七年级下册数学《整式的乘除》专项练习

合集下载

北师大版七年级数学下册 第一章 整式的乘除 1.1~1.3 计算综合专项训练(word版含答案)

北师大版七年级数学下册 第一章 整式的乘除 1.1~1.3 计算综合专项训练(word版含答案)

北师大版七年级数学下册第一章整式的乘除1.1~1.3计算综合专项训练1.计算:(1)a2•a3(2)(﹣a2)3(3)a10÷a9(4)(﹣bc)4÷(﹣bc)22.计算:(1)x2•x5﹣x3•x4;(2)m3•m3+m•m5;(3)a•a3•a2+a2•a4;(4)x2•x4+x3•x2•x.3.计算:(1)x3•x3;(2)m2•m3;(3)a3+a3;(4)x2•x2•x2;(5)102•10•105;(6)y3•y2•y4.4.计算:(1)(﹣x)3•x2•(﹣x)4;(2)﹣(﹣a)2•(﹣a)7•(﹣a)4(3)(﹣b)4•(﹣b)2﹣(﹣b)5•(﹣b);(4)(﹣x)7•(﹣x)2﹣(﹣x)4•x5.5.计算:(1)a3•a2•a (2).6.计算:(﹣x)•(﹣x)2•(﹣x)3+(﹣x)•(﹣x)5.7.计算:(a﹣b)3•(b﹣a)3+[2(a﹣b)2]3.8.计算:y3•(﹣y)•(﹣y)5•(﹣y)2.9.计算:(1)(﹣8)2011•(﹣0.125)2012;(2)(a﹣b)5(b﹣a)3.10.计算:a3•a•a5+a4•a2•a3.11.计算;(1)x•x2•x3+(x2)3﹣2(x3)2;(2)[(x2)3]2﹣3(x2•x3•x)2;(3)(﹣2a n b3n)2+(a2b6)n;(4)(﹣3x3)2﹣(﹣x2)3+(﹣2x)2﹣(﹣x)3.12.计算:(1)59×0.28;(2)×(3)22×42×5613.计算:(1)(﹣8)12×83 (2)210×410 (3)(m4)2+m5•m3(4)﹣[(2a﹣b)4]2 (5)(3xy2)2 (6)(a﹣b)5(b﹣a)3(1)﹣12008×|﹣.(2).15.计算:(1)()﹣1+(﹣2)3×(π﹣2)0;(2)(﹣a2)3﹣a2•a4+(﹣2a4)2÷a2.16.计算:(1)(y2)3÷y6•y (2)y4+(y2)4÷y4﹣(﹣y2)217.计算:﹣()2×9﹣2×(﹣)÷+4×(﹣0.5)2(1)(﹣1)2019+(π﹣3.14)0﹣()﹣1.(2)(﹣2x2y)3﹣(﹣2x3y)2+6x6y3+2x6y219.计算(1)(m﹣n)2•(n﹣m)3•(n﹣m)4(2)(b2n)3(b3)4n÷(b5)n+1(3)(a2)3﹣a3•a3+(2a3)2;(4)(﹣4a m+1)3÷[2(2a m)2•a].20.计算:(1)(﹣2ab)•(﹣3ab)3(2)5x2•(3x3)2(4)(﹣0.16)•(﹣10b2)3(4)(2×10n)(×10n)21.计算:()100×(1)100×(0.5×3)2019×(﹣2×)2020.22.计算:(1)﹣2﹣17﹣(﹣27)+(﹣10);(2)﹣;(4)a2﹣2(a2﹣3ab)﹣ab;(4)a•a5+(﹣2a3)2+(﹣3a2)3;(5)解方程:3(2x﹣1)=2x+3;(6)解方程:.答案提示1.解:(1)a2•a3=a5;(2)(﹣a2)3=﹣a6;(3)a10÷a9=a(a≠0);(4)(﹣bc)4÷(﹣bc)2=b2c2;2.解:(1)x2•x5﹣x3•x4=x7﹣x7=0;(2)m3•m3+m•m5=m6+m6=2m6;(3)a•a3•a2+a2•a4=a1+3+2+a2+4=a6+a6=2a6;(4)x2•x4+x3•x2•x=x6+x6=2x6.3.解:(1)x3•x3=x3+3=x6;(2)m2•m3=m2+3=m5;(3)a3+a3=2a3;(4)x2•x2•x2=x2+2+2=x6;(5)102•10•105=102+1+5=108;(6)y3•y2•y4=y3+2+4=y9.4.解:(1)(﹣x)3•x2•(﹣x)4=﹣x3•x2•x4=﹣x9;(2)﹣(﹣a)2•(﹣a)7•(﹣a)4=﹣a2•(﹣a7)•a4=a13;(3)(﹣b)4•(﹣b)2﹣(﹣b)5•(﹣b)=b4•b2﹣(﹣b5)•(﹣b)=b6﹣b6=0;(4)(﹣x)7•(﹣x)2﹣(﹣x)4•x5=(﹣x7)•x2﹣x4•x5=﹣x9﹣x9=﹣2x9.5.解:(1)原式=a3+2+1=a6;(2)原式=(﹣)2008×()2008×(﹣)=﹣.6.解:原式=﹣x•x2•(﹣x3)﹣x•(﹣x5)=x6+x6=2x6.7.解:原式=﹣(a﹣b)6+8(a﹣b)6=7(a﹣b)68.解:原式=y3•(﹣y)•(﹣y)5•y2=y3•(﹣y)•(﹣y5)•y2=y3•y•y5•y2=y3+1+5+2=y11.9.解:(1)原式=(﹣8)2011•(﹣)2011•(﹣),=[﹣8×(﹣)]2011×(﹣),=1×(﹣),=﹣;(2)原式=(a﹣b)5•[﹣(a﹣b)]3=﹣(a﹣b)8.10.解:a3•a•a5+a4•a2•a3=a9+a9=2a9.11.解:(1)原式=x6+x6﹣2x6=0;(2)原式=(x6)2﹣3(x6)2=x12﹣3x12=﹣2x12;(3)原式=4a2n b6n+a2n b6n=5a2n b6n;(4)原式=9x6﹣(﹣x6)+4x2﹣(﹣x3)=9x6+x6+4x2+x3=10x6+x3+4x2.12.解:(1)59×0.28=(5×0.2)8×5=1×5=5;(2)(﹣)9×()9=[(﹣)×]9=(﹣1)9=﹣1;(3)22×42×56=22×52×42×54=(2×5)2×42×252=102×(4×25)2=102×1002=102×104=106.13.解:(1)(﹣8)12×83=812×83=815;(2)210×410=210×(22)10=210×220=230;(3)(m4)2+m5•m3=m8+m8=2m8;(4)﹣[(2a﹣b)4]2=﹣(2a﹣b)8;(5)(3xy2)2=9x2y4;(6)(a﹣b)5(b﹣a)3=﹣(a﹣b)5(a﹣b)3=﹣(a﹣b)8.14.解:(1)原式=﹣1×+1﹣=﹣+=0;(2)原式=224×()8﹣()100×()100×=(2×)24﹣(×)100×=1﹣=﹣.15.解:(1)原式=3+(﹣8)×1=﹣5;(2)原式=﹣a6﹣a6+4a6=2a6.16.解:(1)(y2)3÷y6•y=y6÷y6•y=y;(2)y4+(y2)4÷y4﹣(﹣y2)2=y4+y8÷y4﹣y4=y4+y4﹣y4=y4.17.解:=×××+4×=+1=118.解:(1)原式=﹣1+1﹣3=﹣3;(2)原式=﹣8x6y3﹣4x6y2+6x6y3+2x6y2=﹣2x6y3﹣2x6y2.19.解:(1)(m﹣n)2•(n﹣m)3•(n﹣m)4=(n﹣m)2+3+4,=(n﹣m)9;(2)(b2n)3(b3)4n÷(b5)n+1=b6n•b12n÷b5n+5=b6n+12n﹣5n﹣5=b13n﹣5;(3)(a2)3﹣a3•a3+(2a3)2=a6﹣a6+4a6=4a6;(4)(﹣4a m+1)3÷[2(2a m)2•a]=﹣64a3m+3÷8a2m+1=﹣8a m+220.解:(1)(﹣2ab)•(﹣3ab)3=(﹣2ab)•(﹣27a3b3)=54a4b4;(2)5x2•(3x3)2=5x2•(9x6)=45x8;(3)(﹣0.16)•(﹣1000b6)=160b6;(4)(2×10n)(×10n)=102n.21.解:原式=×===.22.解:(1)﹣2﹣17﹣(﹣27)+(﹣10)=﹣19+27﹣10=﹣2;﹣(2)==;(3)a2﹣2(a2﹣3ab)﹣ab=a2﹣2a2+6ab﹣ab=﹣a2+5ab;(4)a•a5+(﹣2a3)2+(﹣3a2)3=a6+4a6﹣27a6=﹣22a6;(5)解方程:3(2x﹣1)=2x+3去括号,得6x﹣3=2x+3移项,得6x﹣2x=3+3合并同类项,得4x=6系数化为1,得;(6)解方程:去分母,得2(x+3)=4﹣(2x﹣1)去括号,得2x+6=4﹣2x+1移项,得2x+2x=4+1﹣6合并同类项,得4x=﹣1系数化为1,得.。

七年级数学下册《整式的乘除》单元测试卷(附答案)

七年级数学下册《整式的乘除》单元测试卷(附答案)

七年级数学下册《整式的乘除》单元测试卷(附答案)一.选择题(共8小题,满分40分)1.已知a+b﹣2=0,则3a•3b的值是()A.6 B.9 C.D.﹣92.若8x=21,2y=3,则23x﹣y的值是()A.7 B.18 C.24 D.633.如果2(5﹣a)(6+a)=100,那么a2+a+1的值为()A.19 B.﹣19 C.69 D.﹣694.已知25a•52b=56,4b÷4c=4,则代数式a2+ab+3c值是()A.3 B.6 C.7 D.85.已知4x2+mx+9是完全平方式,则m的值是()A.8 B.±6 C.±12 D.±166.若x+y=3,xy=1,则(1﹣2x)(1﹣2y)的值是()A.1 B.﹣1 C.2 D.﹣27.已知2a=5,2b=10,2c=50,那么a、b、c之间满足的等量关系是()A.ab=c B.a+b=cC.a:b:c=1:2:10 D.a2b2=c28.若(mx+3)(x2﹣x﹣n)的运算结果中不含x2项和常数项,则m,n的值分别为()A.m=0,n=0 B.m=0,n=3 C.m=3,n=1 D.m=3,n=0二.填空题(共8小题,满分40分)9.若(x+m)(x﹣3)=x2+nx﹣12,则n=.10.直接写出计算结果:(﹣3x2y3)4(﹣xy2)2=.11.当a=时,多项式x2﹣2(a﹣1)x+25是一个完全平方式.12.已知(x+y)2=2,(x﹣y)2=8,则x2+y2=.13.计算:(﹣)2022×(﹣1)2021=.14.(1)已知x+y=4,xy=3,则x2+y2的值为.(2)已知(x+y)2=25,x2+y2=17,则(x﹣y)2的值为.(3)已知x满足(x﹣2020)2+(2022﹣x)2=12,则(x﹣2021)2的值为.15.已知(x+3)2﹣x=1,则x的值可能是.16.如图,小颖用4张长为a、宽为b(a>b)的长方形纸片,按如图的方式拼成一个边长为(a+b)的正方形,图中空白部分的面积为S1,阴影部分的面积为S2.若a=2b,则S1、S2之间存在的数量关系是.三.解答题(共5小题,满分40分)17.计算:(x﹣2y+3)(x+2y﹣3).18.计算(1)(﹣5x)2﹣(3x+5)(5x﹣3);(2)(2x﹣3y)2﹣(﹣x+3y)(3y+x);(3)先化简,再求值:[(xy﹣2)2﹣2x(xy﹣2y)﹣4]÷(﹣2xy),其中,y=3.19.规定两数a,b之间的一种运算,记作(a,b):如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(4,64)=,(﹣2,4)=,(,﹣8)=;(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4);他给出了如下的证明:设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n;∴3x=4,即(3,4)=x.∴(3n,4n)=(3,4).请你尝试运用上述这种方法说明下面这个等式成立的理由.(4,5)+(4,6)=(4,30).(3)拓展应用:计算(3,9)×(3,20)﹣(3,5).20.数学活动课上,老师准备了图1中三种不同大小的正方形与长方形,拼成了一个如图2所示的正方形.(1)请用两种不同的方法表示图2中阴影部分的面积和.方法1:;方法2:.(2)请你直接写出三个代数式:(a+b)2,a2+b2,ab之间的等量关系.(3)根据(2)题中的等量关系,解决如下问题:①已知m+n=5,m2+n2=20,求mn和(m﹣n)2的值;②已知(x﹣2021)2+(x﹣2023)2=34,求(x﹣2022)2的值.21.阅读、理解、应用.例:计算:20223﹣2021×2022×2023.解:设2022=x,则原式=x3﹣(x﹣1)•x•(x+1)=x3﹣x(x2﹣1)=x=2022.请你利用上述方法解答下列问题:(1)计算:1232﹣124×122;(2)若M=123456789×123456786,N=123456788×123456787,请比较M,N的大小;(3)计算:.参考答案与解析一.选择题(共8小题,满分40分)1.【答案】解:∵a+b﹣2=0;∴a+b=2;∴3a•3b=3a+b=32=9.故选:B.2.【答案】解:∵8x=21,2y=3;∴23x=21;∴23x﹣y=23x÷2y=21÷3=7.故选:A.3.【答案】解:∵2(5﹣a)(6+a)=100;∴﹣a2+5a﹣6a+30=50;∴a2+a=﹣20;∴a2+a+1=﹣20+1=﹣19.故选:B.4.【答案】解:∵25a•52b=56,4b÷4c=4;∴52a•52b=56,4b﹣c=4;∴2a+2b=6,b﹣c=1;即a+b=3,b﹣1=c;∴a2+ab+3c=a(a+b)+3(b﹣1)=3a+3b﹣3=3(a+b)﹣3=3×3﹣3=9﹣3=6.故选:B.5.【答案】解:∵(2x±3)2=4x2±12x+9;∴m=±12;故选:C.6.【答案】解:原式=1﹣2y﹣2x+4xy =1﹣2(x+y)+4xy;当x+y=3,xy=1时;原式=1﹣2×3+4=1﹣6+4=﹣1;故选:B.7.【答案】解:∵5×10=50;∴2a•2b=2c;∴2a+b=2c;∴a+b=c;故选:B.8.【答案】解:(mx+3)(x2﹣x﹣n)=mx3﹣mx2﹣nmx+3x2﹣3x﹣3n=mx3+(﹣m+3)x2+(﹣nm﹣3)x﹣3n;∵(mx+3)(x2﹣x﹣n)的乘积中不含x2项和常数项;∴﹣m+3=0,﹣3n=0;解得:m=3,n=0;故选:D.二.填空题(共8小题,满分40分)9.【答案】解:(x+m)(x﹣3)=x2﹣3x+mx﹣3m=x2+(m﹣3)x﹣3m;∴m﹣3=n,3m=12;解得:m=4,n=1;故答案为:1.10.【答案】解:原式=81x8y12•x2y4=81x10y16.故答案为:81x10y16.11.【答案】解:因为x2﹣2(a﹣1)x+25=x2﹣2(a﹣1)x+52是完全平方式;属于﹣2(a﹣1)x=±2•x•5;解得:a=﹣4或6.故答案为:﹣4或6.12.【答案】解:∵(x+y)2=2,(x﹣y)2=8;∴x2+2xy+y2=2①,x2﹣2xy+y2=8②;①+②得:2(x2+y2)=10;∴x2+y2=5.故答案为:5.13.【答案】解:原式=[(﹣)×(﹣)]2021×(﹣)=12021×(﹣)=1×(﹣)=﹣;故答案为:﹣.14.【答案】解:(1)∵x+y=4,xy=3;∴x2+y2=(x+y)2﹣2xy=16﹣6=10.故答案为:10;(2)∵(x+y)2=25,x2+y2=17;∴x2+y2+2xy﹣(x2+y2)=8;∴xy=4;∴(x﹣y)2=x2+y2﹣2xy=17﹣8=9.故答案为:9;(3)∵(x﹣2020)2+(x﹣2022)2=12;∴[(x﹣2021)+1]2+[(x﹣2021)﹣1]2=12;∴(x﹣2021)2+2(x﹣2021)+1+(x﹣2021)2﹣2(x﹣2021)+1=12;∴(x﹣2021)2=5.故答案为:5.15.【答案】解:当x+3=1时;解得:x=﹣2;故(x+3)2﹣x=(﹣2+3)2﹣(﹣2)=14=1;当x+3=﹣1时;解得:x=﹣4;故(x+3)2﹣x=(﹣4+3)6=1;当2﹣x=0时;解得:x=2;故(x+3)2﹣x=(2+3)0=1;综上所述,x的值可能是﹣2或﹣4或2.故答案为:﹣2或﹣4或2.16.【答案】解:S1=b(a+b)×2+ab×2+(a﹣b)2=a2+2b2;S2=(a+b)2﹣S1=(a+b)2﹣(a2+2b2)=2ab﹣b2;∵a=2b;∴S1=a2+2b2=6b2,S2=2ab﹣b2=3b2∴S1=2S2.故答案为:S1=2S2.三.解答题(共5小题,满分40分)17.【答案】解:原式=x2﹣(2y﹣3)2=x2﹣(4y2﹣12y+9)=x2﹣4y2+12y﹣9.18.【答案】解:(1)原式=25x2﹣(15x2﹣9x+25x﹣15)=25x2﹣15x2+9x﹣25x+15=10x2﹣16x+15;(2)原式=4x2﹣12xy+9y2﹣(9y2﹣x2)=4x2﹣12xy+9y2﹣9y2+x2=5x2﹣12xy;(3)[(xy﹣2)2﹣2x(xy﹣2y)﹣4]÷(﹣2xy)=(x2y2﹣4xy+4﹣2x2y+4xy﹣4)÷(﹣2xy)=(x2y2﹣2x2y)÷(﹣2xy)=﹣xy+x;把,y=3代入得:﹣xy+x=﹣×(﹣)×3+(﹣)=﹣=.19.【答案】解:(1)∵43=64,(﹣2)2=4,(﹣)﹣3=﹣8;∴(4,64)=3,(﹣2,4)=2,(﹣,﹣8)=﹣3.故答案为:3,2,﹣3.(2)设(4,5)=x,(4,6)=y,(4,30)=z;则4x=5,4y=6,4z=30;∴4x×4y=5×6=30;∴4x×4y=4z;∴x+y=z,即(4,5)+(4,6)=(4,30).(3)设(3,20)=a,(3,5)=b;∴3a=20,3b=5;∵(3,9)=2;∴(3,9)×(3,20)﹣(3,5)=2a﹣b;∵32a﹣b=(3a)2÷3b=202÷5=80;∴2a﹣b=(3,80),即(3,9)×(3,20)﹣(3,5)=(3,80).20.【答案】解:(1)阴影两部分求和为a2+b2,用总面积减去空白部分面积为(a+b)2﹣2ab;故答案为:a2+b2,(a+b)2﹣2ab;(2)由题意得,a2+b2=(a+b)2﹣2ab;(3)①由(2)题结论a2+b2=(a+b)2﹣2ab可得ab=;∴m+n=5,m2+n2=20时;mn===;(m﹣n)2=m2﹣2mn+n2;=20﹣2×=20﹣5=15;②设a=x﹣2021,b=x﹣2023;可得a+b=(x﹣2021)+(x﹣2023)=x﹣2021+x﹣2023=2x﹣4044=2(x﹣2022);由(2)题结论a2+b2=(a+b)2﹣2ab可得;(a+b)2=a2+2ab+b2;又∵(a﹣b)2=[(x﹣2021)﹣(x﹣2023)]2=22=4;且由(a﹣b)2=a2﹣2ab+b2,可得2ab=(a2+b2)﹣(a﹣b)2=(x﹣2021)2+(x﹣2023)2﹣[(x﹣2021)﹣(x﹣2023)]2=34﹣4=30;∴(x﹣2022)2=()2====16.21.【答案】解:(1)设123=x;∴1232﹣124×122=x2﹣(x+1)(x﹣1)=x2﹣x2+1=1;(2)设123456786=x;∴M=123456789×123456786=(x+3)•x=x2+3x;N=123456788×123456787=(x+2)(x+1)=x2+3x+2;∴M<N;(3)设++...+=x;∴=(x+)(1+x)﹣(1+x+)•x=x+x2++x﹣x﹣x2﹣x =.。

北师大版数学七下第一章《整式的乘除》计算题专项训练

北师大版数学七下第一章《整式的乘除》计算题专项训练

北师⼤版数学七下第⼀章《整式的乘除》计算题专项训练第⼀章整式的乘除计算题专项练习(北师⼤版数学七年级下册)1、4(a+b)+2(a+b)-5(a+b)2、(3mn +1)(3mn-1)-8m 2n 23、()02313721182??--+----4、[(xy-2)(xy+2)-2x 2y 2+4]÷(xy)5、化简求值:)4)(12()12(2+-+-a a a ,其中2-=a6、222)2()41(ab b a -? 7、)312(6)5(222x xy xy x --+ 8、()()()()2132-+--+x x x x9、??-÷+-xy xy xy 41412210、化简求值))(()2(2y x y x y x -+-+,其中21,2=-=y x 11.计算:2)())((y x y x y x ++---12.先化简再求值:)4)(12()2(2+-+-a a a ,其中2-=a 13、)2)(2(2-+-x x x 14、3223)2()3(x x --- 15、24)2()2(b a b a +÷+16、1232-124×122(利⽤乘法公式计算) 17、[])(2)2)(1(x x x -÷-++ 18、(2x 2y)3)19、化简求值:当2=x ,25=y 时,求()()()()x xy y x y x y x 2]4222[2-÷--+++的值 20、)43(22b a a --21、)2)(2(b a b a -+ 22、()()321+-x x23、+--229)3(b b a (—3.14)024、先化简,再求值()()2226543xy xy xy y x -?+-?,其中21,2==y x 25、3-2+(31)-1+(-2)3+(892-890)026、(9a 4b 3c )÷(2a 2b 3)·(-43a 3bc 2) 27、(15x 2y 2-12x 2y 3-3x 2)÷(-3x)228、()4(23)(32)a b a b a b +--+-29、23628374)21()412143(ab b a b a b a -÷-+30、()()()1122+--+x x x31、3-2+(31)-1+(-2)3+(892-890)032、先化简再求值:()()()3222a a=-=b a33、()4(23)(32)a b a b a b +--+-。

北师大版数学七下第一章《整式的乘除》计算题专项训练

北师大版数学七下第一章《整式的乘除》计算题专项训练

北师大版数学七下第一章《整式的乘除》计算题专项训练1、4(a+b)+2(a+b)-5(a+b)化简得:(4+2-5)(a+b)=a+b答案为:a+b2、(3mn+1)(3mn-1)-8mn化简得:9m^2n^2-1-8mn=9m^2n^2-8mn-1答案为:9m^2n^2-8mn-13、-2-3×(1-(-1)÷2^2)×22÷7化简得:-2-3×(1-(-1)÷4)×2= -2-3×(1+0.25)×2=-16.5答案为:-16.54、[(xy-2)(xy+2)-2xy+4]÷(xy)化简得:(x^2y-4+2xy+4)÷xy=(x^2y+2xy)÷xy=x+2答案为:x+25、(2a-1)^2+(2a-1)(a+4),其中a=-2化简得:(2(-2)-1)^2+(2(-2)-1)(-2+4)=(-5)^2+(-10)(2)=45答案为:456、(1÷2ab)×(-2ab^2)^2÷4÷(1÷2x)^3化简得:-2a^2b^4×8x^3=-16a^2b^4x^3答案为:-16a^2b^4x^37、2(x^2+5xy)-6(2xy-x^2)化简得:2x^2+10xy-12xy+6x^2=8x^2-2xy答案为:8x^2-2xy8、(x+2)(x-3)-(x+1)(x-2)化简得:x^2-x-6-x^2+x+2x-2=x-4答案为:x-410、(x+2y)^2-(x+y)(x-y),其中x=-2,y=3化简得:(2(-2)+6)^2-(2(-2)+3)(2(-2)-3)=16-(-13)=29 答案为:2911、(-x-y)(x-y)+(x+y)^2化简得:-x^2+xy+xy-y^2+x^2+2xy+y^2=4xy答案为:4xy13、x^2-(x+2)(x-2)化简得:x^2-(x^2-4)=4答案为:414、(-3x^3)^2-(-2x^2)^3化简得:9x^6-8x^6=x^6答案为:x^615、(2a+b)^4÷(2a+b)^2化简得:(2a+b)^2=4a^2+4ab+b^2答案为:4a^2+4ab+b^216、123-124×122利用乘法公式计算124×122=化简得:123-=-答案为:-17、[(x+1)(x+2)-2]÷(-x)化简得:-(x^2+3x)=-(x(x+3))答案为:-(x(x+3))18、(2xy)·(-7xy)÷(14xy)化简得:-1/2答案为:-1/219、[(2x+y)^2+(2x+y)(2x-y)-4xy]÷(-2x),其中x=2,y=1化简得:[(2(2)+1)^2+(2(2)+1)(2(2)-1)-4(2)]÷(-2(2))=-15 答案为:-1520、-2a(3a-4b^2)÷5化简得:6a^2-8b^2÷5=-8/5(5-3a)(5+3a)答案为:-8/5(5-3a)(5+3a)21、(a+2b)(a-2b)化简得:a^2-4b^2答案为:a^2-4b^222、(x-1)(2x+3)化简得:2x^2+x-3答案为:2x^2+x-323、(a-3b)^2-9b^2-3.14化简得:a^2-6ab+9b^2-9b^2-3.14=a^2-6ab-3.14答案为:a^2-6ab-3.1424、3x^2y(-4xy^2)+5xy(-6xy)^2,其中x=2,y=3化简得:-36x^4y^3+5(-216x^3y^3)=-36x^4y^3-1080x^3y^3 答案为:-36x^4y^3-1080x^3y^325、3+0+(-2)+(892-890)化简得:3+0+(-2)+2=3答案为:326、(9abc)÷(2ab)·(-abc)化简得:-18c答案为:-18c27、(15xy-12xy-3x)÷(-3x)化简得:-1答案为:-128、(a+b)-4(2a-3b)+(3a-2b)化简得:a+b-8a+12b+3a-2b=-4a+11b答案为:-4a+11b30、(x+2)^2-(x-1)(x+1)化简得:x^2+4x+4-(x^2-1)=5x+5答案为:5x+531、3+0+(-2)+(892-890)化简得:3+0+(-2)+2=3答案为:332、(a-b)(a+ab+b)+b(a+b)化简得:a^2+ab^2+2ab+b^2答案为:a^2+ab^2+2ab+b^21.题目中的符号应该使用正确的数学符号,比如乘号用*代替,除号用/代替。

北师大版七年级数学下册 第一章 整式的乘除 专题练习(含答案)

北师大版七年级数学下册 第一章 整式的乘除 专题练习(含答案)

第一章 整式的乘除练习题一、选择题1.下列运算正确的是( ) A .a 5·a 2=a 10 B .a 3÷a =a 2 C .2a +a =2a 2 D .(a 2)3=a 52.已知a m =2,a n =3,则a 3m +2n 的值是( ) A .24 B .36 C .72 D .6.3.已知a =-0.32,b =-3-2,c =(-13)-2,d =(-13)0,比较a ,b ,c ,d 的大小关系,则有( )A .a <b <c <dB .a <d <c <bC .b <a <d <cD .c <a <d <b4.若(-2x +a )(x -1)中不含x 的一次项,则( ) A .a =1 B .a =-1 C .a =-2 D .a =25.若a -b =2,则a 2-b 2-4b 的值是( ) A .2 B .0 C .4 D .66.下列整式乘法运算,正确的是()A.(x-y)(y+x)=x2-y2B.(a+3)2=a2+9C.(a+b)(-a-b)=a2-b2D.(x-y)2=x2-y27.若长方形的面积是3a2-3ab+6a,一边长为3a,则它的周长为()A.2a-b+2 B.8a-2bC.8a-2b+4 D.4a-b+2二、填空题8.计算:(-8)2 021×0.1252 020+(π-3.14)0-(12)-1的结果为________.9.如图,现有A,C两类正方形卡片和B类长方形卡片各若干张,用它们可以拼成一些新的长方形.如果要拼成一个长为(3a+2b),宽为(a+b)的长方形,那么需要B类长方形卡片________张.10.计算:(2+1)×(22+1)×(24+1)×(28+1)=_________(结果可用幂的形式表示).11.若正有理数m 使二次三项式x 2-2mx +36是一个完全平方式,则m =_______.三、解答题 12.计算:(1)-a 2·a ·(-a )3+(-a 3)2+(-2a 2)3; (2)(x 2y 3)-2·xy 2÷(x 2y )-1; (3)(x +2)(2x 2-5x -3)-2x (x 2-1); (4)(2x +y +1)(2x +y -1); (5)(3x 2y -xy 2+12xy )÷(-12xy ).13.先化简,再求值:[(2a +b )(2a -b )-(2a -b )2-b (a -2b ]÷2a ,其中a =12 019,b =23.14.化简求值:[(x -4y )(x +4y )-(x -3y )2+y 2]÷(-2y ),其中x =-1,y =13.15.请先观察下列算式,再填空: 32-12=8×1;52-32=8×2.①72-52=8×_______;②92-(_______)2=8×4;③(______)2-92=8×5;④132-(_______)2=8×_______;…(1)通过观察归纳,你知道上述规律的一般形式吗?请把你的猜想写出来.(2)你能运用本章所学的平方差公式来说明你的猜想的正确性吗?16.对于一个图形,通过两种不同的方法计算它们的面积,可以得到一个数学等式,如由图1可以得到(a+b)2=a2+2ab+b2.请解答下列问题:(1)根据图1的数学等式,写出图2表示的数学等式;(2)若a+b+c=10,ab+ac+bc=35,用上面得到的数学等式乘a2+b2+c2的值;(3)小明同学用图3中的x张边长为a的正方形,y张边长为b的正方形,z张边长为a,b的长方形拼出一个面积为(a+7b)(9a+4b)的长方形,求(x+y+z)的值.参考答案一、选择题1.B2.C3.C4.C5. C6.A7.C二、填空题8.-99. 510.216-111.±6三、解答题12.解:(1)原式=a6+a6-8a6=-6a6.(2)原式=x-4y-6·xy2÷(x-2y-1)=x-1y-3.(3)原式=2x3-5x2-3x+4x2-10x-6-2x3+2x=-x2-11x-6.(4)原式=(2x+y)2-1=4x2+y2+4xy-1.(5)原式=-6x+2y-1.13.解: 原式=(4a 2-b 2-4a 2+4ab -b 2-ab +2b 2)÷2a =3ab ÷2a =32b . 当b =23时, 原式=32×23=1. 14.解: 原式=(x 2-16y 2-x 2+6xy -9y 2+y 2)÷(-2y ) =(-24y 2+6xy )÷(-2y ) =12y -3x .当x =-1,y =13时,原式=12×13-3×(-1)=7. 15. ① 3 ② 7 ③ 11 ④ 11 6解: (1)(2n +1)2-(2n -1)2=8n (n 为自然数且n ≥1). (2)原式可变为(2n +1+2n -1)(2n +1-2n +1)=4n ×28n .16.解:(1)∵图2中正方形的面积有两种算法:①(a+b+c)2;②a2+b2+c2+2ab+2ac+2bc.∴(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.(2)∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,∴a2+b2+c2=(a+b+c)2-2ab-2ac-2bc=102-2×35=30.(3)由题可知,所拼图形的面积:(a+7b)(9a+4b)=9a2+4ab+63ab+28b2=9a2+67ab+28b2,∴xa2+yb2+zab中x=9,y=28,z=67.x+y+z=9+28+67=104.。

七年级数学下册第一章《整式的乘除》综合测试卷-北师大版(含答案)

七年级数学下册第一章《整式的乘除》综合测试卷-北师大版(含答案)

七年级数学下册第一章《整式的乘除》综合测试卷-北师大版(含答案)(满分100分,限时60分钟)一、选择题(共10小题,每小题3分,共30分)1.若2a=5,2b=3,则2a+b=()A.8B.2C.15D.12.计算(-x2)·(-x)4的结果是()A.x6B.x8C.-x6D.-x83.下列式子能用平方差公式计算的是()A.(2x-y)(-2x+y)B.(2x+1)(-2x-1)C.(3a+b)(3b-a)D.(-m-n)(-m+n)4.(2022江苏泰州泰兴济川中学月考)下列运算中,正确的是()A.a8÷a2=a4B.(-m)2·(-m3)=-m5C.x3+x3=x6D.(a3)3=a65.(2022江苏淮安洪泽期中)若a>0且a x=2,a y=3,则a x-y的值为()A.23B.1 C.−1 D.326.4a7b5c3÷(-16a3b2c)÷(18a4b3c2)等于()A.aB.1C.-2D.-17.【整体思想】已知m-n=1,则m2-n2-2n的值为()A.1B.-1C.0D.28.如果x2-(a-1)x+9是一个完全平方式,则a的值为()A.7B.-4C.7或-5D.7或-49.【新独家原创】若a=(π-2 023)0,b=2 0222-2 021×2 023,c=-23,则a-b-c的值为()A.2 021B.2 022C.8D.110.【转化思想】从前,一位庄园主把一块长为a米,宽为b米(a>b>100)的长方形土地租给租户张老汉,第二年,他对张老汉说:“我把这块地的长增加10米,宽减少10米,继续租给你,租金不变,你也没有吃亏,你看如何?”如果这样,你觉得张老汉的租地面积会()A.变小了B.变大了C.没有变化D.无法确定二、填空题(共6小题,每小题3分,共18分)11.计算:(−13)100×3101=.12.(2022广东佛山月考)已知a+b=8,ab=15,则a2+b2=.13.(2022江苏盐城滨海第一初级中学月考)已知4×16m×64m=421,则m的值为.14.已知一个三角形的面积等于8x3y2-4x2y3,一条边长等于8x2y2,则这条边上的高等于.15.调皮的弟弟把小明的作业本撕掉了一角,留下一道残缺不全的题目,如图所示,请你帮小明算出被除式等于.÷(5x)=x2-3x+6.16.【学科素养·几何直观】有两个大小不同的正方形A和B,现将A、B并列放置后构造新的正方形如图1,其阴影部分的面积为16.将B放在A的内部得到图2,其阴影部分(正方形)的面积为3,则正方形A,B的面积之和为.三、解答题(共5小题,共52分)17.(2022宁夏银川三中月考)(14分)计算:(1)4y·(-2xy2);(2)(3x2+12y−23y2)·(−12xy)2;(3)(2a+3)(b2+5);(4)(6x3y3+4x2y2-3xy)÷(-3xy).18.(12分)计算:(1)-12+(π-3.14)0-(−13)−2+(-2)3;(2)2 001×1 999(运用乘法公式);(3)(x+y+3)(x+y-3).,y=-1.19.(6分)先化简,再求值:(2x+3y)2-(2x+y)(2x-y),其中x=1320.(2022江苏泰州二中月考)(10分)(1)已知m+4n-3=0,求2m·16n的值;(2)已知n为正整数,且x2n=4,求(x3n)2-2(x2)2n的值.21.【代数推理】(2022河北保定十七中期中)(10分)阅读下列材料:利用完全平方公式,将多项式x2+bx+c变形为(x+m)2+n的形式,然后由(x+m)2≥0就可求出多项式x2+bx+c的最小值.例题:求x2-12x+37的最小值.解:x2-12x+37=x2-2x·6+62-62+37=(x-6)2+1,∵不论x取何值,(x-6)2总是非负数,即(x-6)2≥0,∴(x-6)2+1≥1,∴当x=6时,x2-12x+37有最小值,最小值是1.根据上述材料,解答下列问题:(1)填空:x2-14x+=(x-)2;(2)将x2+10x-2变形为(x+m)2+n的形式,并求出x2+10x-2的最小值;(3)如图,第一个长方形的长和宽分别是(3a+2)和(2a+5),面积为S1,第二个长方形的长和宽分别是5a和(a+5),面积为S2,试比较S1与S2的大小,并说明理由.参考答案1.C当2a=5,2b=3时,2a+b=2a×2b=5×3=15,故选C.2.C(-x2)·(-x)4=-x2·x4=-x6,故选C.3.D A.原式=-(2x-y)(2x-y)=-(2x-y)2,故原式不能用平方差公式进行计算,此选项不符合题意;B.原式=-(2x+1)(2x+1)=-(2x+1)2,故原式不能用平方差公式进行计算,此选项不符合题意;C.原式=(3a+b)(-a+3b),故原式不能用平方差公式进行计算,此选项不符合题意;D.原式=(-m)2-n2=m2-n2,原式能用平方差公式进行计算,此选项符合题意.故选D.4.B a8÷a2=a6,故A选项错误;(-m)2·(-m3)=-m5,故B选项正确;x3+x3=2x3,故C选项错误;(a3)3=a9,故D选项错误.故选B.5.A a x-y=a x÷a y=2÷3=23.故选A.6.C4a7b5c3÷(-16a3b2c)÷(18a4b3c2)=-14a4b3c2÷(18a4b3c2)=-2.故选C.7.A∵m-n=1,∴原式=(m+n)(m-n)-2n=m+n-2n=m-n=1,故选A.8.C∵x2-(a-1)x+9是一个完全平方式,∴x2-(a-1)x+9=(x+3)2或x2-(a-1)x+9=(x-3)2,∴a-1=±6,解得a=-5或a=7,故选C.9.C∵a=(π-2 023)0=1,b=2 0222-(2 022-1)×(2 022+1)=2 0222-2 0222+1=1,c=-23=-8,∴a-b-c=1-1+8=8.故选C.10.A由题意可知原土地的面积为ab平方米, 第二年按照庄园主的想法,土地的面积变为(a+10)(b-10)=ab-10a+10b-100=[ab-10(a-b)-100]平方米,∵a>b,∴ab-10(a-b)-100<ab, ∴租地面积变小了,故选A.11.3解析原式=(13)100×3101=(13×3)100×3=3.故答案是3.12.34解析∵a+b=8,ab=15,∴(a+b)2=a2+2ab+b2=a2+30+b2=64,则a2+b2=34.故答案为34.13.4解析∵4×16m×64m=421,∴4×42m×43m=421,∴41+5m=421,∴1+5m=21,∴m=4.故答案为4.14.2x-y解析易知该边上的高=2(8x3y2-4x2y3)÷(8x2y2)=16x3y2÷(8x2y2)-8x2y3÷(8x2y2)=2x-y.故答案为2x-y.15.5x3-15x2+30x解析由题意可得被除式等于5x·(x2-3x+6)=5x3-15x2+30x.故答案为5x3-15x2+30x.16.19解析设正方形A的边长为a,正方形B的边长为b,由题图1得(a+b)2-a2-b2=16,∴2ab=16,∴ab=8,由题图2得a2-b2-2(a-b)b=3,∴a2+b2-2ab=3,∴a2+b2=3+2ab=3+2×8=19,∴正方形A,B的面积之和为19.故答案为19.17.解析(1)4y·(-2xy2)=-8xy3.(2)原式=(3x2+12y−23y2)·14x2y2=3 4x4y2+18x2y3−16x2y4.(3)(2a+3)(b2+5)=ab+10a+32b+15.(4)(6x3y3+4x2y2-3xy)÷(-3xy)=-2x2y2-43xy+1.18.解析(1)原式=-1+1-9-8=-17.(2)2 001×1 999=(2 000+1)(2 000-1)=2 0002-1=3 999 999.(3)(x+y+3)(x+y-3)=[(x+y)+3][(x+y)-3]=(x+y)2-9=x2+2xy+y2-9.19.解析(2x+3y)2-(2x+y)(2x-y) =(4x2+12xy+9y2)-(4x2-y2)=4x2+12xy+9y2-4x2+y2=12xy+10y2.当x=13,y=-1时,原式=12×13×(-1)+10×(-1)2=6.20.解析(1)∵m+4n-3=0,∴m+4n=3,∴2m·16n=2m·24n=2m+4n=23=8.(2)原式=x6n-2x4n=(x2n)3-2(x2n)2=64-2×16=64-32=32.21.解析(1)49;7.(2)x2+10x-2=x2+10x+25-25-2=x2+10x+25-27=(x+5)2-27≥-27, ∴当x=-5时,x2+10x-2有最小值,为-27.(3)由题意得,S1=(2a+5)(3a+2)=6a2+19a+10,S2=5a(a+5)=5a2+25a,∴S1-S2=6a2+19a+10-(5a2+25a)=a2-6a+10=(a-3)2+1,∵(a-3)2≥0,∴(a-3)2+1≥1,∴S1-S2>0,∴S1>S2.。

初中数学整式的乘除法综合练习题(附答案)

初中数学整式的乘除法综合练习题(附答案)

初中数学整式的乘除法综合练习题一、单选题1.下列各式计算正确的是( ).A.()m n m n a a +=B.223a a a +=C.2363()a b a b =D.236a a a ⋅=2.计算23()a b -的结果是( )A.63a b -B.6a bC.633a bD.633a b - 3.计算32(3)x -的结果是( ).A.53x -B.69xC.59xD.69x - 4.下列各式计算结果是7a 的是( ).A.34a a +B.34()aC.34a a ⋅D.77a a + 5.下列运算正确的是( ).A.236a a a ⋅=B.325a a a +=C.248()a a =D.32a a a -=6.下列各式计算结果是8a 的是( ).A.24a a ⋅B.26a a +C.24()aD.9a a - 7.23()a -=( )A.5aB.6aC.5a -D.6a - 8.计算32()x 的结果是( ).A.5xB.32xC.9xD.6x 9.化简23()a a -所得的结果是( ).A.5aB.5a -C.6aD.6a - 10.计算3()()x y x y -⋅-=( ).A.4()x y -B.3()x y -C.4()x y -- D.4()x y +11.在等式3211()a a a ⋅⋅=中,括号里面的代数式是( ).A.7aB.8aC.6aD.3a 12.计算62a a ⋅的结果是( )A.3aB.4aC.6aD.12a 13.计算5a ab ⋅=( )A.5abB.26a bC.25a bD.10ab14.计算32()a -的结果是( )A.6aB.6a -C.5a -D.5a15.计算3212xy ⎛⎫- ⎪⎝⎭结果正确的是( ). A. 351x y 6B. 361-x y 8C. 361x y 6D. 351-x y 8二、解答题16.一只小虫从某点P 出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:cm)依次为:+5,-3,+10,-8,-6,+12,-10.1.通过计算说明小虫是否能回到起点P.2.如果小虫爬行的速度为0.5cm/s,那么小虫共爬行了多长时间?三、计算题17.计算.1.23(2)b2.2332(3)(4)a a -+-四、填空题18.若10,2n n a b ==,则()n ab =_______.19.计算:23(3)a a -=________.20.计算:26()()x x x -⋅⋅-= . 参考答案1.答案:C解析:2.答案:A解析:3.答案:B解析:4.答案:C解析:5.答案:C解析:6.答案:C解析:7.答案:D解析:8.答案:D解析:9.答案:A解析:10.答案:A解析:11.答案:C解析:12.答案:C解析:13.答案:C解析:112555a ab a b a b +⋅==.故选C.14.答案:A解析:32326().a aa ⨯-==故选A.15.答案:B 解析:()()33332236111228xy x y x y ⎛⎫⎛⎫-=-⋅=- ⎪ ⎪⎝⎭⎝⎭,故选B. 16.答案:1.∵5+(-3)+10+(-8)+(-6)+12+(-10)=5-3+10-8-6+12-10=0∴小虫能回到起点P;2.(5+3+10+8+6+12+10)÷0.5=54÷0.5=108(秒)答:小虫共爬行了108秒.解析:把记录到得所有的数字相加,看结果是否为0即可;记录到得所有的数字的绝对值的和,除以0.5即可.考点:有理数的加减混合运算;正数和负数17.答案:1.原式=32362()8b b ⋅=.2.原式=666271611a a a -+=-解析:18.答案:20解析:19.答案:59a解析:20.答案:9x -解析:原式369.x x x =-⋅=-。

七年级下册数学《整式的乘除》专项练习

七年级下册数学《整式的乘除》专项练习

七年级下册数学《整式的乘除》专项练习一.选择题(共10小题)1.计算3a3•(﹣a2)的结果是()A.3a5B.﹣3a5C.3a6 D.﹣3a62.如果x2+2mx+9是一个完全平方式,则m的值是()A.3 B.±3 C.6 D.±63.下列计算正确的是()A.3a﹣a=2 B.a2+a3=a5C.a6÷a2=a4D.(a2)3=a54.如图1是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图2那样拼成一个正方形,则中间空的部分的面积为()A.ab B.(a+b)2C.(a﹣b)2 D.a2﹣b25.已知(x﹣3)(x2+mx+n)的乘积项中不含x2和x项,则m,n的值分别为()A.m=3,n=9 B.m=3,n=6 C.m=﹣3,n=﹣9 D.m=﹣3,n=96.下列计算中正确的是()A.+=B.=3 C.a10=(a5)2D.b﹣2=﹣b27.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.﹣3 B.3 C.0 D.18.若(a m b n)3=a9b15,则m、n的值分别为()A.9;5 B.3;5 C.5;3 D.6;129.计算(a﹣b)(a+b)(a2+b2)(a4﹣b4)的结果是()A.a8+2a4b4+b8B.a8﹣2a4b4+b8C.a8+b8D.a8﹣b810.若(x﹣1)2=(x+7)(x﹣7),则的平方根是()A.5 B.±5 C. D.±二.填空题(共6小题)11.若(x+3)0=1,则x应满足条件.12.已知a+b=2,ab=﹣10,则a2+b2=.13.计算:8100×(﹣0.125)101=.14.已知a+=5,则a2+的值是.15.计算:2﹣2﹣(﹣2)0=.16.若4y2﹣my+25是一个完全平方式,则m=.三.解答题(共7小题)17.计算:.18.先化简,再求值:(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣.19.已知x2﹣9=0,求代数式x2(x+1)﹣x(x2﹣1)﹣x﹣7的值.20.已知3m=6,9n=2,求32m﹣4n+1的值.21.如图,两个正方形边长分别为a、b.(1)求阴影部分的面积.(2)如果a+b=17,ab=60,求阴影部分的面积.22.对于任意有理数a、b、c、d,我们规定符号(a,b)⊗(c,d)=ad﹣bc,例如:(1,3)⊗(2,4)=1×4﹣2×3=﹣2.(1)求(﹣2,3)⊗(4,5)的值为;(2)求(3a+1,a﹣2)⊗(a+2,a﹣3)的值,其中a2﹣4a+1=0.23.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:×(﹣xy)=3x2y﹣xy2+xy(1)求所捂的多项式;(2)若x=,y=,求所捂多项式的值.七年级下册数学《整式的乘除》专项练习参考答案与试题解析一.选择题(共10小题)1.计算3a3•(﹣a2)的结果是()A.3a5B.﹣3a5C.3a6 D.﹣3a6【分析】根据单项式乘以单项式,即可解答.【解答】解:3a3•(﹣a2)=﹣3a5.故选:B.2.如果x2+2mx+9是一个完全平方式,则m的值是()A.3 B.±3 C.6 D.±6【分析】根据完全平方公式是和的平方加减积的2倍,可得m的值.【解答】解:∵x2+2mx+9是一个完全平方式,∴m=±3,故选:B.3.下列计算正确的是()A.3a﹣a=2 B.a2+a3=a5C.a6÷a2=a4D.(a2)3=a5【分析】依据合并同类项法则、同底数幂的除法法则以及幂的乘方法则进行判断即可.【解答】解:3a﹣a=2a,故A选项错误;a2+a3≠a5,故B选项错误;a6÷a2=a4,故C选项正确;(a2)3=a6,故D选项错误;故选:C.4.如图1是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图2那样拼成一个正方形,则中间空的部分的面积为()A.ab B.(a+b)2C.(a﹣b)2 D.a2﹣b2【分析】由图1得,一个小长方形的长为a,宽为b,由图2得:中间空的部分的面积=大正方形的面积﹣4个小长方形的面积,代入计算.【解答】解:中间空的部分的面积=大正方形的面积﹣4个小长方形的面积,=(a+b)2﹣4ab,=a2+2ab+b2﹣4ab,=(a﹣b)2;故选:C.5.已知(x﹣3)(x2+mx+n)的乘积项中不含x2和x项,则m,n的值分别为()A.m=3,n=9 B.m=3,n=6 C.m=﹣3,n=﹣9 D.m=﹣3,n=9【分析】多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.不含某一项就是说这一项的系数为0.【解答】解:∵原式=x3+(m﹣3)x2+(n﹣3m)x﹣3n,又∵乘积项中不含x2和x项,∴(m﹣3)=0,(n﹣3m)=0,解得,m=3,n=9.故选:A.6.下列计算中正确的是()A.+=B.=3 C.a10=(a5)2D.b﹣2=﹣b2【分析】A、根据有理数的加法进行判定;B、根据立方根进行判定、C、根据幂的乘方进行判定;D、根据负整数指数幂即可解答.【解答】解:A、,故错误;B、=﹣3,故错误;C、a10=(a5)2,正确;D、,故错误;故选:C.7.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.﹣3 B.3 C.0 D.1【分析】先用多项式乘以多项式的运算法则展开求它们的积,并且把m看作常数合并关于x的同类项,令x的系数为0,得出关于m的方程,求出m的值.【解答】解:∵(x+m)(x+3)=x2+3x+mx+3m=x2+(3+m)x+3m,又∵乘积中不含x的一次项,∴3+m=0,解得m=﹣3.故选:A.8.若(a m b n)3=a9b15,则m、n的值分别为()A.9;5 B.3;5 C.5;3 D.6;12【分析】根据积的乘方法则展开得出a3m b3n=a9b15,推出3m=9,3n=15,求出m、n即可.【解答】解:∵(a m b n)3=a9b15,∴a3m b3n=a9b15,∴3m=9,3n=15,∴m=3,n=5,故选:B.9.计算(a﹣b)(a+b)(a2+b2)(a4﹣b4)的结果是()A.a8+2a4b4+b8B.a8﹣2a4b4+b8C.a8+b8D.a8﹣b8【分析】这几个式子中,先把前两个式子相乘,这两个二项式中有一项完全相同,另一项互为相反数.相乘时符合平方差公式得到a2﹣b2,再把这个式子与a2+b2相乘又符合平方差公式,得到a4﹣b4,与最后一个因式相乘,可以用完全平方公式计算.【解答】解:(a﹣b)(a+b)(a2+b2)(a4﹣b4),=(a2﹣b2)(a2+b2)(a4﹣b4),=(a4﹣b4)2,=a8﹣2a4b4+b8.故选:B.10.若(x﹣1)2=(x+7)(x﹣7),则的平方根是()A.5 B.±5 C. D.±【分析】先利用完全平方公式与平方差公式把已知条件展开,求出x的值,然后再求出的值,最后求平方根即可.【解答】解:∵(x﹣1)2=(x+7)(x﹣7),∴x2﹣2x+1=x2﹣49,解得x=25,∴==5,∴的平方根是±.故选:D.二.填空题(共6小题)11.若(x+3)0=1,则x应满足条件x≠﹣3.【分析】根据零指数幂:a0=1(a≠0)可得x+3≠0,解出x即可.【解答】解:∵(x+3)0=1,∴x+3≠0,解得:x≠﹣3,故答案为:x≠﹣3.12.已知a+b=2,ab=﹣10,则a2+b2=24.【分析】此题可将a2+b2变形为(a+b)2﹣2ab,再代入求值即可.【解答】解:∵a+b=2,ab=﹣10,∴a2+b2=(a+b)2﹣2ab,=22﹣2×(﹣10),=4+20=24.故答案为:24.13.计算:8100×(﹣0.125)101=﹣0.125.【分析】根据积的乘方公式,即可解答.【解答】解:8100×(﹣0.125)101=[8×(﹣0.125)]100×(﹣0.125)=(﹣1)100×(﹣0.125)=﹣0.125,故答案为:﹣0.125.14.已知a+=5,则a2+的值是23.【分析】根据完全平分公式,即可解答.【解答】解:a2+=.故答案为:23.15.计算:2﹣2﹣(﹣2)0=﹣.【分析】根据负整数指数幂、0指数幂,即可解答.【解答】解:2﹣2﹣(﹣2)0=﹣1=﹣.故答案为:﹣.16.若4y2﹣my+25是一个完全平方式,则m=±20.【分析】根据a2+2ab+b2和a2﹣2ab+b2都是完全平方式得出﹣my=±2•2y•5,求【解答】解:∵4y2﹣my+25是一个完全平方式,∴(2y)2±2•2y•5+52,即﹣my=±2•2y•5,∴m=±20,故答案为:±20.三.解答题(共7小题)17.计算:.【分析】分别根据零指数幂,负整数指数幂、二次根式的运算法则计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣2+1+2=1.18.先化简,再求值:(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣.【分析】原式第一项利用平方差公式化简,第二项利用单项式乘以多项式法则计算,最后一项利用完全平方公式展开,去括号合并得到最简结果,将x的值代入计算,即可求出值.【解答】解:原式=4x2﹣9﹣4x2+4x+x2﹣4x+4=x2﹣5,当x=﹣时,原式=(﹣)2﹣5=3﹣5=﹣2.19.已知x2﹣9=0,求代数式x2(x+1)﹣x(x2﹣1)﹣x﹣7的值.【分析】根据已知可以得到x2=9,然后把所求的代数式进行去括号、合并同类项,然后把x2=9代入即可求解.【解答】解:∵x2﹣9=0,∴x2=9,∴x2(x+1)﹣x(x2﹣1)﹣x﹣7=x3+x2﹣x3+x﹣x﹣7当x2=9时,原式=9﹣7=2.20.已知3m=6,9n=2,求32m﹣4n+1的值.【分析】根据9n=32n,32m﹣4n+1=32m×3÷34n,代入运算即可.【解答】解:由题意得,9n=32n=2,32m=62=36,故32m﹣4n+1=32m×3÷34n=36×3÷4=27.21.如图,两个正方形边长分别为a、b.(1)求阴影部分的面积.(2)如果a+b=17,ab=60,求阴影部分的面积.【分析】(1)根据正方形与三角形的面积公式即可求出答案.(2)根据完全平方公式即可求出答案.【解答】解:(1)阴影部分的面积可表示为:a2+b2﹣a2﹣(a+b)b=a2+b2﹣a2﹣ab﹣b2=(a2﹣ab+b2)=[(a+b)2﹣3ab](2)当a+b=17,ab=60时,原式=(172﹣3×60)=54.522.对于任意有理数a、b、c、d,我们规定符号(a,b)⊗(c,d)=ad﹣bc,例如:(1,3)⊗(2,4)=1×4﹣2×3=﹣2.(1)求(﹣2,3)⊗(4,5)的值为﹣22;(2)求(3a+1,a﹣2)⊗(a+2,a﹣3)的值,其中a2﹣4a+1=0.【分析】(1)利用新定义得到(﹣2,3)⊗(4,5)=﹣2×5﹣3×4,然后进行有理数的混合运算即可;(2)利用新定义得到原式=(3a+1)(a﹣3)﹣(a﹣2)(a+2),然后去括号后合并,最后利用整体代入的方法计算.【解答】解:(1)(﹣2,3)⊗(4,5)=﹣2×5﹣3×4=﹣10﹣12=﹣22;故答案为﹣22;(2)(3a+1,a﹣2)⊗(a+2,a﹣3)=(3a+1)(a﹣3)﹣(a﹣2)(a+2)=3a2﹣9a+a﹣3﹣(a2﹣4)=3a2﹣9a+a﹣3﹣a2+4=2a2﹣8a+1,∵a2﹣4a+1=0,∴a2=4a﹣1,∴3a+1,a﹣2)⊗(a+2,a﹣3)=2(4a﹣1)﹣8a+1=﹣1.23.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:×(﹣xy)=3x2y﹣xy2+xy(1)求所捂的多项式;(2)若x=,y=,求所捂多项式的值.【分析】(1)设多项式为A,则A=(3x2y﹣xy2+xy)÷(﹣xy)计算即可.(2)把x=,y=代入多项式求值即可.【解答】解:(1)设多项式为A,则A=(3x2y﹣xy2+xy)÷(﹣xy)=﹣6x+2y﹣1.(2)∵x=,y=,∴原式=﹣6×+2×﹣1=﹣4+1﹣1=﹣4.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级下册数学《整式的乘除》专项练习.选择题(共 10 小题)1.计算 3a 3?(﹣ a 2)的结果是( )A .3a 5B .﹣3a 5C .3a 6D .﹣ 3a 6 2.如果 x 2+2mx+9是一个完全平方式,则 m 的值是( )A .3B .±3C .6D .± 6 3.下列计算正确的是( )A .3a ﹣a=2B .a 2+a 3=a 5C .a 6÷a 2=a 4D .(a 2)3=a 54.如图 1 是一个长为 2a ,宽为 2b (a >b )的长方形,用剪刀沿图中虚线(对称 轴)剪开,把它分成四块形状和大小都一样的小长方形, 然后按图 2 那样拼成一 个正方形,则中间空的部分的面积为( )5.已知(x ﹣3)(x 2+mx+n )的乘积项中不含 x 2和x 项,则 m ,n 的值分别为( ) A .m=3,n=9 B .m=3,n=6 C .m=﹣ 3, n=﹣9 D .m=﹣3,n=9 6.下列计算中正确的是() A . + = B . =3 C .a 10=( a 5)2 D .b ﹣2=﹣b 2 7.如( x+m )与( x+3)的乘积中不含 x 的一次项,则 m 的值为( ) A .﹣ 3 B .3 C .0 D .18.若( a m b n )3=a 9b 15,则 m 、n 的值分别为( )A .9;5B .3;5C .5;3D .6;129.计算( a ﹣b )(a+b )( a 2+b 2)(a 4﹣b 4)的结果是( )A .a 8+2a 4b 4+b 8B .a 8﹣2a 4b 4+b 8C .a 8+b 8D .a 8﹣b 810.若( x ﹣1)2=(x+7)(x ﹣7),则 的平方根是( ) A .5 B .± 5 C . D .±D .a 2﹣b 2A . abB .( a+b )2C .(a ﹣b )2二.填空题(共 6 小题)11.若(x+3)0=1,则x应满足条件.12.已知a+b=2,ab=﹣10,则a2+b2= .13.计算:8100×(﹣0.125)101= .14.已知a+ =5,则a2+ 的值是.15.计算:2﹣2﹣(﹣2)0= .16.若4y2﹣my+25 是一个完全平方式,则m=.解答题(共7 小题)17.计算:18.先化简,再求值:(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣.19.已知x2﹣9=0,求代数式x2(x+1)﹣x(x2﹣1)﹣x﹣7 的值.20.已知3m=6,9n=2,求32m﹣4n+1的值.21.如图,两个正方形边长分别为 a 、b .(1)求阴影部分的面积.( 2)如果 a+b=17,ab=60,求阴影部分的面积.22.对于任意有理数 a 、b 、c 、d ,我们规定符号( a ,b )?(c ,d ) =ad ﹣bc , 例如:(1,3)?(2,4)=1×4﹣2×3=﹣2.(1)求(﹣ 2, 3)?(4,5)的值为 ;(2)求( 3a+1,a ﹣2)?(a+2,a ﹣3)的值,其中 a 2﹣4a+1=0.23.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式, 形式如下:1)求所捂的多项式; 2)若 x= ,y= ,求所捂多项式的值.七年级下册数学《整式的乘除》专项练习参考答案与试题解析一.选择题(共 10 小题)1.计算 3a 3?(﹣ a 2)的结果是( )A .3a 5B .﹣3a 5C .3a 6D .﹣ 3a 6 【分析】 根据单项式乘以单项式,即可解答.【解答】 解:3a 3?(﹣ a 2) =﹣3a 5.故选: B .﹣ xy ) × =3x 2y ﹣xy 22.如果x2+2mx+9 是一个完全平方式,则m 的值是()A.3 B.±3 C.6 D.± 6【分析】根据完全平方公式是和的平方加减积的 2 倍,可得m 的值.【解答】解:∵ x2+2mx+9是一个完全平方式,∴ m=± 3,故选:B.3.下列计算正确的是()A.3a﹣a=2 B.a2+a3=a5 C.a6÷a2=a4 D.(a2)3=a5 【分析】依据合并同类项法则、同底数幂的除法法则以及幂的乘方法则进行判断即可.【解答】解:3a﹣a=2a,故 A 选项错误;a2+a3≠a5,故 B 选项错误;a6÷a2=a4,故 C 选项正确;(a2)3=a6,故 D 选项错误;故选:C.4.如图 1 是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图 2 那样拼成一个正方形,则中间空的部分的面积为()A.ab B.(a+b)2 C.(a﹣b)2 D.a2﹣b2【分析】由图 1 得,一个小长方形的长为a,宽为b,由图 2 得:中间空的部分的面积=大正方形的面积﹣4个小长方形的面积,代入计算.【解答】解:中间空的部分的面积=大正方形的面积﹣ 4 个小长方形的面积,=(a+b)2﹣4ab,=a2+2ab+b2﹣4ab,=(a﹣b)2;故选:C.5.已知(x﹣3)(x2+mx+n)的乘积项中不含x2和x项,则m,n的值分别为()A.m=3,n=9 B.m=3,n=6 C.m=﹣3,n=﹣9 D.m=﹣3,n=9 【分析】多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.不含某一项就是说这一项的系数为0.【解答】解:∵原式=x3+(m﹣3)x2+(n﹣3m)x﹣3n,又∵乘积项中不含x2和x 项,∴(m﹣3)=0,(n﹣3m)=0,解得,m=3,n=9.故选:A.6.下列计算中正确的是()A.+ = B.=3 C.a10=(a5)2 D.b﹣2=﹣b2【分析】A、根据有理数的加法进行判定;B、根据立方根进行判定、C、根据幂的乘方进行判定;D、根据负整数指数幂即可解答.【解答】解:A、,故错误;B、=﹣3,故错误;C、a10=(a5)2,正确;D、,故错误;故选:C.7.如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为()A.﹣3 B.3 C.0 D.1【分析】先用多项式乘以多项式的运算法则展开求它们的积,并且把m 看作常数合并关于x 的同类项,令x 的系数为0,得出关于m 的方程,求出m 的值.【解答】解:∵(x+m)(x+3)=x2+3x+mx+3m=x2+(3+m)x+3m,又∵乘积中不含x 的一次项,∴ 3+m=0,解得m=﹣3.故选:A.8.若(a m b n)3=a9b15,则m、n 的值分别为()A.9;5 B.3;5 C.5;3 D.6;12【分析】根据积的乘方法则展开得出a3m b3n=a9b15,推出3m=9,3n=15,求出m、n 即可.【解答】解:∵(a m b n)3=a9b15,∴a3m b3n=a9b15,∴ 3m=9,3n=15,∴ m=3,n=5,故选:B.9.计算(a﹣b)(a+b)(a2+b2)(a4﹣b4)的结果是()A.a8+2a4b4+b8 B.a8﹣2a4b4+b8C.a8+b8 D.a8﹣b8 【分析】这几个式子中,先把前两个式子相乘,这两个二项式中有一项完全相同,另一项互为相反数.相乘时符合平方差公式得到a2﹣b2,再把这个式子与a2+b2第6页(共11页)相乘又符合平方差公式,得到a4﹣b4,与最后一个因式相乘,可以用完全平方公式计算.【解答】解:(a﹣b)(a+b)(a2+b2)(a4﹣b4),=(a2﹣b2)(a2+b2)(a4﹣b4),=(a4﹣b4)2,=a8﹣2a4b4+b8.故选:B.10.若(x﹣1)2=(x+7)(x﹣7),则的平方根是()A.5 B.± 5 C.D.±【分析】先利用完全平方公式与平方差公式把已知条件展开,求出x 的值,然后再求出的值,最后求平方根即可.【解答】解:∵(x﹣1)2=(x+7)(x﹣7),∴x2﹣2x+1=x2﹣49,解得x=25,∴ = =5 ,∴ 的平方根是± .故选:D.二.填空题(共 6 小题)11.若(x+3)0=1,则x应满足条件x≠﹣3 .【分析】根据零指数幂:a0=1(a≠0)可得x+3≠ 0,解出x 即可.【解答】解:∵(x+3)0=1,∴x+3≠0,解得:x≠﹣3,故答案为:x≠﹣3.12.已知a+b=2,ab=﹣10,则a2+b2= 24 .【分析】此题可将a2+b2变形为(a+b)2﹣2ab,再代入求值即可.【解答】解:∵ a+b=2,ab=﹣10,∴a2+b2=(a+b)2﹣2ab,=22﹣2×(﹣10),=4+20=24.故答案为:24.13.计算:8100×(﹣0.125)101= ﹣0.125 .【分析】根据积的乘方公式,即可解答.【解答】解:8100×(﹣0.125)101=[ 8×(﹣0.125)] 100×(100×(﹣0.125)=﹣0.125,故答案为:﹣0.125.14.已知a+ =5,则a2+ 的值是23 .【分析】根据完全平分公式,即可解答.【解答】解:a2+ = .故答案为:23.15.计算:2﹣2﹣(﹣2)0= ﹣.【分析】根据负整数指数幂、0 指数幂,即可解答.【解答】解:2﹣2﹣(﹣2)0= ﹣1=﹣.故答案为:﹣.16.若4y2﹣my+25 是一个完全平方式,则m= ±20 .【分析】根据a2+2ab+b2和a2﹣2ab+b2都是完全平方式得出﹣出即可.【解答】解:∵ 4y2﹣my+25 是一个完全平方式,﹣0.125)=(﹣1)my=±2?2y?5,求∴(2y)2±2?2y?5+52,即﹣my=± 2?2y?5,∴m=±20,故答案为:± 20.三.解答题(共7 小题)17.计算:.【分析】分别根据零指数幂,负整数指数幂、二次根式的运算法则计算,然后根据实数的运算法则求得计算结果.解答】解:原式=﹣2+1+2=1.18.先化简,再求值:(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣.【分析】原式第一项利用平方差公式化简,第二项利用单项式乘以多项式法则计算,最后一项利用完全平方公式展开,去括号合并得到最简结果,将x 的值代入计算,即可求出值.【解答】解:原式=4x2﹣9﹣4x2+4x+x2﹣4x+4=x2﹣5,当x=﹣时,原式=(﹣)2﹣5=3﹣5=﹣2.19.已知x2﹣9=0,求代数式x2(x+1)﹣x(x2﹣1)﹣x﹣7 的值.【分析】根据已知可以得到x2=9,然后把所求的代数式进行去括号、合并同类项,然后把x2=9 代入即可求解.【解答】解:∵ x2﹣9=0,∴x2=9,∴ x2(x+1)﹣x(x2﹣1)﹣x﹣7=x3+x2﹣x3+x﹣x﹣7=x2﹣7,当x2=9 时,原式=9﹣7=2.20.已知3m=6,9n=2,求32m﹣4n+1的值.【分析】根据9n=32n,32m﹣4n+1=32m×3÷34n,代入运算即可.【解答】解:由题意得,9n=32n=2,32m=62=36,故32m﹣4n+1=32m×3÷34n=36× 3÷ 4=27.21.如图,两个正方形边长分别为a、b.(1)求阴影部分的面积.(2)如果a+b=17,ab=60,求阴影部分的面积.【分析】(1)根据正方形与三角形的面积公式即可求出答案.(2)根据完全平方公式即可求出答案.【解答】解:(1)阴影部分的面积可表示为:a2+b2﹣a2﹣(a+b) b=a2+b2﹣a2﹣ab﹣b2= (a2﹣ab+b2)= [ (a+b)2﹣3ab](2)当a+b=17,ab=60 时,原式= (172﹣3×60)=54.522.对于任意有理数a、b、c、d,我们规定符号(a,b)?(c,d)=ad﹣bc,例如:(1,3)?(2,4)=1×4﹣2×3=﹣2.(1)求(﹣2,3)?(4,5)的值为﹣22 ;(2)求(3a+1,a﹣2)?(a+2,a﹣3)的值,其中a2﹣4a+1=0.【分析】(1)利用新定义得到(﹣2,3)?(4,5)=﹣2×5﹣3×4,然后进行有第11页(共 11页)理数的混合运算即可;( 2)利用新定义得到原式 =(3a+1)( a ﹣ 3)﹣( a ﹣2)( a+2),然后去括号后合 并,最后利用整体代入的方法计算.【解答】 解:(1)(﹣ 2,3)?(4,5)=﹣2×5﹣3×4=﹣10﹣12=﹣22; 故答案为﹣ 22;(2)(3a+1,a ﹣2)?(a+2,a ﹣3)=(3a+1)(a ﹣3)﹣( a ﹣2)(a+2) =3a 2﹣9a+a ﹣3﹣(a 2﹣4)=3a 2﹣9a+a ﹣3﹣a 2+4=2a 2﹣8a+1,∵ a 2﹣4a+1=0,∴ a 2=4a ﹣1, ∴3a+1,a ﹣2)?(a+2,a ﹣3)=2(4a ﹣1)﹣8a+1=﹣1. 23.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式, 形式如下:×(﹣ xy )=3x 2y ﹣xy 2+1)求所捂的多项式;分析】(1)设多项式为 A ,则 A=( 3x 2y ﹣xy 2+ xy )÷(,y= 代入多项式求值即可.解答】 解:(1)设多项式为 A ,则 A=( 3x 2y ﹣xy 2+ xy )÷(﹣ xy )=﹣6x+2y ﹣1.∴原式 =﹣6× +2× ﹣1=﹣4+1﹣1=﹣4.xy 2)若 x ,y= ,求所捂多项式的值.﹣ xy )计算即可. 2)把 x=。

相关文档
最新文档