辽阳市初中数学圆的易错题汇编含答案
最新初中数学圆的易错题汇编附答案解析

最新初中数学圆的易错题汇编附答案解析一、选择题1.如图,ABC V 是O e 的内接三角形,且AB AC =,56ABC ∠=︒,O e 的直径CD 交AB 于点E ,则AED ∠的度数为( )A .99︒B .100︒C .101°D .102︒【答案】D【解析】【分析】 连接OB ,根据等腰三角形的性质得到∠A ,从而根据圆周角定理得出∠BOC ,再根据OB=OC 得出∠OBC ,即可得到∠OBE ,再结合外角性质和对顶角即可得到∠AED 的度数.【详解】解:连接OB ,∵AB=AC ,∴∠ABC=∠ACB=56°,∴∠A=180°-56°-56°=68°=12∠BOC , ∴∠BOC=68°×2=136°,∵OB=OC ,∴∠OBC=∠OCB=(180°-136°)÷2=22°,∴∠OBE=∠EBC-∠OBC=56°-22°=34°,∴∠AED=∠BEC=∠BOC-∠OBE=136°-34°=102°.故选D.【点睛】本题考查了圆周角定理,等腰三角形的性质,外角的性质,解题的关键是作出辅助线OB ,得到∠BOC 的度数.2.如图,点I 为△ABC 的内心,AB=4,AC=3,BC=2,将∠ACB 平移使其顶点与I 重合,则图中阴影部分的周长为()A.4.5 B.4 C.3 D.2【答案】B【解析】【分析】连接AI、BI,因为三角形的内心是角平分线的交点,所以AI是∠CAB的平分线,由平行的性质和等角对等边可得:AD=DI,同理BE=EI,所以图中阴影部分的周长就是边AB 的长.【详解】连接AI、BI,∵点I为△ABC的内心,∴AI平分∠CAB,∴∠CAI=∠BAI,由平移得:AC∥DI,∴∠CAI=∠AID,∴∠BAI=∠AID,∴AD=DI,同理可得:BE=EI,∴△DIE的周长=DE+DI+EI=DE+AD+BE=AB=4,即图中阴影部分的周长为4,故选B.【点睛】本题考查了三角形内心的定义、平移的性质及角平分线的定义等知识,熟练掌握三角形的内心是角平分线的交点是关键.3.下列命题是假命题的是()A.三角形两边的和大于第三边B.正六边形的每个中心角都等于60oC.半径为R2RD.只有正方形的外角和等于360【答案】D【解析】【分析】根据三角形三边关系、中心角的概念、正方形与圆的关系、多边形的外角和对各选项逐一进行分析判断即可.【详解】A 、三角形两边的和大于第三边,A 是真命题,不符合题意;B 、正六边形6条边对应6个中心角,每个中心角都等于360606︒︒=,B 是真命题,不符合题意;C 、半径为R 的圆内接正方形中,对角线长为圆的直径2R ,设边长等于x ,则:222(2)x x R +=,解得边长为2x R :=,C 是真命题,不符合题意;D 、任何凸3n n ≥()边形的外角和都为360︒,D 是假命题,符合题意, 故选D.【点睛】本题考查了真假命题,熟练掌握正多边形与圆、中心角、多边形的外角和等知识是解本题的关键.4.如图,弧 AB 等于弧CD ,OE AB ⊥于点E ,OF CD ⊥于点F ,下列结论中错误..的是( )A .OE=OFB .AB=CDC .∠AOB =∠COD D .OE >OF【答案】D【解析】【分析】 根据圆心角、弧、弦的关系可得B 、C 正确,根据垂径定理和勾股定理可得A 正确,D 错误.【详解】解:∵»»AB CD =,∴AB =CD ,∠AOB =∠COD ,∵OE AB ⊥,OF CD ⊥,∴BE =12AB ,DF =12CD , ∴BE =DF ,又∵OB =OD , ∴由勾股定理可知OE =OF ,即A 、B 、C 正确,D 错误,故选:D .【点睛】本题考查了圆心角、弧、弦的关系,垂径定理,勾股定理,熟练掌握基本性质定理是解题的关键.5.如图,AB是⊙O的直径,点C是⊙O上一点,点D在BA的延长线上,CD与⊙O交于另一点E,DE=OB=2,∠D=20°,则弧BC的长度为()A.23πB.13πC.43πD.49π【答案】A【解析】【分析】连接OE、OC,如图,根据等腰三角形的性质得到∠D=∠EOD=20°,根据外角的性质得到∠CEO=∠D+∠EOD=40°,根据等腰三角形的性质得到∠C=∠CEO=40°,根据外角的性质得到∠BOC=∠C+∠D=60°,根据求弧长的公式得到结论.【详解】解:连接OE、OC,如图,∵DE=OB=OE,∴∠D=∠EOD=20°,∴∠CEO=∠D+∠EOD=40°,∵OE=OC,∴∠C=∠CEO=40°,∴∠BOC=∠C+∠D=60°,∴»BC的长度=260?2360π⨯=23π,故选A.【点睛】本题考查了弧长公式:l=••180n Rπ(弧长为l,圆心角度数为n,圆的半径为R),还考查了圆的认识及等腰三角形的性质及三角形外角的性质,熟练掌握等腰三角形的性质和三角形外角性质是关键.6.如图,在Rt△ABC中,∠ABC=90°,AB=23,BC=2,以AB的中点为圆心,OA的长为半径作半圆交AC于点D,则图中阴影部分的面积为( )A.5342π-B.5342π+C.23π-D.432π-【答案】A【解析】【分析】连接OD,过点O作OH⊥AC,垂足为 H,则有AD=2AH,∠AHO=90°,在Rt△ABC中,利用∠A的正切值求出∠A=30°,继而可求得OH、AH长,根据圆周角定理可求得∠BOC =60°,然后根据S阴影=S△ABC-S△AOD-S扇形BOD进行计算即可.【详解】连接OD,过点O作OH⊥AC,垂足为 H,则有AD=2AH,∠AHO=90°,在Rt△ABC中,∠ABC=90°,AB=23,BC=2,tan∠A=323BCAB==,∴∠A=30°,∴OH=12OA=3,AH=AO•cos∠A=3332⨯=,∠BOC=2∠A=60°,∴AD=2AH=3,∴S阴影=S△ABC-S△AOD-S扇形BOD=()2603113232322360π⨯⨯⨯-⨯⨯-=5342π-,故选A.【点睛】本题考查了垂径定理,圆周角定理,扇形面积,解直角三角形等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.7.如图,已知ABC ∆和ABD ∆都O e 是的内接三角形,AC 和BD 相交于点E ,则与ADE ∆的相似的三角形是( )A .BCE ∆B .ABC ∆ C .ABD ∆ D .ABE ∆【答案】A【解析】【分析】 根据同弧和等弧所对的圆周角相等, 则AB 弧所对的圆周角BCE BDA ∠=∠,CEB ∠和DEA ∠是对顶角,所以ADE BCE ∆∆∽.【详解】解:BCE BDA ∠=∠Q ,CEB DEA ∠=∠ADE BCE ∴∆∆∽,故选:A .【点睛】考查相似三角形的判定定理: 两角对应相等的两个三角形相似,关键就是牢记同弧所对的圆周角相等.8.如图,点,,A B S 在圆上,若弦AB 的长度等于圆半径的2倍,则ASB ∠的度数是( ).A .22.5°B .30°C .45°D .60°【答案】C【解析】【分析】 设圆心为O ,连接OA OB 、,如图,先证明OAB V 为等腰直角三角形得到90AOB ∠=︒,然后根据圆周角定理确定ASB ∠的度数.【详解】解:设圆心为O ,连接OA OB 、,如图,∵弦AB 的长度等于圆半径的2倍,即2AB OA =,∴222OA OB AB +=,∴OAB V 为等腰直角三角形,90AOB ∠=︒ ,∴1452ASB AOB ∠=∠=°. 故选:C .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9.从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是( )A .B .C .D .【答案】B【解析】【分析】 根据圆周角定理(直径所对的圆周角是直角)求解,即可求得答案.【详解】∵直径所对的圆周角等于直角,∴从直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是B .故选B .【点睛】本题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.10.下列命题中哪一个是假命题( )A .8的立方根是2B .在函数y =3x 的图象中,y 随x 增大而增大C .菱形的对角线相等且平分D .在同圆中,相等的圆心角所对的弧相等【答案】C【解析】【分析】利用立方根的定义、一次函数的性质、菱形的性质及圆周角定理分别判断后即可确定正确的选项.【详解】A 、8的立方根是2,正确,是真命题;B 、在函数3y x 的图象中,y 随x 增大而增大,正确,是真命题;C 、菱形的对角线垂直且平分,故错误,是假命题;D 、在同圆中,相等的圆心角所对的弧相等,正确,是真命题,故选C .【点睛】考查了命题与定理的知识,能够了解立方根的定义、一次函数的性质、菱形的性质及圆周角定理等知识是解题关键.11.如图,⊙O 的直径CD =10cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,OM :OC =3:5,则AB 的长为( )A 91B .8cmC .6cmD .4cm【答案】B【解析】【分析】 由于⊙O 的直径CD =10cm ,则⊙O 的半径为5cm ,又已知OM :OC =3:5,则可以求出OM =3,OC =5,连接OA ,根据勾股定理和垂径定理可求得AB .【详解】解:如图所示,连接OA .⊙O 的直径CD =10cm ,则⊙O 的半径为5cm ,即OA =OC =5,又∵OM :OC =3:5,所以OM =3,∵AB ⊥CD ,垂足为M ,OC 过圆心∴AM =BM ,在Rt △AOM 中,22AM=5-3,∴AB =2AM =2×4=8.故选:B .【点睛】本题考查了垂径定理和勾股定理的应用,构造以半径、弦心距和弦长的一半为三边的直角三角形,是解题的关键.12.如图,四边形ABCD 内接于圆O ,DA DC =,50CBE ∠=︒,AOD ∠的大小为( )A .130°B .100°C .20°D .10°【答案】A【解析】【分析】 先求出∠ABC 的大小,根据内接四边形角度关系,得到∠ADC 的大小,从而得出∠C 的大小,最后利用圆周角与圆心角的关系得∠AOD 的大小.【详解】∵∠CBE=50°∴∠ABC=130°∵四边形ABCD 是内接四边形∴∠ADC=50°∵AD=DC∴在△ADC 中,∠C=∠DAC=65°∴∠AOD=2∠C=130°故选:A【点睛】本题考查圆的性质,主要是内接四边形对角互补和同弧对应圆心角是圆周角2倍,解题中,我们要充分利用圆的性质进行角度转换,以便得到我们需要的角度.13.如图,有一圆锥形粮堆,其侧面展开图是半径为6m 的半圆,粮堆母线AC 的中点P 处有一老鼠正在偷吃粮食,此时,小猫正在B 处,它要沿圆锥侧面到达P 处捕捉老鼠,则小猫所经过的最短路程长为( )A .3mB .33mC .35mD .4m【答案】C【解析】【分析】【详解】 如图,由题意得:AP =3,AB =6,90.BAP ∠=o ∴在圆锥侧面展开图中223635.BP m =+=故小猫经过的最短距离是35.m故选C.14.若正六边形的半径长为4,则它的边长等于( )A .4B .2C .23D .43【答案】A【解析】试题分析:正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,故正六边形的半径等于4,则正六边形的边长是4.故选A . 考点:正多边形和圆.15.如图,在扇形AOB 中,∠AOB=90°,OA=4,以OB 为直径作半圆,圆心为点C ,过点C 作OA 的平行线分别交两弧点D 、E ,则阴影部分的面积为( )A.53π﹣23B.53π+23C.23﹣πD.3 +53π【答案】A【解析】【分析】连接OE.可得S阴影=S扇形BOE-S扇形BCD-S△OCE.根据已知条件易求得BC=OC=CD=2,BO=OE=4.∠BOE=60o,CE=23,所以由扇形面积公式、三角形面积公式进行解答即可.【详解】解:连接OE,可得S阴影=S扇形BOE-S扇形BCD-S△OCE,由已知条件可得,BC=OC=CD=2,又,BO=OE=4,∴∠BOE=o60,可得CE=23,S扇形BOE=2604360π⋅⋅8=3π,S扇形BCD2902==360ππ⋅⋅,S△OCE=1=223=232⨯⨯,∴S阴影=S扇形BOE-S扇形BCD-S△OCE=8--233ππ=5-233π,故选A.【点睛】本题主要考查扇形面积公式、三角形面积公式,牢记公式并灵活运用可求得答案.16.如图,已知⊙O上三点A,B,C,半径OC=1,∠ABC=30°,切线PA交OC延长线于点P,则PA的长为()A.2 B3C2D.1 2【答案】B【解析】【分析】连接OA,由圆周角定理可求出∠AOC=60°,再根据∠AOC的正切即可求出PA的值.【详解】连接OA,∵∠ABC=30°,∴∠AOC=60°,∵PA是圆的切线,∴∠PAO=90°,∵tan∠AOC =PA OA,∴PA= tan60°×1=3.故选B.【点睛】本题考查了圆周角定理、切线的性质及锐角三角函数的知识,根据圆周角定理可求出∠AOC=60°是解答本题的关键.17.如图,AB是⊙O的直径,弦CD⊥AB于点M,若CD=8 cm,MB=2 cm,则直径AB的长为()A.9 cm B.10 cm C.11 cm D.12 cm【答案】B【解析】【分析】由CD⊥AB,可得DM=4.设半径OD=Rcm,则可求得OM的长,连接OD,在直角三角形DMO中,由勾股定理可求得OD的长,继而求得答案.【详解】解:连接OD,设⊙O半径OD为R,∵AB是⊙O的直径,弦CD⊥AB于点M,∴DM=12CD=4cm,OM=R-2,在RT△OMD中,OD²=DM²+OM²即R²=4²+(R-2)²,解得:R=5,∴直径AB的长为:2×5=10cm.故选B.【点睛】本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.18.我们研究过的图形中,圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了圆以外,还有一些几何图形也是“等宽曲线”,如勒洛三角形(如图1),它是分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧,三段圆弧围成的曲边三角形. 图2是等宽的勒洛三角形和圆形滚木的截面图.图1图2有如下四个结论:①勒洛三角形是中心对称图形②图1中,点A到BC上任意一点的距离都相等③图2中,勒洛三角形的周长与圆的周长相等④使用截面是勒洛三角形的滚木来搬运东西,会发生上下抖动上述结论中,所有正确结论的序号是()A.①②B.②③C.②④D.③④【答案】B【解析】【分析】逐一对选项进行分析即可.【详解】①勒洛三角形不是中心对称图形,故①错误;②图1中,点A到BC上任意一点的距离都相等,故②正确;③图2中,设圆的半径为r∴勒洛三角形的周长=12032180rrππ⨯=g g圆的周长为2rπ∴勒洛三角形的周长与圆的周长相等,故③正确;④使用截面是勒洛三角形的滚木来搬运东西,不会发生上下抖动,故④错误故选B【点睛】本题主要考查中心对称图形,弧长公式等,掌握中心对称图形和弧长公式是解题的关键.19.如图,⊙O 过点B 、C ,圆心O 在等腰直角△ABC 的内部,∠BAC =90°,OA =1,BC =6,则⊙O 的半径为( )A .23B .13C .4D .32【答案】B【解析】【分析】如下图,作AD ⊥BC ,设半径为r ,则在Rt △OBD 中,OD=3-1,OB=r ,BD=3,利用勾股定理可求得r.【详解】如图,过A 作AD ⊥BC ,由题意可知AD 必过点O ,连接OB ;∵△BAC 是等腰直角三角形,AD ⊥BC ,∴BD=CD=AD=3;∴OD=AD-OA=2;Rt △OBD 中,根据勾股定理,得:22BD OD 13+故答案为:B.【点睛】本题考查了等腰直角三角形的性质和勾股定理的应用,解题关键是利用等腰直角三角形ABC 判定点O 在AD 上.20.如图,在矩形ABCD 中,6AB =,对角线10AC =,O e 内切于ABC ∆,则图中阴影部分的面积是( )A .24π-B .242π-C .243π-D .244π-【答案】D【解析】【分析】 先根据勾股定理求出BC ,连接OA 、OB 、OC 、过点O 作OH ⊥AB ,OE ⊥BC ,OF ⊥AC ,设O e 的半径为r ,利用面积法求出r=2,再利用三角形ABC 的面积减去圆O 的面积得到阴影的面积.【详解】∵四边形ABCD 是矩形,∴∠B=90°,∵6AB =,10AC =,∴BC=8,连接OA 、OB 、OC 、过点O 作OH ⊥AB ,OE ⊥BC ,OF ⊥AC ,设O e 的半径为r ,∵O e 内切于ABC ∆,∴OH=OE=OF=r , ∵11()22ABC S AB BC AB AC BC r =⋅=++⋅V , ∴1168(6108)22r ⨯⨯=++⋅, 解得r=2,∴O e 的半径为2,∴2168-2224-4ABC O S S S ππ=-=⨯⨯⨯=V e 阴影, 故选:D .【点睛】此题考查矩形的性质,勾股定理,三角形内切圆的定义,阴影面积的求法,添加合适的辅助线是解题的关键.。
初中数学圆的易错题汇编含答案解析

初中数学圆的易错题汇编含答案解析一、选择题1.如图,将△ABC绕点C旋转60°得到△A′B′C′,已知AC=6,BC=4,则线段AB扫过的图形面积为()A.32πB.83πC.6πD.以上答案都不对【答案】D【解析】【分析】从图中可以看出,线段AB扫过的图形面积为一个环形,环形中的大圆半径是AC,小圆半径是BC,圆心角是60度,所以阴影面积=大扇形面积-小扇形面积.【详解】阴影面积=() 603616103603π⨯-=π.故选D.【点睛】本题的关键是理解出,线段AB扫过的图形面积为一个环形.2.如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC,若∠A=60°,∠ADC=85°,则∠C的度数是()A.25°B.27.5°C.30°D.35°【答案】D【解析】分析:直接利用三角形外角的性质以及邻补角的关系得出∠B以及∠ODC度数,再利用圆周角定理以及三角形内角和定理得出答案.详解:∵∠A=60°,∠ADC=85°,∴∠B=85°-60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°-95°-50°=35°故选D.点睛:此题主要考查了圆周角定理以及三角形内角和定理等知识,正确得出∠AOC度数是解题关键.3.如图,已知AB是⊙O的直径,点C在⊙O上,过点C的切线与AB的延长线交于点P,连接AC,若∠A=30°,PC=3,则⊙O的半径为()A.3B.23C.32D.23【答案】A【解析】连接OC,∵OA=OC,∠A=30°,∴∠OCA=∠A=30°,∴∠COB=∠A+∠ACO=60°,∵PC是⊙O切线,∴∠PCO=90°,∠P=30°,∵PC=3,∴OC=PC•tan30°3故选A4.如图,已知AB是⊙O是直径,弦CD⊥AB,AC2,BD=1,则sin∠ABD的值是()A .22B .13C .223D .3【答案】C【解析】【分析】 先根据垂径定理,可得BC 的长,再利用直径对应圆周角为90°得到△ABC 是直角三角形,利用勾股定理求得AB 的长,得到sin ∠ABC 的大小,最终得到sin ∠ABD【详解】解:∵弦CD ⊥AB ,AB 过O ,∴AB 平分CD ,∴BC =BD ,∴∠ABC =∠ABD ,∵BD =1,∴BC =1,∵AB 为⊙O 的直径,∴∠ACB =90°,由勾股定理得:AB =()22222213AC BC +=+=, ∴sin ∠ABD =sin ∠ABC =223AC AB = 故选:C .【点睛】本题考查了垂径定理、直径对应圆周角为90°、勾股定理和三角函数,解题关键是找出图形中的直角三角形,然后按照三角函数的定义求解5.如图,点I 为△ABC 的内心,AB=4,AC=3,BC=2,将∠ACB 平移使其顶点与I 重合,则图中阴影部分的周长为( )A .4.5B .4C .3D .2【答案】B【解析】【分析】连接AI、BI,因为三角形的内心是角平分线的交点,所以AI是∠CAB的平分线,由平行的性质和等角对等边可得:AD=DI,同理BE=EI,所以图中阴影部分的周长就是边AB 的长.【详解】连接AI、BI,∵点I为△ABC的内心,∴AI平分∠CAB,∴∠CAI=∠BAI,由平移得:AC∥DI,∴∠CAI=∠AID,∴∠BAI=∠AID,∴AD=DI,同理可得:BE=EI,∴△DIE的周长=DE+DI+EI=DE+AD+BE=AB=4,即图中阴影部分的周长为4,故选B.【点睛】本题考查了三角形内心的定义、平移的性质及角平分线的定义等知识,熟练掌握三角形的内心是角平分线的交点是关键.6.已知锐角∠AOB如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作»PQ,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交»PQ于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠COD B.若OM=MN,则∠AOB=20°C.MN∥CD D.MN=3CD【答案】D【解析】【分析】由作图知CM=CD=DN,再利用圆周角定理、圆心角定理逐一判断可得.【详解】解:由作图知CM=CD=DN,∴∠COM=∠COD,故A选项正确;∵OM=ON=MN,∴△OMN是等边三角形,∴∠MON=60°,∵CM=CD=DN,∴∠MOA=∠AOB=∠BON=13∠MON=20°,故B选项正确;∵∠MOA=∠AOB=∠BON=20°,∴∠OCD=∠OCM=80°,∴∠MCD=160°,又∠CMN=12∠AON=20°,∴∠MCD+∠CMN=180°,∴MN∥CD,故C选项正确;∵MC+CD+DN>MN,且CM=CD=DN,∴3CD>MN,故D选项错误;故选:D.【点睛】本题主要考查作图-复杂作图,解题的关键是掌握圆心角定理和圆周角定理等知识点.7.如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则图中阴影部分的面积是()A .224π--B .224π-+ C .142π+ D .142π- 【答案】B【解析】【分析】先根据正方形的边长,求得CB 1=OB 1=AC-AB 1=2-1,进而得到211(21)2OB C S =-V ,再根据S △AB1C1=12,以及扇形的面积公式即可得出图中阴影部分的面积. 【详解】连结DC 1,∵∠CAC 1=∠DCA =∠COB 1=∠DOC 1=45°,∴∠AC 1B 1=45°,∵∠ADC =90°,∴A ,D ,C 1在一条直线上,∵四边形ABCD 是正方形,∴AC 2OCB 1=45°,∴CB 1=OB 1∵AB 1=1,∴CB 1=OB 1=AC ﹣AB 12﹣1,∴211111(21)22OB C S OB CB ∆=⋅⋅=, ∵1111111111222AB C S AB B C =⋅=⨯⨯=V , 2245(2)11(21)22224ππ⨯⨯--=-+ 故选B .【点睛】本题考查了旋转的性质,正方形性质、勾股定理以及扇形面积的计算等知识点的综合应用,主要考查学生运用性质进行计算的能力.解题时注意:旋转前、后的图形全等.8.如图,在Rt△ABC中,∠ABC=90°,AB=23,BC=2,以AB的中点为圆心,OA的长为半径作半圆交AC于点D,则图中阴影部分的面积为( )A.532π-B.532π+C.23π-D.432π-【答案】A【解析】【分析】连接OD,过点O作OH⊥AC,垂足为 H,则有AD=2AH,∠AHO=90°,在Rt△ABC中,利用∠A的正切值求出∠A=30°,继而可求得OH、AH长,根据圆周角定理可求得∠BOC =60°,然后根据S阴影=S△ABC-S△AOD-S扇形BOD进行计算即可.【详解】连接OD,过点O作OH⊥AC,垂足为 H,则有AD=2AH,∠AHO=90°,在Rt△ABC中,∠ABC=90°,AB=23,BC=2,tan∠A=3323BCAB==,∴∠A=30°,∴OH=12OA=32,AH=AO•cos∠A=33322⨯=,∠BOC=2∠A=60°,∴AD=2AH=3,∴S阴影=S△ABC-S△AOD-S扇形BOD=()26031132323222360π⨯⨯⨯-⨯⨯-=532π-,故选A.【点睛】本题考查了垂径定理,圆周角定理,扇形面积,解直角三角形等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.9.从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是()A.B.C.D.【答案】B【解析】【分析】根据圆周角定理(直径所对的圆周角是直角)求解,即可求得答案.【详解】∵直径所对的圆周角等于直角,∴从直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是B.故选B.【点睛】本题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.10.如图,7×5的网格中的小正方形的边长都为1,小正方形的顶点叫格点,△ABC的三个顶点都在格点上,过点C作△ABC外接圆的切线,则该切线经过的格点个数是()A.1 B.2 C.3 D.4【答案】C【解析】【分析】作△ABC的外接圆,作出过点C的切线,两条图象法即可解决问题.【详解】如图⊙O即为所求,观察图象可知,过点C 作△ABC 外接圆的切线,则该切线经过的格点个数是3个,选:C .【点睛】考查三角形的外接圆与外心,切线的判定和性质等知识,解题的关键是理解题意.11.如图,O e 中,若66OA BC AOB ⊥∠=o 、,则ADC ∠的度数为( )A .33°B .56°C .57°D .66°【答案】A【解析】【分析】 根据垂径定理可得»»ACAB =,根据圆周角定理即可得答案. 【详解】∵OA ⊥BC ,∴»»ACAB =, ∵∠AOB=66°,∠AOB 和∠ADC 分别是»AB和»AC 所对的圆心角和圆周角, ∴∠ADC=12∠AOB=33°, 故选:A .【点睛】 本题考查垂径定理及圆周角定理,垂直于弦的直径平分弦,并且平分这条弦所对的两条弧;在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;熟练掌握相关定理是解题关键.12.如图,在矩形ABCD 中,6AB =,对角线10AC =,O e 内切于ABC ∆,则图中阴影部分的面积是( )A .24π-B .242π-C .243π-D .244π-【答案】D【解析】【分析】 先根据勾股定理求出BC ,连接OA 、OB 、OC 、过点O 作OH ⊥AB ,OE ⊥BC ,OF ⊥AC ,设O e 的半径为r ,利用面积法求出r=2,再利用三角形ABC 的面积减去圆O 的面积得到阴影的面积.【详解】∵四边形ABCD 是矩形,∴∠B=90°,∵6AB =,10AC =,∴BC=8,连接OA 、OB 、OC 、过点O 作OH ⊥AB ,OE ⊥BC ,OF ⊥AC ,设O e 的半径为r ,∵O e 内切于ABC ∆,∴OH=OE=OF=r , ∵11()22ABC S AB BC AB AC BC r =⋅=++⋅V , ∴1168(6108)22r ⨯⨯=++⋅, 解得r=2,∴O e 的半径为2,∴2168-2224-4ABC O S S S ππ=-=⨯⨯⨯=V e 阴影, 故选:D .【点睛】此题考查矩形的性质,勾股定理,三角形内切圆的定义,阴影面积的求法,添加合适的辅助线是解题的关键.13.如图,以正方形ABCD 的AB 边为直径作半圆O ,过点C 作直线切半圆于点E ,交AD 边于点F ,则FE EC=( )A .12B .13C .14D .38【答案】C【解析】【分析】连接OE 、OF 、OC ,利用切线长定理和切线的性质求出∠OCF =∠FOE ,证明△EOF ∽△ECO ,利用相似三角形的性质即可解答.【详解】解:连接OE 、OF 、OC .∵AD 、CF 、CB 都与⊙O 相切,∴CE =CB ;OE ⊥CF ; FO 平分∠AFC ,CO 平分∠BCF .∵AF ∥BC ,∴∠AFC+∠BCF =180°,∴∠OFC+∠OCF =90°,∵∠OFC+∠FOE =90°,∴∠OCF =∠FOE , ∴△EOF ∽△ECO ,∴=OE EF EC OE,即OE 2=EF•EC . 设正方形边长为a ,则OE =12a ,CE =a . ∴EF =14a . ∴EF EC =14. 故选:C .【点睛】本题考查切线的性质、切线长定理、相似三角形的判定与性质,其中通过作辅助线构造相似三角形是解答本题的关键..14.下列命题中哪一个是假命题( )A .8的立方根是2B .在函数y =3x 的图象中,y 随x 增大而增大C .菱形的对角线相等且平分D .在同圆中,相等的圆心角所对的弧相等【答案】C【解析】【分析】利用立方根的定义、一次函数的性质、菱形的性质及圆周角定理分别判断后即可确定正确的选项.【详解】A 、8的立方根是2,正确,是真命题;B 、在函数3y x =的图象中,y 随x 增大而增大,正确,是真命题;C 、菱形的对角线垂直且平分,故错误,是假命题;D 、在同圆中,相等的圆心角所对的弧相等,正确,是真命题,故选C .【点睛】考查了命题与定理的知识,能够了解立方根的定义、一次函数的性质、菱形的性质及圆周角定理等知识是解题关键.15.如图,点A 、B 、C 、D 、E 、F 等分⊙O ,分别以点B 、D 、F 为圆心,AF 的长为半径画弧,形成美丽的“三叶轮”图案.已知⊙O 的半径为1,那么“三叶轮”图案的面积为( )A .π33B .π33C 33π+ D 33π-【答案】B【解析】【分析】连接OA 、OB 、AB ,作OH ⊥AB 于H ,根据正多边形的中心角的求法求出∠AOB ,根据扇形面积公式计算.【详解】连接OA 、OB 、AB ,作OH ⊥AB 于H ,∵点A 、B 、C 、D 、E 、F 是⊙O 的等分点,∴∠AOB=60°,又OA=OB ,∴△AOB 是等边三角形,∴AB=OB=1,∠ABO=60°,∴OH=2211()2-=3, ∴“三叶轮”图案的面积=(2601360π⨯⨯-12×1×32)×6=π-332, 故选B .【点睛】本题考查的是正多边形和圆、扇形面积的计算,掌握正多边形的中心角的求法、扇形面积公式是解题的关键.16.如图,已知圆O 的半径为10,AB ⊥CD ,垂足为P ,且AB =CD =16,则OP 的长为( )A .6B .6C .8D .8【答案】B【解析】【分析】 作OM ⊥AB 于M ,ON ⊥CD 于N ,连接OP ,OB ,OD ,首先利用勾股定理求得OM 的长,然后判定四边形OMPN是正方形,求得正方形的对角线的长即可求得OP的长.【详解】作OM⊥AB于M,ON⊥CD于N,连接OP,OB,OD,∵AB=CD=16,∴BM=DN=8,∴OM=ON==6,∵AB⊥CD,∴∠DPB=90°,∵OM⊥AB于M,ON⊥CD于N,∴∠OMP=∠ONP=90°∴四边形MONP是矩形,∵OM=ON,∴四边形MONP是正方形,∴OP=.故选B.【点睛】本题考查的是垂径定理,正方形的判定与性质及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.17.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=86°,则∠BCD的度数是()A.86°B.94°C.107°D.137°【答案】D【解析】【分析】【详解】解:∵∠BOD=86°,∴∠BAD=86°÷2=43°,∵∠BAD+∠BCD=180°,∴∠BCD=180°-43°=137°,即∠BCD的度数是137°.故选D.【点睛】本题考查圆内接四边形的对角互补.②圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).18.如图,四边形ABCD内接于⊙O,F是¶CD上一点,且¶¶=,连接CF并延长交DF BCAD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为()A.45°B.50°C.55°D.60°【答案】B【解析】【分析】先根据圆内接四边形的性质求出∠ADC的度数,再由圆周角定理得出∠DCE的度数,根据三角形外角的性质即可得出结论.【详解】∵四边形ABCD内接于⊙O,∠ABC=105°,∴∠ADC=180°﹣∠ABC=180°﹣105°=75°.∵»»=,∠BAC=25°,DF BC∴∠DCE=∠BAC=25°,∴∠E=∠ADC﹣∠DCE=75°﹣25°=50°.【点睛】本题考查圆内接四边形的性质,圆周角定理.圆内接四边形对角互补.在同圆或等圆中,同弧或等弧所对的圆心角相等,而同弧所对的圆周角等于圆心角的一半,所以在同圆或等圆中,同弧或等弧所对的圆周角相等.19.如图,在扇形AOB中,∠AOB=90°,OA=4,以OB为直径作半圆,圆心为点C,过点C 作OA的平行线分别交两弧点D、E,则阴影部分的面积为()A .53π﹣3 B .533C .3π D 353π 【答案】A【解析】【分析】 连接OE.可得S 阴影=S 扇形BOE-S 扇形BCD-S △OCE.根据已知条件易求得BC=OC=CD=2,BO=OE=4.∠BOE=60o ,CE=23所以由扇形面积公式、 三角形面积公式进行解答即可.【详解】解:连接OE ,可得S 阴影=S 扇形BOE-S 扇形BCD-S △OCE ,由已知条件可得,BC=OC=CD=2,又,BO=OE=4,∴∠BOE=o 60,可得CE=23S 扇形BOE=2604360π⋅⋅8=3π, S 扇形BCD 2902==360ππ⋅⋅, S △OCE=1=223=232⨯⨯ ∴S 阴影=S 扇形BOE-S 扇形BCD-S △OCE=8--233ππ=533π 故选A.【点睛】本题主要考查扇形面积公式、 三角形面积公式,牢记公式并灵活运用可求得答案.20.如图,在Rt ABC △中,90ACB ∠=︒,30A ∠=︒,2BC =.将ABC V 绕点C 按顺时针方向旋转n 度后得到EDC △,此时点D 在AB 边上,斜边DE 交AC 边于点F ,则n 的大小和图中阴影部分的面积分别为( )A.302,B.602,C.3602,D.603,【答案】C【解析】试题分析:∵△ABC是直角三角形,∠ACB=90°,∠A=30°,BC=2,∴∠B=60°,AC=BC×cot∠33AB=2BC=4,∵△EDC是△ABC旋转而成,∴BC=CD=BD=12AB=2,∵∠B=60°,∴△BCD是等边三角形,∴∠BCD=60°,∴∠DCF=30°,∠DFC=90°,即DE⊥AC,∴DE∥BC,∵BD=12AB=2,∴DF是△ABC的中位线,∴DF=12BC=12×2=1,CF=12AC=1233∴S阴影=12DF×CF=1233故选C.考点:1.旋转的性质2.含30度角的直角三角形.。
初中数学圆的易错题汇编及答案

【答案】D
【解析】
【分析】
先根据扇形的面积公式计算出扇形的圆心角,再利用周长公式计算出底面圆的周长,得出半径.再构建直角三角形,解直角三角形即可.
【详解】
72π=解得n=180源自,∴扇形的弧长= =12πcm.
围成一个圆锥后如图所示:
因为扇形弧长=圆锥底面周长
15.如图,3个正方形在⊙O直径的同侧,顶点B、C、G、H都在⊙O的直径上,正方形ABCD的顶点A在⊙O上,顶点D在PC上,正方形EFGH的顶点E在⊙O上、顶点F在QG上,正方形PCGQ的顶点P也在⊙O上.若BC=1,GH=2,则CG的长为()
A. B. C. D.
【答案】B
【解析】
【分析】
【详解】
【详解】
解:连接CE,
∵E点在以CD为直径的圆上,
∴∠CED=90°,
∴∠AEC=180°-∠CED=90°,
∴E点也在以AC为直径的圆上,
设以AC为直径的圆的圆心为O,若BE最短,则OB最短,
∵AC=8,
∴OC= AC=4,
∵BC=3,∠ACB=90°,
∴OB= =5,
∵OE=OC=4,
∴BE=OB-OE=5-4=1.
【详解】
∵AB是⊙O的直径,
∴∠BDA=∠ADC=90°,
∵∠DAC=30°,DC=1,
∴AC=2DC=2,∠C=60°,
则在Rt△ABC中,AB=ACtanC=2 ,
∴⊙O的半径为 ,
故选:B.
【点睛】
本题主要考查圆周角定理,解题的关键是掌握半圆(或直径)所对的圆周角是直角和三角函数的应用.
8.如图,用半径为 ,面积 的扇形无重叠地围成一个圆锥,则这个圆锥的高为()
新初中数学圆的易错题汇编附答案解析(1)

新初中数学圆的易错题汇编附答案解析(1)一、选择题1.“直角”在几何学中无处不在,下列作图作出的AOB ∠不一定...是直角的是( ) A . B .C .D .【答案】C【解析】【分析】根据作图痕迹,分别探究各选项所做的几何图形问题可解.【详解】解:选项A 中,做出了点A 关于直线BC 的对称点,则AOB ∠是直角.选项B 中,AO 为BC 边上的高,则AOB ∠是直角.选项D 中,AOB ∠是直径AB 作对的圆周角,故AOB ∠是直角.故应选C【点睛】本题考查了尺规作图的相关知识,根据基本作图得到的结论,应用于几何证明是解题关键.2.如图,在平行四边形ABCD 中,BD ⊥AD ,以BD 为直径作圆,交于AB 于E ,交CD 于F ,若BD=12,AD :AB=1:2,则图中阴影部分的面积为( )A .3B .36ππC .312πD .48336ππ【答案】C【解析】【分析】 易得AD 长,利用相应的三角函数可求得∠ABD 的度数,进而求得∠EOD 的度数,那么一个阴影部分的面积=S △ABD -S 扇形DOE -S △BOE ,算出后乘2即可.【详解】连接OE ,OF .∵BD=12,AD :AB=1:2,∴AD=43 ,AB=83,∠ABD=30°,∴S △ABD =×43×12=243,S 扇形=603616,633933602OEB S ππ⨯==⨯⨯=V ∵两个阴影的面积相等,∴阴影面积=()224369330312ππ⨯--=- .故选:C【点睛】本题主要是理解阴影面积等于三角形面积减扇形面积和三角形面积.3.如图,在平面直角坐标系中,点P 是以C (﹣2,7)为圆心,1为半径的⊙C 上的一个动点,已知A (﹣1,0),B (1,0),连接PA ,PB ,则PA 2+PB 2的最小值是( )A .6B .8C .10D .12【答案】C【解析】【分析】 设点P (x ,y ),表示出PA 2+PB 2的值,从而转化为求OP 的最值,画出图形后可直观得出OP 的最值,代入求解即可.【详解】设P (x ,y ),∵PA 2=(x +1)2+y 2,PB 2=(x ﹣1)2+y 2,∴PA 2+PB 2=2x 2+2y 2+2=2(x 2+y 2)+2,∵OP 2=x 2+y 2,∴PA 2+PB 2=2OP 2+2,当点P 处于OC 与圆的交点上时,OP 取得最值,∴OP 的最小值为CO ﹣CP =3﹣1=2,∴PA 2+PB 2最小值为2×22+2=10.故选:C .【点睛】本题考查了圆的综合,解答本题的关键是设出点P 坐标,将所求代数式的值转化为求解OP 的最小值,难度较大.4.下列命题中,是假命题的是( )A .任意多边形的外角和为360oB .在ABC V 和'''A B C V 中,若''AB A B =,''BC B C =,'90C C ∠=∠=o ,则ABC V ≌'''A B C VC .在一个三角形中,任意两边之差小于第三边D .同弧所对的圆周角和圆心角相等【答案】D【解析】【分析】根据相关的知识点逐个分析.【详解】解:A. 任意多边形的外角和为360o ,是真命题;B. 在ABC V 和'''A B C V 中,若''AB A B =,''BC B C =,'90C C ∠=∠=o ,则ABC V ≌'''A B C V ,根据HL ,是真命题;C. 在一个三角形中,任意两边之差小于第三边,是真命题;D. 同弧所对的圆周角等于圆心角的一半,本选项是假命题.故选D .【点睛】本题考核知识点:判断命题的真假. 解题关键点:熟记相关性质或定义.5.已知某圆锥的底面半径为3 cm ,母线长5 cm ,则它的侧面展开图的面积为( ) A .30 cm 2B .15 cm 2C .30π cm 2D .15π cm 2【答案】D【解析】试题解析:根据圆锥的侧面展开图的面积计算公式得:S =RL π=15π故选D.6.已知锐角∠AOB 如图,(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作»PQ,交射线OB 于点D ,连接CD ;(2)分别以点C,D为圆心,CD长为半径作弧,交»PQ于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠COD B.若OM=MN,则∠AOB=20°C.MN∥CD D.MN=3CD【答案】D【解析】【分析】由作图知CM=CD=DN,再利用圆周角定理、圆心角定理逐一判断可得.【详解】解:由作图知CM=CD=DN,∴∠COM=∠COD,故A选项正确;∵OM=ON=MN,∴△OMN是等边三角形,∴∠MON=60°,∵CM=CD=DN,∴∠MOA=∠AOB=∠BON=13∠MON=20°,故B选项正确;∵∠MOA=∠AOB=∠BON=20°,∴∠OCD=∠OCM=80°,∴∠MCD=160°,又∠CMN=12∠AON=20°, ∴∠MCD+∠CMN=180°, ∴MN ∥CD ,故C 选项正确;∵MC+CD+DN >MN ,且CM=CD=DN , ∴3CD >MN ,故D 选项错误;故选:D .【点睛】本题主要考查作图-复杂作图,解题的关键是掌握圆心角定理和圆周角定理等知识点.7.如图,用半径为12cm ,面积272cm π的扇形无重叠地围成一个圆锥,则这个圆锥的高为( )A .12cmB .6cmC .6√2 cmD .63 cm【答案】D【解析】【分析】先根据扇形的面积公式计算出扇形的圆心角,再利用周长公式计算出底面圆的周长,得出半径.再构建直角三角形,解直角三角形即可.【详解】 72π=212360n π⨯ 解得n=180°,∴扇形的弧长=18012180π⨯=12πcm . 围成一个圆锥后如图所示:因为扇形弧长=圆锥底面周长即12π=2πr解得r=6cm ,即OB=6cm根据勾股定理得22126=63-,故选D .【点睛】本题综合考查了弧长公式,扇形弧长=用它围成的圆锥底面周长,及勾股定理等知识,所以学生学过的知识一定要结合起来.8.如图,AB是⊙O的直径,点C是⊙O上一点,点D在BA的延长线上,CD与⊙O交于另一点E,DE=OB=2,∠D=20°,则弧BC的长度为()A.23πB.13πC.43πD.49π【答案】A【解析】【分析】连接OE、OC,如图,根据等腰三角形的性质得到∠D=∠EOD=20°,根据外角的性质得到∠CEO=∠D+∠EOD=40°,根据等腰三角形的性质得到∠C=∠CEO=40°,根据外角的性质得到∠BOC=∠C+∠D=60°,根据求弧长的公式得到结论.【详解】解:连接OE、OC,如图,∵DE=OB=OE,∴∠D=∠EOD=20°,∴∠CEO=∠D+∠EOD=40°,∵OE=OC,∴∠C=∠CEO=40°,∴∠BOC=∠C+∠D=60°,∴»BC的长度=260?2360π⨯=23π,故选A.【点睛】本题考查了弧长公式:l=••180n R(弧长为l,圆心角度数为n,圆的半径为R),还考查了圆的认识及等腰三角形的性质及三角形外角的性质,熟练掌握等腰三角形的性质和三角形外角性质是关键.9.如图,已知AB是⊙O的直径,点C在⊙O上,过点C的切线与AB的延长线交于点P,连接AC,若∠A=30°,PC=3,则⊙O的半径为()A.3B.23C.32D.233【答案】A【解析】连接OC,∵OA=OC,∠A=30°,∴∠OCA=∠A=30°,∴∠COB=∠A+∠ACO=60°,∵PC是⊙O切线,∴∠PCO=90°,∠P=30°,∵PC=3,∴OC=PC•tan30°=3,故选A10.如图,在Rt△ABC中,∠ABC=90°,AB=23,BC=2,以AB的中点为圆心,OA的长为半径作半圆交AC于点D,则图中阴影部分的面积为( )A.5342π-B.5342π+C.23π-D.432π-【答案】A【解析】【分析】连接OD,过点O作OH⊥AC,垂足为 H,则有AD=2AH,∠AHO=90°,在Rt△ABC中,利用∠A的正切值求出∠A=30°,继而可求得OH、AH长,根据圆周角定理可求得∠BOC =60°,然后根据S阴影=S△ABC-S△AOD-S扇形BOD进行计算即可.【详解】连接OD,过点O作OH⊥AC,垂足为 H,则有AD=2AH,∠AHO=90°,在Rt△ABC中,∠ABC=90°,AB=23,BC=2,tan∠A=3323BCAB==,∴∠A=30°,∴OH=12OA=3,AH=AO•cos∠A=3332⨯=,∠BOC=2∠A=60°,∴AD=2AH=3,∴S阴影=S△ABC-S△AOD-S扇形BOD=()2603113232322360π⨯⨯⨯-⨯⨯-=532π-,故选A.【点睛】本题考查了垂径定理,圆周角定理,扇形面积,解直角三角形等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.11.如图,⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,则AB的长为()A91B.8cm C.6cm D.4cm【解析】【分析】由于⊙O 的直径CD =10cm ,则⊙O 的半径为5cm ,又已知OM :OC =3:5,则可以求出OM =3,OC =5,连接OA ,根据勾股定理和垂径定理可求得AB .【详解】解:如图所示,连接OA .⊙O 的直径CD =10cm ,则⊙O 的半径为5cm ,即OA =OC =5,又∵OM :OC =3:5,所以OM =3,∵AB ⊥CD ,垂足为M ,OC 过圆心∴AM =BM ,在Rt △AOM 中,22AM=5-3=4,∴AB =2AM =2×4=8.故选:B .【点睛】本题考查了垂径定理和勾股定理的应用,构造以半径、弦心距和弦长的一半为三边的直角三角形,是解题的关键.12.如图,ABC ∆是一块绿化带,将阴影部分修建为花圃.已知15AB =,9AC =,12BC =,阴影部分是ABC ∆的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( ).A .16 B .6π C .8π D .5π【解析】【分析】由AB=5,BC=4,AC=3,得到AB 2=BC 2+AC 2,根据勾股定理的逆定理得到△ABC 为直角三角形,于是得到△ABC 的内切圆半径=4+3-52=1,求得直角三角形的面积和圆的面积,即可得到结论.【详解】解:∵AB=5,BC=4,AC=3,∴AB 2=BC 2+AC 2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径=4+3-52=1, ∴S △ABC =12AC•BC=12×4×3=6, S 圆=π,∴小鸟落在花圃上的概率=6 , 故选B .【点睛】本题考查几何概率,直角三角形内切圆的半径等于两直角边的和与斜边差的一半及勾股定理的逆定理,解题关键是熟练掌握公式.13.如图,△ABC 内接于⊙O ,∠BAC=120°,AB=AC=4,BD 为⊙O 的直径,则BD 等于( )A .4B .6C .8D .12【答案】C【解析】【分析】 根据三角形内角和定理求得∠C=∠ABC=30°,再根据圆周角定理及直角三角形的性质即可求得BD 的长.【详解】∵∠BAC=120°,AB=AC=4,∴∠C=∠ABC=30°∴∠D=30°∵BD是直径∴∠BAD=90°∴BD=2AB=8.故选C.14.如图,AB是⊙O的直径,AC是⊙O的切线,OC交⊙O于点D,若∠ABD=24°,则∠C 的度数是()A.48°B.42°C.34°D.24°【答案】B【解析】【分析】根据切线的性质求出∠OAC,结合∠C=42°求出∠AOC,根据等腰三角形性质求出∠B=∠BDO,根据三角形外角性质求出即可.【详解】解:∵∠ABD=24°,∴∠AOC=48°,∵AC是⊙O的切线,∴∠OAC=90°,∴∠AOC+∠C=90°,∴∠C=90°﹣48°=42°,故选:B.【点睛】考查了切线的性质,圆周角定理,三角形内角和定理,解此题的关键是求出∠AOC的度数,题目比较好,难度适中.15.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=86°,则∠BCD的度数是()A.86°B.94°C.107°D.137°【答案】D【解析】【分析】【详解】解:∵∠BOD=86°,∴∠BAD=86°÷2=43°,∵∠BAD+∠BCD=180°,∴∠BCD=180°-43°=137°,即∠BCD的度数是137°.故选D.【点睛】本题考查圆内接四边形的对角互补.②圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).16.如图,四边形ABCD内接于⊙O,F是¶CD上一点,且¶¶=,连接CF并延长交DF BCAD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为()A.45°B.50°C.55°D.60°【答案】B【解析】【分析】先根据圆内接四边形的性质求出∠ADC的度数,再由圆周角定理得出∠DCE的度数,根据三角形外角的性质即可得出结论.【详解】∵四边形ABCD内接于⊙O,∠ABC=105°,∴∠ADC=180°﹣∠ABC=180°﹣105°=75°.∵»»=,∠BAC=25°,DF BC∴∠DCE=∠BAC=25°,∴∠E=∠ADC﹣∠DCE=75°﹣25°=50°.【点睛】本题考查圆内接四边形的性质,圆周角定理.圆内接四边形对角互补.在同圆或等圆中,同弧或等弧所对的圆心角相等,而同弧所对的圆周角等于圆心角的一半,所以在同圆或等圆中,同弧或等弧所对的圆周角相等.17.如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为( )A.10 B.9 C.8 D.7【答案】D【解析】分析:先根据多边形的内角和公式(n﹣2)•180°求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360°求出完成这一圆环需要的正五边形的个数,然后减去3即可得解.详解:∵五边形的内角和为(5﹣2)•180°=540°,∴正五边形的每一个内角为540°÷5=108°,如图,延长正五边形的两边相交于点O,则∠1=360°﹣108°×3=360°﹣324°=36°,360°÷36°=10.∵已经有3个五边形,∴10﹣3=7,即完成这一圆环还需7个五边形.故选D.点睛:本题考查了多边形的内角和公式,延长正五边形的两边相交于一点,并求出这个角的度数是解题的关键,注意需要减去已有的3个正五边形.18.如图,四边形ABCD是⊙O的内接正方形,点P是劣弧弧AB上任意一点(与点B不重合),则∠BPC的度数为()A.30°B.45°C.60°D.90°【答案】B【解析】分析:接OB,OC,根据四边形ABCD是正方形可知∠BOC=90°,再由圆周角定理即可得出结论.详解:连接OB,OC,∵四边形ABCD是正方形,∴∠BOC=90°,∴∠BPC=12∠BOC=45°.故选B.点睛:本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.19.我们研究过的图形中,圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了圆以外,还有一些几何图形也是“等宽曲线”,如勒洛三角形(如图1),它是分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧,三段圆弧围成的曲边三角形. 图2是等宽的勒洛三角形和圆形滚木的截面图.图1图2有如下四个结论:①勒洛三角形是中心对称图形②图1中,点A到BC上任意一点的距离都相等③图2中,勒洛三角形的周长与圆的周长相等④使用截面是勒洛三角形的滚木来搬运东西,会发生上下抖动上述结论中,所有正确结论的序号是()A.①②B.②③C.②④D.③④【答案】B【解析】【分析】逐一对选项进行分析即可.【详解】①勒洛三角形不是中心对称图形,故①错误;②图1中,点A到BC上任意一点的距离都相等,故②正确;③图2中,设圆的半径为r∴勒洛三角形的周长=12032180rrππ⨯=g g圆的周长为2rπ∴勒洛三角形的周长与圆的周长相等,故③正确;④使用截面是勒洛三角形的滚木来搬运东西,不会发生上下抖动,故④错误故选B【点睛】本题主要考查中心对称图形,弧长公式等,掌握中心对称图形和弧长公式是解题的关键. 20.如图,点A,B,C,D都在半径为2的⊙O上,若OA⊥BC,∠CDA=30°,则弦BC的长为()A.4 B.22C.3D.23【答案】B【解析】【分析】根据垂径定理得到CH=BH,»»AC BC=,根据圆周角定理求出∠AOB,根据正弦的定义求出BH,计算即可.【详解】如图BC与OA相交于H∵OA⊥BC,∴CH=BH,»»AC AB=,∴∠AOB=2∠CDA=60°,∴BH=OB⋅sin∠3,∴3故选D.【点睛】本题考查的是垂径定理、圆周角定理,熟练掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.。
中考数学复习圆的综合专项易错题含答案

一、圆的综合真题与模拟题分类汇编(难题易错题)1.(类比概念)三角形的内切圆是以三个内角的平分线的交点为圆心,以这点到三边的距离为半径的圆,则三角形可以称为圆的外切三角形,可以得出三角形的三边与该圆相切.以此类推,如图1,各边都和圆相切的四边形称为圆外切四边形(性质探究)如图1,试探究圆外切四边形的ABCD两组对边AB,CD与BC,AD之间的数量关系猜想结论:(要求用文字语言叙述)写出证明过程(利用图1,写出已知、求证、证明)(性质应用)①初中学过的下列四边形中哪些是圆外切四边形(填序号)A:平行四边形:B:菱形:C:矩形;D:正方形②如图2,圆外切四边形ABCD,且AB=12,CD=8,则四边形的周长是.③圆外切四边形的周长为48cm,相邻的三条边的比为5:4:7,求四边形各边的长.【答案】见解析.【解析】【分析】(1)根据切线长定理即可得出结论;(2)①圆外切四边形是内心到四边的距离相等,即可得出结论;②根据圆外切四边形的对边和相等,即可求出结论;③根据圆外切四边形的性质求出第四边,利用周长建立方程求解即可得出结论.【详解】性质探讨:圆外切四边形的对边和相等,理由:如图1,已知:四边形ABCD的四边AB,BC,CD,DA都于⊙O相切于G,F,E,H.求证:AD+BC=AB+CD.证明:∵AB,AD和⊙O相切,∴AG=AH,同理:BG=BF,CE=CF,DE=DH,∴AD+BC=AH+DH+BF+CF=AG+BG+CE+DE=AB+CD,即:圆外切四边形的对边和相等.故答案为:圆外切四边形的对边和相等;性质应用:①∵根据圆外切四边形的定义得:圆心到四边的距离相等.∵平行四边形和矩形不存在一点到四边的距离相等,而菱形和正方形对角线的交点到四边的距离相等.故答案为:B,D;②∵圆外切四边形ABCD,∴AB+CD=AD+BC.∵AB=12,CD=8,∴AD+BC=12+8=20,∴四边形的周长是AB+CD+AD+BC=20+20=40.故答案为:40;③∵相邻的三条边的比为5:4:7,∴设此三边为5x,4x,7x,根据圆外切四边形的性质得:第四边为5x+7x﹣4x=8x.∵圆外切四边形的周长为48cm,∴4x+5x+7x+8x=24x=48,∴x=2,∴此四边形的四边为4x=8cm,5x=10cm,7x=14cm,8x=16cm.【点睛】本题是圆的综合题,主要考查了新定义圆的外切的性质,四边形的周长,平行四边形,矩形,菱形,正方形的性质,切线长定理,理解和掌握圆外切四边形的定义是解答本题的关键.2.如图,已知△ABC内接于⊙O,AB是⊙O的直径,点F在⊙O上,且点C是的中点,过点C作⊙O的切线交AB的延长线于点D,交AF的延长线于点E.(1)求证:AE⊥DE;(2)若∠BAF=60°,AF=4,求CE的长.【答案】(1)证明见解析;(2)【解析】试题分析:(1)首先连接OC,由OC=OA,,易证得OC∥AE,又由DE切⊙O于点C,易证得AE⊥DE;(2)由AB是⊙O的直径,可得△ABC是直角三角形,易得△AEC为直角三角形,根据AE=3求得AC的长,然后连接OF,可得△OAF为等边三角形,知AF=OA=AB,在△ACB 中,利用已知条件求得答案.试题解析:(1)证明:连接OC,∵OC=OA,∴∠BAC=∠OCA,∵∴∠BAC=∠EAC,∴∠EAC=∠OCA,∴OC∥AE,∵DE切⊙O于点C,∴OC⊥DE,∴AE⊥DE;(2)解:∵AB是⊙O的直径,∴△ABC是直角三角形,∵∠CBA=60°,∴∠BAC=∠EAC=30°,∵△AEC为直角三角形,AE=3,∴AC=2,连接OF,∵OF=OA,∠OAF=∠BAC+∠EAC=60°,∴△OAF为等边三角形,∴AF=OA=AB,在Rt△ACB中,AC=2,tan∠CBA=,∴BC=2,∴AB=4,∴AF=2.考点:切线的性质.3.如图,已知Rt△ABC中,C=90°,O在AC上,以OC为半径作⊙O,切AB于D点,且BC=BD.(1)求证:AB为⊙O的切线;(2)若BC=6,sinA=35,求⊙O的半径;(3)在(2)的条件下,P点在⊙O上为一动点,求BP的最大值与最小值.【答案】(1)连OD,证明略;(2)半径为3;(3)最大值35+3 ,35-3.【解析】分析:(1)连接OD,OB,证明△ODB≌△OCB即可.(2)由sinA=35且BC=6可知,AB=10且cosA=45,然后求出OD的长度即可.(3)由三角形的三边关系,可知当连接OB交⊙O于点E、F,当点P分别于点E、F重合时,BP分别取最小值和最大值.详解:(1)如图:连接OD、OB.在△ODB和△OCB中:OD=OC,OB=OB,BC=BD;∴△ODB≌△OCB(SSS).∴∠ODB=∠C=90°.∴AB为⊙O的切线.(2)如图:∵sinA=35,∴CB3AB5,∵BC=6,∴AB=10,∵BD=BC=6,∴AD=AB-BD=4,∵sinA=35,∴cosA=45,∴OA=5,∴OD=3,即⊙O的半径为:3.(3)如图:连接OB,交⊙O为点E、F,由三角形的三边关系可知:当P点与E点重合时,PB取最小值.由(2)可知:OD=3,DB=6,∴OB=223635+=.∴PB=OB-OE=353-.当P点与F点重合时,PB去最大值,PB=OP+OB=3+35.点睛:本题属于综合类型题,主要考查了圆的综合知识.关键是对三角函数值、勾股定理、全等三角形判定与性质的理解.4.如图,已知⊙O的半径为1,PQ是⊙O的直径,n个相同的正三角形沿PQ排成一列,所有正三角形都关于PQ对称,其中第一个△A1B1C1的顶点A1与点P重合,第二个△A2B2C2的顶点A2是B1C1与PQ的交点,…,最后一个△A n B n C n的顶点B n、C n在圆上.如图1,当n=1时,正三角形的边长a1=_____;如图2,当n=2时,正三角形的边长a2=_____;如图3,正三角形的边长a n=_____(用含n的代数式表示).3831343n【解析】分析:(1)设PQ 与11B C 交于点D ,连接1B O ,得出OD=1A D -O 1A ,用含1a 的代数式表示OD ,在△O 1B D 中,根据勾股定理求出正三角形的边长1a ;(2)设PQ 与2B 2C 交于点E ,连接2B O ,得出OE=1A E-O 1A ,用含2a 的代数式表示OE ,在△O 2B E 中,根据勾股定理求出正三角形的边长2a ;(3)设PQ 与n B n C 交于点F ,连接n B O ,得出OF=1A F-O 1A ,用含an 的代数式表示OF ,在△O n B F 中,根据勾股定理求出正三角形的边长an . 本题解析:(1)易知△A 1B 1C 1的高为32 ∴a1.(2)设△A 1B 1C 1的高为h ,则A 2O =1-h ,连结B 2O ,设B 2C 2与PQ 交于点F ,则有OF =2h -1. ∵B 2O 2=OF 2+B 2F 2,∴1=(2h -1)2+2212a ⎛⎫ ⎪⎝⎭ .∵h2,∴1=2-1)2+14a 22,解得a 2 . (3)同(2),连结B n O ,设B n C n 与PQ 交于点F ,则有B n O 2=OF 2+B n F 2, 即1=(nh -1)2+212n a ⎛⎫ ⎪⎝⎭.∵h a n ,∴1=14a n 2+212n ⎛⎫- ⎪ ⎪⎝⎭,解得a n5.如图,Rt ABC ∆内接于⊙O ,AC BC =,BAC ∠的平分线AD 与⊙O 交于点D ,与BC 交于点E ,延长BD ,与AC 的延长线交于点F ,连接CD ,G 是CD 的中点,连接OG .(1)判断OG 与CD 的位置关系,写出你的结论并证明;(2)求证:AE BF =;(3)若3(2OG DE =,求⊙O 的面积.【答案】(1)OG ⊥CD (2)证明见解析(3)6π【解析】试题分析:(1)根据G 是CD 的中点,利用垂径定理证明即可;(2)先证明△ACE 与△BCF 全等,再利用全等三角形的性质即可证明;(3)构造等弦的弦心距,运用相似三角形以及勾股定理进行求解.试题解析:(1)解:猜想OG ⊥CD .证明如下:如图1,连接OC 、OD .∵OC =OD ,G 是CD 的中点,∴由等腰三角形的性质,有OG ⊥CD .(2)证明:∵AB 是⊙O 的直径,∴∠ACB =90°,而∠CAE =∠CBF (同弧所对的圆周角相等).在Rt △ACE 和Rt △BCF 中,∵∠ACE =∠BCF =90°,AC =BC ,∠CAE =∠CBF ,∴Rt △ACE ≌Rt △BCF (ASA ),∴AE =BF .(3)解:如图2,过点O 作BD 的垂线,垂足为H ,则H 为BD 的中点,∴OH =12AD ,即AD =2OH ,又∠CAD =∠BAD ⇒CD =BD ,∴OH =OG .在Rt △BDE 和Rt △ADB 中,∵∠DBE =∠DAC =∠BAD ,∴Rt △BDE ∽Rt △ADB ,∴BD DE AD DB=,即BD 2=AD •DE ,∴22622BD AD DE OG DE =⋅=⋅=().又BD =FD ,∴BF =2BD ,∴2242422BF BD ==()①,设AC =x ,则BC =x ,AB 2x .∵AD 是∠BAC 的平分线,∴∠FAD =∠BAD .在Rt △ABD 和Rt △AFD 中,∵∠ADB =∠ADF =90°,AD =AD ,∠FAD =∠BAD ,∴Rt △ABD ≌Rt △AFD (ASA ),∴AF =AB 2x ,BD =FD ,∴CF =AF ﹣AC 221x x x -=().在Rt △BCF 中,由勾股定理,得:222222[21]222BF BC CF x x x =+=+=()()②,由①、②,得22222422x =()(),∴x 2=12,解得:23x =23-∴222326AB x ===∴⊙O 6,∴S ⊙O =π•6)2=6π.点睛:本题是圆的综合题.解题的关键是熟练运用垂径定理、勾股定理、相似三角形的判定与性质.6.如图,OB是以(O,a)为圆心,a为半径的⊙O1的弦,过B点作⊙O1的切线,P为劣弧OB上的任一点,且过P作OB、AB、OA的垂线,垂足分别是D、E、F.(1)求证:PD2=PE•PF;(2)当∠BOP=30°,P点为OB的中点时,求D、E、F、P四个点的坐标及S△DEF.【答案】(1)详见解析;(2)D(﹣3a,34a),E(﹣33a,34a),F(﹣3a,0),P(﹣3a,2a);S△DEF=33a2.【解析】试题分析:(1)连接PB,OP,利用AB切⊙O1于B求证△PBE∽△POD,得出PB PEOP PD=,同理,△OPF∽△BPD,得出PB PDOP PF=,然后利用等量代换即可.(2)连接O1B,O1P,得出△O1BP和△O1PO为等边三角形,根据直角三角形的性质即可解得D、E、F、P四个点的坐标.再利用三角形的面积公式可直接求出三角形DEF的面积.试题解析:(1)证明:连接PB,OP,∵PE⊥AB,PD⊥OB,∴∠BEP=∠PDO=90°,∵AB切⊙O1于B,∠ABP=∠BOP,∴△PBE∽△POD,∴=,同理,△OPF∽△BPD∴=,∴=,∴PD2=PE•PF;(2)连接O1B,O1P,∵AB切⊙O1于B,∠POB=30°,∴∠ABP=30°,∴∠O1BP=90°﹣30°=60°,∵O1B=O1P,∴△O1BP为等边三角形,∴O1B=BP,∵P为弧BO的中点,∴BP=OP,即△O1PO为等边三角形,∴O1P=OP=a,∴∠O1OP=60°,又∵P为弧BO的中点,∴O1P⊥OB,在△O1DO中,∵∠O1OP=60°O1O=a,∴O1D=a,OD=a,过D作DM⊥OO1于M,∴DM=OD=a,OM=DM=a,∴D(﹣a, a),∵∠O1OF=90°,∠O1OP=60°∴∠POF=30°,∵PE⊥OA,∴PF=OP=a,OF=a,∴P(﹣a,),F(﹣a,0),∵AB切⊙O1于B,∠POB=30°,∴∠ABP=∠BOP=30°,∵PE⊥AB,PB=a,∴∠EPB=60°∴PE=a,BE=a,∵P为弧BO的中点,∴BP=PO,∴∠PBO=∠BOP=30°,∴∠BPO=120°,∴∠BPE+∠BPO=120°+60°=180°,即OPE三点共线,∵OE=a+a=a,过E作EM⊥x轴于M,∵AO切⊙O1于O,∴∠EOA=30°,∴EM=OE=a,OM=a,∴E(﹣a, a),∵E(﹣a, a),D(﹣a, a),∴DE=﹣a﹣(﹣a)=a,DE边上的高为: a,∴S△DEF=×a×a=a2.故答案为:D(﹣a, a),E(﹣a, a),F(﹣a,0),P(﹣a,);S△DEF=a2.7.如图,AD是△ABC的角平分线,以AD为弦的⊙O交AB、AC于E、F,已知EF∥BC.(1)求证:BC是⊙O的切线;(2)若已知AE=9,CF=4,求DE长;(3)在(2)的条件下,若∠BAC=60°,求tan∠AFE的值及GD长.【答案】(1)证明见解析(2)DE=6(3)375【解析】 试题分析:(1)连接OD ,由角平分线的定义得到∠1=∠2,得到DE DF =,根据垂径定理得到OD ⊥EF ,根据平行线的性质得到OD ⊥BC ,于是得到结论;(2)连接DE ,由DE DF =,得到DE=DF ,根据平行线的性质得到∠3=∠4,等量代换得到∠1=∠4,根据相似三角形的性质即可得到结论;(3)过F 作FH ⊥BC 于H ,由已知条件得到∠1=∠2=∠3=∠4=30°,解直角三角形得到FH=12DF=12×6=3,3227CF HF -=,根据三角函数的定义得到tan ∠AFE=tan ∠C=37HF CH =;根据相似三角形到现在即可得到结论. 试题解析:(1)连接OD ,∵AD 是△ABC 的角平分线,∴∠1=∠2,∴DE DF =,∴OD ⊥EF ,∵EF ∥BC ,∴OD ⊥BC ,∴BC 是⊙O 的切线;(2)连接DE ,∵DE DF =,∴DE=DF ,∵EF ∥BC ,∴∠3=∠4,∵∠1=∠3,∴∠1=∠4,∵∠DFC=∠AED ,∴△AED ∽△DFC , ∴AE DE DF CF =,即94DE DE =, ∴DE 2=36,∴DE=6;(3)过F 作FH ⊥BC 于H ,∵∠BAC=60°,∴∠1=∠2=∠3=∠4=30°,∴FH=12DF=162⨯=3,DH=33, ∴CH=227CF HF -=,∵EF ∥BC ,∴∠C=∠AFE ,∴tan ∠AFE=tan ∠C=377HF CH =; ∵∠4=∠2.∠C=∠C ,∴△ADC ∽△DFC ,∴AD CD DF CF=, ∵∠5=∠5,∠3=∠2,∴△ADF ∽△FDG ,∴AD DF DF DG =, ∴CD DF CF DG =,即3376DG+=, ∴DG=18367-.点睛:本题考查了切线的判定、圆周角定理、相似三角形的判定与性质、解直角三角形、平行线的性质,正确作出辅助线是解题的关键.8.如图,AB 是⊙O 的直径,弦BC =OB ,点D 是AC 上一动点,点E 是CD 中点,连接BD 分别交OC ,OE 于点F ,G .(1)求∠DGE 的度数;(2)若CF OF =12,求BF GF的值;(3)记△CFB ,△DGO 的面积分别为S 1,S 2,若CFOF =k ,求12S S 的值.(用含k 的式子表示)【答案】(1)∠DGE =60°;(2)72;(3)12S S =211k k k +++. 【解析】【分析】(1)根据等边三角形的性质,同弧所对的圆心角和圆周角的关系,可以求得∠DGE 的度数;(2)过点F 作FH ⊥AB 于点H 设CF =1,则OF =2,OC =OB =3,根据勾股定理求出BF 的长度,再证得△FGO ∽△FCB ,进而求得BF GF的值; (3)根据题意,作出合适的辅助线,然后根据三角形相似、勾股定理可以用含k 的式子表示出12S S 的值. 【详解】解:(1)∵BC =OB =OC ,∴∠COB =60°,∴∠CDB =12∠COB =30°, ∵OC =OD ,点E 为CD 中点,∴OE ⊥CD ,∴∠GED =90°,∴∠DGE =60°;(2)过点F 作FH ⊥AB 于点H设CF =1,则OF =2,OC =OB =3∵∠COB =60°∴OH =12OF =1, ∴HF 33HB =OB ﹣OH =2,在Rt △BHF 中,BF 22HB HF 7=+=由OC =OB ,∠COB =60°得:∠OCB =60°,又∵∠OGB =∠DGE =60°,∴∠OGB =∠OCB ,∵∠OFG =∠CFB ,∴△FGO ∽△FCB , ∴OF GF BF CF=, ∴, ∴BF GF =72. (3)过点F 作FH ⊥AB 于点H ,设OF =1,则CF =k ,OB =OC =k+1,∵∠COB =60°,∴OH =12OF=12, ∴HF=,HB =OB ﹣OH =k+12, 在Rt △BHF 中, BF=由(2)得:△FGO ∽△FCB , ∴GO OF CB BF =,即1GO k =+,∴GO =过点C 作CP ⊥BD 于点P∵∠CDB =30°∴PC =12CD , ∵点E 是CD 中点,∴DE =12CD , ∴PC =DE ,∵DE ⊥OE , ∴12S S =BF GO=1k +=211k k k +++【点睛】圆的综合题,解答本题的关键是明确题意,找出所求问题需要的条件,利用三角形相似和勾股定理、数形结合的思想解答.9.在中,,,,分别是边,的中点,若等腰绕点逆时针旋转,得到等腰,设旋转角为,记直线与的交点为.(1)问题发现如图1,当时,线段的长等于_________,线段的长等于_________.(2)探究证明如图2,当时,求证:,且.(3)问题解决求点到所在直线的距离的最大值.(直接写出结果)【答案】(1);;(2)详见解析;(3)【解析】【分析】(1)利用等腰直角三角形的性质结合勾股定理分别得出BD1的长和CE1的长;(2)根据旋转的性质得出,∠D1AB=∠E1AC=135°,进而求出△D1AB≌△E1AC(SAS),即可得出答案;(3)首先作PG⊥AB,交AB所在直线于点G,则D1,E1在以A为圆心,AD为半径的圆上,当BD1所在直线与⊙A相切时,直线BD1与CE1的交点P到直线AB的距离最大,此时四边形AD1PE1是正方形,进而求出PG的长.【详解】(1)解:∵∠A=90°,AC=AB=4,D,E分别是边AB,AC的中点,∴AE=AD=2,∵等腰Rt△ADE绕点A逆时针旋转,得到等腰Rt△AD1E1,设旋转角为α(0<α≤180°),∴当α=90°时,AE1=2,∠E1AE=90°,∴BD1=;故答案为:;;(2)证明:由题意可知,,,∵是由绕点逆时针旋转得到,∴,,在和中,,∴,∴,.∵,∴,∴,∴,且.(3)点的运动轨迹是在的上半圆周,点的运动轨迹是在的弧段.即当与相切时,有最大值.点到所在直线的距离的最大值为.【点睛】此题主要考查了几何变换以及等腰腰直角三角形的性质和勾股定理以及切线的性质等知识,根据题意得出PG的最长时P点的位置是解题关键.10.已知AB,CD都是O的直径,连接DB,过点C的切线交DB的延长线于点E.()1如图1,求证:AOD2E180∠∠+=;()2如图2,过点A作AF EC⊥交EC的延长线于点F,过点D作DG AB⊥,垂足为点=;G,求证:DG CF()3如图3,在()2的条件下,当DG 3CE 4=时,在O 外取一点H ,连接CH 、DH 分别交O 于点M 、N ,且HDE HCE ∠∠=,点P 在HD 的延长线上,连接PO 并延长交CM 于点Q ,若PD 11=,DN 14=,MQ OB =,求线段HM 的长.【答案】(1)证明见解析(2)证明见解析(3)837+【解析】【分析】(1)由∠D +∠E =90°,可得2∠D +2∠E =180°,只要证明∠AOD =2∠D 即可; (2)如图2中,作OR ⊥AF 于R .只要证明△AOR ≌△ODG 即可;(3)如图3中,连接BC 、OM 、ON 、CN ,作BT ⊥CL 于T ,作NK ⊥CH 于K ,设CH 交DE 于W .解直角三角形分别求出KM ,KH 即可;【详解】()1证明:如图1中,O 与CE 相切于点C ,OC CE ∴⊥,OCE 90∠∴=,D E 90∠∠∴+=,2D 2E 180∠∠∴+=,AOD COB ∠∠=,BOC 2D ∠∠=,AOD 2D ∠∠=,AOD 2E 180∠∠∴+=.()2证明:如图2中,作OR AF ⊥于R .OCF F ORF 90∠∠∠===,∴四边形OCFR 是矩形,AF//CD ∴,CF OR =,A AOD ∠∠∴=,在AOR 和ODG 中,A AOD ∠∠=,ARO OGD 90∠∠==,OA DO =,AOR ∴≌ODG ,OR DG ∴=,DG CF ∴=,()3解:如图3中,连接BC 、OM 、ON 、CN ,作BT CL ⊥于T ,作NK CH ⊥于K ,设CH 交DE 于W .设DG 3m =,则CF 3m =,CE 4m =,OCF F BTE 90∠∠∠===,AF//OC//BT ∴,OA OB =,CT CF 3m ∴==,ET m ∴=, CD 为直径,CBD CND 90CBE ∠∠∠∴===,E 90EBT CBT ∠∠∠∴=-=,tan E tan CBT ∠∠∴=,BT CT ET BT∴=,BT 3m m BT∴=,BT ∴=负根已经舍弃),tan E ∠∴== E 60∠∴=,CWD HDE H ∠∠∠=+,HDE HCE ∠∠=,H E 60∠∠∴==,MON 2HCN 60∠∠∴==,OM ON =,OMN ∴是等边三角形,MN ON ∴=,QM OB OM ==,MOQ MQO ∠∠∴=,MOQ PON 180MON 120∠∠∠+=-=,MQO P 180H 120∠∠∠+=-=, PON P ∠∠∴=,ON NP 141125∴==+=,CD 2ON 50∴==,MN ON 25==,在Rt CDN 中,CN 48==,在Rt CHN 中,CN 48tan H HN HN∠===HN ∴=在Rt KNH 中,1KH HN 2==NK 24==,在Rt NMK 中,MK 7===,HM HK MK 7∴=+=.【点睛】本题考查圆综合题、全等三角形的判定和性质、平行线的性质、勾股定理、等边三角形的判定和性质、锐角三角函数等知识,添加常用辅助线,构造全等三角形或直角三角形解题的关键.。
初中数学圆的易错题汇编含答案

【分析】
如图,作OH⊥AB于H.利用三角形中位线定理求出AB的长,解直角三角形求出OB即可解决问题.
【详解】
解:如图作OH⊥AB于H.
∵C、D分别是弦AP、BP的中点.
∴CD是△APB的中位线,
∴AB=2CD= ,
∵OH⊥AB,
∴BH=AH= ,
∵OA=OB,∠AOB=120°,
∴∠AOH=∠BOH=60°,
∴∠C=∠ABC=30°
∴∠D=30°
∵BD是直径
∴∠BAD=90°
∴BD=2AB=8.
故选C.
2.如图,已知AB是⊙O是直径,弦CD⊥AB,AC=2 ,BD=1,则sin∠ABD的值是()
A.2 B. C. D.3
【答案】C
【解析】
【分析】
先根据垂径定理,可得BC的长,再利用直径对应圆周角为90°得到△ABC是直角三角形,利用勾股定理求得AB的长,得到sin∠ABC的大小,最终得到sin∠ABD
A.πB. πC.2πD. π
【答案】A
【解析】
【分析】连接OA、OB,求出∠AOB=90°,根据勾股定理求出AO,根据弧长公式求出即可.
【详解】连接OA、OB,
∵正方形ABCD内接于⊙O,
∴AB=BC=DC=AD,
∴ ,
∴∠AOB= ×360°=90°,
在Rt△AOB中,由勾股定理得:2AO2=(2 )2,
12.如图,圆锥的底面半径为1,母线长为3,则侧面积为( )
A.2πB.3πC.6πD.8π
【答案】B
【解析】
【分析】
圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.
【详解】
解:圆锥的侧面积为: ×2π×1×3=3π,
最新初中数学圆的易错题汇编附答案

最新初中数学圆的易错题汇编附答案一、选择题1.如图,已知⊙O的半径是4,点A,B,C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为()A.8833π-B.16833π-C.16433π-D.8433π-【答案】B【解析】【分析】连接OB和AC交于点D,根据菱形及直角三角形的性质先求出AC的长及∠AOC的度数,然后求出菱形ABCO及扇形AOC的面积,则由S扇形AOC-S菱形ABCO可得答案.【详解】连接OB和AC交于点D,如图所示:∵圆的半径为4,OB=OA=OC=4,又四边形OABC是菱形,∴OB⊥AC,OD=12OB=2,在Rt△COD中利用勾股定理可知:224223,243AC CD-===∵sin∠COD=3,2 CDOC=∴∠COD=60°,∠AOC=2∠COD=120°,∴S菱形ABCO=1144383 22OB AC⨯=⨯⨯=∴S扇形=2 1204163603ππ⨯⨯=,则图中阴影部分面积为S 扇形AOC -S 菱形ABCO =16833π-. 故选B. 【点睛】考查扇形面积的计算及菱形的性质,解题关键是熟练掌握菱形的面积=12a•b (a 、b 是两条对角线的长度);扇形的面积=2360n r π.2.如图,ABC V 中,90ACB ∠=︒,O 为AB 中点,且4AB =,CD ,AD 分别平分ACB ∠和CAB ∠,交于D 点,则OD 的最小值为( ).A .1B .22C 21D .222【答案】D 【解析】 【分析】根据三角形角平分线的交点是三角形的内心,得到DO 最小时,DO 为三角形ABC 内切圆的半径,结合切线长定理得到三角形为等腰直角三角形,从而得到答案. 【详解】解:Q CD ,AD 分别平分ACB ∠和CAB ∠,交于D 点,D ∴为ABC ∆的内心,OD ∴最小时,OD 为ABC ∆的内切圆的半径, ,DO AB ∴⊥过D 作,,DE AC DF BC ⊥⊥ 垂足分别为,,E F,DE DF DO ∴== ∴ 四边形DFCE 为正方形,O Q 为AB 的中点,4,AB =2,AO BO ∴==由切线长定理得:2,2,,AO AE BO BF CE CF r ======sin 4522,AC BC AB ∴==•︒=222,CE AC AE ∴=-= Q 四边形DFCE 为正方形,,CE DE ∴=222,OD CE ∴==故选D.【点睛】本题考查的动态问题中的线段的最小值,三角形的内心的性质,等腰直角三角形的性质,锐角三角函数的计算,掌握相关知识点是解题关键.3.中国科学技术馆有“圆与非圆”展品,涉及了“等宽曲线”的知识.因为圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了例以外,还有一些几何图形也是“等宽曲线”,如勒洛只角形(图1),它是分别以等边三角形的征个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧.三段圆弧围成的曲边三角形.图2是等宽的勒洛三角形和圆.下列说法中错误的是( )A.勒洛三角形是轴对称图形B.图1中,点A到¶BC上任意一点的距离都相等C.图2中,勒洛三角形上任意一点到等边三角形DEF的中心1O的距离都相等D.图2中,勒洛三角形的周长与圆的周长相等【答案】C【解析】【分析】根据轴对称形的定义,可以找到一条直线是的图像左右对着完全重合,则为轴对称图形.鲁列斯曲边三角形有三条对称轴. 鲁列斯曲边三角形可以看成是3个圆心角为60°,半径为DE 的扇形的重叠,根据其特点可以进行判断选项的正误.【详解】鲁列斯曲边三角形有三条对称轴,就是等边三角形的各边中线所在的直线,故正确;点A到¶BC上任意一点的距离都是DE,故正确;勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都不相等,1O 到顶点的距离是到边的中点的距离的2倍,故错误; 鲁列斯曲边三角形的周长=3×60180DE DE ππ⨯=⨯ ,圆的周长=22DEDE ππ⨯=⨯ ,故说法正确. 故选C. 【点睛】主要考察轴对称图形,弧长的求法即对于新概念的理解.4.如图,在ABC ∆中,5AB =,3AC =,4BC =,将ABC ∆绕一逆时针方向旋转40︒得到ADE ∆,点B 经过的路径为弧BD ,则图中阴影部分的面积为( )A .1463π- B .33π+C .3338π- D .259π 【答案】D 【解析】 【分析】由旋转的性质可得△ACB ≌△AED ,∠DAB=40°,可得AD=AB=5,S △ACB =S △AED ,根据图形可得S 阴影=S △AED +S 扇形ADB -S △ACB =S 扇形ADB ,再根据扇形面积公式可求阴影部分面积. 【详解】∵将△ABC 绕A 逆时针方向旋转40°得到△ADE , ∴△ACB ≌△AED ,∠DAB=40°, ∴AD=AB=5,S △ACB =S △AED , ∵S 阴影=S △AED +S 扇形ADB -S △ACB =S 扇形ADB , ∴S 阴影=4025360π⨯=259π, 故选D. 【点睛】本题考查了旋转的性质,扇形面积公式,熟练掌握旋转的性质:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.5.如图,在Rt △ABC 中,∠ABC=90°,AB=3BC=2,以AB 的中点为圆心,OA 的长为半径作半圆交AC 于点D ,则图中阴影部分的面积为( )A.5342π-B.5342π+C.23π-D.432π-【答案】A【解析】【分析】连接OD,过点O作OH⊥AC,垂足为 H,则有AD=2AH,∠AHO=90°,在Rt△ABC中,利用∠A的正切值求出∠A=30°,继而可求得OH、AH长,根据圆周角定理可求得∠BOC =60°,然后根据S阴影=S△ABC-S△AOD-S扇形BOD进行计算即可.【详解】连接OD,过点O作OH⊥AC,垂足为 H,则有AD=2AH,∠AHO=90°,在Rt△ABC中,∠ABC=90°,AB=23,BC=2,tan∠A=323BCAB==,∴∠A=30°,∴OH=12OA=3,AH=AO•cos∠A=3332⨯=,∠BOC=2∠A=60°,∴AD=2AH=3,∴S阴影=S△ABC-S△AOD-S扇形BOD=()2603113232322360π⨯⨯⨯-⨯⨯-=532π-,故选A.【点睛】本题考查了垂径定理,圆周角定理,扇形面积,解直角三角形等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.6.已知线段AB如图,(1)以线段AB为直径作半圆弧»AB,点O为圆心;(2)过半径OA OB、的中点C D、分别作CE AB DF AB⊥⊥、,交»AB于点E F、;(3)连接,OE OF.根据以上作图过程及所作图形,下列结论中错误的是( )A .CE DF =B .»»AE BF =C .60EOF ∠=︒D . =2CE CO【答案】D 【解析】 【分析】根据作图可知AC CO OD DB ===,据此对每个选项逐一判断即可. 【详解】根据HL 可判定ECO FDO ≅V V ,得CE DF =,A 正确;∵过半径OA OB 、的中点C D 、分别作CE AB DF AB ⊥⊥、,连接AE , CE 为OA 的中垂线,AE OE = 在半圆中,OA OE =∴OA OE AE ==,AEO △为等边三角形,60EOF =o ∠AOE=∠FOD=∠, C 正确;∴圆心角相等,所对应的弧长度也相等,»»AE BF=,B 正确 ∵60,90EOC =o o∠AOE=∠,∴=3CE CO ,D 错误 【点睛】本题考查了全等三角形的判定和性质,勾股定理等知识点,解题的关键在于证明60o ∠AOE=.7.如图,以正方形ABCD 的AB 边为直径作半圆O ,过点C 作直线切半圆于点E ,交AD 边于点F ,则FEEC=( )A .12B .13C .14D .38【答案】C 【解析】 【分析】连接OE 、OF 、OC ,利用切线长定理和切线的性质求出∠OCF =∠FOE ,证明△EOF ∽△ECO ,利用相似三角形的性质即可解答. 【详解】解:连接OE 、OF 、OC . ∵AD 、CF 、CB 都与⊙O 相切,∴CE =CB ;OE ⊥CF ; FO 平分∠AFC ,CO 平分∠BCF . ∵AF ∥BC ,∴∠AFC+∠BCF =180°, ∴∠OFC+∠OCF =90°, ∵∠OFC+∠FOE =90°, ∴∠OCF =∠FOE , ∴△EOF ∽△ECO , ∴=OE EFEC OE,即OE 2=EF•EC . 设正方形边长为a ,则OE =12a ,CE =a . ∴EF =14a . ∴EF EC =14. 故选:C .【点睛】本题考查切线的性质、切线长定理、相似三角形的判定与性质,其中通过作辅助线构造相似三角形是解答本题的关键..8.下列命题中哪一个是假命题( ) A .8的立方根是2B .在函数y =3x 的图象中,y 随x 增大而增大C .菱形的对角线相等且平分D .在同圆中,相等的圆心角所对的弧相等 【答案】C 【解析】 【分析】利用立方根的定义、一次函数的性质、菱形的性质及圆周角定理分别判断后即可确定正确的选项. 【详解】A 、8的立方根是2,正确,是真命题;B 、在函数3y x =的图象中,y 随x 增大而增大,正确,是真命题;C 、菱形的对角线垂直且平分,故错误,是假命题;D 、在同圆中,相等的圆心角所对的弧相等,正确,是真命题, 故选C . 【点睛】考查了命题与定理的知识,能够了解立方根的定义、一次函数的性质、菱形的性质及圆周角定理等知识是解题关键.9.已知某圆锥的底面半径为3 cm ,母线长5 cm ,则它的侧面展开图的面积为( ) A .30 cm 2 B .15 cm 2C .30π cm 2D .15π cm 2【答案】D 【解析】试题解析:根据圆锥的侧面展开图的面积计算公式得: S =RL π=15π 故选D.10.如图,点I 是Rt △ABC 的内心,∠C =90°,AC =3,BC =4,将∠ACB 平移使其顶点C 与I 重合,两边分别交AB 于D 、E ,则△IDE 的周长为( )A .3B .4C .5D .7【答案】C 【解析】 【分析】连接AI 、BI ,根据三角形的内心的性质可得∠CAI =∠BAI ,再根据平移的性质得到∠CAI =∠AID ,AD =DI ,同理得到BE =EI ,即可解答. 【详解】 连接AI 、BI ,∵∠C =90°,AC =3,BC =4, ∴AB 22AC BC +5∵点I 为△ABC 的内心,∴AI平分∠CAB,∴∠CAI=∠BAI,由平移得:AC∥DI,∴∠CAI=∠AID,∴∠BAI=∠AID,∴AD=DI,同理可得:BE=EI,∴△DIE的周长=DE+DI+EI=DE+AD+BE=AB=5故选C.【点睛】此题考查了平移的性质和三角形内心的性质,解题关键在于作出辅助线11.如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,∠C=40°.则∠ABD的度数是()A.30°B.25°C.20°D.15°【答案】B【解析】试题分析:∵AC为切线∴∠OAC=90°∵∠C=40°∴∠AOC=50°∵OB=OD ∴∠ABD=∠ODB ∵∠ABD+∠ODB=∠AOC=50°∴∠ABD=∠ODB=25°.考点:圆的基本性质.12.如图,有一圆锥形粮堆,其侧面展开图是半径为6m的半圆,粮堆母线AC的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程长为()A.3m B.33C.35D.4m【答案】C【解析】【分析】 【详解】如图,由题意得:AP =3,AB =6,90.BAP ∠=o ∴在圆锥侧面展开图中223635.BP m =+= 故小猫经过的最短距离是35.m 故选C.13.如图,在圆O 中,直径AB 平分弦CD 于点E ,且CD=43,连接AC ,OD,若∠A 与∠DOB 互余,则EB 的长是( )A .3B .4C 3D .2【答案】D 【解析】 【分析】连接CO ,由直径AB 平分弦CD 及垂径定理知∠COB=∠DOB ,则∠A 与∠COB 互余,由圆周角定理知∠A=30°,∠COE=60°,则∠OCE=30°,设OE=x,则CO=2x,利用勾股定理即可求出x ,再求出BE 即可. 【详解】连接CO ,∵AB 平分CD ,∴∠COB=∠DOB ,AB ⊥CD ,3∵∠A 与∠DOB 互余, ∴∠A+∠COB=90°, 又∠COB=2∠A , ∴∠A=30°,∠COE=60°, ∴∠OCE=30°, 设OE=x,则CO=2x,∴CO2=OE2+CE2即(2x)2=x2+(23)2解得x=2,∴BO=CO=4,∴BE=CO-OE=2.故选D.【点睛】此题主要考查圆内的综合问题,解题的关键是熟知垂径定理、圆周角定理及勾股定理.14.如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为( )A.10 B.9 C.8 D.7【答案】D【解析】分析:先根据多边形的内角和公式(n﹣2)•180°求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360°求出完成这一圆环需要的正五边形的个数,然后减去3即可得解.详解:∵五边形的内角和为(5﹣2)•180°=540°,∴正五边形的每一个内角为540°÷5=108°,如图,延长正五边形的两边相交于点O,则∠1=360°﹣108°×3=360°﹣324°=36°,360°÷36°=10.∵已经有3个五边形,∴10﹣3=7,即完成这一圆环还需7个五边形.故选D.点睛:本题考查了多边形的内角和公式,延长正五边形的两边相交于一点,并求出这个角的度数是解题的关键,注意需要减去已有的3个正五边形.15.如图在Rt△ABC中,∠ACB=90°,AC=6,BC=8,⊙O是△ABC的内切圆,连接AO,BO,则图中阴影部分的面积之和为()A.10﹣32πB.14﹣52πC.12 D.14【答案】B【解析】【分析】根据勾股定理求出AB,求出△ABC的内切圆的半径,根据扇形面积公式、三角形的面积公式计算,得到答案.【详解】解:设⊙O与△ABC的三边AC、BC、AB的切点分别为D、E、F,连接OD、OE、OF,在Rt△ABC中,AB22AC BC+10,∴△ABC的内切圆的半径=68102+-=2,∵⊙O是△ABC的内切圆,∴∠OAB=12∠CAB,∠OBA=12∠CBA,∴∠AOB=180°﹣(∠OAB+∠OBA)=180°﹣12(∠CAB+∠CBA)=135°,则图中阴影部分的面积之和=222902113525 21021436023602πππ⨯⨯-+⨯⨯-=-,故选B.【点睛】本题考查的是三角形的内切圆与内心、扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.16.如图,四边形ABCD是⊙O的内接正方形,点P是劣弧弧AB上任意一点(与点B不重合),则∠BPC的度数为()A.30°B.45°C.60°D.90°【答案】B【解析】分析:接OB,OC,根据四边形ABCD是正方形可知∠BOC=90°,再由圆周角定理即可得出结论.详解:连接OB,OC,∵四边形ABCD是正方形,∴∠BOC=90°,∴∠BPC=12∠BOC=45°.故选B.点睛:本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.17.如图,AB是⊙O的直径,弦CD⊥AB于点M,若CD=8 cm,MB=2 cm,则直径AB的长为()A.9 cm B.10 cm C.11 cm D.12 cm【答案】B【解析】【分析】由CD⊥AB,可得DM=4.设半径OD=Rcm,则可求得OM的长,连接OD,在直角三角形DMO中,由勾股定理可求得OD的长,继而求得答案.【详解】解:连接OD,设⊙O半径OD为R,∵AB是⊙O的直径,弦CD⊥AB于点M,∴DM=12CD=4cm,OM=R-2,在RT△OMD中,OD²=DM²+OM²即R²=4²+(R-2)²,解得:R=5,∴直径AB的长为:2×5=10cm.故选B.【点睛】本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.18.我们研究过的图形中,圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了圆以外,还有一些几何图形也是“等宽曲线”,如勒洛三角形(如图1),它是分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧,三段圆弧围成的曲边三角形. 图2是等宽的勒洛三角形和圆形滚木的截面图.图1图2有如下四个结论:①勒洛三角形是中心对称图形②图1中,点A到BC上任意一点的距离都相等③图2中,勒洛三角形的周长与圆的周长相等④使用截面是勒洛三角形的滚木来搬运东西,会发生上下抖动上述结论中,所有正确结论的序号是()A.①②B.②③C.②④D.③④【答案】B【解析】【分析】逐一对选项进行分析即可.【详解】①勒洛三角形不是中心对称图形,故①错误;②图1中,点A到BC上任意一点的距离都相等,故②正确;③图2中,设圆的半径为r∴勒洛三角形的周长=12032180rrππ⨯=g g圆的周长为2rπ∴勒洛三角形的周长与圆的周长相等,故③正确;④使用截面是勒洛三角形的滚木来搬运东西,不会发生上下抖动,故④错误故选B【点睛】本题主要考查中心对称图形,弧长公式等,掌握中心对称图形和弧长公式是解题的关键.19.如图,⊙O过点B、C,圆心O在等腰直角△ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为()A.23B.13C.4 D.32【答案】B【解析】【分析】如下图,作AD⊥BC,设半径为r,则在Rt△OBD中,OD=3-1,OB=r,BD=3,利用勾股定理可求得r.【详解】如图,过A作AD⊥BC,由题意可知AD必过点O,连接OB;∵△BAC是等腰直角三角形,AD⊥BC,∴BD=CD=AD=3;∴OD=AD-OA=2;Rt△OBD中,根据勾股定理,得:22BD OD13+故答案为:B.【点睛】本题考查了等腰直角三角形的性质和勾股定理的应用,解题关键是利用等腰直角三角形ABC 判定点O 在AD 上.20.如图,抛物线y =ax 2﹣6ax+5a (a >0)与x 轴交于A 、B 两点,顶点为C 点.以C 点为圆心,半径为2画圆,点P 在⊙C 上,连接OP ,若OP 的最小值为3,则C 点坐标是( )A .522(,22-B .(4,﹣5)C .(3,﹣5)D .(3,﹣4)【答案】D【解析】【分析】首先根据二次函数的解析式求出点A 、B 、C 三点的坐标,再由当点O 、P 、C 三点共线时,OP 取最小值为3,列出关于a 的方程,即可求解.【详解】∵2650y ax ax a a +-=(>) 与x 轴交于A 、B 两点, ∴A (1,0)、B (5,0),∵226534y ax ax a a x a =+=---() , ∴顶点34C a (,-), 当点O 、P 、C 三点共线时,OP 取最小值为3,∴OC =OP+2=5, 29165(0)a a +=> ,∴1a = ,∴C (3,﹣4),故选:D .【点睛】本题考查了二次函数的图象和性质,解题的关键是明确圆外一点到圆上的最短距离即该点与圆心的距离减去半径长.。
新初中数学圆的易错题汇编及答案解析(1)

新初中数学圆的易错题汇编及答案解析(1)一、选择题1.如图,抛物线y =ax 2﹣6ax+5a (a >0)与x 轴交于A 、B 两点,顶点为C 点.以C 点为圆心,半径为2画圆,点P 在⊙C 上,连接OP ,若OP 的最小值为3,则C 点坐标是( )A .522(,22-B .(4,﹣5)C .(3,﹣5)D .(3,﹣4)【答案】D【解析】【分析】首先根据二次函数的解析式求出点A 、B 、C 三点的坐标,再由当点O 、P 、C 三点共线时,OP 取最小值为3,列出关于a 的方程,即可求解.【详解】∵2650y ax ax a a +-=(>) 与x 轴交于A 、B 两点, ∴A (1,0)、B (5,0),∵226534y ax ax a a x a =+=---() , ∴顶点34C a (,-), 当点O 、P 、C 三点共线时,OP 取最小值为3,∴OC =OP+2=5, 29165(0)a a +=> ,∴1a = ,∴C (3,﹣4),故选:D .【点睛】本题考查了二次函数的图象和性质,解题的关键是明确圆外一点到圆上的最短距离即该点与圆心的距离减去半径长.2.如图,已知AB 是⊙O 的直径,点C 在⊙O 上,过点C 的切线与AB 的延长线交于点P ,连接AC ,若∠A=30°,PC=3,则⊙O 的半径为( )A.3B.23C.32D.233【答案】A【解析】连接OC,∵OA=OC,∠A=30°,∴∠OCA=∠A=30°,∴∠COB=∠A+∠ACO=60°,∵PC是⊙O切线,∴∠PCO=90°,∠P=30°,∵PC=3,∴OC=PC•tan30°=3,故选A3.如图,已知AB是⊙O是直径,弦CD⊥AB,AC=22,BD=1,则sin∠ABD的值是()A.2B.13C.23D.3【答案】C【解析】【分析】先根据垂径定理,可得BC的长,再利用直径对应圆周角为90°得到△ABC是直角三角形,利用勾股定理求得AB的长,得到sin∠ABC的大小,最终得到sin∠ABD解:∵弦CD ⊥AB ,AB 过O ,∴AB 平分CD ,∴BC =BD ,∴∠ABC =∠ABD ,∵BD =1,∴BC =1,∵AB 为⊙O 的直径,∴∠ACB =90°,由勾股定理得:AB =()22222213AC BC +=+=, ∴sin ∠ABD =sin ∠ABC =223AC AB = 故选:C .【点睛】本题考查了垂径定理、直径对应圆周角为90°、勾股定理和三角函数,解题关键是找出图形中的直角三角形,然后按照三角函数的定义求解4.已知,如图,点C ,D 在⊙O 上,直径AB=6cm ,弦AC ,BD 相交于点E ,若CE=BC ,则阴影部分面积为( )A .934π- B .9942π- C .39324π- D .3922π- 【答案】B【解析】【分析】 连接OD 、OC ,根据CE=BC ,得出∠DBC=∠CEB=45°,进而得出∠DOC=90°,根据S 阴影=S 扇形-S △ODC 即可求得.【详解】连接OD 、OC ,∵AB 是直径,∴∠ACB=90°,∴∠CBD=∠CEB=45°,∴∠COD =2∠DBC=90°,∴S阴影=S扇形−S△ODC=2903360π⋅⋅−12×3×3=94π−92.故答案选B.【点睛】本题考查的知识点是扇形面积的计算,解题的关键是熟练的掌握扇形面积的计算.5.如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为()A.4.5 B.4 C.3 D.2【答案】B【解析】【分析】连接AI、BI,因为三角形的内心是角平分线的交点,所以AI是∠CAB的平分线,由平行的性质和等角对等边可得:AD=DI,同理BE=EI,所以图中阴影部分的周长就是边AB 的长.【详解】连接AI、BI,∵点I为△ABC的内心,∴AI平分∠CAB,∴∠CAI=∠BAI,由平移得:AC∥DI,∴∠CAI=∠AID,∴∠BAI=∠AID,∴AD=DI,同理可得:BE=EI,∴△DIE的周长=DE+DI+EI=DE+AD+BE=AB=4,即图中阴影部分的周长为4,故选B.【点睛】本题考查了三角形内心的定义、平移的性质及角平分线的定义等知识,熟练掌握三角形的内心是角平分线的交点是关键.6.如图,AC BC ⊥,8AC BC ==,以BC 为直径作半圆,圆心为点O ;以点C 为圆心,BC 为半径作»AB ,过点O 作AC 的平行线交两弧于点D 、E ,则图中阴影部分的面积是( )A .20833π-B .20833π+C .20833π-D .20433π+ 【答案】A【解析】【分析】 如图,连接CE .图中S 阴影=S 扇形BCE −S 扇形BOD −S △OCE .根据已知条件易求得OB =OC =OD =4,BC =CE =8,∠ECB =60°,OE =43,所以由扇形面积公式、三角形面积公式进行解答即可.【详解】解:如图,连接CE .∵AC ⊥BC ,AC =BC =8,以BC 为直径作半圆,圆心为点O ;以点C 为圆心,BC 为半径作弧AB ,∴∠ACB =90°,OB =OC =OD =4,BC =CE =8.又∵OE ∥AC ,∴∠ACB =∠COE =90°.∴在Rt △OEC 中,OC =4,CE =8,∴∠CEO =30°,∠ECB =60°,OE =3∴S 阴影=S 扇形BCE −S 扇形BOD −S △OCE=2260811-4-44336042ππ⨯⨯⨯⨯ =20-833π 故选:A .【点睛】 本题考查了扇形面积的计算.不规则图形的面积一定要注意分割成规则图形的面积进行计算.7.下列命题是假命题的是( )A .三角形两边的和大于第三边B .正六边形的每个中心角都等于60oC .半径为R 的圆内接正方形的边长等于2RD .只有正方形的外角和等于360︒【答案】D【解析】【分析】根据三角形三边关系、中心角的概念、正方形与圆的关系、多边形的外角和对各选项逐一进行分析判断即可.【详解】A 、三角形两边的和大于第三边,A 是真命题,不符合题意;B 、正六边形6条边对应6个中心角,每个中心角都等于360606︒︒=,B 是真命题,不符合题意;C 、半径为R 的圆内接正方形中,对角线长为圆的直径2R ,设边长等于x ,则:222(2)x x R +=,解得边长为2x R :=,C 是真命题,不符合题意;D 、任何凸3n n ≥()边形的外角和都为360︒,D 是假命题,符合题意, 故选D.【点睛】本题考查了真假命题,熟练掌握正多边形与圆、中心角、多边形的外角和等知识是解本题的关键.8.已知圆锥的三视图如图所示,则这个圆锥的侧面展开图的面积为( )A.60πcm2B.65πcm2C.120πcm2D.130πcm2【答案】B【解析】【分析】先利用三视图得到底面圆的半径为5cm,圆锥的高为12cm,再根据勾股定理计算出母线长为13cm,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【详解】根据三视图得到圆锥的底面圆的直径为10cm,即底面圆的半径为5cm,圆锥的高为12cm,所以圆锥的母线长=225+12=13,所以这个圆锥的侧面积=12×2π×5×13=65π(cm2).故选B.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.9.从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是()A.B.C.D.【答案】B【解析】【分析】根据圆周角定理(直径所对的圆周角是直角)求解,即可求得答案.【详解】∵直径所对的圆周角等于直角,∴从直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是B.故选B.【点睛】本题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.10.一个圆锥的底面半径是5,高为12,则这个圆锥的全面积是()A.60πB.65πC.85πD.90π【答案】D【分析】根据勾股定理求出圆锥侧面母线长,再根据圆锥的全面积=底面积+侧面积求出答案.【详解】∵圆锥的底面半径是5,高为12, ∴侧面母线长为2251213+=,∵圆锥的侧面积=51365ππ⨯⨯=,圆锥的底面积=2525ππ⨯=,∴圆锥的全面积=652590πππ+=,故选:D.【点睛】此题考查圆锥的全面积,圆锥侧面母线长与底面圆的半径、圆锥的高的关系,熟记计算公式是解题的关键.11.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,连接OC 交⊙O 于点D ,连接BD ,∠C=40°.则∠ABD 的度数是( )A .30°B .25°C .20°D .15°【答案】B【解析】 试题分析:∵AC 为切线 ∴∠OAC=90° ∵∠C=40° ∴∠AOC=50°∵OB=OD ∴∠ABD=∠ODB ∵∠ABD+∠ODB=∠AOC=50° ∴∠ABD=∠ODB=25°. 考点:圆的基本性质.12.如图,已知某圆锥轴截面等腰三角形的底边和高线长均为10cm ,则这个圆锥的侧面积为( )A .50cm 2B .50πcm 2C .52D .5cm 2【答案】D【解析】根据勾股定理求出圆锥的母线长,求出底面圆周长,根据扇形面积公式计算即可.【详解】解:如图所示,∵等腰三角形的底边和高线长均为10cm , ∴等腰三角形的斜边长=22105+=55,即圆锥的母线长为55cm ,圆锥底面圆半径为5,∴这个圆锥的底面圆周长=2×π×5=10π,即为侧面展开扇形的弧长,圆锥的侧面积=12×10π×55=255πcm 2, 故选:D .【点睛】本题考查了圆锥的计算,解题的关键是弄清楚圆锥的侧面积的计算方法,特别是圆锥的轴截面是等腰三角形,勾股定理的应用,以及圆锥的底面周长等于圆锥的侧面扇形的弧长.13.如图,四边形ABCD 内接于圆O ,DA DC =,50CBE ∠=︒,AOD ∠的大小为( )A .130°B .100°C .20°D .10°【答案】A【解析】【分析】 先求出∠ABC 的大小,根据内接四边形角度关系,得到∠ADC 的大小,从而得出∠C 的大小,最后利用圆周角与圆心角的关系得∠AOD 的大小.【详解】∵∠CBE=50°∴∠ABC=130°∵四边形ABCD 是内接四边形∴∠ADC=50°∴在△ADC中,∠C=∠DAC=65°∴∠AOD=2∠C=130°故选:A【点睛】本题考查圆的性质,主要是内接四边形对角互补和同弧对应圆心角是圆周角2倍,解题中,我们要充分利用圆的性质进行角度转换,以便得到我们需要的角度.14.如图,已知⊙O的半径是4,点A,B,C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为()A.8833π-B.16833π-C.16433π-D.8433π-【答案】B【解析】【分析】连接OB和AC交于点D,根据菱形及直角三角形的性质先求出AC的长及∠AOC的度数,然后求出菱形ABCO及扇形AOC的面积,则由S扇形AOC-S菱形ABCO可得答案.【详解】连接OB和AC交于点D,如图所示:∵圆的半径为4,OB=OA=OC=4,又四边形OABC是菱形,∴OB⊥AC,OD=12OB=2,在Rt△COD中利用勾股定理可知:224223,243AC CD-===∵sin∠COD=3,2 CDOC=∴∠COD=60°,∠AOC=2∠COD=120°,∴S菱形ABCO=1144383 22OB AC⨯=⨯⨯=,∴S扇形=2 1204163603ππ⨯⨯=,则图中阴影部分面积为S扇形AOC-S菱形ABCO=1683 3π-.故选B.【点睛】考查扇形面积的计算及菱形的性质,解题关键是熟练掌握菱形的面积=12a•b(a、b是两条对角线的长度);扇形的面积=2 360 n r π.15.如图,在扇形AOB中,∠AOB=90°,OA=4,以OB为直径作半圆,圆心为点C,过点C 作OA的平行线分别交两弧点D、E,则阴影部分的面积为()A.53π﹣3B.533C.3πD353π【答案】A【解析】【分析】连接OE.可得S阴影=S扇形BOE-S扇形BCD-S△OCE.根据已知条件易求得BC=OC=CD=2,BO=OE=4.∠BOE=60o,CE=23所以由扇形面积公式、三角形面积公式进行解答即可.【详解】解:连接OE,可得S阴影=S扇形BOE-S扇形BCD-S△OCE,由已知条件可得,BC=OC=CD=2,又,BO=OE=4,∴∠BOE=o60,可得CE=23S扇形BOE=2604360π⋅⋅8=3π,S扇形BCD2902==360ππ⋅⋅,S△OCE=1=223=232⨯⨯,∴S阴影=S扇形BOE-S扇形BCD-S△OCE=8--233ππ=5-233π,故选A.【点睛】本题主要考查扇形面积公式、三角形面积公式,牢记公式并灵活运用可求得答案.16.如图,在⊙O中,OC⊥AB,∠ADC=26°,则∠COB的度数是()A.52°B.64°C.48°D.42°【答案】A【解析】【分析】由OC⊥AB,利用垂径定理可得出,再结合圆周角定理及同弧对应的圆心角等于圆周角的2倍,即可求出∠COB的度数.【详解】解:∵OC⊥AB,∴,∴∠COB=2∠ADC=52°.故选:A.【点睛】考查了圆周角定理、垂径定理以及圆心角、弧、弦的关系,利用垂径定理找出是解题的关键.17.我们研究过的图形中,圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了圆以外,还有一些几何图形也是“等宽曲线”,如勒洛三角形(如图1),它是分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧,三段圆弧围成的曲边三角形. 图2是等宽的勒洛三角形和圆形滚木的截面图.图1图2有如下四个结论:①勒洛三角形是中心对称图形②图1中,点A到BC上任意一点的距离都相等③图2中,勒洛三角形的周长与圆的周长相等④使用截面是勒洛三角形的滚木来搬运东西,会发生上下抖动上述结论中,所有正确结论的序号是()A.①②B.②③C.②④D.③④【答案】B【解析】【分析】逐一对选项进行分析即可.【详解】①勒洛三角形不是中心对称图形,故①错误;②图1中,点A到BC上任意一点的距离都相等,故②正确;③图2中,设圆的半径为r∴勒洛三角形的周长=12032180rrππ⨯=g g圆的周长为2rπ∴勒洛三角形的周长与圆的周长相等,故③正确;④使用截面是勒洛三角形的滚木来搬运东西,不会发生上下抖动,故④错误故选B【点睛】本题主要考查中心对称图形,弧长公式等,掌握中心对称图形和弧长公式是解题的关键.18.如图,⊙O过点B、C,圆心O在等腰直角△ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为()A.23B.13C.4 D.32【答案】B【解析】【分析】如下图,作AD⊥BC,设半径为r,则在Rt△OBD中,OD=3-1,OB=r,BD=3,利用勾股定理可求得r.【详解】如图,过A作AD⊥BC,由题意可知AD必过点O,连接OB;∵△BAC 是等腰直角三角形,AD ⊥BC ,∴BD=CD=AD=3;∴OD=AD-OA=2;Rt △OBD 中,根据勾股定理,得: OB= 22BD OD 13+=故答案为:B.【点睛】本题考查了等腰直角三角形的性质和勾股定理的应用,解题关键是利用等腰直角三角形ABC 判定点O 在AD 上.19.一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是( ) A .13 B .12 C .34 D .1【答案】B【解析】【分析】根据侧面展开图的弧长等于圆锥的底面周长,即可求得底面周长,进而即可求得底面的半径长.【详解】圆锥的底面周长是:π;设圆锥的底面半径是r ,则2πr=π.解得:r=12. 故选B .【点睛】本题考查了圆锥的计算,正确理解理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.20.“直角”在几何学中无处不在,下列作图作出的AOB ∠不一定...是直角的是( )A .B .C .D .【答案】C【解析】【分析】根据作图痕迹,分别探究各选项所做的几何图形问题可解.【详解】解:选项A 中,做出了点A 关于直线BC 的对称点,则AOB ∠是直角.选项B 中,AO 为BC 边上的高,则AOB ∠是直角.选项D 中,AOB ∠是直径AB 作对的圆周角,故AOB ∠是直角.故应选C【点睛】本题考查了尺规作图的相关知识,根据基本作图得到的结论,应用于几何证明是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A. B. C. D.
【答案】A
【解析】
【分析】
根据同弧和等弧所对的圆周角相等,则 弧所对的圆周角 , 和 是对顶角,所以 .
【详解】
解: ,
,
故选: .
【点睛】
考查相似三角形的判定定理:两角对应相等的两个三角形相似,关键就是牢记同弧所对的圆周角相等.
【详解】
连接OD,过点O作OH⊥AC,垂足为H,
则有AD=2AH,∠AHO=90°,
在Rt△ABC中,∠ABC=90°,AB= ,BC=2,tan∠A= ,
∴∠A=30°,
∴OH= OA= ,AH=AO•cos∠A= ,∠BOC=2∠A=60°,
∴AD=2AH= ,
∴S阴影=S△ABC-S△AOD-S扇形BOD= = ,
【详解】
解:∵弦CD⊥AB,AB过O,
∴AB平分CD,
∴BC=BD,
∴∠ABC=∠ABD,
∵BD=1,
∴BC=1,
∵AB为⊙O的直径,
∴∠ACB=90°,
由勾股定理得:AB= ,
∴sin∠ABD=sin∠ABC=
故选:C.
【点睛】
本题考查了垂径定理、直径对应圆周角为90°、勾股定理和三角函数,解题关键是找出图形中的直角三角形,然后按照三角函数的定义求解
A.平分弦的直径垂直于弦
B.三角形一定有外接圆和内切圆
C.等弧对等弦
D.经过切点且垂直于切线的直线必经过圆心
【答案】C
【解析】
【分析】
根据垂径定理、三角形外接圆、圆的有关概念判断即可.
【详解】
A、平分弦的直径一定垂直于弦,是真命题;
B、三角形一定有外接圆和内切圆,是真命题;
C、在同圆或等圆中,等弧对等弦,是假命题;
∵∠BAC=120°,AB=AC=4,
∴∠C=∠ABC=30°
∴∠D=30°
∵BD是直径
∴∠BAD=90°
∴BD=2AB=8.
故选C.
2.如图,已知AB是⊙O是直径,弦CD⊥AB,AC=2 ,BD=1,则sin∠ABD的值是()
A.2 B. C. D.3
【答案】C
【解析】
【分析】
先根据垂径定理,可得BC的长,再利用直径对应圆周角为90°得到△ABC是直角三角形,利用勾股定理求得AB的长,得到sin∠ABC的大小,最终得到sin∠ABD
【答案】A
【解析】
【分析】
连接OD,根据三角形内角和定理和等边对等角求出∠DOB=40°,再根据圆周角定理即可求出∠BAD的度数.
【详解】
解:连接OD,
∵OC⊥AB,
∴∠COB=90°,
∵∠AEC=65°,
∴∠OCE=180°﹣90°﹣65°=25°,
∵OD=OC,
∴∠ODC=∠OCD=25°,
∴∠DOC=180°﹣25°﹣25°=130°,
D、经过切点且垂直于切线的直线必经过圆心,是真命题;
故选C.
【点睛】
本题考查了命题与定理的知识,解题的关键是根据垂径定理、三角形外接圆、圆的有关概念等知识解答,难度不大.
8.如图,在Rt△ABC中,∠ABC=90°,AB= ,BC=2,以AB的中点为圆心,OA的长为半径作半圆交AC于点D,则图中阴影部分的面积为( )
15.如图,在菱形 中, , ,点 是这个菱形内部或边上的一点,若以点 , , 为顶点的三角形是等腰三角形,则 , ( , 两点不重合)两点间的最短距离为()
A. B. C. D.
【答案】D
【解析】
【分析】
分三种情形讨论①若以边BC为底.②若以边PC为底.③若以边PB为底.分别求出PD的最小值,即可判断.
A. B. C. D.
【答案】A
【解析】
【分析】
连接OD,过点O作OH⊥AC,垂足为H,则有AD=2AH,∠AHO=90°,在Rt△ABC中,利用∠A的正切值求出∠A=30°,继而可求得OH、AH长,根据圆周角定理可求得∠BOC =60°,然后根据S阴影=S△ABC-S△AOD-S扇形BOD进行计算即可.
4.如图, , ,以 为直径作半圆,圆心为点 ;以点 为圆心, 为半径作 ,过点 作 的平行线交两弧于点 、 ,则图中阴影部分的面积是()
A. B. C. D.
【答案】A
【解析】
【分析】
如图,连接CE.图中S阴影=S扇形BCE−S扇形BOD−S△OCE.根据已知条件易求得OB=OC=OD=4,BC=CE=8,∠ECB=60°,OE=4 ,所以由扇形面积公式、三角形面积公式进行解答即可.
∴△ABC为直角三角形,
∴△ABC的内切圆半径= =1,
∴S△ABC= AC•BC= ×4×3=6,
S圆=π,
∴小鸟落在花圃上的概率= ,
故选B.
【点睛】
本题考查几何概率,直角三角形内切圆的半径等于两直角边的和与斜边差的一半及勾股定理的逆定理,解题关键是熟练掌握公式.
11.我们研究过的图形中,圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了圆以外,还有一些几何图形也是“等宽曲线”,如勒洛三角形(如图 ),它是分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧,三段圆弧围成的曲边三角形.图 是等宽的勒洛三角形和圆形滚木的截面图.
故选A.
【点睛】
本题考查了垂径定理,圆周角定理,扇形面积,解直角三角形等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.
9.从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是( )
A. B.
C. D.
【答案】B
【解析】
【分析】
根据圆周角定理(直径所对的圆周角是直角)求解,即可求得答案.
辽阳市初中数学圆的易错题汇编含答案
一、选择题
1.如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4,BD为⊙O的直径,则BD等于( )
A.4B.6C.8D.12
【答案】C
【解析】
【分析】
根据三角形内角和定理求得∠C=∠ABC=30°,再根据圆周角定理及直角三角形的性质即可求得BD的长.
【详解】
A. B. C. D.
【答案】A
【解析】
【分析】
根据题意画出图形,再根据正多边形圆心角的求法求出∠AOB的度数,最后根据等腰三角形及直角三角形的性质解答即可.
【详解】
解:如图所示,正六边形的边长为2cm,OG⊥BC,
∵六边形ABCDEF是正六边形,
∴∠BOC=360°÷6=60°,
∵OB=OC,OG⊥BC,
【详解】
解:∵S扇形FCD ,S扇形EAD ,S矩形ABCD ,
∴S阴影=S扇形FCD﹣(S矩形ABCD﹣S扇形EAD)
=9π﹣(24﹣4π)
=9π﹣24+4π
=13π﹣24
故选:C.
【点睛】
本题考查扇形面积的计算,根据阴影面积=扇形FCD的面积﹣(矩形ABCD的面积﹣扇形EAD的面积)是解答本题的关键.
【详解】
∵直径所对的圆周角等于直角,∴从直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是B.
故选B.
【点睛】
本题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.
10.如图, 是一块绿化带,将阴影部分修建为花圃.已知 , , ,阴影部分是 的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为().
13.如图,圆锥的底面半径为1,母线长为3,则侧面积为( )
A.2πB.3πC.6πD.8π
【答案】B
【解析】
【分析】
圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.
【详解】
解:圆锥的侧面积为: ×2π×1×3=3π,
故选:B.
【点睛】
此题考查圆锥的计算,解题关键在于掌握运算公式.
14.如图,点 在圆上,若弦 的长度等于圆半径的 倍,则 的度数是( ).
【详解】
解:如图,连接CE.
∵AC⊥BC,AC=BC=8,以BC为直径作半圆,圆心为点O;以点C为圆心,BC为半径作弧AB,
∴∠ACB=90°,OB=OC=OD=4,BC=CE=8.
又∵OE∥AC,
∴∠ACB=∠COE=90°.
∴在Rt△OEC中,OC=4,CE=8,
∴∠CEO=30°,∠ECB=60°,OE=4 ,
A. B.
C. D.
【答案】B
【解析】
【分析】
由AB=5,BC=4,AC=3,得到AB2=BC2+AC2,根据勾股定理的逆定理得到△ABC为直角三角形,于是得到△ABC的内切圆半径= =1,求得直角三角形的面积和圆的面积,即可得到结论.
【详解】
解:∵AB=5,BC=4,AC=3,
∴AB2=BC2+AC2,
∴∠BOG=∠COG= ∠BOC =30°,
∵OG⊥BC,OB=OC,BC=2cm,
∴BG= BC= ×2=1cm,
∴OB= =2cm,
∴OG= ,
∴圆形纸片的半径为 cm,
故选:A.
【点睛】
本题考查的是正多边形和圆,根据题意画出图形,利用直角三角形的性质及正六边形的性质解答是解答此题的关键.
7.下列命题错误的是( )
图 图
有如下四个结论:
①勒洛三角形是中心对称图形
②图 中,点 到 上任意一点的距离都相等
③图 中,勒洛三角形的周长与圆的周长相等
④使用截面是勒洛三角形的滚木来搬运东西,会发生上下抖动
上述结论中,所有正确结论的序号是()
A.①②B.②③C.②④D.③④
【答案】B
【解析】
【分析】
逐一对选项进行分析即可.