复合材料自动铺带技术应用及方案示例
大型复合材料筒形结构自动铺带技术

·新材料新工艺·收稿日期:2010-09-06作者简介:张蕾,1982年出生,硕士,主要从事复合材料成型技术研究。
E -mail :vanbud@eyou.com大型复合材料筒形结构自动铺带技术张蕾王俊锋刘伟熊艳丽范佳(航天材料及工艺研究所,北京100076)文摘采用国产T300/605热熔法预浸料,对大型复合材料筒形结构自动铺带技术进行了研究。
通过对自动铺带角度的工艺优化,铺带角度进行微调,实现了复合材料筒形结构的满覆盖铺放。
在此基础上进行了大型复合材料筒形结构的自动铺带工艺试验,对自动铺带工艺试验件进行无损检测及取样性能测试。
结果表明:预浸料铺覆性良好,自动铺带成型的预浸带间隙或重叠≤1mm ,铺带角度与理论铺带角度偏差≤0.2ʎ。
试验件成型质量良好,自动铺带技术可以满足大型复合材料结构高质量成型需求。
关键词自动铺带,筒形结构,复合材料Automated Tape Placement in Large Composite Cylinder StructureZhang LeiWang JunfengLiu WeiXiong YanliFan Jia(Aerospace Research Institute of Materials &Processing Technology ,Beijing 100076)Abstract Automated tape placement in large cylinder structure was studied with domestic T300/605melting preparedprepreg.The ply angle was optimized to achieve the full-scale laying in large cylinder structure ,which would avoid the gap or overlaps.On the basis of the optimization ,the process experiment of large cylinder structure with automated tape placement was carried out and the result indicated that the adhesion of the prepreg tape was fit for automated tape placement.The gap or over-lap between the tapes were less than 1mm and the error of ply angle was less than 0.2ʎ.Nondestructive testing of the composite cylinder and test of mechanical and physical performance was carried out.The result showed that the property of the compositecylinder was eligible ,which indicated that automated tape placement satisfied the moulding of the large cylinder structure.Key words Automated tape placement ,Cylinder structure ,Composite 0引言自动铺带技术起源于20世纪60年代,第一台计算机全自动控制铺带机由General Dynamics 公司和Conrac 公司合作完成,用于铺放飞机的复合材料机翼部件[1]。
自动铺带技术在复合材料结构件热阻性能研究中的应用

自动铺带技术在复合材料结构件热阻性能研究中的应用引言热阻性能是复合材料结构件设计和制造中的一个重要指标。
在实际应用过程中,结构件的导热性能直接影响其热传导效率和稳定性。
因此,研究如何提高热阻性能,提高复合材料结构件的导热能力是一个热点和挑战。
近年来,自动铺带技术作为一种先进的制造方法,逐渐受到广泛关注和应用。
本文将探讨自动铺带技术在复合材料结构件热阻性能研究中的应用。
1. 自动铺带技术简介自动铺带技术是一种通过自动化设备将复合材料纤维连续铺放在模具上的制造方法。
通过控制铺带的角度、弯曲半径以及各层之间的纤维走向,可以实现复合材料结构件的复杂几何形状和优化力学性能。
自动铺带技术具有高效、精准和可重复性等优点,适用于大尺寸、高强度和复杂形状的结构件制造。
2. 复合材料结构件的热阻性能复合材料结构件的热阻性能是指材料在传导热传递过程中阻碍热流传递的能力。
熟知的热阻性能评估方法包括热传导率、热导率和热扩散系数等指标。
改善复合材料结构件的热阻性能对于提高其导热能力和应用范围具有重要意义。
3. 自动铺带技术在提高复合材料热阻性能中的应用自动铺带技术在提高复合材料结构件的热阻性能方面具有潜力。
首先,自动铺带技术可以实现纤维方向的优化设计,使得复合材料结构件的纤维走向和热传导方向一致,从而提高导热能力。
其次,自动铺带技术可以控制纤维之间的间隙和纤维层间的连续性,减少热阻损失。
此外,自动铺带技术还可以实现复合材料结构件的精细设计,通过合理布局纤维层的厚度和密度,进一步优化热传导路径,提高热传导效率。
4. 自动铺带技术在复合材料结构件热阻性能研究中的案例分析许多研究人员已经开始探索自动铺带技术在复合材料结构件热阻性能研究中的应用。
例如,一项研究使用自动铺带技术制备复合材料热管,通过控制不同铺带角度形成热流通道,并优化纤维层的布局,成功提高了热管的热传导性能。
另外,另一项研究使用自动铺带技术制备导热复合材料片,通过控制纤维层的厚度,优化了热传导路径,提高了导热性能。
自动铺带技术在复合材料制造中的应用探索

自动铺带技术在复合材料制造中的应用探索自动铺带技术是一种现代化的复合材料制造方法,通过利用机器人或自动化设备来将预浸料或干型纤维材料连续地铺放在模具上,进而实现复合材料的制造。
这种技术相比传统的手工铺带,具有更高的生产效率、更好的一致性和更高的品质控制。
本文将探讨自动铺带技术在复合材料制造中的应用,并分析其优势和潜在的挑战。
一、自动铺带技术的优势1.提高生产效率:自动铺带技术利用机器人或自动化设备代替人工操作,能够大幅提高生产效率。
在传统的手工铺带中,工人需要一遍遍地将铺带逐一放置,而自动铺带技术可以连续不断地进行铺带,大大减少了制造时间。
2.保证产品一致性:自动铺带技术能够精确地控制铺带的速度、压力和纤维摆放方向,保证每一块复合材料的质量一致性。
而手工操作容易受到工人技术水平和疲劳程度的影响,导致产品质量的波动。
3.提高产品质量:自动铺带技术可以实现更精确、更均匀地铺放纤维材料,避免了手工操作中可能出现的误差。
同时,自动铺带技术还能控制纤维材料的厚度和纤维摆放的角度,使得复合材料具有更好的力学性能和表面质量。
二、自动铺带技术在复合材料制造中的应用1.航空航天领域:复合材料在航空航天领域具有广泛的应用前景,而自动铺带技术可以大幅提高复合材料的制造效率和产品质量。
通过自动铺带技术,可以制造出轻质、高强度的航空航天结构件,满足航空航天工业对材料性能和质量控制的高要求。
2.汽车工业:自动铺带技术在汽车工业中有着广泛的应用。
通过在汽车零部件中使用复合材料,可以实现车身的轻量化,并提高汽车的燃油效率。
自动铺带技术可以大幅提高复合材料零部件的制造效率,满足汽车工业对大规模生产和高品质产品的需求。
3.建筑领域:自动铺带技术也可以应用于建筑领域的复合材料制造。
复合材料在建筑领域有着广泛的应用前景,可以用于制造建筑结构件、装饰材料等。
自动铺带技术可以提高建筑材料的生产效率,同时保证产品的一致性和质量,满足建筑行业对快速和高质量产品的需求。
复合材料自动铺丝计算机辅助设计软件的设计与应用

复合材料自动铺丝计算机辅助设计软件的设计与应用复合材料自动铺丝计算机辅助设计软件的设计与应用摘要:随着科技的发展和工业制造的进步,复合材料在航空、汽车、船舶等领域的应用越来越广泛。
本文设计了一款复合材料自动铺丝计算机辅助设计软件,并探讨了该软件在航空领域的应用案例。
软件具备自动优化铺丝路径的功能,提高了铺丝效率和质量,为航空工程师和设计师提供了便利。
关键词:复合材料;自动铺丝;计算机辅助设计;软件1. 引言复合材料在航空航天领域的应用越来越广泛,因为它具有高强度、轻质和耐腐蚀性等优点。
在飞机制造过程中,铺丝是一项重要的工艺,在复材的制造过程中扮演着至关重要的角色。
然而,传统的手工铺丝方式效率低下,无法满足大规模生产的需求。
因此,本文将设计一款复合材料自动铺丝计算机辅助设计软件,旨在提高铺丝效率和质量,为航空工程师和设计师提供便利。
2. 设计方法本软件采用了自适应遗传算法和机器学习方法。
首先,通过遗传算法对铺丝路径进行优化。
遗传算法模拟了自然界中的生物进化过程,通过选择、交叉和变异的操作,不断优化铺丝路径。
然后,通过机器学习算法,提高铺丝的准确性。
机器学习模型通过学习大量的铺丝数据,提高了软件的智能化程度。
3. 软件功能本软件具有以下主要功能:(1) 自动铺丝路径生成:根据设计要求和复材的特性,软件能够自动生成最优的铺丝路径,提高铺丝效率和质量。
(2) 工艺模拟:软件能够模拟复材的不同特性和材料的变化情况,为工程师提供了参考和决策依据。
(3) 优化算法:软件采用了自适应遗传算法,能够自动优化铺丝路径,提高了铺丝效率。
(4) 界面友好:软件界面简洁直观,易于操作和使用。
4. 应用案例本软件已成功应用于某型号客机的复合材料铺丝工艺中。
航空工程师使用该软件生成了最优的铺丝路径,并对路径进行了仿真模拟。
通过软件的帮助,工程师发现了一些潜在的问题并进行了修正,确保了复材在飞行过程中的安全性和稳定性。
5. 结果与讨论与传统的手工铺丝相比,本软件在铺丝效率和质量上都取得了显著的改进。
复合材料自动铺带技术应用及方案示例

度和铺叠位置、方向、角度的准确性, 发自动铺带设备,完成了小型铺带机
(2)该 设 备 在 铺 层 时 能 够 对 铺
从而避免了人为铺放产生的偏差,如 的研制,并应用于复合材料结构件 层路径进行手动和自动设置,自动功
产品出现缺陷的几率大、零件制造质 的研制;北京航空制造工程研究所 能具有最佳的铺层路径,每层带可在
虽 然 备采用龙门式结构,主要包括带装夹
国 内 自 动 和释放 ( 开卷 ) 系统、衬纸带回卷系
铺 带 技 术 统、带缺陷检测传感系统、带对中和
研 究 起 步 导向系统、切带系统、铺带和压实系
较 晚,但 在 统、工作区域安全系统、铺带监控系
技术研究和 统、带卷装卸系统、工装定位及自动
空客西班牙Illescas用铺带工艺制造的平尾、方向舵
自动铺带作为典型的增料加工 成型技术,其成型设备的制造技术涉 及机电装备技术、C A D / C A M 软件 技术和材料工艺技术等多个研究领
大飞机复合材料制造技术 Composite Manufacturing Technology for Large Commercial Jet
域,可实现:
许多型号飞机上。
量重复性差、质量分散性大,以及尺 与 Forest-Line 公司合作研制的大 ±90°之间采取任意角度和任意方
寸精度和铺放位置准确度不能满足 型复合材料自动铺带机的调试工作 向的铺放。
大尺寸、高精度零件制造的要求等问
题。采用复合材料自动铺带技术可
在提高质量的同时,大幅度地节省原
材料,降低制造成本。同时,由于可
MTM44-1/HTS(12K)-134-35%RW MTM44-1/E-IMS65-24K 194-32%RW
复合材料自动铺放CADCAM软件技术

复合材料构件手工成型时,根据铺放形面特征和预浸带宽度经剪裁后通过手工铺叠到模具表面完成复合材料构件的成型制造,其生产效率低、废料率高、产品质量也难以保证。
自动铺放技术(包括自动铺带技术和自动铺丝技术)利用专用铺放设备,采用数控技术,实现了铺叠的自动化和预浸带剪裁的自动化,突破了大型复合材料构件手工成型难以克服的瓶颈,具有高效、高质、高精度和高可靠性的优点,已广泛应用于大型飞机、运载火箭等各类航空航天飞行器中多种结构部件的制造,成为发达国家航空航天工业领域中大型复合材料构件的典型制造工艺(如图1所示)。
方向性要求:纤维铺放方向必须满足复合材料结构铺层设计方向。
复合材料既是一种材料也是一种结构,其突出优点之一是性能的可设计性,不同的铺层方向与铺层形式可以形成不同性能的复合材料。
因此,按结构工艺设计要求的纤维方向进行铺放是实现结构设计要求的基础,也是设计铺放轨迹规划算法的基本准则。
可铺性要求:铺放过程中预浸料不褶皱、不撕裂。
自动铺放技术采用一定宽度的预浸带:自动铺带技术采用75/150/300mm等3种宽度的预浸带,自动铺丝技术采用3.2/6.4/12.7mm 等3种宽度的窄带。
预浸带可变形范围很小,复杂曲面铺叠时只能沿特定的轨迹,否则会导致褶皱或撕裂,继而影响构件的铺放质量,甚至导致铺放过程无法顺利进行(如图2所示)。
在复杂曲面构件自动铺放轨迹规划时,其算法必须根据构件曲面外形综合考虑预浸帯在铺放过程中的变形因素。
间隙质量要求:单层铺放时满足间隙容差设计要求,满覆盖、不重叠。
自动铺放时,由于构件形面的复杂性,按照一定算法求解所形成的铺放轨迹并不一定能保证铺放轨迹中心线间的距离保持恒定,间隙可能过小或过大,如不进行适当处理,将导致材料局部重叠或空缺(如图3所示),从而降低制造精度,影响构件性能。
经济性要求:在满足上述要求的基础上尽可能节约材料、降低成本,提高效率。
根据铺放轨迹并按照铺放构件曲面边界特性进行预浸带边界形状规划,生成预浸带切割与预浸带输送(自动铺带)或丝束增减切断(自动铺丝)的特殊指令代码,同时根据铺叠顺序进行整合优化,降低成本,提高效率。
复合材料纤维铺放技术及其应用

复合材料纤维铺放技术及其应用摘要:先进复合材料比传统材料具有诸多优点,例如轻质量、高强度、低密度、高模量、抗疲劳、耐腐蚀、设计制造一体化等等。
复合材料对减轻结构重量、提高经济性和可靠性具有不可替代的作用。
复合材料已经广泛应用于制造领域,尤其是航空航天领域,在航空航天设备上的用量和应用部位已经成为衡量航空航天器结构先进性的重要标志之一。
关键词:复合材料;纤维铺放技术;应用一、纤维铺放技术的成型原理和特点纤维铺放技术是树脂基复合材料制造技术中的一种,其工作原理是将连续的纤维丝束或纤维带通过预浸胶或树脂之后,按照设定好的路径铺放到芯模上,最后在一定温度下固化,制成所需形状的制品。
复合材料纤维铺放成型技术(Fiber placementFP)是自动窄带铺放成型技术(Automanted tep placement, ATP)和自动铺丝束成型技术(Automated tow placement, ATP)的总称。
纤维铺放技术的成型工艺是在纤维铺放机上将平行的纤维丝束或纤维带预浸处理,通过铺放头装置将预浸过的纤维束压到需要加工的工件或芯模表面。
纤维铺放与纤维缠绕和带铺放不同,它不是按照测地线在芯模或模具上布纱;纤维铺放可精确控制丝束宽度,且各丝束可单独铺放,通过切断、重续等工序控制铺放厚度的增减。
此外,纤维丝束是通过纤维铺放机上的铺放头压在模具上的,能保证铺放每一层紧密贴合避免出现分层现象。
总结纤维铺放技术的优点有:(1)通过铺丝头剪断丝束、重新开始等,可以对铺放厚度进行精确控制;(2)工艺过程中铺丝头可调节施加力,实时加压密实;(3)铺放精度高,不易出现孔隙;(4)纤维铺放角度可以调节,不受限制;(5)铺放材料利用率高,浪费少。
二、复合材料纤维铺放技术应用1.加热工艺研究。
在自动纤维铺放过程中,为提高铺放效率,通常设置预加热及主加热2 个加热环节。
在这2 个环节中,都会涉及到选择热源、建立加热模型及确定加热温度三方面的问题。
自动铺带技术在复合材料结构件制造中的应用案例分析

自动铺带技术在复合材料结构件制造中的应用案例分析引言复合材料作为一种重要的材料,在航空航天、汽车、船舶等领域中得到了广泛应用。
复合材料的制造过程对于最终产品的质量和性能至关重要。
其中,自动铺带技术作为一种高效、精确的制造方法,被广泛应用于复合材料结构件的生产。
本文将分析自动铺带技术在复合材料结构件制造中的应用案例,并通过实例探讨其优势和挑战。
1. 自动铺带技术简介自动铺带技术是一种将预浸料纤维布按照设计要求排列、覆盖在模具上的制造方法。
该技术主要包括铺带过程、固化过程和模具脱模过程。
铺带过程中,机器人根据CAD文件或数控编程指令精确控制铺带头的运动,将预浸料纤维布覆盖在模具上。
固化过程中,通过烘烤或加热使得预浸料纤维布固化成为强度和刚度较高的复合材料。
脱模过程中,复合材料从模具上剥离,并进行后续加工。
2. 自动铺带技术在飞机制造中的应用案例2.1 A380机身板制造欧洲航天防务集团(EADS)使用自动铺带技术制造A380机身板。
铺带机器人根据设计要求,精确控制铺带头和纤维布的运动,将预浸料铺到模具上。
该技术不仅提高了生产效率,还保证了复合材料结构件的质量和一致性。
同时,相比于传统的手工操作,自动铺带技术减少了人力成本和人为误差,提高了产品质量。
2.2 波音787机翼制造波音公司采用自动铺带技术制造787机翼。
自动铺带机器人可以精确控制铺带头的运动,并快速、准确地排列纤维布。
该技术不仅提高了工作效率,还避免了手工操作中可能产生的纤维布错位、损坏等问题。
通过自动铺带技术,波音公司实现了大规模、高质量的机翼制造,为航空业带来了突破性的创新。
3. 自动铺带技术的优势和挑战3.1 优势(1)高效准确:自动铺带技术可以实现高速而精确的铺带,提高了生产效率和产品质量。
(2)一致性和可重复性:机器人通过程序控制,可以确保每次铺带过程的一致性,减少了人为误差。
(3)节约成本:相比于传统的手工操作,自动铺带技术可以减少人力成本,并大幅提高生产效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复合材料自动铺带技术应用及方案示例newmaker大飞机复合材料的应用国外大型军用、民用飞机中复合材料构件的比重迅速增加,波音787的复合材料构件已占结构重量的50%以上, A350复合材料构件将占结构重量的52%,俄罗斯开发中的MC21,复合材料用量也将占结构重量的40%~45%,A400M 军用运输机上复合材料用量已达结构重量的35%。
国内ARJ21复合材料用量不多,大型结构件仅在方向舵上采用了复合材料。
大飞机正在研发过程中,考虑到当前和飞机生产出来后(至少7~8年后)的国际水平,参照国外的A380、波音787、A350、A400M 、MC21等大型飞机,以及国内设计能力、试验能力、生产设备条件和工艺水平等,大飞机上复合材料构件占结构重量至少应不低于25%,达到舵面或机翼采用复合材料结构的水平。
而对舵面或机翼复合材料结构件的制造,当前最有优势的制造方法就是自动铺带技术。
自动铺带技术的发展所谓自动铺带技术,就是采用数控铺层设备,通过数字化、自动化的手段实现复合材料预浸布、带的连续自动切割和自动铺放。
主要工作过程为:将复合材料预浸料卷安装在铺放头中,预浸材料由一组滚轮导出,并由压紧滚轮或可随形机构压紧在工装或上一层已铺好的材料上,切割刀将材料按设定好的方向切断,能保证铺放的材料与工装的外形相一致。
铺放的同时,回料滚轮将背衬材料回收。
自动铺带作为典型的增料加工成型技术,其成型设备的制造技术涉及机电装备技术、CAD / CAM 软件技术和材料工艺技术等多个研究领域,可实现:(1)最大限度地利用单向预浸带(优于手工铺层采用的预浸布),并可减轻结构重量;(2)可更自由地设计铺层,发挥复合材料可设计性优势,在应力梯度和应力异常的区域选择性铺放补强,实现了整个结构的零剩余强度;(3)提高工作质量和铺放效率。
采用该技术,可提高复合材料裁片外形、纤维方向等几何参数的精确度和铺叠位置、方向、角度的准确性,从而避免了人为铺放产生的偏差,如产品出现缺陷的几率大、零件制造质量重复性差、质量分散性大,以及尺寸精度和铺放位置准确度不能满足大尺寸、高精度零件制造的要求等问题。
采用复合材料自动铺带技术可在提高质量的同时,大幅度地节省原材料,降低制造成本。
同时,由于可以实现整个结构的零剩余强度设计,结构重量大大减轻。
自动铺带技术于20世纪70年代由Boeing、Cincinnati Milacron、Hercules等公司联合开发,已经经历近40年的发展。
目前,世界上复合材料制造技术较先进的公司(如Boeing 公司、AIRBUS公司、ECF公司等)在飞机复合材料构件的制造中均已广泛采用复合材料自动铺带成型技术。
采用该技术制造的复合材料零、部件已安装于现今生产的许多型号飞机上。
目前,美洲、欧洲、亚洲的几十家制造商在应用自动铺带技术制造复合材料结构。
空客法国Nate工厂中,现有十几台铺带机在生产线上运行;空客德国Stade工厂有一条4台铺带机组生产线;空客西班牙的Illescas工厂有6台铺带机在运行;日本三菱重工、富士重工等也已应用了此项技术。
虽然国内自动铺带技术研究起步较晚,但在技术研究和设备研究方面也已有一定的成果,国内自动铺带技术也不再是空白。
从2004年开始,南京航空航天大学与航空材料研究院联合开发自动铺带设备,完成了小型铺带机的研制,并应用于复合材料结构件的研制;北京航空制造工程研究所与Forest-Line公司合作研制的大型复合材料自动铺带机的调试工作已接近尾声,有望在“十二五”实现应用,可以满足小曲率大型壁板类复合材料构件的制造;国内开展自动铺带技术研究的还有武汉理工大学、天津工业大学等多所大学,包括铺放机构、数控系统和人机交互等研究工作。
2007年,哈飞集团从西班牙M.Torres公司购买了一台复合材料自动铺带机,并已开展了复合材料自动铺带制造技术应用研究,将在2010年初与空客公司合作,进行A320方向舵前、后梁的生产。
该设备采用龙门式结构,主要包括带装夹和释放(开卷)系统、衬纸带回卷系统、带缺陷检测传感系统、带对中和导向系统、切带系统、铺带和压实系统、工作区域安全系统、铺带监控系统、带卷装卸系统、工装定位及自动补偿系统等。
(1)该设备具有自动切割与自动铺放未经固化的树脂基单向纤维带功能,能够在模具上自动铺放多层平面和曲面的复合材料零件。
(2)该设备在铺层时能够对铺层路径进行手动和自动设置,自动功能具有最佳的铺层路径,每层带可在±90°之间采取任意角度和任意方向的铺放。
(3)能够铺放复杂切割路径的铺层和零件局部加强铺层。
(4)铺带机构能按零件程序顺应形面,以可控制的压力将带平顺铺放和碾实、无褶皱、无气泡和具有程编规定的带与带间隙。
(5)所铺带宽规格分为75mm、150mm和300mm三种。
舵面或机翼铺带制造方案1 设计制造原则设计理念:在复合材料结构整个设计过程中始终贯穿设计与工艺制造一体化、并行工程的设计理念,使复合材料结构件在设计、分析、成型、装配、检测、使用、维护和修理等各环节找到最佳的平衡点。
设计手段:采用数字化的设计手段,保证设计数据是唯一的产品数据源,实现复合材料构件100%的计算机辅助设计。
适宜采用专用设计软件FiberSIM、CPD、COVERS等。
制造方法:应用先进的自动化设备(自动铺带机、自动下料机、热成型设备、柔性复合材料专用切钻设备和大型C扫查设备等)符合复合材料自动化低成本化制造趋势,由此可以保证复合材料结构产品质量稳定可靠,并能提高产品性能、设计许用值和劳动效率,减轻结构重量。
2 选材方案材料体系选择是复合材料结构设计的基础,涉及到承载和使用功能要求、工艺性、成本、使用经验和供应渠道等多方面因素,是综合考虑的结果,国外主要的几种铺带预浸料见下表。
国产的CCF-1碳纤维,树脂可选择北京航空材料院或北京航空制造工程研究所生产的环氧或双马树脂,可供选用的树脂按固化温度分类,有中温固化(125℃)和高温固化(180℃)两大类。
3 机翼翼盒典型设计结构为了便于采用复合材料自动铺带技术,在设计上最好避免使用蜂窝结构。
因此在结构设计时,主要采用层板结构,但层板结构抗弯性能不好,为提高层板结构抗弯和抗扭能力,需要采用加强筋类结构来提高结构的抗弯、抗扭能力强度。
通常在翼盒段结构设计方案主要包括上整体壁板,带有开口的下整体壁板、前后梁腹板、端部密封肋、加强肋和普通肋。
各梁腹板和肋上都可采用加筋方式以增加强度。
各零件独立制造后,再装配成为整体盒段。
各主要零部件均可采用复合材料设计。
整体壁板采用铺带的蒙皮与预固化的长桁共胶接成型技术。
目前有2种方案可供选择:格栅式整体壁板和长桁加筋式整体壁板。
在满足设计要求的情况下,前者成型难度较大,但用在油箱区密封性较好;后者成型相对简单,但与肋连接时蒙皮表面会有很多连接件,进而降低了油箱密封的可靠性。
4 制造方案制造技术主要采用自动铺带技术、自动剪裁技术、热压实技术、共胶接或共固化技术等;而固化主要采用传统的真空袋热压罐法;切钻采用复合材料专用铣床及柔性装夹技术。
工装类型主要有壁板蒙皮的铺放成型工装,蒙皮壁板的共固化或共胶接成型工装,梁、肋的热成型工装、成型工装。
蒙皮壁板切割可采用专用切钻夹持工装或采用柔性夹具,而梁、肋不适宜采用柔性夹具夹持,最好设计制造专用夹持工装。
上述的设计方案可最大限度地采用复合材料自动铺带技术。
无论是蒙皮、加强筋,还是前后梁、肋等复合材料设计的零件,材料铺放都可以用铺带机来完成。
但是由于铺带机结构上的限制,只能适宜铺放小曲率零件,而对于加强筋、梁、肋等零件,一般截面为T形、I型或U形,零件截面尺寸小,且存在大曲率R角,铺带机无法在T形或U形上模具上直接铺放。
因此,对于蒙皮类零件和梁、肋等零件,在造型过程上有些不同,蒙皮类零件造型可以直接铺放完成,梁、肋等零件造型需采用其他方法间接来完成。
上下壁板制造过程一般包括长桁造型、蒙皮铺放、蒙皮长桁组装、固化、切钻、外形尺寸检测、无损检测等。
上下壁板的成型过程分3步进行:第一步,制作长桁。
可用大型通用平台,在平台上铺带,形成具有一定厚度的平板铺层,用自动裁床按长桁尺寸剪裁,一次可剪裁多条长桁,再用热成型工艺分别造型;第二步,蒙皮铺放。
由于蒙皮曲率较小,可直接采用自动铺带机铺放在成型工装上;第三步,蒙皮长桁组合成壁板。
长桁定位放置在蒙皮壁板的共固化或共胶接成型工装上,无论格栅式整体壁板还是长桁加筋式整体壁板都可通过共胶接或共固化技术成型。
然后,将组合后的壁板和工装一起送入大型热压罐加温加压固化成型。
脱模之后,需去除无用的产品余量,一般采用五轴铣床和柔性夹具系统(或硬夹持工装)切边和钻孔。
然后进行外形、尺寸的无损检测;合格后,即可进行下一步的装配。
经过这一个复杂的过程,即完成了自动铺带复合材料壁板的制造。
结束语自动铺带技术的成功应用,不仅体现复合材料成型自动化相对于传统成型方法的绝对优势,而且预示着复合材料成型自动化是未来几十年复合材料制造技术发展的必然趋势。
目前,自动铺带技术大多用于铺叠强度要求高的大型构件,如机翼蒙皮、舵面等,经过了几十年的发展,具有高效率、高质量和低成本优点的自动铺带铺放技术已经成为发达国家航空复合材料构件的成熟制造技术,这一制造技术在国内的引进和发展,也必将在国产大飞机的研制和生产中占有重要的地位,为国产大飞机的顺利升空提供强有力的技术支撑。
(end)自动铺带机在大型飞机制造中的应用(2010-3-26)林胜北京航空制造工程研究所研究员复材构件飞机时代业已来临从20世纪20年代铝合金被作为减轻飞机结构重量的首选用材开始,至今已有70多年的历史了,而如何减轻飞机结构重量,一直是飞机设计制造的永恒话题。
信息技术、材料技术和制造技术的快速发展推动现代飞机设计制造技术发生了重大变化,特别是高强度低密度的复合材料(Composites,下文简称“复材”)的出现,以及其在飞机结构件设计制造上广泛、成功的应用,不断改写着铝合金材作为现代大型飞机主结构用材的历史,复材已逐渐取代铝合金成为现代大型飞机的主结构用材。
现代大型飞机设计制造中对复材的广泛采用趋势是如此明显,可以看到,复材作为飞机主结构用材的时代已经来临。
复材出现於20世纪60年代,由於其具有高比强度、高比模量、良好抗疲劳性、抗腐蚀性和隐身性能等一系列优点,得到了航宇工业界普遍认可,成为既能明显减轻航宇飞行器重量、又能提高性能的理想结构用材。
其在现代军民用飞机设计制造上的应用日趋广泛,从图1可综观这一发展历程。
用於飞机复材构件制造的主要有树脂基、金属基和陶瓷基三类复材。
目前应用最为广泛的是碳纤维增强型树脂基复材(CFRP:Carbon-FiberReinforced-Plastic),占80%以上。