聚合物的粘弹性变形

合集下载

聚合物的粘弹性

聚合物的粘弹性
聚合物的粘弹性
3.粘弹性:聚合物材料组合了固体的弹性和液体的粘性两者的特 征,这种行为叫做粘弹性。粘弹性的表现: 力学松弛 4.线性粘弹性: 组合了服从虎克定律的理想弹性固体的弹性和 服从牛顿流动定律的理想液体的粘性两者的特征,就是线性粘 弹性。否则为非线性粘弹性. 5.力学松弛:聚合物的力学性质随时间变化的现象,叫力 学松弛。力学性质受到,T, t,的影响,在不同条件下, 可以观察到不同类型的粘弹现象。
动态 粘弹性
滞后现象
力学损耗 (内耗)
在一定温度和和交变应力下,应变滞后于应力 变化.
的变化落后于的变化,发生滞后现象,则每一 个循环都要消耗功
3
聚合物的粘弹性
7.3.1 高聚物的线性粘弹性 静态粘弹性
(1)蠕变 在恒温下施加较小的恒定外力时,材料的形变随时间而
逐渐增大的力学松弛现象。 如挂东西的塑料绳慢慢变长。

t2 )
0 (t→)
E2-高弹模量 特点:高弹形变是逐渐回复的.
8
(t)
聚合物的粘弹性
无化学交联的线性高聚物,发生分 子间的相对滑移,称为粘性流动.
t (t)
t1 t2
t
图3 理想粘性流动蠕变
(t)=
0 (t<t1)
0 3
t (t1

t

t2 )
0 3
t2 (t

t2 )
3-----本体粘度
Creep recovery 蠕变回复
•撤力一瞬间,键长、键角等次级运动立即回复,形变直线下降 •通过构象变化,使熵变造成的形变回复 •分子链间质心位移是永久的,留了下来
11
聚合物的粘弹性
理想交联聚合物(不存在粘流态):形变: 1+2

第四节 聚合物的粘弹性

第四节 聚合物的粘弹性


Company Logo
Logo
普通粘、弹概念
一、基本概念
弹:外力→形变→应力→储存能量
外力撤除→能量释放→形变恢复
能量完全以弹性能的形式储存,然后又全
部以动能的形式释放,没有能量的损耗。
粘:外力→形变→应力→应力松弛→能量耗散
外力撤除→形变不可恢复
Company Logo
(7 2)
t1 t2
t
Company Logo
Logo (3)粘性流动(e3): •受力时分子间无交联的线形聚合物,则会产生分子 间的相对滑移,它与时间成线性关系,外力除去后, 粘性形变不能恢复,是不可逆形变
e3
s0 e3 t
t1

(7 3)
t2
Company Logo
Logo
(3)如果温度接近Tg(附近几十度),应力 松弛可以较明显地被观察到,如软PVC丝,用 它来缚物,开始扎得很紧,后来就会慢慢变 松,就是应力松弛比较明显的例子。 (4)只有交联聚合物应力松弛不会减到零 (因为不会产生分子间滑移),而线形聚合 物的应力松弛可减到零。
Company Logo
Logo
7.1.2 应力松弛
在恒定温度、恒定应变的条件下,聚合物内部的应
力随时间的增加而逐渐减小的现象。 例如:拉伸一块未交联的橡 胶到一定长度,并保持长度不 变,随着时间的增加,这块橡 胶的回弹力会逐渐减小,这是 因为里面的应力在慢慢减小, 最后变为0。因此用未交联的 橡胶来做传动带是不行的。

Company Logo
Logo
(1)在一定温度和恒定应力作用下,观察试样 应变随时间增加而逐渐增大的蠕变现象; (2)在一定温度和恒定应变条件下,观察试样 内部的应力随时间增加而逐渐衰减的应力松 弛现象; (3)在一定温度和循环(交变)应力作用下, 观察试样应变滞后于应力变化的滞后现象。 以上3种现象统称聚合物的力学松弛现象。蠕 变、应力松弛属于静态粘弹性,滞后现象属 于动态粘弹性。

高分子物理---第七章 聚合物的粘弹性

高分子物理---第七章 聚合物的粘弹性
t
粘性响应

d dt
0 sin t
sin udu

d dt

0 sin t
0
cos u C
cos t /
0
d sin tdt

0
cos t

π
π
0 滞 sin( t ) 后 2 /2
线形聚合物 交联聚合物


t
t
不能产生质心位 移, 应力只能松 弛到平衡值
高分子链的构象重排和分子链滑移是导致材料 蠕变和应力松弛的根本原因。
影响应力松弛的主要因素
影响应力松弛的主要因素有温度和交联 温度:温度对应力松弛的影响较大。T≥Tg时,链运动 受到内摩擦力很小,应力很快松弛掉。T≤Tg时,如常 温下塑料,虽然链段受到很大应力,但由于内摩擦力很 大,链运动能力较弱,应力松弛很慢,几乎不易察觉, 只有Tg附近几十度范围内,应力松弛现象才较明显。 交联:橡胶交联后,应力松弛大大地被抑制,而且应力 一般不会降低到零。其原因:由于交联的存在,分子链 间不会产生相对位移,高聚物不能产生塑性形变。 和蠕变一样,交联是克服应力松弛的重要措施。
0
b

面积大小为单位体积内材料在每一次拉伸-回缩 循环中所消耗的功
(3) 内耗 Internal friction (力学损耗)
0 sin t 0 sin( t )
展开
0 sin t cos 0 cos t sin
类似于Hooke’s solid, 相当于弹性 类似于Newton Liquid, 相当于粘性



B 分子量:分子量增大,聚合物的抗蠕变性能变好。 因为随着聚合物分子量的增大,分子链之间的缠结 点增多(类似于物理交联点),故在一定程度上改 变材料的流动和蠕变行为。 C 交联:交联对高聚物的蠕变性能影响非常大。 理想的体型高聚物蠕变曲线仅有普弹和高弹形变, 回复曲线最终能回复到零,不存在永久变形,所以 说,交联是解决线型高弹态高聚物蠕变的关键措施。

聚合物的粘弹性

聚合物的粘弹性

第7章聚合物的粘弹性7.1基本概念弹:外力→形变→应力→储存能量→外力撤除→能量释放→形变恢复粘:外力→形变→应力→应力松驰→能量耗散→外力撤除→形变不可恢复理想弹性:服从虎克定律σ=E·ε应力与应变成正比,即应力只取决于应变。

理想粘性:服从牛顿流体定律应力与应变速率成正比,即应力只取决于应变速率。

总结:理想弹性体理想粘性体虎克固体牛顿流体能量储存能量耗散形状记忆形状耗散E=E(σ.ε.T) E=E(σ.ε.T.t)聚合物是典型的粘弹体,同时具有粘性和弹性。

E=E(σ.ε.T.t)但是高分子固体的力学行为不服从虎克定律。

当受力时,形变会随时间逐渐发展,因此弹性模量有时间依赖性,而除去外力后,形变是逐渐回复,而且往往残留永久变形(γ∞),说明在弹性变形中有粘流形变发生。

高分子材料(包括高分子固体,熔体及浓溶液)的力学行为在通常情况下总是或多或少表现为弹性与粘性相结合的特性,而且弹性与粘性的贡献随外力作用的时间而异,这种特性称之为粘弹性。

粘弹性的本质是由于聚合物分子运动具有松弛特性。

7.2聚合物的静态力学松弛现象聚合物的力学性质随时间的变化统称为力学松弛。

高分子材料在固定应力或应变作用下观察到的力学松弛现象称为静态力学松弛,最基本的有蠕变和应力松弛。

(一)蠕变在一定温度、一定应力的作用下,聚合物的形变随时间的变化称为蠕变。

理想弹性体:σ=E·ε。

应力恒定,故应变恒定,如图7-1。

理想粘性体,如图7-2,应力恒定,故应变速率为常数,应变以恒定速率增加。

图7-3 聚合物随时间变化图聚合物:粘弹体,形变分为三个部分;①理想弹性,即瞬时响应:则键长、键角提供;②推迟弹性形变,即滞弹部分:链段运动③粘性流动:整链滑移注:①、②是可逆的,③不可逆。

总的形变:(二)应力松弛在一定温度、恒定应变的条件下,试样内的应力随时间的延长而逐渐减小的现象称为应力松弛。

理想弹性体:,应力恒定,故应变恒定聚合物:由于交联聚合物分子链的质心不能位移,应力只能松弛到平衡值。

聚合物的粘弹性

聚合物的粘弹性

第7章聚合物的粘弹性7.1基本概念弹:外力T 形变T 应力T 储存能量T 外力撤除T 能量释放T 形变恢复粘:外力T 形变T 应力T 应力松驰T 能量耗散T 外力撤除T 形变不可恢复理想弹性: 服从虎克定律CT= E •£应力与应变成正比,即应力只取决于应变理想粘性:服从牛顿流体定律cr= 7?— dt应力与应变速率成正比,即应力只取决于应变速率聚合物是典型的粘弹体,同时具有粘性和弹性。

E = E ( a . £ .T.t )但是高分子固体的力学行为不服从虎克定律。

当受力时,形变会随时间逐渐发展,因此弹性模量有时 间依赖性,而除去外力后,形变是逐渐回复,而且往往残留永久变形 (丫^),说明在弹性变形中有粘流形变发生。

高分子材料(包括高分子固体,熔体及浓溶液)的力学行为在通常情况下总是或多或少表现为弹性与粘 性相结合的特性,而且弹性与粘性的贡献随外力作用的时间而异,这种特性称之为粘弹性。

粘弹性的本质 是由于聚合物分子运动具有松弛特性。

7.2 聚合物的静态力学松弛现象聚合物的力学性质随时间的变化统称为力学松弛。

高分子材料在固定应力或应变作用下观察到的力学松 弛现象称为静态力学松弛,最基本的有蠕变和应力松弛。

(一)蠕变在一定温度、一定应力的作用下,聚合物的形变随时间的变化称为蠕变。

理想弹性体:a= E- S 应力恒定,故应变恒定,如图7-1总结:理想弹性体 虎克固体 能量储存 形状记忆E = E (「£ .T ) E理想粘性体牛顿流体 能量耗散 形状耗散=E ( a . £ .T.t )理想粘性体,如图7-2 ,应力恒定,故应变速率为常数,应变以恒定速率增加图7-3聚合物随时间变化图聚合物:粘弹体,形变分为三个部分;①理想弹性,即瞬时响应:则键长、键角提供;②推迟弹性形变,即滞弹部分:链段运动③粘性流动:整链滑移邑=—Z注:①、②是可逆的,③不可逆总的形变:匕氐讣+补―严)+ =(二)应力松弛在一定温度、恒定应变的条件下,试样内的应力随时间的延长而逐渐减小的现象称为应力松弛。

第七章聚合物的粘弹性

第七章聚合物的粘弹性

c. : 外力作用频率低时,链段的运动跟的上外力的变化,滞 后现象很小。
外力作用频率不太高时,链段可以运动,但是跟不上外力的变 化,表现出明显的滞后现象。
外力作用频率很高时,链段根本来不及运动,聚合物好像一块 刚性的材料,滞后很小。
2.内耗:
①内耗产生的原因:
当应力与形变的变化相一致时,没有滞后现象,每次形变 所作的功等于恢复形变时所作的功,没有功的消耗.
,一个是虚数部分(损耗模量E”),而绝对模量就是动态模量。
动态模量: E = ∣E*∣= (E’2 + E”2)1/2
因为E’>> E”, 所以常用E’直接作为聚合物材料的动态模量。
另外:
E'
cos
②内耗定义:由于力学滞后或者力学阻尼而使机械功转 变成热的现象.滞后环面积越大,损耗越大.
滞后圈的大小恰好是单位体积的橡胶在每一个拉伸 压缩循环中所
损耗的功, 数学上有:
W td t
t
d t
dt
dt
ˆˆ 2 sin tcost - dt 0
t ˆsint t ˆ sint -
轮胎受到交变作用力的图示
汽车每小时走60km,相当于 在轮胎某处受到每分钟300 次周期性外力的作用(假设 汽车轮胎直径为1m,周长则 为3.14×1,速度为 1000m/1min=1000/3.14= 300r/1min)
60Km/h ~300Hz
把轮胎的应力和形变随时间的变化记录下来,可以得到下面两 条波形曲线:
3、蠕变回复
1 2
3
0
t
t
• 撤力一瞬间,键长、键角等次级运动立即回复,形 变直线下降
• 通过构象变化,使熵变造成的形变回复

《聚合物的粘弹性》课件

《聚合物的粘弹性》课件

《聚合物的粘弹性》PPT 课件
聚合物是一类重要的材料,本课件将深入探讨聚合物的粘弹性及其应用。让 我们一起来揭开这个精彩的科学领域吧!
I. 聚合物概述
定义和分类
聚合物是由许多重复单元组成的大分子化合物,可分为线性、交联和支化等不同类型。
聚合过程及特点
聚合过程是单体分子结合形成高分子链的化学反应,聚合物具有高分子量、可塑性和可再生 等特点。
3
色散力谱技术
色散力谱技术结合了动态力学和谱学的原理,可精确测量聚合物的粘弹性参数。
V. 聚合物的粘弹性对应用的影响
1 聚合物加工
了解聚合物的粘弹性特性有助于优化聚合物加工过程,提高产品质量和生产效率。
2 材料性能预测
粘弹性参数可以用于预测聚合物在不同应力和环境条件下的性能,指导材料设计和选择。
3 涂层和粘合剂
应用领域和意义Biblioteka 聚合物在塑料、纤维、涂料等众多领域有着广泛的应用,对现代社会的发展起着重要作用。
II. 粘弹性基础知识
1 弹性和黏性
弹性是物体恢复原状的能力,而黏性则描述了物体抵抗形变的能力,聚合物同时具备这 两种特性。
2 变形与应力的关系
聚合物的变形与施加的应力成正比,其应力-应变曲线可用来描述聚合物的力学性质。
聚合物的粘弹性特性对于涂层和粘合剂的粘附性和耐久性具有重要影响。
VI. 新颖的聚合物复合材料
粘弹性调控
通过调控聚合物复合材料的粘 弹性,可以实现材料性能的改 良和特定应用的实现。
复合材料制备及性能
聚合物复合材料结合了不同材 料的优点,具有良好的力学性 能和多样化的用途。
未来发展方向
聚合物复合材料在领域中的应 用潜力巨大,未来将继续研究 新的材料和创新的应用。

聚合物的粘弹性行为

聚合物的粘弹性行为
料的两个极端。弹 性固体在载荷除去后其变形能恢复到其初始状态;而粘性流 体则不具有变形恢复的可能性。弹性固体的应力直接与应变 有关;而粘性流体中的应力,除静水压力分量外,则与应变 速率有关。通过分别对弹性固体与粘性流体建立出的弹性元 件与粘性元件两个基本模型,可将粘弹性聚合物应用麦克斯 韦模型(串联模型)或开尔文模型(并联模型)表示,可得 到两种模型的本构方程,以描述粘弹性材料的应力-应变-时 间的关系。为了避免对应力-应变本构方程的积分运算,可 采用拉普拉斯变换求解。 对于不同的聚合物,需建立与之相对应的粘弹性模型,这往外需要经过“实验-理论 分析-实验”这样的多次反复过程,才能逐步完善。
(详细请见《工程力学》 范钦珊主编 ;《工程材料力学性能》 刘瑞堂 等 编)
第十五章 聚合物的粘弹性行为(简介)
高分子材料,又称聚合物,是由各类单体分子通过聚合反 应而形成的。聚合物具有轻巧、廉价和便于加工成型等特点, 这类材料在用途上和用量上都在迅速增长。目前全世界聚合物 的产量,在体积上已相近钢产量。
聚合物性态与温度和时间或应变速率关系很大。由于温度和时间或应变速率存在着广 泛的等效关系,经常将温度T作为主要的特征参数。对于非晶态聚合物,以玻璃化的转变 温度为分界线,将聚合物分成玻璃态和橡胶态。前者的性态接近于脆性玻璃;后者具有很 高的非线性弹性变形能力。在不同的条件下,聚合物表现出多种类型的变形,如弹性变形、 粘性变形、塑性变形。
与一般工程材料不同,聚合物表现出明显的粘弹性行为,即它们的应力-应变关系都与 时间有关,介于弹性与粘性之间的变形行为。之外,粘弹性材料的应力-应变-时间关系还 具有温度敏感性,即与温度有关。一般的弹性材料在温度较高的情况下可能会出现蠕变和 松弛的现象,但是粘弹性材料在一般环境温度,就可以产生这两种现象。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十六章
• §16-1 概
聚合物的粘弹性变形

• §16-2 简单的粘弹性模型 • §16-3 线粘弹性的蠕变松弛特征 • §16-4 聚合物的应力应变关系 • §16-5 聚合物的粘性特征 • 小 结
§16-1 一、失效方式


构件或系统失去它们应有的功能。 1.失效: 2.失效方式取决于材料的种类、加载方式、构件所处的 应力状态和工作环境等。 主要表现为: 强度失效、刚度失效、以及失稳、屈曲 失效、疲劳失效、蠕变与松弛失效。 1)强度失效方式:屈服与断裂; 2)刚度失效方式:构件产生过量的弹性变形; 3)屈曲失效方式: 构件平衡构形突然转变引起的失效; 4)疲劳失效方式: 由交变应力作用引起构件的突然断裂。
• 试区别变形与应变的概念;
• 试总结E、G、EA的含义并区分;
• 试分析轴向拉压斜截面上的应力:正 应力最大时,剪应力如何;剪应力最 大时,正应力如何;
ห้องสมุดไป่ตู้

一、本章重点

• 轴向拉压基本变形的受力及变形形式;
• 截面法求轴力的过程及轴力图画法; • 轴向拉压横截面及斜截面上的应力计算; • 正应力与剪应力、线应变与剪应变; • 剪应力互等定理与纯剪切应力状态;
• 拉压及剪切虎克定律;
• 轴向拉压变形计算;
小 结
二、思考题
• 试总结应力的特点,并分析内力与应 力的关系;
相关文档
最新文档