中考专题复习一《实数》
专题01实数(共43题)【解析版】

专题01实数(共43题)一、单选题1.(2022年云南省中考数学真题)中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若零上10℃记作+10℃,则零下10℃可记作()A.10℃B.0℃C.-10 ℃D.-20℃【答案】C【解析】【分析】零上温度记为正,则零下温度就记为负,则可得出结论.【详解】解:若零上10°C记作+10°C,则零下10°C可记作:―10°C.故选:C.【点睛】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.2.(2022年四川省凉山州中考数学真题)―2022的相反数是()A.2022B.―2022C.―12022D.12022【答案】A【解析】【分析】根据相反数的意义即只有符号不同的两个数互为相反数,即可解答.【详解】解:﹣2022的相反数是2022,故选:A.【点睛】本题考查了相反数,熟练掌握相反数的意义是解题的关键.3.(2022年浙江省舟山市中考数学真题)若收入3元记为+3,则支出2元记为()A.1B.-1C.2D.-2【答案】D【解析】【分析】根据正负数的意义可得收入为正,收入多少就记多少即可.【详解】解:∵收入3元记为+3,∴支出2元记为-2.故选:D【点睛】本题考查正、负数的意义;在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.4.(2022年安徽省中考数学真题)下列为负数的是()A.|―2|B.3C.0D.―5【答案】D【解析】【分析】根据正负数的意义分析即可;【详解】解:A、|―2|=2B、3是正数,故该选项不符合题意;C、0不是负数,故该选项不符合题意;D、-5<0是负数,故该选项符合题意.故选D.【点睛】本题考查正负数的概念和意义,熟练掌握绝对值、算术平方根和正负数的意义是解决本题的关键.5.(2022年四川省南充市中考数学试卷)下列计算结果为5的是()A.―(+5)B.+(―5)C.―(―5)D.―|―5|【答案】C【解析】【分析】根据去括号法则及绝对值化简依次计算判断即可.【详解】解:A、-(+5)=-5,不符合题意;B、+(-5)=-5,不符合题意;C、-(-5)=5,符合题意;D、―|―5|=―5,不符合题意;故选:C.【点睛】题目主要考查去括号法则及化简绝对值,熟练掌握去括号法则是解题关键.6.(2022年甘肃省中考第三次数学模拟测试题)2的相反数是()A.―12B.12C.2D.―2【答案】D【解析】【分析】直接根据相反数的定义解答即可.【详解】解:2的相反数是﹣2.故选:D【点睛】此题考查的是相反数,熟练掌握相反数的定义是解题的关键.7.(2022年云南省中考数学真题)赤道长约为40 000 000m,用科学记数法可以把数字40 000 000表示为()A.4×107B.40×106C.400×105D.4000×103【答案】A【解析】【分析】根据科学记数法“把一个大于10的数表示成a×10n的形式(其中a是整数数位只有一位的数,即a大于或等于1且小于10,n是正整数)”进行解答即可得.【详解】故选:A.【点睛】本题考查了科学记数法,解题的关键是掌握科学记数法表示形式中a与n的确定.8.(2022年浙江省舟山市中考数学真题)根据有关部门测算,2022年春节假期7天,全国国内旅游出游251000000人次.数据251000000用科学记数法表示为()A.2.51×108B.2.51×107C.25.1×107D.0.251×109【答案】A【解析】【分析】绝对值大于1的数可以用科学记数法表示,一般形式为a×10n,n为正整数,且比原数的整数位数少1,据此可以解答.【详解】解:251000000=2.51×108.故选:A【点睛】本题考查用科学记数法表示较大的数,熟练掌握科学记数法表示较大的数一般形式为a×10n,其中1≤|a|<10,n是正整数,正确确定a n的值是解题的关键.9.(2022年江苏省连云港市中考数学真题)2021年12月9日,“天宫课堂”正式开课,我国航天员在中国空间站首次进行太空授课,本次授课结束时,网络在线观看人数累计超过14600000人次.把“14600000”用科学记数法表示为()A.0.146×108B.1.46×107C.14.6×106D.146×105【答案】B【解析】【分析】科学记数法的表现形式为a×10n的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n是正数,当原数绝对值小于1时n是负数;由此进行求解即可得到答案.【详解】故选:B.【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的具体要求.10.(2022年四川省达州市中考数学真题)2022年5月19日,达州金垭机场正式通航.金亚机场位于达州高新区,占地总面积2940亩,概算投资约为26.62亿元.数据26.62亿元用科学记数法表示为()A.2.662×108元B.0.2662×109元C.2.662×109元D.26.62×1010元【答案】C【解析】【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数.【详解】解:26.62亿=2662000000=2.662×109.故选C.【点睛】本题考查了科学记数法,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原来的数,变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n<1时,n是负数,确定a与n的值是解题的关键.11.(2022年浙江省金华市中考数学真题)体现我国先进核电技术的“华龙一号”,年发电能力相当于减少二氧化碳排放16320000吨,数16320000用科学记数法表示为()A.1632×104B.1.632×107C.1.632×106D.16.32×105【答案】B【解析】【分析】在用科学记数法表示的大于10的数时,a×10n的形式中a的取值范围必须是1≤|a|<10,10的指数比原来的整数位数少1.【详解】解:数16320000用科学记数法表示为1.632×107.故选:B.本题考查科学记数法,对于一个写成用科学记数法写出的数,则看数的最末一位在原数中所在数位,其中a 是整数数位只有一位的数,10的指数比原来的整数位数少1.12.(2022年安徽省中考数学真题)据统计,2021年我省出版期刊杂志总印数3400万册,其中3400万用科学记数法表示为()A.3.4×108B.0.34×108C.3.4×107D.34×106【答案】C【解析】【分析】将3400万写成34000000,保留1位整数,写成a×10n(1≤a<10)的形式即可,n为正整数.【详解】解:3400万=34000000,保留1位整数为3.4,小数点向左移动7位,因此34000000=3.4×107,故选:C.【点睛】本题考查科学记数法的表示方法,熟练掌握a×10n(1≤|a|<10)中a的取值范围和n的取值方法是解题的关键.13.(2022我州今年报名参加初中学业水平暨高中阶段学校招生考试的总人数为80917人,将这个数用科学记数法表示为()A.8.0917×106B.8.0917×105C.8.0917×104D.8.0917×103【答案】C【解析】【分析】根据科学记数法的定义即可得.【详解】解:科学记数法:将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数的方法叫做科学记数法,则80917=8.0917×104,故选:C.本题考查了科学记数法,熟记科学记数法的定义(将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数的方法叫做科学记数法)是解题关键.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.14.(2022年四川省成都市中考数学真题)2022年5月17日,工业和信息化部负责人在“2022世界电信和信息社会日”大会上宣布,我国目前已建成5G基站近160万个,成为全球首个基于独立组网模式规模建设5G网络的国家.将数据160万用科学记数法表示为()A.1.6×102B.1.6×105C.1.6×106D.1.6×107【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是非负数;当原数的绝对值<1时,n是负数.【详解】解答:解:160万=1600000=1.6×106,故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.(2022年四川省泸州市中考数学真题)2022年5月,四川省发展和改革委员会下达了保障性安居工程2022年第一批中央预算内投资计划,泸州市获得75500000元中央预算内资金支持,将75500000用科学记数法表示为()A.7.55×106B.75.5×106C.7.55×107D.75.5×107【答案】C【解析】【分析】科学记数法表示较大的数形式为a×10n的形式,其中1≤|a|<10,n为整数,10的指数n比原来的整数位数【详解】75500000=7.55×107故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.16.(2022年山东省滨州市中考数学真题)某市冬季中的一天,中午12时的气温是―3℃,经过6小时气温下降了7℃,那么当天18时的气温是()A.10℃B.―10℃C.4℃D.―4℃【答案】B【解析】【分析】根据有理数减法计算―3―7=―10℃即可.【详解】解: ∵中午12时的气温是―3℃,经过6小时气温下降了7℃,∴当天18时的气温是―3―7=―10℃.故选B.【点睛】本题考查有理数的减法,掌握有理数的减法法则是解题关键.17.(2022年四川省遂宁市中考数学真题)2022年4月16日,神舟十三号飞船脱离天宫空间站后成功返回地面,总共飞行里程约198000公里.数据198000用科学计数法表示为()A.198×103B.1.98×104C.1.98×105D.1.98×106【答案】C【解析】【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数.【详解】解:198000=1.98×105.故选:C.【点睛】本题考查了科学记数法,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原来的数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数,确定a与n的值是解题的关键.18.(2022年浙江省衢州市柯城区九年级第二次模拟考试数学试题)-3的倒数是()A.3B.-3C.13D.―13【答案】D【解析】【分析】根据倒数的定义,即可计算出结果.【详解】解:-3的倒数是―13;故选:D【点睛】本题考查了倒数的定义:乘积是1的两数互为倒数.19.(2022年四川省自贡市中考数学试题)自贡市江姐故里红色教育基地自去年底开放以来,截止今年5月,共接待游客180000余人;人数180000用科学记数法表示为()A.1.8×104B.18×104C.1.8×105D.1.8×106【答案】C【解析】【分析】用移动小数点的方法确定a值,根据整数位数减一原则确定n值,最后写成a×10n的形式即可.【详解】∵180000=1.8×105,故选C.【点睛】本题考查了科学记数法表示大数,熟练掌握把小数点在左边第一个非零数字的后面确定a,运用整数位数减去1确定n值是解题的关键.20.(2022年四川省自贡市中考数学试题)下列运算正确的是()A.(―1)2=―2B=1C.a6÷a3=a2D.=0【答案】B【解析】【分析】根据乘方运算,平方差公式,同底数幂的除法法则,零指数幂的运算法则进行运算即可.【详解】A.(―1)2=1,故A错误;―=―=1,故B正确;C.a6÷a3=a3,故C错误;D.―=1,故D错误.故选:B.【点睛】本题主要考查了整式的运算和实数的运算,熟练掌握平方差公式,同底数幂的除法法则,零指数幂的运算法则,是解题的关键.21.(2022年山东省淄博市高青县中考二模数学试题)―2的倒数是()A.2B.12C.―2D.―12【答案】D【解析】【分析】根据倒数的定义求解即可.【详解】解:-2的倒数是―12,故D正确.故选:D.【点睛】本题主要考查了倒数的定义,熟练掌握乘积为1的两个数互为倒数,是解题的关键.22.(2022年四川省达州市中考数学真题)下列四个数中,最小的数是()A.0B.-2C.1D.2【答案】B【解析】【分析】根据实数的大小比较即可求解.【详解】解:∵―2<0<1<2,∴最小的数是―2,故选B.【点睛】本题考查了实数的大小比较,掌握实数的大小比较是解题的关键.23.(2022年浙江省舟山市中考数学真题)估计6的值在()A.4和5之间B.3和4之间C.2和3之间D.1和2之间【答案】C【解析】【分析】根据无理数的估算方法估算即可.【详解】∵4<6<9∴2<6<3故选:C.【点睛】本题主要考查了无理数的估算能力,要求掌握无理数的基本估算技能,灵活应用.“夹逼法”是估算的一般方法,也是常用方法.24.(2022年浙江省金华市中考数学真题)在―2,1,3,2中,是无理数的是()2A.―2B.1C.3D.22【答案】C【解析】【分析】根据无理数的定义判断即可;【详解】,2是有理数,3是无理数,解:∵-2,12故选:C.【点睛】本题考查了无理数的定义:无限不循环小数叫做无理数,如开方开不尽的数的方根、π.25.(2022年四川省凉山州中考数学真题)化简:(―2)2=()A.±2B.-2C.4D.2【答案】D【解析】【分析】先计算(-2)2=4,再求算术平方根即可.【详解】解:(―2)2=4=2,故选:D.【点睛】本题考查算术平方根,熟练掌握算术平方根的定义是解题的关键.26.(2022年山东省滨州市中考数学真题)下列计算结果,正确的是()A.(a2)3=a5B.8=32C.38=2D.cos30°=12【答案】C【解析】【分析】根据幂的乘方、算术平方根的计算、立方根的化简和特殊角的三角函数值逐一进行计算即可.【详解】解:A、(a2)3=a2×3=a6,该选项错误;B、8=2×2×2=22,该选项错误;C、38=32×2×2=2,该选项正确;D、cos30°=32,该选项错误;故选:C.【点睛】本题考查了幂的乘方、算术平方根的计算、立方根的化简和特殊角的三角函数值,熟练掌握运算法则是解题的关键.27.(2022年四川省泸州市中考数学真题)与2+15最接近的整数是()A.4B.5C.6D.7【答案】C【解析】【分析】估算无理数的大小即可得出答案.【详解】解:∵12.25<15<16,∴3.5<15<4,∴5.5<2+15<6,∴最接近的整数是6,故选:C.【点睛】本题考查了估算无理数的大小,无理数的估算常用夹逼法,用有理数夹逼无理数是解题的关键.28.(2022年四川省泸州市中考数学真题)―4=()A.―2B.―12C.12D.2【答案】A【解析】【分析】根据算术平方根的定义可求.【详解】解:―4=-2,故选A.【点睛】本题考查了算术平方根的定义,要注意正确区分平方根与算术平方根,解题的关键是掌握算术平方根的定义.29.(2022年重庆市中考数学试卷A卷)估计3×(23+5)的值应在()A.10和11之间B.9和10之间C.8和9之间D.7和8之间【答案】B【解析】【分析】先化简3×(23+5)=6+15,利用9<15<16,从而判定即可.【详解】3×(23+5)=6+15,∵9<15<16,∴3<15<4,∴9<6+15<10,故选:B.【点睛】本题考查了二次根式混合运算及无理数的估算,熟练掌握无理数估算方法是解题的关键.30.(2022年重庆市中考数学真题(B卷))估计54―4的值在()A.6到7之间B.5到6之间C.4到5之间D.3到4之间【答案】D【解析】【分析】根据49<54<64,得到7<54<8,进而得到3<54―4<4,即可得到答案.【详解】解:∵49<54<64,∴7<54<8,∴3<54―4<4,即54―4的值在3到4之间,【点睛】此题考查了无理数的估算,正确掌握无理数的估算方法是解题的关键.二、填空题31.(2022年重庆市中考数学试卷A卷)计算:|―4|+(3―π)0=_________.【答案】5【解析】【分析】根据绝对值和零指数幂进行计算即可.【详解】解:|―4|+(3―π)0=4+1=5,故答案为:5.【点睛】本题考查了绝对值和零指数幂的计算,熟练掌握定义是解题的关键.32.(2022年四川省南充市中考数学试卷)比较大小:2―2_______________30.(选填>,=,<)【答案】<【解析】【分析】先计算2―2=1,30=1,然后比较大小即可.4【详解】解:2―2=1,30=1,4<1,∵14∴2―2<30,故答案为:<.【点睛】本题主要考查有理数的大小比较,负整数指数幂的运算,零次幂的运算,熟练掌握运算法则是解题关键.33.(2022年重庆市中考数学真题(B卷))|―2|+(3―5)0=_________.【答案】3【分析】先计算绝对值和零指数幂,再进行计算即可求解.【详解】解:|―2|+(3―5)0=2+1=3故答案为:3.【点睛】本题考查了实数的运算,解答此题的关键是要掌握负数的绝对值等于它的相反数,任何不为0的数的0次幂都等于1.34.(2022年四川省凉山州中考数学真题)计算:-12+|-2023|=_______.【答案】2022【解析】【分析】先计算有理数的乘方、化简绝对值,再计算加法即可得.【详解】解:原式=―1+2023=2022,故答案为:2022.【点睛】本题考查了含乘方的有理数混合运算,熟练掌握有理数的运算法则是解题关键.三、解答题35.(2022+2―1+2cos45°―|―12|.【答案】2【解析】【分析】根据零指数幂、负整数指数幂、特殊角三角函数、绝对值的性质化简即可.【详解】原式=1+12+2×22―12=2.【点睛】本题考查了实数的运算,熟练掌握运算法则是解题的关键.36.(2022年浙江省丽水市中考数学真题)计算:9―(―2022)0+2―1.【答案】52【解析】【分析】根据求一个数的算术平方根、零指数和负整数指数幂的运算法则进行运算,即可求得.【详解】解:9―(―2022)0+2―1=3―1+12=5.2【点睛】本题考查了求一个数的算术平方根、零指数和负整数指数幂的运算法则,熟练掌握和运用各运算法则是解决本题的关键.37.(2022年江苏省连云港市中考数学真题)计算:(―10)×―16+20220.【答案】2【解析】【分析】根据有理数的乘法,二次根式的性质,零指数的计算法则求解即可.【详解】解:原式=5―4+1=2.【点睛】本题主要考查了有理数的乘法,二次根式的性质,零指数,熟知相关计算法则是解题的关键.38.(2022年四川省达州市中考数学真题)计算:(―1)2022+|―2|――2tan45°.【答案】0【解析】【分析】先计算乘方和去绝对值符号,并把特殊角三角函数值代入,再计算乘法,最后计算加减即可求解.【详解】解:原式=1+2-1-2×1=1+2-1-2=0.【点睛】本题考查实数的混合运算,熟练掌握零指数幂的运算、熟记特殊角的三角函数值是解题的关键.39.(2022年浙江省金华市中考数学真题)计算:(―2022)0―2tan45°+|―2|+9.【答案】4【解析】【分析】根据零指数幂,正切三角函数值,绝对值的化简,算术平方根的定义计算求值即可;【详解】解:原式=1―2×1+2+3=1―2+2+3=4;【点睛】本题考查了实数的混合运算,掌握特殊角的三角函数值是解题关键.40.(2022―16+(―2)2.【答案】1【解析】【分析】原式运用零指数幂,二次根式的化简,乘方的意义分别计算即可得到结果.【详解】―16+(―2)2=1―4+4=1故答案为:1【点睛】本题主要考查了实数的运算,熟练掌握零指数幂,二次根式的化简和乘方的意义是解本题的关键.41.(20221―9+3tan30°+|3―2|.(2)解不等式组:3(x+2)≥2x+5 ①x2―1<x―23 ②.【答案】(1)1;(2)―1≤x<2【解析】【分析】(1)本题涉及负整数指数幂、特殊角的三角函数值、绝对值、二次根式化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)分别解出两个不等式的解集再求其公共解.【详解】解:(11―9+3tan30°+|3―2|=2―3+3×33+2―3 =―1+3+2―3=1.(2)3(x+2)≥2x+5 ①x2―1<x―23 ②不等式①的解集是x≥-1;不等式②的解集是x<2;所以原不等式组的解集是-1≤x<2.【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型,解决此类题目的关键是熟练掌握负整数指数幂、特殊角的三角函数值、绝对值、二次根式等考点的运算.求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.42.(2022年四川省德阳市中考数学真题)计算:12+(3.14―π)0―3tan60°+|1―3|+(―2)―2.【答案】14【解析】【分析】根据二次根式的化简,零指数幂的定义,特殊角的三角函数值,绝对值的性质以及负整数指数幂的运算法则分别化简后再进行实数的加减法运算.【详解】解:12+(3.14―π)0―3tan60°+|1―3|+(―2)―2=23+1―33+3―1+1 4=14.【点睛】此题考查实数的运算法则,正确掌握二次根式的化简,零指数幂的定义,特殊角的三角函数值,绝对值的性质以及负整数指数幂的运算法则是解题的关键.43.(2022年重庆市中考数学真题(B卷))对于一个各数位上的数字均不为0的三位自然数N,若N能被它的各数位上的数字之和m整除,则称N是m的“和倍数”.例如:∵247÷(2+4+7)=247÷13=19,∴247是13的“和倍数”.又如:∵214÷(2+1+4)=214=30⋯⋯4,∴214不是“和倍数”.(1)判断357,441是否是“和倍数”?说明理由;(2)三位数A是12的“和倍数”,a,b,c分别是数A其中一个数位上的数字,且a>b>c.在a,b,c中任选两个组成两位数,其中最大的两位数记为F(A),最小的两位数记为G(A),若F(A)+G(A)16为整数,求出满足条件的所有数A.【答案】(1)357不是15“和倍数”,441是9的“和倍数”;理由见解析(2)数A可能为732或372或516或156【解析】【分析】(1)根据题目中给出的“和倍数”定义进行判断即可;(2)先根据三位数A是12的“和倍数”得出a+b+c=12,根据a>b>c,F(A)是最大的两位数,G(A)是=k(k为整数),结合a+b+c=12得出b 最小的两位数,得出F(A)+G(A)=10a+2b+10c,F(A)+G(A)16=15―2k,根据已知条件得出1<b<6,从而得出b=3或b=5,然后进行分类讨论即可得出答案.(1)解:∵357÷(3+5+7)=357÷15=23⋅⋅⋅⋅⋅⋅12,∴357不是15“和倍数”;∵441÷(4+4+1)=441÷9=49,∴441是9的“和倍数”.(2)∵三位数A是12的“和倍数”,∴a+b+c=12,∵a>b>c,∴在a,b,c中任选两个组成两位数,其中最大的两位数F(A)=10a+b,最小的两位数G(A)=10c+b,∴F(A)+G(A)=10a+b+10c+b=10a+2b+10c,∵F(A)+G(A)为整数,16=k(k为整数),设F(A)+G(A)16=k,则10a+2b+10c16整理得:5a+5c+b=8k,根据a+b+c=12得:a+c=12―b,∵a>b>c,∴12―b>b,解得b<6,∵“和倍数”是各数位上的数字均不为0的三位自然数,∴a>b>c>0,∴b>1,∴1<b<6,把a+c=12―b代入5a+5c+b=8k得:5(12―b)+b=8k,整理得:b=15―2k,∵1<b<6,k为整数,∴b=3或b=5,当b=3时,a+c=12―3=9,∵a>b>c>0,∴a>3,0<c<3,∴a=7,b=3,c=2,或a=8,b=3,c=1,要使三位数A是12的“和倍数”,数A必须是一个偶数,当a=7,b=3,c=2时,组成的三位数为732或372,∵732÷12=61,∴732是12的“和倍数”,∵372÷12=31,∴372是12的“和倍数”;当a=8,b=3,c=1时,组成的三位数为318或138,∵318÷12=26⋅⋅⋅⋅⋅⋅6,∴318不是12的“和倍数”,∵138÷12=11⋅⋅⋅⋅⋅⋅6,∴138不是12的“和倍数”;当b=5时,a+c=12―5=7,∵a>b>c>0,∴5<a<7,∴a=6,b=5,c=1,组成的三位数为516或156,∵516÷12=43,∴516是12的“和倍数”,∵156÷12=13,∴156是12的“和倍数”;综上分析可知,数A可能为732或372或516或156.【点睛】本题主要考查了新定义类问题,数的整除性,列代数式,利用数位上的数字特征和数据的整除性,是解题的关键,分类讨论是解答本题的重要方法,本题有一定的难度.。
2024年中考数学总复习第一章《数与式》第一节:实数(附答案解析)

2024年中考数学总复习第一章《数与式》第一节:实数★解读课标★--------------熟悉课标要求,精准把握考点1.理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小;了解无理数和实数的概念,知道实数与数轴上的点一一对应,能求实数的相反数与绝对值;2.借助数轴理解相反数和绝对值的意义,掌握求有理数的相反数与绝对值的方法,知道|a|的含义;3.会用科学记数法表示数;4.了解平方根、算术平方根、立方根的概念.会用根号表示数的平方根、算术平方根、立方根,会用平方运算求百以内整数的平方根;5.掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主);能运用有理数的运算解决简单的问题.★中考预测★--------------统计考题频次,把握中考方向1.实数与运算在历年中考中以考查基础为主,也是考查重点,年年考查,是广大考生的得分点,分值为14~28分。
2.预计2024年各地中考还将继续重视对正负数的意义、相反数、绝对值、倒数、数轴等实数的相关概念及实数的分类的考查,也会对有理数的运算、科学记数法、数的开方、零次幂、负整数指数幂、二次根式及运算等进行考查,且考查形式多样,为避免丢分,学生应扎实掌握。
★聚焦考点★--------------直击中考考点,落实核心素养有理数及其相关概念1.整数和分数统称为有理数。
(有限小数与无限循环小数都是有理数。
)2.正整数、0、负整数统称为整数。
正分数、负分数统称分数。
3.正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。
4.正数和负数表示相反意义的量。
【注意】0既不是正数,也不是负数。
数轴 1.数轴的三要素:原点、正方向、单位长度。
数轴是一条直线。
2.所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。
3.数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表第1页共44页。
中考总复习第一讲 实数的有关概念

π分别精确到百分位,十分位,千分位
规定了原点、正方向和单位长度的直线叫做数轴(画数轴时, 要注童上述规定的三要素缺一个不可),实数与数轴上的点 是一一对应的。数轴上任一点对应的数总大于这个点左边的 点对应的数,
(3)相反数
实数的相反数是一对数(只有符号不同的两个数,叫做互为 相反数,零的相反数是零). 从数轴上看,互为相反数的两个数所对应的点关于原点对 称.
第一讲 实数的有关概念
(1)实数的组成
正整数 整数 零 负整数 有尽小数或无尽循环小数 有理数 正分数 实数 分数 负分数 正无理数 无理数 无尽不循环小数 负无理数
பைடு நூலகம்
(2)数轴:
②实数a、b在数轴上对应点的位置 如图所示: 则化简│b-a│+
=______.
③(2006年泉州市)去年泉州市林业用地面积 约为10200000亩,用科学记数法表示为约 ______________________.
例2.(-2)3与-23( ). (A)相等 (B)互为相反数 (D)它们的和为16
(C)互为倒数
例3.
的绝对值是 ;-3
的倒数是 ;
的平方根是
.
例4.下列各组数中,互为相反数的是 ( )
A.-3 与
B.|-3|与— D.-3与
C.|-3|与
下列实数
、sin60°、
、3.14159、 、(-
)-2、
、(
2
)0
)个 B .2
中无理数有( A.1
C .3
D .4
用科学计数法表示下列数(并保留两位有效 数字) 696000 6410000000 54310 3500
中考数学专题复习《实数的运算》测试卷-附带答案

中考数学专题复习《实数的运算》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列说法中正确的是()A.√25的值是±5B.两个无理数的和仍是无理数C.-3没有立方根.D.√a2−b2是最简二次根式.2.实数m,n在数轴上的对应点的位置如图所示,下列结论中正确的是()A.|m|<|n|B.m+n>0C.m−n<0D.mn>0 3.计算:|−2|+3sin30°−2−1−(2022−π)0等于()A.-2B.−12C.2D.04.观察下列各式:√1+112+122=1+11×2√1+122+132=1+12×3√1+132+142=1+13×4…请利用你所发现的规律计算√1+112+122+√1+122+132+√1+132+142+⋯⋯+√1+192+1102其结果为()A.8910B.9910C.989D.8895.估计√2(√23−√2)的值应在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间.6.秦兵马俑的发现被誉为“世界第八大奇迹” 兵马俑的眼睛到下巴的距离与头顶到下巴的距离之比为√5−12下列各数中最接近于√5−12的是()A.25B.12C.35D.347.若x为实数在“(√3+1)◯ x”的“◯”中添上一种运算符号(在“+-× ÷”中选择)后其运算的结果为有理数则不可能是()A.√3−1B.1−√3C.3√3D.1+√38.计算sin60°⋅tan30°−sin45°⋅cos30°的结果是()A.−12+√62B.√32+12C.−√32+12D.12−√649.下列运算正确的是()A .√3+√2=√5B .|3.14−π|=π−3.14C .a 2⋅a 3=a 6D .(a −1)2=a 2−2a −110.今年“十一”期间 广州部分公园举行游园活动 据统计 天河公园早晨6时30分有2人进入公园 接下来的第一个30分钟内有4人进去1人出来 第二个30分钟内有8人进去2人出来 第三个30分钟内有16人进去3人出来 第四个30分钟内有32人进去4人出来.按照这种规律进行下去 到上午11时30分公园内的人数是( )A .211−47B .212−57C .213−68D .214−80二 填空题11.(√3−1.732)0+(−14)−2= .12.【中考变形】已知a =(12)−1+(−√3)0,b =(√3+√2)(√3−√2) 则√a +b = .13.计算:|−5|+(3−π)0−6×3−1+√3−1−2sin60°= 。
中考数学专题:实数与代数式

专题一 数与式中考要求:实数:借助数轴理解相反数、倒数、绝对值的意义及性质;掌握实数的分类、大小比较及混合运算;会用科学记数法、有效数字、精确度确定一个数的近似值;能用有理数估计一个无理数的大致范围.代数式:了解整式、分式、二次根式、最简二次根式的概念及意义; 会用提公因式法、公式法对整式进行因式分解; 理解平方根、算术平方根、立方根的意义及其性质; 根据整式、分式、二次根式的运算法则进行化简、求值.考查方式:本专题内容在中考中涉及数轴、相反数、绝对值等概念,多以填空题、选择题的形式出现. 科学记数法、近似数和有效数字往往与生产生活及科技领域中的实际问题相联系,具有较强的应用性,是中考的热点. 关于代数式的概念与运算,往往是单独命题,试题以填空题、选择题及计算题的形式出现,试题难度为中、低档. 试题设计有的带有开放探索性,覆盖面广,常常以大容量、小综合的形式考查灵活运用知识的能力.备考策略:1. 夯实基础,理清考点.2. 对课本中的典型和重点题目做变式、延伸.3. 注意一些跨学科的常识,加强学科整合.4. 关注中考的新题型.5. 关注课程标准中新增的目标.6. 探究性试题的复习步骤:(1)纯数字的规律探索.(2)结合平面图形探索规律.(3)结合空间图形探索规律,(4)探索规律方法的总结.第1课时 实数的概念课时核心问题:数系的扩张及实数相关概念的理解应用. 聚焦考点☆温习理解一、实数1. 有理数: ,它包括 、 .2. 无理数: .3. 实数及分类:注意:在理解无理数时,要注意“无限不循环”,归纳起来有四类:(1)开方开不尽的数,如(2)有特定意义的数,如圆周率π,或化简后含有π 的数,如π23+等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等. 二、绝对值一个数的绝对值指的是表示.几何意义:一般地,数轴上表示叫做数a 的绝对值,记作|a |.代数意义:(1)正数的绝对值是 ;(2)负数的绝对值是 ;(3)零的绝对值是 .也可以写成:(0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩.说明:(1)|a |≥0,即|a |是一个非负数;(2)|a |概念中蕴含分类讨论思想;(3)“| |”有括号的作用.三、相反数叫做互为相反数. 零的相反数是零.从数轴上看, 互为相反数的两个数所对应的点关于原点对称. 若a 与b 互为相反数,则a +b =0, 反之也成立.四、倒数如果a 与b 互为倒数,则有ab =1,反之亦成立. 倒数等于本身的数是1和1-. 零没有倒数.五、平方根如果一个数的平方等于a(a≥0),那么这个数就叫做a的平方根(或二次方根). 一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根. 正数a的平方根记作“”.正数a的正的平方根叫做a的算术平方根,记作“”.正数和零的算术平方根都只有一个,零的算术平方根是零.1.(0) ||(0)a aaa a⎧==⎨-<⎩≥.2.与2的联系:3.0)<0)aa>=⎩.六、立方根如果一个数的立方等于a, 那么这个数就叫做a的立方根(或a的三次方根). 一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.注意:(1)=,说明三次根号内的负号可以移到根号外面;(2)=3.典例解析考点一、实数的分类【例1】下列实数是无理数的是().B. 1C. 0D.1-听课记录:【举一反三】1.下列四个实数中,是无理数的是().A. 0B. 3-D.3112. 下列选项中,属于无理数的是().A. 2B. πC. 32D. 2-3. 下列各数:227,π,cos60︒,0,,其中无理数的个数是().A. 1B. 2C. 3D. 4考点二、绝对值【例2】|2|-等于().A. 2B. 2-C.12D.12-听课记录:【举一反三】2的绝对值是().A. ±2B. 2C. 12D. 2-考点三、相反数【例3】5的相反数是().A. 5B. 5-C. 15D.15-听课记录:【举一反三】1. 2014的相反数是().A. 2014B. 2014-C.12014D.12014-2.15-的相反数是().A. 15B.15-C. 5D. 5-考点四、倒数【例4】12-的倒数是().A. B.C. D. 听课记录:【举一反三】1. 12的倒数是().A. 2B. 2-C. 12D. 12- 2. 14-的倒数是( ). A. -4B. 4C. 14D. 14- 考点五、平方根【例5】得( ).A. 100B. 10C.D. 10± 听课记录:【举一反三】1. 一个数的算术平方根是2,则这个数是 .2. 的平方根是 .3. 若2y =,则()y x y += .4. 若实数x , y 满足|4|0x -=,则以x , y 的值为等腰三角形的周长为 .5. 若1a <1-= .6. 2210b b ++=,则221||a b a +-= .7. 设1a =,a 在两个相邻整数之间,则这两个整数是 .第2课时 实数的计算课时核心问题:实数的灵活运算.聚焦考点☆温习理解一、实数大小的比较1. 数轴:规定了、、的直线叫做数轴. (画数轴时要注意上述三要素缺一不可)解题时要真正掌握数形结合思想,理解实数与数轴上的点是一一对应的,并且能灵活运用.2. 实数大小比较的几种常见方法.(1)数轴比较:数轴上的点所表示的数在右边的总比左边的大;(2)求差比较:设a, b为实数,有a-b>0⇔a>b;a-b<0⇔a<b;a-b=0⇔a=b.(3)求商比较:设a, b为两正实数,有a>1⇔a>b;ba<1⇔a<b;ba=1⇔a=b.b(4)绝对值比较法:设a, b为两负实数,则a a b>⇔<.b(5)平方比较法:设a,b为两负实数,则22a b a b >⇔<.二、科学计数法和近似数1. 有效数字:一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字.2. 科学计数法:把一个数写成10n a ±⨯的形式,其中110a <≤,n 是整数,这种计数法叫做科学计数法.三、实数的运算1. 加法交换律:a b b a +=+.2. 加法结合律:()()a b c a b c ++=++.3. 乘法交换律:ab ba =.4. 乘法结合律:()()ab c a bc =.5. 乘法对加法的分配律:()a b c ab ac +=+.6. 实数的运算顺序:先算乘(开)方,再算乘除,最后算加减,如果有括号,就先算括号里面的. 典例解析考点一、实数的大小比较【例1】下列各数中,最大的数是( ).A. 0B. 2C.2-D.12- 听课记录:【举一反三】1. 下列各数中,最小的数是().A. 0B. 1 3C.13- D.3-2. 在数1,0,1,2--中,最小的数是().A. 1B. 0C. 1-D. 2-考点二、科学计数法与近似值【例2】“着力扩大投资,突破重点项目建设”是遵义经济社会发展的主要任务之一.据统计,遵义市2014年全社会固定资产投资达1762亿元,“1762亿”这个数用科学计数法表示为().A. 1762×108B. 1.762×1010C. 1.762×1011D. 1.762×1012听课记录:【举一反三】1. 据统计,2015年河南省旅游业总收入达到3875.5亿元. 若将“3875.5亿”用科学计数法表示为3.8755×10n,则n等于().A. 10B. 11C. 12D. 132. 将6.18×10-3化为小数是( ).A. 0.000618B. 0.00618C. 0.0618D. 0.6183. 20140000用科学计数法表示(保留3位有效数字)为 .考点三、实数的运算【例3】计算:201(π2014)sin 6023-⎛⎫+-+︒ ⎪⎝⎭.听课记录:【举一反三】1. 计算:2(2)(3)2-+-⨯.2. 2014(1)2sin 45--︒+-3. 计算:1011)23-⎛⎫-+-- ⎪⎝⎭.第3课时整 式 课时核心问题:整式的相关概念及运算.聚焦考点☆温习理解一、单项式1. 代数式.用运算符号把数或表示数的字母连接而成的式子叫做代数式. 单独的一个数或一个字母也是代数式.2. 单项式.只含有数字与字母的积的代数式叫做单项式.注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示. 例如,2143a b -就是错误的,应写成2133a b -. 一个单项式中,所有字母的指数的和叫做这个单项式的次数,如325a b c -是6次单项式.二、多项式1. 多项式.几个单项式的和叫做多项式,其中每个单项式叫做这个多项式的项,多项式中不含字母的项叫做常数项,多项式中次数最高项的次数为多项式的次数.统称为整式.用数值代替代数式中的字母,按照代数式指出的运算计算出的代数式的结果,叫做求代数式的值.注意:(1)求代数式的值,一般先化简再代入.(2)求代数式的值,有时求不出具体字母的值,此时需要利用技巧“整体”代入求值.2. 同类项.所含 ,并且 的项叫做同类项. 几个常数项也是同类项.3. 去括号法则:(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都.(2)括号前是“-”,把括号和它前面的“-”号一起去掉,括号里各项都.三、整式的运算法则整式的加减法:(1)去括号;(2)合并同类项.1. 幂的运算法则:(1)同底数幂相乘:m n m n⋅=(m, n都是整数,a≠0).a a a+(2)幂的乘方:()m n mn=(m, n都是整数,a≠0).a a(3)积的乘方:=⋅(n是整数,a≠0, b≠0).()n n nab a b(4)同底数幂相除:m n m n÷=(m, n都是整数,a≠0).a a a-2. 整式乘法.(1)单项式与单项式相乘,把作为积的因式,只在一个单项式里含有的字母,连同它的指数一起作为积的一个因式. (2)单项式乘多项式:m(a+b)=ma+mb.(3)多项式乘多项式:(a+b)(c+d)=ac+ad+bc+bd.3. 乘法公式.(1)平方差公式:(a+b)(a-b)=a2-b2.(2)完全平方公式:(a±b)2=a2±2ab+b2.4. 整式的除法:(1)单项式除以单项式:法则:(2)多项式除以单项式:法则:注意:(1)单项式乘单项式的结果仍然是单项式.(2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同.(3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号.(4)多项式与多项式相乘的展开式中,有同类项的要合并同类项.(5)公式中的字母可以表示数,也可以表示单项式或多项式.(6)011(0),(0,)p pa a a a p a -=≠=≠为正数. (7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加. 单项式除以多项式是不能这么计算的. 典例解析考点一、整式的加减运算【例1】下列计算正确的是( ).A. 2x -x =xB. 326a a a ⋅=C. (a -b )2=a 2-b 2D. (a +b )(a -b )=a 2+b 2听课记录:【举一反三】已知x 2-2=y ,则x (x -3y )+y (3x -1)-2的值是(). A.2- B. 0C. 2D. 4考点二、同类项的概念及合并同类项【例2】下列各式中,与2a 是同类项的是( ).A. 3aB. 2abC. 23a -D. a 2b听课记录:【举一反三】下列运算正确的是( ).A. 2323a a a +=B. 2()a a a -÷=C. 326()a a a -⋅=-D. 236(2)6a a =考点三、幂的运算【例3】下列运算正确的是( ).A. 33a a a ⋅=B. 33()ab a b =C. 326()a a =D. 842a a a ÷=听课记录:【举一反三】1. 计算:2()ab 的结果是( ).A. 2abB. a 2bC. a 2b 2D. ab 22. 计算:63m m ⋅的结果是( ).A. m 18B. m 9C. m 3D. m 2考点四、整式的乘除法.【例4】计算:23(2)()a a ⋅-=.A. 312a -B. 36a -C. 12a 3D. 6a 2【例5】计算:2x (3x 2+1),正确的结果是(). A. 5x 3+2x B. 6x 3+1C. 6x 3+2xD. 6x 2+2x听课记录:【举一反三】1. 下列计算正确的是( ).A. 4416x x x ⋅=B. 325()a a =C. 236()ab ab =D. 23a a a +=2. 下列运算正确的是( ). A. 2323a a a += B. 2()a a a -÷=C. 326()a a a -⋅=-D. 236(2)6a a = 考点五、整式的混合运算及求值【例6】先化简,再求值:2(3)()()a a b a b a a b -++--,其中11,2a b ==-. 听课记录:【举一反三】1. 下列计算中,正确的是( ).A. 235a b ab +=B. 326(3)6a a =C. 623a a a ÷=D. 32a a a -+=-2. 下列运算正确的是( ). A. (m +n )2=m 2+n 2B. (x 3)2=x 5C. 5x -2x =3D. (a +b )(a -b )=a 2-b 23. 下列计算正确的是( ).A. (2a 2)4=8a 6B. a 3+a =a 4C. a 2÷a =aD. (a -b )2=a 2-b 24. 化简:2()()()2a b a b a b ab ++-+-.5. 化简:2(1)2(1)a a ++-.6. 已知x (x +3)=1,求代数式2x 2+6x -5的值为 .7. 先化简,再求值:(x +1)(2x -1)-(x -3)2,其中2x =-.。
2022年全国中考数学真题分类汇编专题1:实数

2022年全国中考数学真题分类汇编专题1:实数
一.选择题(共11小题)
1.(2022•铜仁市)在实数√2,√3,√4,√5中,有理数是()
A.√2B.√3C.√4D.√5 2.(2022•广州)实数a,b在数轴上的位置如图所示,则()
A.a=b B.a>b C.|a|<|b|D.|a|>|b| 3.(2022•长春)实数a,b在数轴上对应点的位置如图所示,下列结论正确的是()
A.a>0B.a<b C.b﹣1<0D.ab>0 4.(2022•北京)实数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是()
A.a<﹣2B.b<1C.a>b D.﹣a>b 5.(2022•营口)在√2,0,﹣1,2这四个实数中,最大的数是()A.0B.﹣1C.2D.√2 6.(2022•临沂)满足m>|√10−1|的整数m的值可能是()
A.3B.2C.1D.0 7.(2022•大庆)实数c,d在数轴上的对应点如图所示,则下列式子正确的是()
A.c>d B.|c|>|d|C.﹣c<d D.c+d<0 8.(2022•吉林)实数a,b在数轴上对应点的位置如图所示,则a,b的大小关系为()
A.a>b B.a<b C.a=b D.无法确定9.(2022•临沂)如图,A,B位于数轴上原点两侧,且OB=2OA.若点B表示的数是6,则点A表示的数是()
第1页(共7页)。
专题01 实数-三年(2019-2021)中考真题数学分项汇编(全国通用)(原卷版)

专题01 实数一.选择题1.(2021·湖南邵阳市·中考真题)3-的相反数是()A.3-B.0 C.3 D.π2.(2021·山东泰安市·中考真题)下列各数:4-, 2.8-,0,4-,其中比3-小的数是()A.4-B.4-C.0 D. 2.8-3.(2021·浙江中考真题)实数2-的绝对值是()A.2-B.2 C.12D.12-4.(2021·四川乐山市·中考真题)如果规定收入为正,那么支出为负,收入2元记作2+,支出5元记作().A.5元B.5-元C.3-元D.7元5.(2021·四川凉山1 / 8州·中考真题)2021-=()A.2021 B.-2021 C.12021D.12021-6(2021·湖南怀化市·中考真题)数轴上表示数5的点和原点的距离是()A.15B.5C.5-D.15-7.(2021·浙江宁波市·中考真题)在﹣3,﹣1,0,2这四个数中,最小的数是()A.﹣3 B.﹣1 C.0 D.28.(2021·浙江金华市·中考真题)某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是()A.先打九五折,再打九五折B.先提价50%,再打六折C.先提价30%,再降价30%D.先提价25%,再降价25%9.(2021·四川南充市·中考真题)数轴上表示数m和2m+的点到原点的距离相等,则m为()A.2-B.2C.1D.1-10.(2021·湖南常德市·中考真题)阅读理解:如果一个正整数m能表示为两个正整数a,b的平方和,即22m a b=+,那么称m为广义勾股数.则下面的四个结论:①7不是广义勾股数;②13是广义勾股数;③两个广义勾股数的和是广义勾股数;④两个广义勾股数的积是广义勾股数.依次正确的是( ) A .②④ B .①②④ C .①② D .①④11.(2021·湖北黄冈市·中考真题)2021年5月15日07时18分,我国首个火星探测器“天问一号”经过470000000公里旅程成功着陆在火星上,从此,火星上留下中国的脚印,同时也为我国的宇宙探测之路迈出重要一步.将470000000用科学记数法表示为( )A .74710⨯B .74.710⨯C .84.710⨯D .90.4710⨯12.(2021·天津中考真题)计算()53-⨯的结果等于( )A .2-B .2C .15-D .1513.(2021·新疆中考真题)下列实数是无理数的是( )A .2-B .1CD .214.(2021·湖南长沙市·中考真题)下列四个实数中,最大的数是( )A .3-B .1-C .πD .415.(2021·湖南岳阳市·-1,0,2中,为负数的是( )A B .-1 C .0 D .216.(2021·浙江台州市·之间的整数有( )A .0个B .1个C .2个D .3个17.(2021·浙江金华市·中考真题)实数12-,2,3-中,为负整数的是( )A .12- B .C .2 D .3-18.(2021·四川资阳市·中考真题)若a =b =2c =,则a ,b ,c 的大小关系为( )A .b c a <<B .b a c <<C .a c b <<D .a b c <<19.(2021·浙江中考真题)已知,a b 是两个连续整数,1a b <<,则,a b 分别是( )A .2,1--B .1-,0C .0,1D .1,220.(2020·四川攀枝花市·中考真题)下列说法中正确的是( ).A .0.09的平方根是0.3B 4=±C .0的立方根是0D .1的立方根是±121.(2020·四川达州市·中考真题)中国奇书《易经》中记载,远古时期,人们通过在绳子上打结来计数,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满5进1,用来记录孩子自出生后的天数.由图可知,孩子自出生后的天数是( )A .10B .89C .165D .29422.(2020·山东菏泽市·中考真题)下列各数中,绝对值最小的数是( )A .5-B .12C .1- D23.(2020·江苏宿迁市·中考真题)在△ABC 中,AB=1,下列选项中,可以作为AC 长度的是( ) A .2 B .4 C .5 D .624.(2020·四川攀枝花市·中考真题)实数a 、b 在数轴上的位置如图所示,化简的结果是( ).A .2-B .0C .2a -D .2b25.(2020·湖南株洲市·中考真题)一实验室检测A 、B 、C 、D 四个元件的质量(单位:克),超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的元件是( ) A . B . C . D .26.(2020·北京中考真题)实数a 在数轴上的对应点的位置如图所示.若实数b 满足a b a -<<,则b 的值可以是( )A .2B .-1C .-2D .-327.(2020·湖南长沙市·中考真题)2020年3月14日,是人类第一个“国际数学日”这个节日的昵称是“π(Day )”国际数学日之所以定在3月14日,是因为3.14与圆周率的数值最接近的数字,在古代,一个国家所算的的圆周率的精确程度,可以作为衡量这个国家当时数学与科技发展的水平的主要标志,我国南北朝时期的祖冲之是世界上最早把圆周率的精确值计算到小数点后第七位的科学巨匠,该成果领先世界一千多年,以下对圆周率的四个表述:①圆周率是一个有理数;②圆周率是一个无理数;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比;④圆周率是一个与圆大小有关的常数,它等于该圆的周长与半径的比;其中正确的是( )A .②③B .①③C .①④D .②④28.(2020·黑龙江大庆市·中考真题)若2|2|(3)0x y ++-=,则x y -的值为( )A .-5B .5C .1D .-129.(2020·山东烟台市·中考真题)实数a ,b ,c 在数轴上的对应点的位置如图所示,那么这三个数中绝对值最大的是( )A .aB .bC .cD .无法确定30.(2020·四川乐山市·中考真题)数轴上点A 表示的数是3-,将点A 在数轴上平移7个单位长度得到点B .则点B 表示的数是( )A .4B .4-或10C .10-D .4或10-31.(2020·湖南郴州市·中考真题)如图表示互为相反数的两个点是( )A .点A 与点B B .点A 与点DC .点C 与点BD .点C 与点D32.(2019·台湾中考真题)数线上有O 、A 、B 、C 四点,各点位置与各点所表示的数如图所示.若数线上有一点D ,D 点所表示的数为d ,且5d d c -=-,则关于D 点的位置,下列叙述何者正确?( )A .在A 的左边B .介于A 、C 之间 C .介于C 、O 之间D .介于O 、B 之间 33.(2019·江苏徐州市·中考真题)如图,数轴上有O 、A 、B 三点,O 为O 原点,OA 、OB 分别表示仙女座星系、M87黑洞与地球的距离(单位:光年).下列选项中,与点B 表示的数最为接近的是( )A .6510⨯B .710C .7510⨯D .81034.(2019·山东枣庄市·中考真题)点,,,O A B C 在数轴上的位置如图所示,O 为原点,1AC =,OA OB =.若点C 所表示的数为a ,则点B 所表示的数为( )A .()1a -+B .()1a --C .1a +D .1a -35.(2019·四川中考真题)实数m,n 在数轴上对应点的位置如图所示,则下列判断正确的是( )A .1m <B .1m 1->C .0mn >D .10m +> 二.填空题1.(2021·重庆中考真题)计算:031_______.2.(2021·四川自贡市·中考真题)某校园学子餐厅把WIFI 密码做成了数学题,小亮在餐厅就餐时,思索了一会,输入密码,顺利地连接到了学子餐厅的网络,那么他输入的密码是______.3.(2021·云南中考真题)已知a ,b 2(2)0b -=则a b -=_______.4.(2021·湖南怀化市· __________12(填写“>”或“<”或“=”).5.(2021·山东临沂市·中考真题)比较大小:(选填“>”、“ =”、“ <” ).6.(2021·四川自贡市·中考真题)请写出一个满足不等式7x >的整数解_________.7.(2021·湖南邵阳市·中考真题)16的算术平方根是___________.8.(2020·______.9.(2020·|1|0b +=,则2020()a b +=_________. 10.(2020·湖北荆州市·中考真题)若()1012020,,32a b c π-⎛⎫=-=-=- ⎪⎝⎭,则a ,b ,c 的大小关系是_______.(用<号连接)11.(2020·内蒙古赤峰市·中考真题)一个电子跳蚤在数轴上做跳跃运动.第一次从原点O 起跳,落点为A 1,点A 1表示的数为1;第二次从点A 1起跳,落点为OA 1的中点A 2;第三次从A 2点起跳,落点为0A 2的中点A 3;如此跳跃下去……最后落点为OA 2019的中点A 2020.则点A 2020表示的数为__________.12.(2019·山东德州市·中考真题)33x x -=-,则x 的取值范围是______.三.解答题1.(2021·上海中考真题)计算: 1129|12-+-2.(2021·新疆中考真题)计算:020211)|3|(1)+--.3.(2021·湖南怀化市·中考真题)计算:021(3)()4sin 60(1)3π---+︒--4.(2021·四川广安市·中考真题)计算:()03.1414sin 60π-+︒.5.(2021·湖南岳阳市·中考真题)计算:())02021124sin 30π-+-+︒-.6.(2021·云南中考真题)计算:201tan 452(3)1)2(6)23-︒-++-+⨯-.7.(2021·浙江金华市·中考真题)计算:()202114sin 45+2-︒-.8.(2021·浙江台州市·中考真题)小华输液前发现瓶中药液共250毫升,输液器包装袋上标有“15滴/毫升”.输液开始时,药液流速为75滴/分钟.小华感觉身体不适,输液10分钟时调整了药液流速,输液20分钟时,瓶中的药液余量为160毫升.(1)求输液10分钟时瓶中的药液余量;(2)求小华从输液开始到结束所需的时间.9.(2020·青海中考真题)计算:101145( 3.14)3π-⎛⎫+︒+-- ⎪⎝⎭10.(2020·湖南怀化市·222cos 45|2-︒-+-11.(2020·北京中考真题)计算:11()|2|6sin 453---︒12.(2020·山东菏泽市·中考真题)计算:20201202012|3|45(2)2-⎛⎫++︒--⋅ ⎪⎝⎭.13.(2020·广东深圳市·中考真题)计算:101()2cos30|(4)3π--︒+--.14.(2020·湖南张家界市·中考真题)计算:201|12sin 45(3.14)2π-︒⎛⎫--+-- ⎪⎝⎭.15.(2019·四川遂宁市·中考真题)计算:201920(1)(2)(3.14)4cos30|2π-︒-+-+--+16.(2019·四川乐山市·中考真题)如图,点A 、B 在数轴上,它们对应的数分别为2-,1x x +,且点A 、B 到原点的距离相等.求x 的值.。
中考数学总复习1.实数的概念

3 ⎩ ⎩1.实数的概念一、知识要点1. 实数的分类(两种分类方式——①按定义分类;②按性质分类):⎧ ⎧ ⎧正整数 ⎫ ⎧ ⎧ ⎧正整数⎪ ⎪ ⎨零⎪ ⎪⎪ ⎪正有理数⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪正实数⎨ ⎩正分数 负整数 小数或 小数; 正无理数 ⎪ ⎨ ⎩ ⎬⎪ ⎩ (1) )实数⎨ ⎪⎪ ⎨ ⎪ ⎪ ⎪ 实数⎨零 ⎪ ⎧⎪ ⎪ ⎩ ⎩ ⎪⎭ ⎪负实数⎪负有理数⎨ ⎪ 小数. ⎪⎩ ⎨ ⎬ ⎩⎪ ⎩ ⎭ ⎪⎩⎪负无理数 ()2 数轴上的点与 一一对应;在平面直角坐标系中,平面上的点与 一一对应. (3) 常见无理数的 4 种形式:①字母型:如π和 ;②构造型:如 0.101001…和 ;③根式型:如 和 ;④三角函数型:如sin150和 等.2. 数轴:数轴的三要素是、 和 ......... 在数轴上右边的数总是 左边的数;3. 相反数:实数 a 的相反数为. 若a ,b 互为相反数,则a + b = ............ 在数轴上表示互为相反数的两个点(原点除外)分别在两侧,且与原点的 .................................4. 倒数:非零实数 a 的倒数为 . 若a ,b 互为倒数,则ab = ................ 5. 绝对值: ⑴性质:正数的绝对值是 ,负数的绝对值是 ,0 的绝对值是 .... 即a = ⎧⎪ ⎨ (a > 0)(a = 0)⑵几何意义:一个数的绝对值就是数轴上表示这个数的点 ................................... ⑶任何数的绝对值都是,即 a0 ;若a ,b 互为相反数,则 a b ;⎪ (a < 0) ⎧3 a 3 ① ( ) 若 a = b ,则a b 或 a + b = .6. 科学计数法:把一个数表示成 的形式,其中1≤ a <10 的数,n 是整数. 其方法是:①确定 a , a 是只有一位整数的数;②确定 n ,当原数的绝对值≥10 时,n 为正整数,n 等于原数中整数部分的数位减去;当原数的绝对值<1 时,n 为负整数,如 0.00305=,-0.000236=.7. 若 x 2=a ,则x 叫作 a 的 ,记作,a 叫作 x 的 ........... 任何正数 a 都有个平方根,它们互为,其中正的平方根 叫,没有平方根,0 的算术平方根为 ........8.若 x 3=a ,则 x 叫作 a 的 ,记作 ;a 叫作 x 的.任何实数a 都有立方根,记为 .............9. 非负数: a 0;a 20; a 0 ;性质是:若几个非负数的和等于 0,则这几个非负数同时为 ...........10.绝对值是它本身的数是;相反数是它本身的数是 ;倒数是它本身的数是 ; 平方是它本身的数是 ;立方是它本身的数是 ;平方根是它本身的数是;算术平方根是它本身的数是;立方根是它本身的数是 .............................二、例题分析【例 1】在 2 , ②3.14, ③π, ④( 2- 3)0 , ⑤ 1 -2 , ⑥0.010⋅⋅⋅, ⑦0.10110111⋅⋅⋅, ⑧tan 450,2 21⑨ 中 , 是 无 理 数 的 是 ( 只 写 序 号 ).π【例 2】(1)在数轴上表示-2 的点,离原点的距离等于 ....................(2)实数 a ,b 在数轴上的对应点如图所示,则下列不等式中错.误.的是( ).A. ab > 0B. a + b < 0C. a < 1bD.a -b < 0 ab(3) 在数轴上的点 A 、B 位置如图所示,则线段 AB 的长度为 ................. AB-5 0 2(4)实数 x 、y 在数轴上的位置如图所示,则 x ,y ,0 的大小是 ...............................x y()5 如图所示,数轴上 A ,B 两点表示的数分别为-1和 ,点 B 关于点 A 的对称点为 C ,则点 C 所表示的数为 ................C A 0 B【例 3】(1)如果规定向东走 80m 记为 80m ,那么向西走 60m 记为.(2) -2 的相反数是 .............(3)对于式子“ -(-8) ”,有下列理解:①可表示-8 的相反数;②可表示-1与-8 的乘积;③可表示-8 的绝对值;④运算结果等于 8.其中理解正确的是 (只写序号). 【例 4】(1) - 1 的倒数为 ;2的倒数为;(2)若 x = (-2) ⨯ 3 ,则x 的倒数是 .................【例 5】(1)-5 的绝对值是 ;- 的绝对值是; 3 -27 的绝对值是 .....................(2)式子“ | 6 - 3 |”在数轴上的几何意义是:“数轴上表示 6 的点与表示 3 的点之间的距离”.类似地,3 2b +1 9 9 b -3 式 子 “| a + 5 |” 在 数 轴 上 的 几 何 意 义 是 “ ”. (3)①如果 a 与 1 互为相反数,则| a + 2 | =. ②若 a = 3 ,则a 的值是 .................(4) 若 m - n = n - m , 且 m = 4 , n = 3 , 则 (m + n )2 = . (5)若 a = 5,b = -2,且ab > 0,则a + b = .(6)如果实数 a 在数轴上的位置如图所示,那么|1- a | + a 2 =----------------- 1 0 a 1【例 6】(1)16 的平方根是 ,16 的算术平方根是 , 16 的平方根是 ;16 的算术平方根 ;-8 的立方根是 .....................(2) 一个自然数的算术平方根为a ,则和这个自然数相邻的下一个自然数是 .........................(3)下列运算正确的是( ). A.= ±3 B. - 3 = -3 C. - = -3 D. - 32 = 9(4)在实数﹣2,0,2,3 中,最小的实数是( ).A.-2B.0C.2D.3 (5)若 ab ≠ 0 ,则a +b 的取值不可能是().bA.0B.1C.2D.-2【例 7】(1)目前,我国人口总数大约是 13.7 亿,用科学记数法表示为 人.(2) 港珠澳大桥工程估算总投资 726 亿元,用科学记数法表示是 元,精确到万位是 .................(3) “鸟巢”的建筑面积达 25.8 万平方米,用科学记数法表示约为 平方米.(4) 太阳内部高温核聚变反应释放的“辐射能”功率为3.8⨯1023千瓦,而到达地球的仅占 20 亿分之一,到达地球的“辐射能”功率为 千瓦(用科学计数法表示) (5)已知空气的单位体积质量为1.24⨯10-3g /cm 3,1.24 ⨯10-3用小数表示为 g /cm 3.(6) “黄金分割比”是= 0.61803398…,将“黄金分割比”精确到 0.001 的近似数是.2(7) 下列说法正确的是( )A.近似数 3.9×10 3 精确到十分位B.按科学计数法表示的数 8.04×10 5 其原数是 80400C.把数 50430 精确到千位是 5.0×10 4D.用四舍五入得到的近似数 8.1780 精确到 0.001 【例 8】(1)若 a - 2 + + (c - 4)2= 0 则 a - b + c = .(2) 等腰三角形一边长为 a ,一边长b ,且(2a -b )2+ 9 - a 2 = 0 ,则它的周长为 .....................(3) 已知 a + 3 += 0 ,则实数a + b 的相反数 .........................5 -1 aa +b(- 2)2873 3 3 3(4) a,b 互为相反数,c,d 互为倒数,m 的绝对值是 2,则2m2 +1+ 4m - 3cd = ......................(5) = 0,则a +b = ......................三、课后作业1.在22,π,0,,sin60°,(cos60°)-1,2-, 2.313131…,0.010010001…,3- 64 中,无7 2理数有个 .2.下列说法不正确的是( ).A.没有最大的有理数B.没有最小的有理数C.有最大的负数D.有绝对值最小的有理数8⨯1+( 2)0 的结果为( ).3.计算2A.B.C.3 D.54.下列各组数中是互为相反数的一组是( ).A.- 2与B. - 2与3- 8C. - 2与-1D. - 2 与225.如图A,B,C 三点所表示的数分别为a,b,c ,根据图中各点位置,下列各式正确的是( ).A. (a -1)(b -1) > 0B. (b -1)(c -1) >0C. (a +1)(b +1) < 0D. (b +1)(c +1) < 0C O A B-1 0 a 16.数轴上的点并不都表示有理数,如图中数轴上的点P 所表示的数是这种说明问题的方式体现的数学思想方法叫做( ).A.代人法 B.换元法 C.数形结合D.分类讨论7.如果将三个数“ - 3,7,”表示在数轴上,其中被如图所示的墨迹覆盖的数是.8.如右图所示的数轴上,点B 与点C 关于点A 对称,A、B 两点 B A C对应的实数是3 和-1,则点C 所对应的实数是( ).-1 0 3A. 1+B. 2+C. 2 -1D. 2 +19.一个正方形的面积是15,估计它的边长大小在( ).A.2与3之间B.3与4之间C.4与5之间D.5与6之间10.由四舍五入法得到的近似数8.8×103,下列说法中正确的是( ).A.精确到十分位B.精确到个位C.精确到百位D.精确到千位11.某市 2014 年实现生产总值(GDP)1545.35 亿元,用科学记数法表示是元.112 ”,(a - 3b)2 +a2 - 4a + 212.近似数 13.7 万是精确到位.3 + 1 b - c 2 12 3 3 64 x 2 a -1 13. -5 的倒数是 , -3 的绝对值是,绝对值大于 1 小于 4 的整数的和是 .................14. 已知一个正数的平方根是3x - 2 和5x + 6 ,则这个数是 ,若 a > 0 且a x = 2 ,a y = 3 ,则a x - y的值为 ................. 的 立 方 根 是 ;若 = 5, 则 x = ; 若 3 15. 已知一个正数的平方根是3x - 2 和 x + 6 ,则这个数是 ..................... 16. 已知, + a + b +1 = 0 ,则 a b = . 17. 把 7 的平方根和立方根按从小到大的顺序排列为.1 -1= 5,则x = ...........18.计算: ( ) 3- (3 - 3)0 - 4 sin 60︒+ 12 =.19.已知 a = 3 ,且(4 tan 45︒ - b )2+ = 0 ,以a ,b ,c 为边组成的三角形面积等于 .................20.计算: 2-1﹣3tan30° +(2 + 2)0 + .参考答案:三、例题分析 【例 1】①③⑦⑨;【例 2;(1) 2; (2)C ; (3)7; (4)0<x <y ; (5) -2- ; 【例 3】 (1)-60m ; (2) -2; (3)①②③④;x 3336【例 5】(1) 5, - 2 ,3;;(2)数轴上表示 a 的点与数轴上表示-5 的点之间的距离; (3) ①1; ② ±3 ; (4) 1 或 49; (5)-7; (6)1;【例 6】(1) ±4,4,±2,2,-2; (2)a 2+1; (3)C ;(4) A ;(5) B ;【例 7】(1) 1.37×109;(2) 7.26×1010,7260000 万元;(3) 2.581.37×105;B ;(4) 1.9×1014;(5) 0.00124; (6) 0.618; (7) C ;【例 8】(1) 3; (2)15; (3)4; (4) 5 或-11; 8(5) ;3四、课后作业 1.5;2. C ;3. C ;【例 4】(1)-2, 3 ,(2) - 1;7 3 7 7. 7 ;4. A ;5. D ;6. C ;8. D ; 9. B ; 10. C ;11.1.54535×1011; 12.千; 13.- 1,3,0;5 49214., , 3 4 , ±5 ,5;4 315.25; 16.1;17. - < < 7 ; 18.2;19.6;20.3 + 2 3 ;2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考专题复习1--《实数》考点一、实数的概念及分类1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数 2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
考点三、平方根、算数平方根和立方根1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ±”。
2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0)0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。
考点四、科学记数法和近似数1、有效数字一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。
2、科学记数法把一个数写做na 10⨯±的形式,其中101<≤a ,n 是整数,这种记数法叫做科学记数法。
考点五、实数大小的比较1、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
2、实数大小比较的几种常用方法(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。
(2)求差比较:设a 、b 是实数,,0b a b a >⇔>- ,0b a b a =⇔=-b a b a <⇔<-0(3)求商比较法:设a 、b 是两正实数,;1;1;1b a bab a b a b a b a <⇔<=⇔=>⇔> (4)绝对值比较法:设a 、b 是两负实数,则b a b a <⇔>。
(5)平方法:设a 、b 是两负实数,则b a b a <⇔>22。
考点六、实数的运算 (做题的基础,分值相当大)1、加法交换律 a b b a +=+2、加法结合律 )()(c b a c b a ++=++3、乘法交换律 ba ab =4、乘法结合律 )()(bc a c ab =5、乘法对加法的分配律 ac ab c b a +=+)(6、实数的运算顺序:先算乘方,再算乘除,最后算加减,如果有括号,就先算括号里面的。
1.(内蒙古赤峰市)正整数x 、y 满足(2x ﹣5)(2y ﹣5)=25,则x+y 等于( ) A .18或10 B .18 C .10 D .26 【答案】A .【分析】易得(2x ﹣5)、(2y ﹣5)均为整数,分类讨论即可求得x 、y 的值即可解题.【解析】∵xy 是正整数,∴(2x ﹣5)、(2y ﹣5)均为整数,∵25=1×25,或25=5×5,∴存在两种情况:①2x ﹣5=1,2y ﹣5=25,解得:x=3,y=15; ②2x ﹣5=2y ﹣5=5,解得:x=y=5; ∴x+y=18或10,故选 A .点睛:本题考查了整数的乘法,本题中根据25=1×25或25=5×5分类讨论是解题的关键. 考点:有理数的乘法;分类讨论.2.(四川省自贡市)填在下面各正方形中四个数之间都有相同的规律,根据这种规律m 的值为( )A .180B .182C .184D .186 【答案】C .【分析】利用已知数据的规律进而得出最后表格中数据,进而利用数据之间关系得出m 的值. 点睛:此题主要考查了数字变化规律,正确得出表格中数据是解题关键. 考点:规律型:数字的变化类.3.(山东省淄博市)在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m ,再由乙猜这个小球上的数字,记为n .如果m ,n 满足|m ﹣n|≤1,那么就称甲、乙两人“心领神会”,则两人“心领神会”的概率是( ) A .38 B .58 C . 14 D .12【答案】B .【分析】画出树状图列出所有等可能结果,由树状图确定出所有等可能结果数及两人“心领神会”的结果数,根据概率公式求解可得.点睛:本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.考点:列表法与树状图法;绝对值.4.(山东省潍坊市)定义[x]表示不超过实数x 的最大整数,如[1.8]=1,[﹣1.4]=﹣2,[﹣3]=﹣3.函数y=[x]的图象如图所示,则方程[]221x x =的解为( ).A .0或2B .0或2C .1或2-D .2或2- 【答案】A .【分析】根据新定义和函数图象讨论:当1≤x ≤2时,则212x =1;当﹣1≤x ≤0时,则212x =0,当﹣2≤x <﹣1时,则212x =﹣1,然后分别解关于x 的一元二次方程即可. 点睛:本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了实数的大小比较. 考点:解一元二次方程﹣因式分解法;实数大小比较;函数的图象;新定义;分类讨论.5.(湖北省十堰市)如图,10个不同的正偶数按下图排列,箭头上方的每个数都等于其下方两数的和,如123a a a ,表示123a a a =+,则1a 的最小值为( )A .32B .36C .38D .40 【答案】D .【分析】由a 1=a 7+3(a 8+a 9)+a 10知要使a 1取得最小值,则a 8+a 9应尽可能的小,取a 8=2、a 9=4,根据a 5=a 8+a 9=6,则a 7、a 10中不能有6,据此对于a 7、a 8,分别取8、10、12检验可得,从而得出答案. 【解析】∵a 1=a 2+a 3=a 4+a 5+a 5+a 6=a 7+a 8+a 8+a 9+a 8+a 9+a 9+a 10=a 7+3(a 8+a 9)+a 10,∴要使a 1取得最小值,则a 8+a 9应尽可能的小,取a 8=2、a 9=4,∵a 5=a 8+a 9=6,则a 7、a 10中不能有6,若a 7=8、a 10=10,则a 4=10=a 10,不符点睛:本题主要考查数字的变化类,根据题目要求得出a 1取得最小值的切入点是解题的关键. 考点:规律型:数字的变化类;最值问题.6.(浙江省绍兴市)我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是( )A.84 B.336 C.510 D.1326【答案】C.【分析】类比于现在我们的十进制“满十进一”,可以表示满七进一的数为:千位上的数×37+百位上的数×27+十位上的数×7+个位上的数.【解析】1×37+3×27+2×7+6=510,故选C.点睛:本题是以古代“结绳计数”为背景,按满七进一计算自孩子出生后的天数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.考点:用数字表示事件;阅读型.7.(湖南省永州市)我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:根据上表规律,某同学写出了三个式子:①log216=4,②log525=5,③log212=﹣1.其中正确的是()A.①②B.①③C.②③D.①②③【答案】B.【分析】根据指数运算和新的运算法则得出规律,根据规律运算可得结论.【解析】①因为24=16,所以此选项正确;②因为55=3125≠25,所以此选项错误;③因为2﹣1=12,所以此选项正确;故选B.点睛:此题考查了指数运算和新定义运算,发现运算规律是解答此题的关键.考点:实数的运算;新定义.8.(河北,)在数轴上标注了四段范围,如图,则表示的点落在()A.段①B.段②C.段③D.段④【答案】C【考点】估算无理数的大小;实数与数轴.点睛:本题考查了估算无理数的大小,解决本题的关键是计算出各数的平方.9.(四川省宜宾市)规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.则下列说法正确的是.(写出所有正确说法的序号)①当x=1.7时,[x]+(x)+[x)=6;②当x=﹣2.1时,[x]+(x)+[x)=﹣7;③方程4[x]+3(x)+[x)=11的解为1<x<1.5;④当﹣1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有两个交点.【答案】②③.【分析】根据题意可以分别判断各个小的结论是否正确,从而可以解答本题.④∵﹣1<x<1时,∴当﹣1<x<﹣0.5时,y=[x]+(x)+x=﹣1+0+x=x﹣1,当﹣0.5<x<0时,y=[x]+(x)+x=﹣1+0+x=x﹣1,当x=0时,y=[x]+(x)+x=0+0+0=0,当0<x<0.5时,y=[x]+(x)+x=0+1+x=x+1,当0.5<x<1时,y=[x]+(x)+x=0+1+x=x+1,∵y=4x,则x﹣1=4x时,得x=13;x+1=4x时,得x=13;当x=0时,y=4x=0,∴当﹣1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有三个交点,故④错误,故答案为:②③.点睛:本题考查新定义,解答本题的关键是明确题意,根据题目中的新定义解答相关问题.考点:两条直线相交或平行问题;有理数大小比较;解一元一次不等式组;新定义.10.(四川省凉山州)古希腊数学家把1、3、6、10、15、21、…叫做三角形数,其中1是第一个三角形数,3是第二个三角形数,6是第三个三角形数,…,依此类推,第100个三角形数是.【答案】5050.【分析】设第n个三角形数为a n,分析给定的三角形数,根据数的变化找出变化规律“a n=1+2+…+n=(1)2n n +”,依此规律即可得出结论. 【解析】设第n 个三角形数为a n ,∵a 1=1,a 2=3=1+2,a 3=6=1+2+3,a 4=10=1+2+3+4,…∴a n =1+2+…+n=(1)2n n +,将n=100代入a n ,得:a 100=100(1001)2+=5050,故答案为:5050. 点睛:本题考查了规律型中的数字的变化类,解题的关键是找出变化规律“a n =1+2+…+n=(1)2n n +”.考点:规律型:数字的变化类;综合题.学科#网 11.(滨州)观察下列各式:2111313=-⨯,2112424=-⨯2113535=-⨯ ……请利用你所得结论,化简代数式213⨯+224⨯+235⨯+…+2(2)n n +(n ≥3且为整数),其结果为__________.【答案】2352(1)(2)n nn n +++ .【分析】根据所列的等式找到规律2(2)n n +=112n n -+,由此计算213⨯+224⨯+235⨯+…+2(2)n n +的值.点睛:此题主要考查了数字变化类,此题在解答时,看出的是左右数据的特点是解题关键. 考点:分式的加减法;规律型;综合题.12.(湖北省恩施州)如图,在6×6的网格内填入1至6的数字后,使每行、每列、每个小粗线宫中的数字不重复,则a ×c= .【答案】2.【分析】粗线把这个数独分成了6块,为了便于解答,对各部分进行编号:甲、乙、丙、丁、戊、己,先从各部分中数字最多的己出发,找出其各个小方格里面的数,再根据每行、每列、每小宫格都不出现重复的数字进行推算.观察上图发现:第四列已经有数字2、3、4、6,缺少1和5,由于5不能在第二行,所以5在第四行,那么1在第二行;如下:再看甲部分:已经有了数字1、3、4、5,缺少数字2、6,观察上图发现:2不能在第三列,所以2在第二列,则6在第三列的第一行,如下:观察上图可知:第三列少1和4,4不能在第三行,所以4在第五行,则1在第三行,如下:观察上图可知:第六列缺少1和2,1不能在第三行,则在第四行,所以2在第三行,如下:再看戊部分:已经有了数字2、3、4、5,缺少数字1、6,观察上图发现:1不能在第一列,所以1在第二列,则6在第一列,如下:观察上图可知:第一列缺少3和4,4不能在第三行,所以4在第四行,则3在第三行,如下:观察上图可知:第三行第五列少6,第四行第五列少3,如下:所以,a=2,c=1,ac=2;②当6在第一行,4在第二行时,那么第二行第二列就是6,如下:再看甲部分:已经有了数字1、3、5、6,缺少数字2、4,观察上图发现:2不能在第三列,所以2在第2列,4在第三列,如下:观察上图可知:第五列缺少数字3和6,6不能在第三行,所以6在第四行,则3在第三行,如下:观察上图可知:第六列缺少数字1和2,2不能在第四行,所以2在第三行,则1在第四行,如下:观察上图可知:第三行缺少数字1和5,1和5都不能在第一列,所以此种情况不成立;综上所述:a=2,c=1,a×c=2;故答案为:2.点睛:本题是六阶数独,比较复杂,关键是找出突破口,先推算出一个区域或者一行、一列,再逐步的进行推算.考点:规律型:数字的变化类;综合题.学科#网13.(贵州省六盘水市)计算1+4+9+16+25+…的前29项的和是.【答案】8555.【分析】根据每一项分别是12、22、32、42、52可找到规律,整理可得原式关于n的一个函数式,即可解题.点睛:本题考查了学生发现规律并且整理的能力,本题中整理出原式关于n的解析式是解题的关键.考点:有理数的加法;规律型;综合题.14.(四川省乐山市)高斯函数[x],也称为取整函数,即[x]表示不超过x的最大整数.例如:[2.3]=2,[﹣1.5]=﹣2.则下列结论:①[﹣2.1]+[1]=﹣2;②[x]+[﹣x]=0;③若[x+1]=3,则x的取值范围是2≤x<3;④当﹣1≤x<1时,[x+1]+[﹣x+1]的值为0、1、2.其中正确的结论有(写出所有正确结论的序号).【答案】①③.【分析】根据[x]表示不超过x的最大整数,即可解答.【解析】①[﹣2.1]+[1]=﹣3+1=﹣2,正确;②[x]+[﹣x]=0,错误,例如:[2.5]=2,[﹣2.5]=﹣3,2+(﹣3)≠0;③若[x+1]=3,则x的取值范围是2≤x<3,正确;④当﹣1≤x<1时,0≤x+1<2,﹣1<﹣x+1≤1,[x+1]+[﹣x+1]的值为2,故错误.故答案为:①③.点睛:本题考查了有理数的混合运算,解决本题的关键是明确[x]表示不超过x的最大整数.考点:有理数的混合运算;新定义.15.(四川省成都市)实数a,n,m,b满足a<n<m<b,这四个数在数轴上对应的点分别为A,N,M,B(如图),若2BN=AN•AB,则称m为a,b的“大黄金数”,n为a,b的“小黄金数”,AM=BM•AB,2当b﹣a=2时,a,b的大黄金数与小黄金数之差m﹣n= .【答案】4.【分析】先把各线段长表示出来,分别代入到2BN=AN•AB中,列方程组;两式相减后AM=BM•AB,2再将b﹣a=2和m﹣n=x整体代入,即可求出.点睛:本题考查了数轴上两点的距离,同时也进一步考查了数学中的阅读理解能力;做好此题的关键是能正确表示数轴上两点的距离:若A表示x A、B表示x B,则AB=|x B﹣x A|;本题还运用了整体代入的思想,这种思想在数学中经常运用,要熟练掌握.考点:实数与数轴;整体代入.16.(四川省宜宾市)规定:log a b(a>0,a≠1,b>0)表示a,b之间的一种运算.现有如下的运算法则:log a n n a .log N M=log log n n M N(a >0,a ≠1,N >0,N ≠1,M >0). 例如:log 223=3,log 25=1010log 5log 2,则100log 1000= . 【答案】32. 点睛:本题考查了实数的运算,这是一个新的定义,利用已知所给的新的公式进行计算.认真阅读,理解公式的真正意义;解决此类题的思路为:观察所求式子与公式的联系,发现1000与100都与10有关,且都能写成10的次方的形式,从而使问题得以解决. 考点:实数的运算;新定义.17.(广东茂名)为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M ﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015的值是 . 【答案】 【考点】 有理数的乘方.【分析】 根据题目信息,设M=1+5+52+53+…+52015,求出5M ,然后相减计算即可得解.解答: 解:设M=1+5+52+53+ (52015)则5M=5+52+53+54 (52016)两式相减得:4M=52016﹣1,则M=.故答案为.点睛: 本题考查了有理数的乘方,读懂题目信息,理解求和的运算方法是解题的关键.18.(广东东莞)观察下列一组数:,…,根据该组数的排列规律,可推出第10个数是 .【答案】【考点】 规律型:数字的变化类.点睛: 此题考查数字的变化规律,找出数字之间的运算规律,得出规律,利用规律,解决问题是解答此题的关键.19.(湖南省张家界市)阅读理解题:定义:如果一个数的平方等于-1,记为21i =-,这个数i 叫做虚数单位,把形如a bi +(,a b 为实数)的数叫做复数,其中a 叫这个复数的实部,b 叫做这个复数的虚部,它的加、减,乘法运算与整式的加、减、乘法运算类似.例如计算:()()()()253251372i i i i -++=++-+=+ ()()()21212221213i i i i i i i +⨯-=⨯-+⨯-=+-++=+;根据以上信息,完成下列问题:(1)填空:3i =_________,4i =___________;(2)计算:()()134i i +⨯-;(3)计算:232017i i i i ++++.【答案】(1)﹣i ,1;(2)7﹣i ;(3)i .【分析】(1)把i 2=﹣1代入求出即可;(2)根据多项式乘以多项式的计算法则进行计算,再把i 2=﹣1代入求出即可;(3)先根据复数的定义计算,再合并即可求解.点睛:本题考查了整式的混合运算,复数的定义,能读懂题意是解此题的关键,主要考查了学生的理解能力和计算能力,难度适中.考点:实数的运算;新定义;阅读型.20.(云南省)观察下列各个等式的规律: 第一个等式:222112--=1,第二个等式:223212-- =2,第三个等式:224312--=3… 请用上述等式反映出的规律解决下列问题:(1)直接写出第四个等式;(2)猜想第n 个等式(用n 的代数式表示),并证明你猜想的等式是正确的.【答案】(1)225412--=4;(2)22(1)12n n +--=n .点睛:本题考查规律型:数字的变化类,解答本题的关键是明确题目中式子的变化规律,求出相应的式子. 考点:规律型:数字的变化类;规律型.学科#网21.(四川省内江市)观察下列等式: 第一个等式:122211132222121a ==-+⨯+⨯++; 第二个等式:2222232111322(2)2121a ==-+⨯+⨯++; 第三个等式:3332342111322(2)2121a ==-+⨯+⨯++; 第四个等式:4442452111322(2)2121a ==-+⨯+⨯++; 按上述规律,回答下列问题:(1)请写出第六个等式:a 6= = ;(2)用含n 的代数式表示第n 个等式:a n = = ;(3)a 1+a 2+a 3+a 4+a 5+a 6= (得出最简结果);(4)计算:a 1+a 2+…+a n .【答案】(1)666221322(2)+⨯+⨯,67112121-++;(2)221322(2)n n n +⨯+⨯,1112121n n +-++;(3)1443;(4)11223(21)n n ++-+. 【分析】(1)根据已知4个等式可得;(2)根据已知等式得出答案;(3)利用所得等式的规律列出算式,然后两两相消,计算化简后的算式即可得;(4)根据已知等式规律,列项相消求解可得.点睛:本题主要考查数字的变化,解题的关键是根据已知等式得出等式的变化规律及列项相消法求解. 考点:规律型:数字的变化类;综合题.22.(安徽省)【阅读理解】 我们知道,(1)1232n n n +++++=,那么2222123n ++++结果等于多少呢?在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+2,即22,…;第n 行n 个圆圈中数的和为n n n n n +++个,即2n .这样,该三角形数阵中共有(1)2n n +个圆圈,所有圆圈中数的和为2222123n ++++..【规律探究】将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n ﹣1行的第一个圆圈中的数分别为n ﹣1,2,n ),发现每个位置上三个圆圈中数的和均为 ,由此可得,这三个三角形数阵所有圆圈中数的总和为22223(123)n ++++== ,因此,2222123n ++++= .【解决问题】 根据以上发现,计算:222212320171232017++++++++的结果为 . 【答案】【规律探究】2n+1,(1)(21)2n n n ++,(1)(21)6n n n ++;【解决问题】1345.【分析】【规律探究】将同一位置圆圈中的数相加即可,所有圈中的数的和应等于同一位置圆圈中的数的和乘以圆圈个数,据此可得,每个三角形数阵和即为三个三角形数阵和的13,从而得出答案;【解决问题】原式=12017(20171)(220171)612017(20171)2⨯⨯+⨯⨯+⨯⨯+=13×(2017×2+1)=1345,故答案为:1345.点睛:本题主要考查数字的变化类,阅读材料、理解数列求和的具体方法得出规律,并运用规律解决实际问题是解题的关键.考点:规律型:数字的变化类;综合题.23.(重庆)我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=pq.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所有3×4是12的最佳分解,所以F(12)=34.(1)如果一个正整数a是另外一个正整数b的平方,我们称正整数a是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t为“吉祥数”,求所有“吉祥数”中F(t)的最大值.【答案】(1)证明见解析;(2)57.【分析】(1)根据题意可设m=2n,由最佳分解定义可得F(m)=mm=1;(2)根据“吉祥数”定义知(10y+x)﹣(10x+y)=18,即y=x+2,结合x的范围可得2位数的“吉祥数”,求出每个“吉祥数”的F(t),比较后可得最大值.值是57.点睛:本题主要考查实数的运算,理解最佳分解、“吉祥数”的定义,并将其转化为实数的运算是解题的关键.考点:实数的运算;新定义.。