,∴△CDP 中,∠P=180°﹣(∠PDC+∠PCD)=180°﹣120°=60°.故选:C.9.一个几何体的三视图如图所示,则该几何体的表面积是()A.24+2πB.16+4πC.16+8πD.16+12π【解答】解:该几何体的表面积为2×12•π•22+4×4+12×2π•2×4=12π+16,故选:D.10.如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是()【解答】解:由题意知,原图形中各行、各列中点数之和为10,符合此要求的只有故选:C.二、填空题:本大题共 5 小题,每小题 3 分,共15 分。
2020-2021学年山东省济宁市中考数学仿真模拟试卷及答案解析

山东省济宁市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求1.在:0,﹣2,1,这四个数中,最小的数是()A.0 B.﹣2 C.1 D.2.下列计算正确的是()A.x2•x3=x5B.x6+x6=x12C.(x2)3=x5D.x﹣1=x3.如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,那么∠2的度数是()A.20°B.30°C.35°D.50°4.如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()A. B. C. D.5.如图,在⊙O中,=,∠AOB=40°,则∠ADC的度数是()A.40°B.30°C.20°D.15°6.已知x﹣2y=3,那么代数式3﹣2x+4y的值是()A .﹣3B .0C .6D .97.如图,将△ABE 向右平移2cm 得到△DCF ,如果△ABE 的周长是16cm ,那么四边形ABFD 的周长是( )A .16cmB .18cmC .20cmD .21cm8.在学校开展的“争做最优秀中学生”的一次演讲比赛中,编号1,2,3,4,5的五位同学最后成绩如下表所示:参赛者编号12 3 4 5成绩/分 96 88 86 93 86 那么这五位同学演讲成绩的众数与中位数依次是( )A .96,88,B .86,86C .88,86D .86,889.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是( )A .B .C .D .10.如图,O 为坐标原点,四边形OACB 是菱形,OB 在x 轴的正半轴上,sin ∠AOB=,反比例函数y=在第一象限内的图象经过点A ,与BC 交于点F ,则△AOF 的面积等于( )A.60 B.80 C.30 D.40二、填空题:本大题共5小题,每小题3分,共15分11.若式子有意义,则实数x的取值范围是.12.如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:,使△AEH≌△CEB.13.如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于.14.已知A,B两地相距160km,一辆汽车从A地到B地的速度比原来提高了25%,结果比原来提前0.4h到达,这辆汽车原来的速度是km/h.15.按一定规律排列的一列数:,1,1,□,,,,…请你仔细观察,按照此规律方框内的数字应为.三、解答题:本大题共7小题,共55分16.先化简,再求值:a(a﹣2b)+(a+b)2,其中a=﹣1,b=.17.6月15日是父亲节,某商店老板统计了这四年父亲节当天剃须刀销售情况,以下是根据该商店剃须刀销售的相关数据所绘制统计图的一部分.请根据图1、图2解答下列问题:(1)近四年父亲节当天剃须刀销售总额一共是5.8万元,请将图1中的统计图补充完整;(2)计算该店2015年父亲节当天甲品牌剃须刀的销售额.18.某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(1)求新坡面的坡角a;(2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆桥?请说明理由.19.某地2014年为做好“精准扶贫”,授入资金1280万元用于一滴安置,并规划投入资金逐年增加,在2014年的基础上增加投入资金1600万元.(1)从2014年到,该地投入异地安置资金的年平均增长率为多少?(2)在异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?20.如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF 的平分线分别交AF,AB,BD于点E,N,M,连接EO.(1)已知BD=,求正方形ABCD的边长;(2)猜想线段EM与CN的数量关系并加以证明.21.已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d=计算.例如:求点P(﹣1,2)到直线y=3x+7的距离.解:因为直线y=3x+7,其中k=3,b=7.所以点P(﹣1,2)到直线y=3x+7的距离为:d====.根据以上材料,解答下列问题:(1)求点P(1,﹣1)到直线y=x﹣1的距离;(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y=x+9的位置关系并说明理由;(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.22.如图,已知抛物线m:y=ax2﹣6ax+c(a>0)的顶点A在x轴上,并过点B(0,1),直线n:y=﹣x+与x轴交于点D,与抛物线m的对称轴l交于点F,过B点的直线BE与直线n相交于点E(﹣7,7).(1)求抛物线m的解析式;(2)P是l上的一个动点,若以B,E,P为顶点的三角形的周长最小,求点P的坐标;(3)抛物线m上是否存在一动点Q,使以线段FQ为直径的圆恰好经过点D?若存在,求点Q 的坐标;若不存在,请说明理由.山东省济宁市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求1.在:0,﹣2,1,这四个数中,最小的数是()A.0 B.﹣2 C.1 D.【考点】有理数大小比较.【分析】根据有理数大小比较的法则解答.【解答】解:∵在0,﹣2,1,这四个数中,只有﹣2是负数,∴最小的数是﹣2.故选B.2.下列计算正确的是()A.x2•x3=x5B.x6+x6=x12C.(x2)3=x5D.x﹣1=x【考点】负整数指数幂;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】原式利用同底数幂的乘法,合并同类项,幂的乘方及负整数指数幂法则计算,即可作出判断.【解答】解:A、原式=x5,正确;B、原式=2x6,错误;C、原式=x6,错误;D、原式=,错误,故选A3.如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,那么∠2的度数是()A.20°B.30°C.35°D.50°【考点】平行线的性质.【分析】由垂线的性质和平角的定义求出∠3的度数,再由平行线的性质即可得出∠2的度数.【解答】解:∵AB⊥BC,∴∠ABC=90°,∴∠3=180°﹣90°﹣∠1=35°,∵a∥b,∴∠2=∠3=35°.故选:C.4.如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()A. B. C. D.【考点】简单几何体的三视图.【分析】观察几何体,找出左视图即可.【解答】解:如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是,故选D5.如图,在⊙O中,=,∠AOB=40°,则∠ADC的度数是()A.40°B.30°C.20°D.15°【考点】圆心角、弧、弦的关系.【分析】先由圆心角、弧、弦的关系求出∠AOC=∠AOB=50°,再由圆周角定理即可得出结论.【解答】解:∵在⊙O中,=,∴∠AOC=∠AOB,∵∠AOB=40°,∴∠AOC=40°,∴∠ADC=∠AOC=20°,故选C.6.已知x﹣2y=3,那么代数式3﹣2x+4y的值是()A.﹣3 B.0 C.6 D.9【考点】代数式求值.【分析】将3﹣2x+4y变形为3﹣2(x﹣2y),然后代入数值进行计算即可.【解答】解:∵x﹣2y=3,∴3﹣2x+4y=3﹣2(x﹣2y)=3﹣2×3=﹣3;故选:A.7.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是()A.16cm B.18cm C.20cm D.21cm【考点】平移的性质.【分析】先根据平移的性质得到CF=AD=2cm,AC=DF,而AB+BC+AC=16cm,则四边形ABFD的周长=AB+BC+CF+DF+AD,然后利用整体代入的方法计算即可【解答】解:∵△ABE向右平移2cm得到△DCF,∴EF=AD=2cm,AE=DF,∵△ABE的周长为16cm,∴AB+BE+AE=16cm,∴四边形ABFD的周长=AB+BE+EF+DF+AD=AB+BE+AE+EF+AD=16cm+2cm+2cm=20cm.故选C.8.在学校开展的“争做最优秀中学生”的一次演讲比赛中,编号1,2,3,4,5的五位同学最后成绩如下表所示:参赛者1 2 3 4 5编号成绩/分96 88 86 93 86那么这五位同学演讲成绩的众数与中位数依次是()A.96,88,B.86,86 C.88,86 D.86,88【考点】众数;中位数.【分析】找出五位同学演讲成绩出现次数最多的分数即为众数,将分数按照从小到大的顺序排列,找出中位数即可.【解答】解:这五位同学演讲成绩为96,88,86,93,86,按照从小到大的顺序排列为86,86,88,93,96,则这五位同学演讲成绩的众数与中位数依次是86,88,故选D9.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是()A.B.C.D.【考点】概率公式;利用轴对称设计图案.【分析】由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有13种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.【解答】解:∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有4个情况,∴使图中黑色部分的图形仍然构成一个轴对称图形的概率是:.故选B.10.如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,sin∠AOB=,反比例函数y=在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于()A.60 B.80 C.30 D.40【考点】反比例函数与一次函数的交点问题.【分析】过点A作AM⊥x轴于点M,过点F作FN⊥x轴于点N,设OA=a,BF=b,通过解直角三角形分别找出点A、F的坐标,结合反比例函数图象上点的坐标特征即可求出a、b的值,通过分割图形求面积,最终找出△AOF的面积等于梯形AMNF的面积,利用梯形的面积公式即可得出结论.【解答】解:过点A作AM⊥x轴于点M,过点F作FN⊥x轴于点N,如图所示.设OA=a,BF=b,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,∴AM=OA•sin∠AOB=a,OM==a,∴点A的坐标为(a,a).∵点A在反比例函数y=的图象上,∴a×a==48,解得:a=10,或a=﹣10(舍去).∴AM=8,OM=6.∵四边形OACB是菱形,∴OA=OB=10,BC∥OA,∴∠FBN=∠AOB.在Rt △BNF 中,BF=b ,sin ∠FBN=,∠BNF=90°,∴FN=BF •sin ∠FBN=b ,BN==b , ∴点F 的坐标为(10+b , b ).∵点B 在反比例函数y=的图象上, ∴(10+b )×b=48,解得:b=,或b=(舍去). ∴FN=,BN=﹣5,MN=OB+BN ﹣OM=﹣1.S △AOF =S △AOM +S 梯形AMNF ﹣S △OFN =S 梯形AMNF =(AM+FN )•MN=(8+)×(﹣1)=×(+1)×(﹣1)=40.故选D .二、填空题:本大题共5小题,每小题3分,共15分11.若式子有意义,则实数x 的取值范围是 x ≥1 . 【考点】二次根式有意义的条件. 【分析】根据二次根式的性质可以得到x ﹣1是非负数,由此即可求解. 【解答】解:依题意得 x ﹣1≥0,∴x ≥1.故答案为:x ≥1.12.如图,△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别为D 、E ,AD 、CE 交于点H ,请你添加一个适当的条件: AH=CB 等(只要符合要求即可) ,使△AEH ≌△CEB .【考点】全等三角形的判定.【分析】开放型题型,根据垂直关系,可以判断△AEH与△CEB有两对对应角相等,就只需要找它们的一对对应边相等就可以了.【解答】解:∵AD⊥BC,CE⊥AB,垂足分别为D、E,∴∠BEC=∠AEC=90°,在Rt△AEH中,∠EAH=90°﹣∠AHE,又∵∠EAH=∠BAD,∴∠BAD=90°﹣∠AHE,在Rt△AEH和Rt△CDH中,∠CHD=∠AHE,∴∠EAH=∠DCH,∴∠EAH=90°﹣∠CHD=∠BCE,所以根据AAS添加AH=CB或EH=EB;根据ASA添加AE=CE.可证△AEH≌△CEB.故填空答案:AH=CB或EH=EB或AE=CE.13.如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于.【考点】平行线分线段成比例.【分析】首先求出AD的长度,然后根据平行线分线段成比例定理,列出比例式即可得到结论.【解答】解:∵AG=2,GD=1,∴AD=3,∵AB∥CD∥EF,∴=,故答案为:.14.已知A,B两地相距160km,一辆汽车从A地到B地的速度比原来提高了25%,结果比原来提前0.4h到达,这辆汽车原来的速度是80 km/h.【考点】分式方程的应用.【分析】设这辆汽车原来的速度是xkm/h,由题意列出分式方程,解方程求出x的值即可.【解答】解:设这辆汽车原来的速度是xkm/h,由题意列方程得:,解得:x=80经检验,x=80是原方程的解,所以这辆汽车原来的速度是80km/h.故答案为:80.15.按一定规律排列的一列数:,1,1,□,,,,…请你仔细观察,按照此规律方框内的数字应为.【考点】规律型:数字的变化类.【分析】把整数1化为,可以发现后一个数的分子恰是前面数的分母,分析即可求解.【解答】解:把整数1化为,得,,,(),,,…可以发现后一个数的分子恰是前面数的分母,所以,第4个数的分子是2,分母是3,故答案为:.三、解答题:本大题共7小题,共55分16.先化简,再求值:a(a﹣2b)+(a+b)2,其中a=﹣1,b=.【考点】整式的混合运算—化简求值.【分析】原式利用单项式乘以多项式,以及完全平方公式化简,去括号合并得到最简结果,把a 与b的值代入计算即可求出值.【解答】解:原式=a2﹣2ab+a2+2ab+b2=2a2+b2,当a=﹣1,b=时,原式=2+2=4.17.6月15日是父亲节,某商店老板统计了这四年父亲节当天剃须刀销售情况,以下是根据该商店剃须刀销售的相关数据所绘制统计图的一部分.请根据图1、图2解答下列问题:(1)近四年父亲节当天剃须刀销售总额一共是5.8万元,请将图1中的统计图补充完整;(2)计算该店2015年父亲节当天甲品牌剃须刀的销售额.【考点】条形统计图;折线统计图.【分析】(1)将销售总额减去2012、2014、2015年的销售总额,求出2013年的销售额,补全条形统计图即可;(2)将2015年的销售总额乘以甲品牌剃须刀所占百分比即可.【解答】解:(1)2013年父亲节当天剃须刀的销售额为5.8﹣1.7﹣1.2﹣1.3=1.6(万元),补全条形图如图:(2)1.3×17%=0.221(万元).答:该店2015年父亲节当天甲品牌剃须刀的销售额为0.221万元.18.某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(1)求新坡面的坡角a;(2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆桥?请说明理由.【考点】解直角三角形的应用-坡度坡角问题.【分析】(1)由新坡面的坡度为1:,可得tanα=tan∠CAB==,然后由特殊角的三角函数值,求得答案;(2)首先过点C作CD⊥AB于点D,由坡面BC的坡度为1:1,新坡面的坡度为1:.即可求得AD,BD的长,继而求得AB的长,则可求得答案.【解答】解:(1)∵新坡面的坡度为1:,∴tanα=tan∠CAB==,∴∠α=30°.答:新坡面的坡角a为30°;(2)文化墙PM不需要拆除.过点C作CD⊥AB于点D,则CD=6,∵坡面BC的坡度为1:1,新坡面的坡度为1:,∴BD=CD=6,AD=6,∴AB=AD﹣BD=6﹣6<8,∴文化墙PM不需要拆除.19.某地2014年为做好“精准扶贫”,授入资金1280万元用于一滴安置,并规划投入资金逐年增加,在2014年的基础上增加投入资金1600万元.(1)从2014年到,该地投入异地安置资金的年平均增长率为多少?(2)在异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?【考点】一元二次方程的应用.【分析】(1)设年平均增长率为x,根据:2014年投入资金给×(1+增长率)2=投入资金,列出方程组求解可得;(2)设今年该地有a户享受到优先搬迁租房奖励,根据:前1000户获得的奖励总数+1000户以后获得的奖励总和≥500万,列不等式求解可得.【解答】解:(1)设该地投入异地安置资金的年平均增长率为x,根据题意,得:1280(1+x)2=1280+1600,解得:x=0.5或x=﹣2.25(舍),答:从2014年到,该地投入异地安置资金的年平均增长率为50%;(2)设今年该地有a户享受到优先搬迁租房奖励,根据题意,得:1000×8×400+(a﹣1000)×5×400≥5000000,解得:a≥1900,答:今年该地至少有1900户享受到优先搬迁租房奖励.20.如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF 的平分线分别交AF,AB,BD于点E,N,M,连接EO.(1)已知BD=,求正方形ABCD的边长;(2)猜想线段EM与CN的数量关系并加以证明.【考点】正方形的性质.【分析】(1)根据正方形的性质以及勾股定理即可求得;(2)根据等腰三角形三线合一的性质证得CE⊥AF,进一步得出∠BAF=∠BCN,然后通过证得△ABF≌△CBN得出AF=CN,进而证得△ABF∽△COM,根据相似三角形的性质和正方形的性质即可证得CN=CM.【解答】解:(1)∵四边形ABCD是正方形,∴△ABD是等腰直角三角形,∴2AB2=BD2,∵BD=,∴AB=1,∴正方形ABCD的边长为1;(2)CN=CM.证明:∵CF=CA,AF是∠ACF的平分线,∴CE⊥AF,∴∠AEN=∠CBN=90°,∵∠ANE=∠CNB,∴∠BAF=∠BCN,在△ABF和△CBN中,,∴△ABF≌△CBN(AAS),∴AF=CN,∵∠BAF=∠BCN,∠ACN=∠BCN,∴∠BAF=∠OCM,∵四边形ABCD是正方形,∴AC⊥BD,∴∠ABF=∠COM=90°,∴△ABF∽△COM,∴=,∴==,即CN=CM.21.已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d=计算.例如:求点P(﹣1,2)到直线y=3x+7的距离.解:因为直线y=3x+7,其中k=3,b=7.所以点P(﹣1,2)到直线y=3x+7的距离为:d====.根据以上材料,解答下列问题:(1)求点P(1,﹣1)到直线y=x﹣1的距离;(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y=x+9的位置关系并说明理由;(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.【考点】一次函数综合题.【分析】(1)根据点P到直线y=kx+b的距离公式直接计算即可;(2)先利用点到直线的距离公式计算出圆心Q到直线y=x+9,然后根据切线的判定方法可判断⊙Q与直线y=x+9相切;(3)利用两平行线间的距离定义,在直线y=﹣2x+4上任意取一点,然后计算这个点到直线y=﹣2x﹣6的距离即可.【解答】解:(1)因为直线y=x﹣1,其中k=1,b=﹣1,所以点P(1,﹣1)到直线y=x﹣1的距离为:d====;(2)⊙Q与直线y=x+9的位置关系为相切.理由如下:圆心Q(0,5)到直线y=x+9的距离为:d===2,而⊙O的半径r为2,即d=r,所以⊙Q与直线y=x+9相切;(3)当x=0时,y=﹣2x+4=4,即点(0,4)在直线y=﹣2x+4,因为点(0,4)到直线y=﹣2x﹣6的距离为:d===2,因为直线y=﹣2x+4与y=﹣2x﹣6平行,所以这两条直线之间的距离为2.22.如图,已知抛物线m:y=ax2﹣6ax+c(a>0)的顶点A在x轴上,并过点B(0,1),直线n:y=﹣x+与x轴交于点D,与抛物线m的对称轴l交于点F,过B点的直线BE与直线n相交于点E(﹣7,7).(1)求抛物线m的解析式;(2)P是l上的一个动点,若以B,E,P为顶点的三角形的周长最小,求点P的坐标;(3)抛物线m上是否存在一动点Q,使以线段FQ为直径的圆恰好经过点D?若存在,求点Q 的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)抛物线顶点在x轴上则可得出顶点纵坐标为0,将解析式进行配方就可以求出a的值,继而得出函数解析式;(2)利用轴对称求最短路径的方法,首先通过B点关于l的对称点B′来确定P点位置,再求出直线B′E的解析式,进而得出P点坐标;(3)可以先求出直线FD的解析式,结合以线段FQ为直径的圆恰好经过点D这个条件,明确∠FDG=90°,得出直线DG解析式的k值与直线FD解析式的k值乘积为﹣1,利用D点坐标求出直线DG解析式,将点Q坐标用抛物线解析式表示后代入DG直线解析式可求出点Q坐标.【解答】解:(1)∵抛物线y=ax2﹣6ax+c(a>0)的顶点A在x轴上∴配方得y=a(x﹣3)2﹣9a+1,则有﹣9a+1=0,解得a=∴A点坐标为(3,0),抛物线m的解析式为y=x2﹣x+1;(2)∵点B关于对称轴直线x=3的对称点B′为(6,1)∴连接EB′交l于点P,如图所示设直线EB′的解析式为y=kx+b,把(﹣7,7)(6,1)代入得解得,则函数解析式为y=﹣x+把x=3代入解得y=,∴点P坐标为(3,);(3)∵y=﹣x+与x轴交于点D,∴点D坐标为(7,0),∵y=﹣x+与抛物线m的对称轴l交于点F,∴点F坐标为(3,2),求得FD的直线解析式为y=﹣x+,若以FQ为直径的圆经过点D,可得∠FDQ=90°,则DQ的直线解析式的k值为2,设DQ的直线解析式为y=2x+b,把(7,0)代入解得b=﹣14,则DQ的直线解析式为y=2x﹣14,设点Q的坐标为(a,),把点Q代入y=2x﹣14得=2a﹣14解得a1=9,a2=15.∴点Q坐标为(9,4)或(15,16).。
初中数学山东省济宁市中考模拟数学考试卷含答案解析(Word版) .docx

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:在:0,﹣2,1,这四个数中,最小的数是()A.0 B.﹣2 C.1 D.试题2:下列计算正确的是()A.x2•x3=x5 B.x6+x6=x12 C.(x2)3=x5 D.x﹣1=x试题3:如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,那么∠2的度数是()A.20° B.30° C.35° D.50°试题4:如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()评卷人得分A. B. C. D.试题5:如图,在⊙O中,=,∠AOB=40°,则∠ADC的度数是()A.40° B.30° C.20° D.15°试题6:已知x﹣2y=3,那么代数式3﹣2x+4y的值是()A.﹣3 B.0 C.6 D.9试题7:如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是()A.16cm B.18cm C.20cm D.21cm试题8:在学校开展的“争做最优秀中学生”的一次演讲比赛中,编号1,2,3,4,5的五位同学最后成绩如下表所示:1 2 3 4 5参赛者编号成绩/分96 88 86 93 86那么这五位同学演讲成绩的众数与中位数依次是()A.96,88, B.86,86 C.88,86 D.86,88试题9:如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是()A. B. C. D.试题10:如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,sin∠AOB=,反比例函数y=在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于()A.60 B.80 C.30 D.40试题11:若式子有意义,则实数x的取值范围是.试题12:如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:,使△AEH≌△CEB.试题13:如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于.试题14:已知A,B两地相距160km,一辆汽车从A地到B地的速度比原来提高了25%,结果比原来提前0.4h到达,这辆汽车原来的速度是km/h.试题15:按一定规律排列的一列数:,1,1,□,,,,…请你仔细观察,按照此规律方框内的数字应为.试题16:先化简,再求值:a(a﹣2b)+(a+b)2,其中a=﹣1,b=.试题17:2016年6月15日是父亲节,某商店老板统计了这四年父亲节当天剃须刀销售情况,以下是根据该商店剃须刀销售的相关数据所绘制统计图的一部分.请根据图1、图2解答下列问题:(1)近四年父亲节当天剃须刀销售总额一共是5.8万元,请将图1中的统计图补充完整;(2)计算该店2015年父亲节当天甲品牌剃须刀的销售额.试题18:某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(1)求新坡面的坡角a;(2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆桥?请说明理由.试题19:某地2014年为做好“精准扶贫”,授入资金1280万元用于一滴安置,并规划投入资金逐年增加,2016年在2014年的基础上增加投入资金1600万元.(1)从2014年到2016年,该地投入异地安置资金的年平均增长率为多少?(2)在2016年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?试题20:如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF的平分线分别交AF,AB,BD 于点E,N,M,连接EO.(1)已知BD=,求正方形ABCD的边长;(2)猜想线段EM与CN的数量关系并加以证明.试题21:已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d=计算.例如:求点P(﹣1,2)到直线y=3x+7的距离.解:因为直线y=3x+7,其中k=3,b=7.所以点P(﹣1,2)到直线y=3x+7的距离为:d====.根据以上材料,解答下列问题:(1)求点P(1,﹣1)到直线y=x﹣1的距离;(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y=x+9的位置关系并说明理由;(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.试题22:如图,已知抛物线m:y=ax2﹣6ax+c(a>0)的顶点A在x轴上,并过点B(0,1),直线n:y=﹣x+与x轴交于点D,与抛物线m的对称轴l交于点F,过B点的直线BE与直线n相交于点E(﹣7,7).(1)求抛物线m的解析式;(2)P是l上的一个动点,若以B,E,P为顶点的三角形的周长最小,求点P的坐标;(3)抛物线m上是否存在一动点Q,使以线段FQ为直径的圆恰好经过点D?若存在,求点Q的坐标;若不存在,请说明理由.试题1答案:B【考点】有理数大小比较.【分析】根据有理数大小比较的法则解答.【解答】解:∵在0,﹣2,1,这四个数中,只有﹣2是负数,∴最小的数是﹣2.故选B.试题2答案:A【考点】负整数指数幂;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】原式利用同底数幂的乘法,合并同类项,幂的乘方及负整数指数幂法则计算,即可作出判断.【解答】解:A、原式=x5,正确;B、原式=2x6,错误;C、原式=x6,错误;D、原式=,错误,故选A试题3答案:C【考点】平行线的性质.【分析】由垂线的性质和平角的定义求出∠3的度数,再由平行线的性质即可得出∠2的度数.【解答】解:∵AB⊥BC,∴∠ABC=90°,∴∠3=180°﹣90°﹣∠1=35°,∵a∥b,∴∠2=∠3=35°.故选:C.试题4答案:D【考点】简单几何体的三视图.【分析】观察几何体,找出左视图即可.【解答】解:如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是,故选D试题5答案:C【考点】圆心角、弧、弦的关系.【分析】先由圆心角、弧、弦的关系求出∠AOC=∠AOB=50°,再由圆周角定理即可得出结论.【解答】解:∵在⊙O中,=,∴∠AOC=∠AOB,∵∠AOB=40°,∴∠AOC=40°,∴∠ADC=∠AOC=20°,故选C.试题6答案:A【考点】代数式求值.【分析】将3﹣2x+4y变形为3﹣2(x﹣2y),然后代入数值进行计算即可.【解答】解:∵x﹣2y=3,∴3﹣2x+4y=3﹣2(x﹣2y)=3﹣2×3=﹣3;故选:A.试题7答案:C【考点】平移的性质.【分析】先根据平移的性质得到CF=AD=2cm,AC=DF,而AB+BC+AC=16cm,则四边形ABFD的周长=AB+BC+CF+DF+AD,然后利用整体代入的方法计算即可【解答】解:∵△ABE向右平移2cm得到△DCF,∴EF=AD=2cm,AE=DF,∵△ABE的周长为16cm,∴AB+BE+AE=16cm,∴四边形ABFD的周长=AB+BE+EF+DF+AD=AB+BE+AE+EF+AD=16cm+2cm+2cm=20cm.故选C.试题8答案:D【考点】众数;中位数.【分析】找出五位同学演讲成绩出现次数最多的分数即为众数,将分数按照从小到大的顺序排列,找出中位数即可.【解答】解:这五位同学演讲成绩为96,88,86,93,86,按照从小到大的顺序排列为86,86,88,93,96,则这五位同学演讲成绩的众数与中位数依次是86,88,故选D试题9答案:B【考点】概率公式;利用轴对称设计图案.【分析】由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有13种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.【解答】解:∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有4个情况,∴使图中黑色部分的图形仍然构成一个轴对称图形的概率是:.故选B.试题10答案:D【考点】反比例函数与一次函数的交点问题.【分析】过点A作AM⊥x轴于点M,过点F作FN⊥x轴于点N,设OA=a,BF=b,通过解直角三角形分别找出点A、F的坐标,结合反比例函数图象上点的坐标特征即可求出a、b的值,通过分割图形求面积,最终找出△AOF的面积等于梯形AMNF 的面积,利用梯形的面积公式即可得出结论.【解答】解:过点A作AM⊥x轴于点M,过点F作FN⊥x轴于点N,如图所示.设OA=a,BF=b,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,∴AM=OA•sin∠AOB=a,OM==a,∴点A的坐标为(a,a).∵点A在反比例函数y=的图象上,∴a×a==48,解得:a=10,或a=﹣10(舍去).∴AM=8,OM=6.∵四边形OACB是菱形,∴OA=OB=10,BC∥OA,∴∠FBN=∠AOB.在Rt△BNF中,BF=b,sin∠FBN=,∠BNF=90°,∴FN=BF•sin∠FBN=b,BN==b,∴点F的坐标为(10+b,b).∵点B在反比例函数y=的图象上,∴(10+b)×b=48,解得:b=,或b=(舍去).∴FN=,BN=﹣5,MN=OB+BN﹣OM=﹣1.S△AOF=S△AOM+S梯形AMNF﹣S△OFN=S梯形AMNF=(AM+FN)•MN=(8+)×(﹣1)=×(+1)×(﹣1)=40.故选D.试题11答案:x≥1 .【考点】二次根式有意义的条件.【分析】根据二次根式的性质可以得到x﹣1是非负数,由此即可求解.【解答】解:依题意得x﹣1≥0,∴x≥1.故答案为:x≥1.试题12答案:AH=CB等(只要符合要求即可)【考点】全等三角形的判定.【分析】开放型题型,根据垂直关系,可以判断△AEH与△CEB有两对对应角相等,就只需要找它们的一对对应边相等就可以了.【解答】解:∵AD⊥BC,CE⊥AB,垂足分别为D、E,∴∠BEC=∠AEC=90°,在Rt△AEH中,∠EAH=90°﹣∠AHE,又∵∠EAH=∠BAD,∴∠BAD=90°﹣∠AHE,在Rt△AEH和Rt△CDH中,∠CHD=∠AHE,∴∠EAH=∠DCH,∴∠EAH=90°﹣∠CHD=∠BCE,所以根据AAS添加AH=CB或EH=EB;根据ASA添加AE=CE.可证△AEH≌△CEB.故填空答案:AH=CB或EH=EB或AE=CE.试题13答案:.【考点】平行线分线段成比例.【分析】首先求出AD的长度,然后根据平行线分线段成比例定理,列出比例式即可得到结论.【解答】解:∵AG=2,GD=1,∴AD=3,∵AB∥CD∥EF,∴=,故答案为:.试题14答案:80【考点】分式方程的应用.【分析】设这辆汽车原来的速度是xkm/h,由题意列出分式方程,解方程求出x的值即可.【解答】解:设这辆汽车原来的速度是xkm/h,由题意列方程得:,解得:x=80经检验,x=80是原方程的解,所以这辆汽车原来的速度是80km/h.故答案为:80.试题15答案:.【考点】规律型:数字的变化类.【分析】把整数1化为,可以发现后一个数的分子恰是前面数的分母,分析即可求解.【解答】解:把整数1化为,得,,,(),,,…可以发现后一个数的分子恰是前面数的分母,所以,第4个数的分子是2,分母是3,故答案为:.试题16答案:【考点】整式的混合运算—化简求值.【分析】原式利用单项式乘以多项式,以及完全平方公式化简,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=a2﹣2ab+a2+2ab+b2=2a2+b2,当a=﹣1,b=时,原式=2+2=4.试题17答案:【考点】条形统计图;折线统计图.【分析】(1)将销售总额减去2012、2014、2015年的销售总额,求出2013年的销售额,补全条形统计图即可;(2)将2015年的销售总额乘以甲品牌剃须刀所占百分比即可.【解答】解:(1)2013年父亲节当天剃须刀的销售额为5.8﹣1.7﹣1.2﹣1.3=1.6(万元),补全条形图如图:(2)1.3×17%=0.221(万元).答:该店2015年父亲节当天甲品牌剃须刀的销售额为0.221万元.试题18答案:【考点】解直角三角形的应用-坡度坡角问题.【分析】(1)由新坡面的坡度为1:,可得tanα=tan∠CAB==,然后由特殊角的三角函数值,求得答案;(2)首先过点C作CD⊥AB于点D,由坡面BC的坡度为1:1,新坡面的坡度为1:.即可求得AD,BD的长,继而求得AB的长,则可求得答案.【解答】解:(1)∵新坡面的坡度为1:,∴tanα=tan∠CAB==,∴∠α=30°.答:新坡面的坡角a为30°;(2)文化墙PM不需要拆除.过点C作CD⊥AB于点D,则CD=6,∵坡面BC的坡度为1:1,新坡面的坡度为1:,∴BD=CD=6,AD=6,∴AB=AD﹣BD=6﹣6<8,∴文化墙PM不需要拆除.试题19答案:【考点】一元二次方程的应用.【分析】(1)设年平均增长率为x,根据:2014年投入资金给×(1+增长率)2=2016年投入资金,列出方程组求解可得;(2)设今年该地有a户享受到优先搬迁租房奖励,根据:前1000户获得的奖励总数+1000户以后获得的奖励总和≥500万,列不等式求解可得.【解答】解:(1)设该地投入异地安置资金的年平均增长率为x,根据题意,得:1280(1+x)2=1280+1600,解得:x=0.5或x=﹣2.25(舍),答:从2014年到2016年,该地投入异地安置资金的年平均增长率为50%;(2)设今年该地有a户享受到优先搬迁租房奖励,根据题意,得:1000×8×400+(a﹣1000)×5×400≥5000000,解得:a≥1900,答:今年该地至少有1900户享受到优先搬迁租房奖励.试题20答案:【考点】正方形的性质.【分析】(1)根据正方形的性质以及勾股定理即可求得;(2)根据等腰三角形三线合一的性质证得CE⊥AF,进一步得出∠BAF=∠BCN,然后通过证得△ABF≌△CBN得出AF=CN,进而证得△ABF∽△COM,根据相似三角形的性质和正方形的性质即可证得CN=CM.【解答】解:(1)∵四边形ABCD是正方形,∴△ABD是等腰直角三角形,∴2AB2=BD2,∵BD=,∴AB=1,∴正方形ABCD的边长为1;(2)CN=CM.证明:∵CF=CA,AF是∠ACF的平分线,∴CE⊥AF,∴∠AEN=∠CBN=90°,∵∠ANE=∠CNB,∴∠BAF=∠BCN,在△ABF和△CBN中,,∴△ABF≌△CBN(AAS),∴AF=CN,∵∠BAF=∠BCN,∠ACN=∠BCN,∴∠BAF=∠OCM,∵四边形ABCD是正方形,∴AC⊥BD,∴∠ABF=∠COM=90°,∴△ABF∽△COM,∴=,∴==,即CN=CM.试题21答案:【考点】一次函数综合题.【分析】(1)根据点P到直线y=kx+b的距离公式直接计算即可;(2)先利用点到直线的距离公式计算出圆心Q到直线y=x+9,然后根据切线的判定方法可判断⊙Q与直线y=x+9相切;(3)利用两平行线间的距离定义,在直线y=﹣2x+4上任意取一点,然后计算这个点到直线y=﹣2x﹣6的距离即可.【解答】解:(1)因为直线y=x﹣1,其中k=1,b=﹣1,所以点P(1,﹣1)到直线y=x﹣1的距离为:d====;(2)⊙Q与直线y=x+9的位置关系为相切.理由如下:圆心Q(0,5)到直线y=x+9的距离为:d===2,而⊙O的半径r为2,即d=r,所以⊙Q与直线y=x+9相切;(3)当x=0时,y=﹣2x+4=4,即点(0,4)在直线y=﹣2x+4,因为点(0,4)到直线y=﹣2x﹣6的距离为:d===2,因为直线y=﹣2x+4与y=﹣2x﹣6平行,所以这两条直线之间的距离为2.试题22答案:【考点】二次函数综合题.【分析】(1)抛物线顶点在x轴上则可得出顶点纵坐标为0,将解析式进行配方就可以求出a的值,继而得出函数解析式;(2)利用轴对称求最短路径的方法,首先通过B点关于l的对称点B′来确定P点位置,再求出直线B′E的解析式,进而得出P点坐标;(3)可以先求出直线FD的解析式,结合以线段FQ为直径的圆恰好经过点D这个条件,明确∠FDG=90°,得出直线DG解析式的k值与直线FD解析式的k值乘积为﹣1,利用D点坐标求出直线DG解析式,将点Q坐标用抛物线解析式表示后代入DG直线解析式可求出点Q坐标.【解答】解:(1)∵抛物线y=ax2﹣6ax+c(a>0)的顶点A在x轴上∴配方得y=a(x﹣3)2﹣9a+1,则有﹣9a+1=0,解得a=∴A点坐标为(3,0),抛物线m的解析式为y=x2﹣x+1;(2)∵点B关于对称轴直线x=3的对称点B′为(6,1)∴连接EB′交l于点P,如图所示设直线EB′的解析式为y=kx+b,把(﹣7,7)(6,1)代入得解得,则函数解析式为y=﹣x+把x=3代入解得y=,∴点P坐标为(3,);(3)∵y=﹣x+与x轴交于点D,∴点D坐标为(7,0),∵y=﹣x+与抛物线m的对称轴l交于点F,∴点F坐标为(3,2),求得FD的直线解析式为y=﹣x+,若以FQ为直径的圆经过点D,可得∠FDQ=90°,则DQ的直线解析式的k值为2,设DQ的直线解析式为y=2x+b,把(7,0)代入解得b=﹣14,则DQ的直线解析式为y=2x﹣14,设点Q的坐标为(a,),把点Q代入y=2x﹣14得=2a﹣14解得a1=9,a2=15.∴点Q坐标为(9,4)或(15,16).。
2020年山东省济宁市中考数学一模试卷及答案解析

13.(5分)已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为.
三、解答题(满分43分)
14.(5分)计算: + ﹣ ﹣( )﹣1.
1.若a≠b,且a2﹣4a+1=0,b2﹣4b+1=0,则 的值为( )
A. B.1C..4D.3
【分析】根据根与系数的关系即可求出答案.
【解答】解:由题意可知:a、b是方程x2﹣4x+1=0的两个不同的实数根,
∴由根与系数的关系可知:ab=1,a+b=4,
∴a2+1=4a,b2+1=4b,
∴原式= +
B.32x+2×20x=32×20﹣570
C.(32﹣x)(20﹣x)=32×20﹣570
D.32x+2×20x﹣2x2=570
5.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:
①a﹣b+c>0;
②3a+b=0;
(1)求购买一套A型课桌凳和一套B型课桌凳各需多少元?
(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳数量的 ,求该校本次购买A型和B型课桌凳共有几种方案?哪种方案的总费用最低?
17.(14分)如图,二次函数y=ax2+2x+c的图象与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,3).
2019-2020学年济宁市中考数学模拟试题(Word版)

济宁市高中段学校招生考试(试卷类型A )数 学 试 题第I 卷(选择题 共30分)一.选择题:本大题共10小题,每小题3分,共30分1.在0,-2,1, 21这四个数中,最小的数是( )A.0B.-2C. 1D. 212.下列计算正确的是( )A.322..x x x =B.236x x x =÷C. 623)(x x =D.x x =-13.如图,直线b a //,点B 在直线b 上,且AB ⊥BC,∠1=50°,那么∠2的度数是( )A .20° B.30° C. 40° D. 50°4.如图,几何体是由3个大小完全一样的正方体组成,它的左视图是( )A B C D5.如图,在圆O 中,弧AB=弧AC ,∠AOB=40°,则∠ADC 的度数是( )A.40°B.30°C.20°D.15°6.已知32=-y x ,那么代数式y x 423+-的值是( )A.-3B.0C.6D.97.如图,将△ABE 向右平移2cm 得到△DCF ,如果△ABE 的周长是16cm ,那么四边形ABFD 的周长是( )cmA.16B.18C.20D.218.在学校开展的“争做最优秀中学生”的一次演讲比赛中,编号分别为1,2,3,4,5的五位同学最后成绩如下表所示: 参赛者编号 1 2 3 4 5 成绩(分) 96 88 86 93 86A.96,88B.86,86C.88,86D.86,889.如图,在4 x 4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是( ) A136 B 135 C 134 D 13310.如图,O 为坐标点,四边形OACB 是菱形,OB 在x 轴的正半轴上,sin ∠AOB=54,反比例函数xy 48 在第一象限的图像经过点A ,与BC 交于F ,则△AOF 的面积等于( ) A.60 B.80 C.30 D.40第Ⅱ卷(非选择题 共70分)二.填空题:本大题共5小题,每小题3分,共15分11.若式子1 x 有意义,则实数x 的取值范围是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省济宁市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项符合题目要求。
1.(3.00A.1 B.﹣1C.3 D.﹣32.(3.00 分)为贯彻落实觉中央、国务院关于推进城乡义务教育一体化发展的部署,教育部会同有关部门近五年来共新建、改扩建校舍186000000平方米,其中数据186000000用科学记数法表示是()A.1.86×107 B.186×106 C.1.86×108 D.0.186×1093.(3.00分)下列运算正确的是()A.a8÷a4=a2 B.(a2)2=a4 C.a2•a3=a6D.a2+a2=2a44.(3.00分)如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是()A.50° B.60° C.80° D.100°5.(3.00分)多项式4a﹣a3分解因式的结果是()A.a(4﹣a2)B.a(2﹣a)(2+a)C.a(a﹣2)(a+2)D.a(2﹣a)26.(3.00分)如图,在平面直角坐标系中,点A,C在x轴上,点C的坐标为(﹣1,0),AC=2.将Rt△ABC 先绕点C顺时针旋转90°,再向右平移3个单位长度,则变换后点A的对应点坐标是()A.(2,2)B.(1,2)C.(﹣1,2)D.(2,﹣1)7.(3.00分)在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是()A.众数是5 B.中位数是5 C.平均数是6 D.方差是3.68.(3.00分)如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P=()A.50° B.55° C.60° D.65°9.(3.00分)一个几何体的三视图如图所示,则该几何体的表面积是()A.24+2πB.16+4πC.16+8πD.16+12π10.(3.00分)如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是()A.B.C.D.二、填空题:本大题共5小题,每小题3分,共15分。
x 则x的取值范围是.11.(3.00分)112.(3.00分)在平面直角坐标系中,已知一次函数y=﹣2x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1y2.(填“>”“<”“=”)13.(3.00分)在△ABC中,点E,F分别是边AB,AC 的中点,点D在BC边上,连接DE,DF,EF,请你添加一个条件,使△BED与△FDE全等.14.(3.00分)如图,在一笔直的海岸线l上有相距2km的A,B两个观测站,B 站在A站的正东方向上,从A站测得船C在北偏东60°的方向上,从B站测得船C在北偏东30°的方向上,则船C到海岸线l的距离是km.15.(3.00分)如图,点A是反比例函数y=4x(x>0)图象上一点,直线y=kx+b过点A并且与两坐标轴分别交于点B,C,过点A作AD⊥x轴,垂足为D,连接DC,若△BOC的面积是4,则△DOC的面积是.三、解答题:本大题共7小题,共55分。
16.(6.00分)化简:(y+2)(y﹣2)﹣(y﹣1)(y+5)17.(7.00分)某校开展研学旅行活动,准备去的研学基地有A(曲阜)、B(梁山)、C(汶上),D(泗水),每位学生只能选去一个地方,王老师对本全体同学选取的研学基地情况进行调查统计,绘制了两幅不完整的统计图(如图所示).(1)求该班的总入数,并补全条形统计图.(2)求D(泗水)所在扇形的圆心角度数;(3)该班班委4人中,1人选去曲阜,2人选去梁山,1人选去汶上,王老师要从这4人中随机抽取2人了解他们对研学基地的看法,请你用列表或画树状图的方法,求所抽取的2人中恰好有1人选去曲阜,1人选去梁山的概率.18.(7.00分)在一次数学活动课中,某数学小组探究求环形花坛(如图所示)面积的方法,现有以下工具;①卷尺;②直棒EF;③T型尺(CD所在的直线垂直平分线段AB).(1)在图1中,请你画出用T形尺找大圆圆心的示意图(保留画图痕迹,不写画法);(2)如图2,小华说:“我只用一根直棒和一个卷尺就可以求出环形花坛的面积,具体做法如下:将直棒放置到与小圆相切,用卷尺量出此时直棒与大圆两交点M,N之间的距离,就可求出环形花坛的面积”如果测得MN=10m,请你求出这个环形花坛的面积.19.(7.00分)“绿水青山就是金山银山”,为保护生态环境,A,B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40 人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?20.(8.00分)如图,在正方形ABCD中,点E,F分别是边AD,BC的中点,连接DF,过点E作EH⊥DF,垂足为H,EH的延长线交DC于点G.(1)猜想DG与CF的数量关系,并证明你的结论;(2)过点H作MN∥CD,分别交AD,BC于点M,N,若正方形ABCD的边长为10,点P是MN上一点,求△PDC周长的最小值.21.(9.00分)知识背景当a>0且x>0时,因为2≥0,所以x﹣ax≥0,从而x+ax≥(当.设函数y=x+ax(a>0,x>0),由上述结论可知:当.应用举例已知函数为y1=x(x>0)与函数y2=4x(x>0),则当=2时,y1+y2=x+4x有最小值为2=4.解决问题(1)已知函数为y1=x+3(x>﹣3)与函数y2=(x+3)2+9(x>﹣3),当x取何值时,21yy有最小值?最小值是多少?(2)已知某设备租赁使用成本包含以下三部分:一是设备的安装调试费用,共490元;二是设备的租赁使用费用,每天200元;三是设备的折旧费用,它与使用天数的平方成正比,比例系数为0.001.若设该设备的租赁使用天数为x天,则当x取何值时,该设备平均每天的租货使用成本最低?最低是多少元?22.(11.00分)如图,已知抛物线y=ax2+bx+c(a≠0)经过点A(3,0),B(﹣1,0),C(0,﹣3).(1)求该抛物线的解析式;(2)若以点A为圆心的圆与直线BC相切于点M,求切点M的坐标;(3)若点Q在x轴上,点P在抛物线上,是否存在以点B,C,Q,P为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.山东省济宁市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项符合题目要求。
1.(3.00)A.1 B.﹣1C.3 D.﹣3【解答】解:-1.故选:B.2.(3.00 分)为贯彻落实觉中央、国务院关于推进城乡义务教育一体化发展的部署,教育部会同有关部门近五年来共新建、改扩建校舍186000000平方米,其中数据186000000用科学记数法表示是()A.1.86×107 B.186×106 C.1.86×108 D.0.186×109【解答】解:将186000000用科学记数法表示为:1.86×108.故选:C.3.(3.00分)下列运算正确的是()A.a8÷a4=a2 B.(a2)2=a4 C.a2•a3=a6D.a2+a2=2a4【解答】解:A、a8÷a6=a4,故此选项错误;B、(a2)2=a4,故原题计算正确;C、a2•a3=a5,故此选项错误;D、a2+a2=2a2,故此选项错误;故选:B.4.(3.00分)如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是()A.50° B.60° C.80° D.100°【解答】解:圆上取一点A,连接AB,AD,∵点A、B,C,D在⊙O上,∠BCD=130°,∴∠BAD=50°,∴∠BOD=100°,故选:D.5.(3.00分)多项式4a﹣a3分解因式的结果是()A.a(4﹣a2)B.a(2﹣a)(2+a)C.a(a﹣2)(a+2)D.a(2﹣a)2【解答】解:4a﹣a3=a(4﹣a2)=a(2﹣a)(2+a).故选:B.6.(3.00分)如图,在平面直角坐标系中,点A,C在x轴上,点C的坐标为(﹣1,0),AC=2.将Rt△ABC 先绕点C顺时针旋转90°,再向右平移3个单位长度,则变换后点A的对应点坐标是()A.(2,2)B.(1,2)C.(﹣1,2)D.(2,﹣1)【解答】解:∵点C的坐标为(﹣1,0),AC=2,∴点A的坐标为(﹣3,0),如图所示,将Rt△ABC先绕点C顺时针旋转90°,则点A′的坐标为(﹣1,2),再向右平移3个单位长度,则变换后点A′的对应点坐标为(2,2),故选:A.7.(3.00分)在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是()A.众数是5 B.中位数是5 C.平均数是6 D.方差是3.6【解答】解:A、数据中5出现2次,所以众数为5,此选项正确;B、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;C、平均数为(7+5+3+5+10)÷5=6,此选项正确;D、方差为15×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;故选:D.8.(3.00分)如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P=()A.50° B.55° C.60° D.65°【解答】解:∵在五边形ABCDE中,∠A+∠B+∠E=300°,∴∠ECD+∠BCD=240°,又∵DP、CP分别平分∠EDC、∠BCD,∴∠PDC+∠PCD=120°,∴△CDP中,∠P=180°﹣(∠PDC+∠PCD)=180°﹣120°=60°.故选:C.9.(3.00分)一个几何体的三视图如图所示,则该几何体的表面积是()A.24+2πB.16+4πC.16+8πD.16+12π【解答】解:该几何体的表面积为2×12•π•22+4×4+12×2π•2×4=12π+16,故选:D.10.(3.00分)如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是()A.B.C.D.【解答】解:由题意知,原图形中各行、各列中点数之和为10,符合此要求的只有故选:C.二、填空题:本大题共5小题,每小题3分,共15分。