通用版2018-2019学年高中新创新一轮复习理数第十章 统计与统计案例 Word版含解析

合集下载

2018年高考数学课标通用(理科)一轮复习配套课件:第十章 统计与统计案例10-1

2018年高考数学课标通用(理科)一轮复习配套课件:第十章 统计与统计案例10-1

为了解该地区中小学生近视形成的原因, 用分层抽样的方法 抽取 2%的学生进行调查,则:
200 (1)样本容量为________ ; 20 (2)抽取的高中生中,近视的人数为________ .
解析:由题意可得,总人数为 10 000,因为抽取 2%的学生 进行调查, 所以样本容量为 10 000×2% = 200 ,则抽取的高中生有 2 000 200× =40, 10 000 其中近视的人数为 40×50%=20.
④ 个个体;④样本的容量是 100.其中正确的序号是__________ .
解析:1 000 名学生的成绩是总体,每名学生的成绩是个体, 被抽取的 100 名学生的成绩是一个样本,其样本的容量是 100.
频数问题:频数=样本容量×频率. [2017· 湖北武汉武昌区模拟 ] 已知某地区中小学生人数和近 视情况如下表所示. 年级 小学 初中 高中 人数 3 500 4 500 2 000 近视率 10% 30% 50%
依次选出的数为 08,02,14,07,01,所以第 5 个个体的编号为 01.
(3) 下 列 抽 取 样 本 的 方 式 不 属 于 简 单 随 机 抽 样 的 有
①②③④ .(填序号) ____________
①从无限多个个体中抽取 100 个个体作为样本. ②盒子里共有 80 个零件,从中选出 5 个零件进行质量检 验.在抽样操作时,从中任意拿出一个零件进行质量检验后再把 它放回盒子里. ③从 20 件玩具中一次性抽取 3 件进行质量检验. ④某班有 56 名同学,指定个子最高的 5 名同学参加学校组 织的篮球赛.
[解析]
①不是简单随机抽样.因为被抽取样本的总体的个
数是无限的,而不是有限的. ②不是简单随机抽样.因为它是有放回抽样. ③不是简单随机抽样.因为这是 “ 一次性 ” 抽取,而不是 “逐个”抽取. ④不是简单随机抽样.因为不是等可能抽样.

2018-2019学年高中新创新一轮复习理数通用版:课时达标检测(十) 函数的图象及其应用 含解析

2018-2019学年高中新创新一轮复习理数通用版:课时达标检测(十) 函数的图象及其应用 含解析

课时达标检测(十) 函数的图象及其应用[小题对点练——点点落实]对点练(一) 函数的图象1.(2018·陕西汉中教学质量检测)函数f (x )=⎝⎛⎭⎫x -1x sin x 的图象大致是( )解析:选D 令f (x )=0可得x =±1,或x =k π(k ≠0,k ∈Z),又f (-x )=⎝⎛⎭⎫-x +1x sin(-x )=⎝⎛⎭⎫x -1x sin x =f (x ),即函数f (x )=⎝⎛⎭⎫x -1x sin x 是偶函数,且经过点(1,0),(π,0),(2π,0),(3π,0),…,故选D.2.(2018·甘肃南裕固族自治县一中月考)已知函数f (x )=-x 2+2,g (x )=log 2|x |,则函数F (x )=f (x )·g (x )的图象大致为( )解析:选B f (x ),g (x )均为偶函数,则F (x )也为偶函数,由此排除A ,D.当x >2时,-x 2+2<0,log 2|x |>0,所以F (x )<0,排除C ,故选B.3.(2018·安徽蚌埠二中等四校联考)如图所示的图象对应的函数解析式可能是( )A .y =2x -x 2-1B .y =2x sin x 4x +1C .y =x ln xD .y =(x 2-2x )e x解析:选D A 中,y =2x -x 2-1,当x 趋于-∞时,函数y =2x 的值趋于0,y =x 2+1的值趋于+∞,所以函数y =2x -x 2-1的值小于0,故A 中的函数不满足.B 中,y =sin x 是周期函数,所以函数y =2x sin x4x +1的图象是以x 轴为中心的波浪线,故B 中的函数不满足.C中,函数y =x ln x的定义域为(0,1)∪(1,+∞),故C 中的函数不满足.D 中,y =x 2-2x ,当x <0或x >2时,y >0,当0<x <2时,y <0,且y =e x >0恒成立,所以y =(x 2-2x )e x 的图象在x 趋于+∞时,y 趋于+∞,故D 中的函数满足.4.(2018·昆明模拟)如图所示的图形是由一个半径为2的圆和两个半径为1的半圆组成的,它们的圆心分别是O ,O 1,O 2,动点P 从A 点出发沿着圆弧按A →O →B →C →A →D →B 的路线运动(其中A ,O ,O 1,O 2,B 五点共线),记点P 运动的路程为x ,设y =|O 1P |2,y 与x 的函数关系式为y =f (x ),则y =f (x )的大致图象是( )解析:选A 当x ∈[0,π]时,y =1.当x ∈(π,2π)时, O 1P ―→=O 2P ―→-O 2O 1―→,设O 2P ―→与O 2O 1―→的夹角为θ,因为|O 2P ―→|=1,|O 2O 1―→|=2,θ=x -π,所以y =|O 1P ―→|2=(O 2P ―→-O 2O 1―→)2=5-4cos θ=5+4cos x ,x ∈(π,2π),此时函数y =f (x )的图象是曲线,且单调递增,排除C ,D.当x ∈[2π,4π)时,因为O 1P ―→=OP ―→-OO 1―→,设OP ―→,OO 1―→的夹角为α,因为|OP ―→|=2,|OO 1―→|=1,α=2π-12x ,所以y =|O 1P ―→|2=(OP ―→-OO 1―→)2=5-4cos α=5-4cos 12x ,x ∈[2π,4π),此时函数y =f (x )的图象是曲线,且单调递减,排除B.故选A.对点练(二) 函数图象的应用问题1.(2018·福建厦门双十中学期中)已知函数f (x )=x 2+e x -12(x <0)与g (x )=x 2+ln(x +a )的图象上存在关于y 轴对称的点,则实数a 的取值范围是( )A.⎝⎛⎭⎫-∞,1e B .(-∞, e)。

高三数学一轮精品复习学案:第十章 统计、统计案例

高三数学一轮精品复习学案:第十章  统计、统计案例

高三数学一轮精品复习学案:第十章统计、统计案例【知识特点】1.统计中所学的内容是数理统计中最基本的问题,通过这些内容主要来介绍相关的统计思想和方法,了解一些有关统计学的基本知识,并能够应用几个基本概念、基本公式来处理实际生活中的一些基本问题。

2.统计案例为新课标中新增内容,主要是通过案例体会运用统计方法解决实际问题的思想和方法。

增加了统计和统计案例后,使得高中数学的整个体系更加完善了,有利于开阔数学视野,丰富数学思想和方法。

【重点关注】1.从对新课标高考试题的分析可以发现,主要考查抽样方法、各种统计图表、样本数字特征等。

对这部分的考查主要以选择题和填空题的形式出现。

2.统计案例中的独立性检验和回归分析也会逐步在高考题中出现,难度不会太大,多数情况下是考查两种统计分析方法的简单知识,以选择题和填空题为主。

【地位与作用】《全国新课程标准高考数学考试大纲》中对考生能力要求明确界定为空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识等六个方面,其中数据处理能力是首次提出的一个能力要求,这定义为:会收集数据、整理数据、分析数据,能从大量数据中抽取对研究问题有用的信息,并作出判断。

数据处理能力主要依据统计(高考考试大纲对知识点要求如下表所示)或统计案例中的方法对数据进行整理、分析,并解决给定的实际问题,对统计的要求已提升到能力的高度。

统计的思想方法广泛应用于自然科学和社会科学的研究中,统计的语言不仅是数学的语言,也是各学科经常引用的大众语言,统计知识是作为一个新时期公民所比备的知识。

统计学就是应用科学的方法收集、整理、分析、描述所要研究的数据资料,然后根据所得到的结果,进行推断或决策的一门实用性很强的科学。

统计这部分内容,在高中数学新课程中,主要分布在必修3第二章(约16课时)与选修2—3第三章(约9课时)。

相对于高中学生的认知水平和生活经历还相对不是很高,所以它只能属于非重点内容,所出的相关题目一般来说都相对比较简单。

2018-2019学年高中新创新一轮复习理数通用版:第十章 统计与统计案例 Word版含解析

2018-2019学年高中新创新一轮复习理数通用版:第十章 统计与统计案例 Word版含解析

第十章⎪⎪⎪统计与统计案例第一节 统 计本节主要包括2个知识点: 1.随机抽样;2.用样本估计总体.突破点(一) 随机抽样[基本知识]1.简单随机抽样(1)定义:设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N ),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.(2)最常用的简单随机抽样的方法:抽签法和随机数法. 2.系统抽样在抽样时,将总体分成均衡的几个部分,然后按照事先确定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样方法叫做系统抽样(也称为机械抽样).3.分层抽样在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.4.三种抽样方法的比较[基本能力]1.判断题(1)简单随机抽样是一种不放回抽样.( )(2)简单随机抽样每个个体被抽到的机会不一样,与先后有关.()(3)系统抽样在起始部分抽样时采用简单随机抽样.()(4)要从1 002个学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2个学生,这样对被剔除者不公平.()(5)分层抽样中,每个个体被抽到的可能性与层数及分层有关.()答案:(1)√(2)×(3)√(4)×(5)×2.填空题(1)利用简单随机抽样从含有8个个体的总体中抽取一个容量为4的样本,则总体中每个个体被抽到的概率是________.解析:总体个数为N=8,样本容量为M=4,则每一个个体被抽到的概率为P=MN=48=1 2.答案:1 2(2)老师在班级50名学生中,依次抽取学号为5,10,15,20,25,30,35,40,45,50的学生进行作业检查,这种抽样方法是________.解析:因为抽取学号是以5为公差的等差数列,故采用的抽样方法应是系统抽样.答案:系统抽样(3)某公司共有1 000名员工,下设若干部门,现采用分层抽样方法,从全体员工中抽取一个样本容量为80的样本,已告知广告部门被抽取了4个员工,则广告部门的员工人数为________.解析:1 00080=x4,x=50.答案:50(4)某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.解析:设应从高二年级抽取x名学生,则x50=3 10.解得x=15.答案:15[全析考法]1.抽签法的步骤第一步,将总体中的N个个体编号;第二步,将这N个号码写在形状、大小相同的号签上;第三步,将号签放在同一不透明的箱中,并搅拌均匀;第四步,从箱中每次抽取1个号签,连续抽取k次;第五步,将总体中与抽取的号签的编号一致的k个个体取出.2.随机数法的步骤第一步,将个体编号;第二步,在随机数表中任选一个数开始;第三步,从选定的数开始,按照一定抽样规则在随机数表中选取数字,取足满足要求的数字就得到样本的号码.[例1](1)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()C.02 D.01(2)下列抽取样本的方式不属于简单随机抽样的有________.①从无限多个个体中抽取100个个体作为样本.②盒子里共有80个零件,从中选出5个零件进行质量检验.在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里.③从20件玩具中一次性抽取3件进行质量检验.④某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛.[解析](1)由题意知前5个个体的编号为08,02,14,07,01.(2)①不是简单随机抽样.因为不满足总体的有限性.②不是简单随机抽样.因为它是放回抽样.③不是简单随机抽样.因为这是“一次性”抽取,而不是“逐个”抽取.④不是简单随机抽样.因为指定个子最高的5名同学是56名中特指的,不存在随机性,不是等可能抽样.[答案](1)D(2)①②③④系统抽样系统抽样的步骤[例2](1)为了解1 000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为()A.50 B.40C.25 D.20(2)将高一(九)班参加社会实践编号为1,2,3,…,48的48名学生,采用系统抽样的方法抽取一个容量为4的样本,已知5号,29号,41号学生在样本中,则样本中还有一名学生的编号是________.[解析](1)由系统抽样的定义知,分段间隔为1 000=25.故选C.40(2)根据系统抽样的概念,所抽取的4个样本的编号应成等差数列,因为在这组数中的间距为41-29=12,所以所求的编号为5+12=17.[答案](1)C(2)17[易错提醒]用系统抽样法抽取样本,当N不为整数时,取k=⎣⎡⎦⎤N n,即先从总体中用简单随机抽样n的方法剔除(N-nk)个个体,且剔除多余的个体不影响抽样的公平性.分层抽样进行分层抽样的相关计算时,常利用以下关系式巧解:(1)样本容量n 总体的个数N =该层抽取的个体数该层的个体数; (2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.[例3] (1)(2018·南昌模拟)某校为了解学生学习的情况,采用分层抽样的方法从高一1 000人、高二1 200 人、高三n 人中,抽取81人进行问卷调查.已知高二被抽取的人数为30,那么n =( )A .860B .720C .1 020D .1 040(2)(2017·江苏高考)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________件.(3)某学校三个兴趣小组的学生人数分布如下表(每名同学只参加一个小组)(单位:人).篮球组 书画组 乐器组 高一 45 30 a 高二151020个兴趣小组的学生中抽取30人,结果篮球组被抽出12人,则a 的值为________.[解析] (1)根据分层抽样方法,得 1 2001 000+1 200+n ×81=30,解得n =1 040.故选D.(2)本题考查分层抽样方法及用样本估计总体. 从丙种型号的产品中抽取的件数为60×300200+400+300+100=18.(3)由题意知1245+15=3045+15+30+10+a +20,解得a =30.[答案] (1)D (2)18 (3)30 [方法技巧]分层抽样的解题策略(1)分层抽样中分多少层,如何分层要视具体情况而定,总的原则是:层内样本的差异要小,两层之间的样本差异要大,且互不重叠.(2)为了保证每个个体等可能入样,所有层中每个个体被抽到的可能性相同.(3)在每层抽样时,应采用简单随机抽样或系统抽样的方法进行抽样. (4)抽样比=样本容量总体容量=各层样本数量各层个体数量.[全练题点]1.[考点一]某工厂的质检人员对生产的100件产品,采用随机数法抽取10件检查,对100件产品采用下面的编号方法:①1,2,3,…,100; ②001,002,…,100; ③00,01,02,…,99; ④01,02,03,…,100. 其中正确的序号是( ) A .②③④ B .③④ C .②③D .①②解析:选C 根据随机数法编号可知,①④编号位数不统一.2.[考点一、二、三]对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p 1,p 2,p 3,则( )A .p 1=p 2<p 3B .p 2=p 3<p 1C .p 1=p 3<p 2D .p 1=p 2=p 3解析:选D 由于三种抽样过程中,每个个体被抽到的概率都是相等的,因此p 1=p 2=p 3.3.[考点二]某班共有52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号学生在样本中,那么样本中还有一个学生的学号是( )A .10B .11C .12D .16解析:选D 从被抽中的3名学生的学号中可以看出学号间距为13,所以样本中还有一个学生的学号是16,故选D.4.[考点三]某校高一年级有学生400人,高二年级有学生360人,现采用分层抽样的方法从全校学生中抽取55人,其中从高一年级学生中抽取20人,则从高三年级学生中抽取的人数为________.解析:设从高二年级学生中抽取x 人,由题意得x 360=20400,解得x =18,则从高三年级学生中抽取的人数为55-20-18=17人.答案:175.[考点二]为了了解本班学生对网络游戏的态度,高三(6)班计划在全班60人中展开调查,根据调查结果,班主任计划采用系统抽样的方法抽取若干名学生进行座谈,为此先对60名学生进行编号为:01,02,03,…,60,已知抽取的学生中最小的两个编号为03,09,则抽取的学生中最大的编号为________.解析:由最小的两个编号为03,09可知,抽取时的分段间隔是6.即抽取10名同学,其编号构成首项为3,公差为6的等差数列,故最大编号为3+9×6=57.答案:57突破点(二)用样本估计总体[基本知识]1.频率分布直方图和茎叶图(1)作频率分布直方图的步骤①求极差(即一组数据中最大值与最小值的差);②决定组距与组数;③将数据分组;④列频率分布表;⑤画频率分布直方图.(2)频率分布折线图和总体密度曲线茎叶图的优点是可以保留原始数据,而且可以随时记录,这对数据的记录和表示都能带来方便.2.样本的数字特征(1)众数、中位数、平均数①标准差:样本数据到平均数的一种平均距离,一般用s 表示,s = ②方差:标准差的平方s 2=1n [(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2],其中x i (i =1,2,3,…,n )是样本数据,n 是样本容量,x -是样本平均数.③方差与标准差相比,都是衡量样本数据离散程度的统计量,但方差因为对标准差进行了平方运算,夸大了样本的偏差程度.(3)平均数、方差公式的推广若数据x 1,x 2,…,x n 的平均数为x -,方差为s 2,则数据mx 1+a ,mx 2+a ,…,mx n+a 的平均数为m x -+a ,方差为m 2s 2.[基本能力]1.判断题(1)在频率分布直方图中,最高的小长方形底边中点的横坐标是众数.( ) (2)在频率分布直方图中,众数左边和右边的小长方形的面积和是相等的.( ) (3)从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了.( )(4)茎叶图一般左侧的叶按从大到小的顺序写,右侧的叶按从小到大的顺序写,相同的数据可以只记一次.( )(5)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势.( ) (6)一组数据的众数可以是一个或几个,中位数也具有相同的结论.( ) 答案:(1)√ (2)× (3)√ (4)× (5)√ (6)× 2.填空题(1)某校为了了解教科研工作开展状况与教师年龄之间的关系,将该校不小于35岁的80名教师按年龄分组,分组区间为[35,40),[40,45),[45,50),[50,55),[55,60],由此得到频率分布直方图如图,则这80名教师中年龄小于45岁的有________人.解析:由频率分布直方图可知45岁以下的教师的频率为5×(0.040+0.080)=0.6,所以共有80×0.6=48(人).答案:48(2)对某市“四城同创”活动中800名志愿者的年龄抽样调查统计后得到频率分布直方图(如图),但是年龄组为[25,30)的数据不慎丢失,则依据此图可得:①[25,30)年龄组对应小矩形的高度为________;②据此估计该市“四城同创”活动中志愿者年龄在[25,35)的人数为________.解析:设[25,30)年龄组对应小矩形的高度为h,则5×(0.01+h+0.07+0.06+0.02)=1,解得h=0.04.则志愿者年龄在[25,35)年龄组的频率为5(0.04+0.07)=0.55,故志愿者年龄在[25,35)年龄组的人数约为0.55×800=440.答案:①0.04②440(3)对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是____________.解析:由题意知各数为12,15,20,22,23,23,31,32,34,34,38,39,45,45,45,47,47,48,48,49,50,50,51,51,54,57,59,61,67,68,中位数是46,众数是45,最大数为68,最小数为12,极差为68-12=56.答案:46,45,56(4)一组数据分别为:12,16,20,23,20,15,28,23,则这组数据的中位数是________.解析:这组数据从小到大排列为:12,15,16,20,20,23,23,28,∴这组数据的中位数是20+202=20.答案:20(5)已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________. 解析:5个数的平均数x =4.7+4.8+5.1+5.4+5.55=5.1,所以它们的方差s 2=15[(4.7-5.1)2+(4.8-5.1)2+(5.1-5.1)2+(5.4-5.1)2+(5.5-5.1)2]=0.1.答案:0.1[全析考法][例1] (2017·北京高考)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),…,[80,90],并整理得到如下频率分布直方图:(1)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数; (3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.[解] (1)根据频率分布直方图可知,样本中分数不小于70的频率为(0.02+0.04)×10=0.6,所以样本中分数小于70的频率为1-0.6=0.4.所以从总体的400名学生中随机抽取一人,其分数小于70的概率估计值为0.4. (2)根据题意,样本中分数不小于50的频率为(0.01+0.02+0.04+0.02)×10=0.9, 故样本中分数小于50的频率为0.1,故分数在区间[40,50)内的人数为100×0.1-5=5. 所以总体中分数在区间[40,50)内的人数估计为400×5100=20. (3)由题意可知,样本中分数不小于70的学生人数为 (0.02+0.04)×10×100=60,所以样本中分数不小于70的男生人数为60×12=30.所以样本中的男生人数为30×2=60, 女生人数为100-60=40,男生和女生人数的比例为60∶40=3∶2.所以根据分层抽样原理,总体中男生和女生人数的比例估计为3∶2.[方法技巧]1.绘制频率分布直方图时需注意的两点(1)制作好频率分布表后,可以利用各组的频率之和是否为1来检验该表是否正确; (2)频率分布直方图的纵坐标是频率组距,而不是频率.2.与频率分布直方图计算有关的两个关系式 (1)频率组距×组距=频率; (2)频数样本容量=频率,此关系式的变形为频数频率=样本容量,样本容量×频率=频数.茎叶图1.(1)“叶”的位置只有一个数字,而“茎”的位置的数字位数一般不需要统一; (2)重复出现的数据要重复记录,不能遗漏,特别是“叶”的位置上的数据. 2.茎叶图通常用来记录两位数的数据,可以用来分析单组数据,也可以用来比较两组数据.通过茎叶图可以确定数据的中位数,数据大致集中在哪个茎,数据是否关于该茎对称,数据分布是否均匀等.[例2] 为了比较两种治疗失眠症的药(分别称为A 药,B 药)的疗效,随机地选取20位患者服用A 药,20位患者服用B 药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下:服用A 药的20位患者日平均增加的睡眠时间: 0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4 服用B 药的20位患者日平均增加的睡眠时间: 3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好? (2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?[解] (1)设A 药观测数据的平均数为x -,B 药观测数据的平均数为y -.由观测结果可得x -=120×(0.6+1.2+1.2+1.5+1.5+1.8+2.2+2.3+2.3+2.4+2.5+2.6+2.7+2.7+2.8+2.9+3.0+3.1+3.2+3.5)=2.3,y -=120×(0.5+0.5+0.6+0.8+0.9+1.1+1.2+1.2+1.3+1.4+1.6+1.7+1.8+1.9+2.1+2.4+2.5+2.6+2.7+3.2)=1.6.由以上计算结果可得x ->y -,因此可看出A 药的疗效更好. (2)由观测结果可绘制如下茎叶图:从以上茎叶图可以看出,A 药疗效的试验结果有710的叶集中在茎2,3上,而B 药疗效的试验结果有710的叶集中在茎0,1上,由此可看出A药的疗效更好.[方法技巧]茎叶图问题的求解策略(1)由于茎叶图完全反映了所有的原始数据,解决由茎叶图给出的统计图表问题时,要充分对这个图表提供的样本数据进行相关的计算或者是对某些问题作出判断.(2)茎叶图不能直接反映总体的分布情况,这就需要通过茎叶图数据求出样本数据的数字特征,进一步估计总体情况.样本的数字特征(1)用样本估计总体时,样本的平均数、标准差只是总体的平均数、标准差的近似.实际应用中,需先计算数据的平均数,分析平均水平,再计算方差(标准差),分析稳定情况.(2)若给出图形,一方面可以由图形得到相应的样本数据,计算平均数、方差(标准差);另一方面,可以从图形直观分析样本数据的分布情况,大致判断平均数的范围,并利用数据的波动性比较方差(标准差)的大小.考法(一)与频率分布直方图交汇命题[例3]某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数.[解](1)由(0.002+0.009 5+0.011+0.012 5+x+0.005+0.002 5)×20=1,得x=0.007 5,∴直方图中x的值为0.007 5.(2)月平均用电量的众数是220+2402=230.∵(0.002+0.009 5+0.011)×20=0.45<0.5,∴月平均用电量的中位数在[220,240)内,设中位数为a ,则(0.002+0.009 5+0.011)×20+0.012 5×(a -220)=0.5,解得a =224,即中位数为224.[方法技巧]频率分布直方图与众数、中位数、平均数的关系(1)最高的小长方形底边中点的横坐标为众数; (2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.考法(二) 与茎叶图交汇命题[例4] (1)如图所示的茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分),已知甲组数据的中位数为17,乙组数据的平均数为17.4,则x ,y 的值分别为( )A.7,8 B .5,7 C .8,5D .7,7(2)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91.现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示:则7个剩余分数的方差为________.[解析] (1)甲组数据的中位数为17, 故y =7,乙组数据的平均数为3×10+20+(9+6+6+x +9)5=17.4,解得x =7.(2)由图可知去掉的两个数是87,99,所以87+90×2+91×2+94+90+x =91×7,解得x =4.s 2=17[(87-91)2+(90-91)2×2+(91-91)2×2+(94-91)2×2]=367.[答案] (1)D (2)367[易错提醒]在使用茎叶图时,一定要观察所有的样本数据,弄清楚这个图中数字的特点,不要漏掉了数据,也不要混淆茎叶图中茎与叶的含义.考法(三) 与优化决策问题交汇命题[例5] 甲、乙、丙、丁四人参加某运动会射击项目选拔赛,四人的平均成绩和方差如下表所示:甲 乙 丙 丁 平均环数x 8.3 8.8 8.8 8.7 方差s 23.53.62.25.4( ) A .甲 B .乙 C .丙D .丁[解析] 由题目表格中数据可知,丙平均环数最高,且方差最小,说明成绩好,且技术稳定,选C.[答案] C [方法技巧]利用样本的数字特征解决优化决策问题的依据(1)平均数反映了数据取值的平均水平;标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大,越不稳定;标准差、方差越小,数据的离散程度越小,越稳定.(2)用样本估计总体就是利用样本的数字特征来描述总体的数字特征.[全练题点]1.[考点二]在样本的频率分布直方图中,共有7个小长方形,若中间一个小长方形的面积等于其他6个小长方形的面积的和的14,且样本容量为80,则中间一组的频数为( )A .0.25B .0.5C .20D .16解析:选D 设中间一组的频数为x ,依题意有x 80=14⎝⎛⎭⎫1-x 80,解得x =16. 2.[考点二](2017·山东高考)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为( )A.3,5 B .5,5 C .3,7D .5,7解析:选A 由两组数据的中位数相等可得65=60+y ,解得y =5,又它们的平均值相等,所以15×[56+62+65+74+(70+x )]=15×(59+61+67+65+78),解得x =3.3.[考点一]为了了解某校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1∶2∶3,第1小组的频数为6,则报考飞行员的学生人数是( )A .36B .40C .48D .50解析:选C 由题知,题图中从左到右的前3个小组的频率之和为1-(0.037+0.013)×5=0.75.又图中从左到右的前3个小组的频率之比为1∶2∶3,所以第1小组的频率为0.75×11+2+3=0.125,所以报考飞行员的学生人数是60.125=48.4.[考点三·考法(二)]如图是某学校举行的运动会上七位评委为某体操项目打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A .84,4.84B .84,1.6C .85,1.6D .85,4解析:选C 依题意,所剩数据的平均数是80+15×(4×3+6+7)=85,所剩数据的方差是15×[3×(84-85)2+(86-85)2+(87-85)2]=1.6.5.[考点三·考法(三)]甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环):.解析:x -甲=x -乙=9,s 2甲=15×[(9-10)2+(9-8)2+(9-9)2+(9-9)2+(9-9)2]=25,s 2乙=15×[(9-10)2+(9-10)2+(9-7)2+(9-9)2+(9-9)2]=65>s 2甲,故甲更稳定. 答案:甲6.[考点三·考法(一)](2017·安徽黄山二模)全世界越来越关注环境保护问题,某监测站点于2017年1月某日起连续n 天监测空气质量指数(AQI),数据统计如下表:(1)根据所给统计表和频率分布直方图中的信息求出n ,m 的值,并完成频率分布直方图;(2)由频率分布直方图,求该组数据的平均数与中位数.解:(1)∵0.004×50=20n ,∴n =100,∵20+40+m +10+5=100,∴m =25.40100×50=0.008;25100×50=0.005;10100×50=0.002;5100×50=0.001.由此完成频率分布直方图,如图:(2)由频率分布直方图得该组数据的平均数为25×0.004×50+75×0.008×50+125×0.005×50+175×0.002×50+225×0.001×50=95,∵[0,50)的频率为0.004×50=0.2,[50,100)的频率为0.008×50=0.4,∴中位数为50+0.5-0.20.4×50=87.5.[全国卷5年真题集中演练——明规律]1.(2017·全国卷Ⅰ)为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg)分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A .x 1,x 2,…,x n 的平均数B .x 1,x 2,…,x n 的标准差C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数解析:选B 标准差能反映一组数据的稳定程度.故选B.2.(2017·全国卷Ⅲ)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( ) A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳解析:选A根据折线图可知,2014年8月到9月、2014年10月到11月等月接待游客量都在减少,所以A错误.由图可知,B、C、D正确.3.(2016·全国卷Ⅲ)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15 ℃,B点表示四月的平均最低气温约为5 ℃.下面叙述不正确的是()A.各月的平均最低气温都在0 ℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20 ℃的月份有5个解析:选D由图形可得各月的平均最低气温都在0 ℃以上,A正确;七月的平均温差约为10 ℃,而一月的平均温差约为5 ℃,故B正确;三月和十一月的平均最高气温都在10 ℃左右,基本相同,C正确;故D错误.4.(2013·全国卷Ⅰ)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是() A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样解析:选C由于该地区的中小学生人数比较多,不能采用简单随机抽样,排除选项A;由于小学、初中、高中三个学段的学生视力差异性比较大,可采取按照学段进行分层抽样,而男女生视力情况差异性不大,不能按照性别进行分层抽样,排除B和D.故选C.5.(2014·全国卷Ⅰ)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:(1)作出这些数据的频率分布直方图;(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?解:(1)如图所示:(2)质量指标值的样本平均数为x=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100.质量指标值的样本方差为s2=(-20)2×0.06+(-10)2×0.26+0×0.38+102×0.22+202×0.08=104.所以这种产品质量指标值的平均数的估计值为100,方差的估计值为104.(3)质量指标值不低于95的产品所占比例的估计值为0.38+0.22+0.08=0.68.由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定.[课时达标检测][小题对点练——点点落实]对点练(一) 随机抽样1.某学校为了了解某年高考数学的考试成绩,在高考后对该校1 200名考生进行抽样调查,其中有400名文科考生,600名理科考生,200名艺术和体育类考生,从中抽取120名考生作为样本,记这项调查为①;从10名家长中随机抽取3名参加座谈会,记这项调查为②,则完成①,②这两项调查宜采用的抽样方法依次是( )A .分层抽样法,系统抽样法B .分层抽样法,简单随机抽样法C .系统抽样法,分层抽样法D .简单随机抽样法,分层抽样法解析:选B 在①中,文科考生、理科考生、艺术和体育类考生会存在差异,采用分层抽样法较好;在②中,抽取的样本个数较少,宜采用简单随机抽样法.2.某校高三年级共有学生900人,编号为1,2,3,…,900,现用系统抽样的方法抽取一个容量为45的样本,则抽取的45人中,编号落在[481,720]的人数为( )A .10B .11C .12D .13解析:选C 系统抽样,是抽多少人就把总体分成多少组,于是抽样间隔就是用总体数量除以样本容量:90045=20.于是落在[481,720]内的人数为720-48020=12,故选C. 3.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A .93B .123C .137D .167解析:选C 初中部的女教师人数为110×70%=77,高中部的女教师人数为150×(1-60%)=60,该校女教师的人数为77+60=137,故选C.4.高三(3)班共有学生56人,座号分别为1,2,3,…,56,现根据座号,用系统抽样的方法,抽取一个容量为4的样本.已知3号、17号、45号同学在样本中,那么样本中还有一个同学的座号是( )。

【通用版】2018-2019学年高中理数新创新一轮复习 第十章 统计与统计案例含解析

【通用版】2018-2019学年高中理数新创新一轮复习 第十章 统计与统计案例含解析

第十章⎪⎪⎪统计与统计案例第一节 统 计本节主要包括2个知识点: 1.随机抽样;2.用样本估计总体.突破点(一) 随机抽样[基本知识]1.简单随机抽样(1)定义:设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N ),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.(2)最常用的简单随机抽样的方法:抽签法和随机数法. 2.系统抽样在抽样时,将总体分成均衡的几个部分,然后按照事先确定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样方法叫做系统抽样(也称为机械抽样).3.分层抽样在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.4.三种抽样方法的比较[基本能力]1.判断题(1)简单随机抽样是一种不放回抽样.( )(2)简单随机抽样每个个体被抽到的机会不一样,与先后有关.( ) (3)系统抽样在起始部分抽样时采用简单随机抽样.( )(4)要从1 002个学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2个学生,这样对被剔除者不公平.( )(5)分层抽样中,每个个体被抽到的可能性与层数及分层有关.( ) 答案:(1)√ (2)× (3)√ (4)× (5)× 2.填空题(1)利用简单随机抽样从含有8个个体的总体中抽取一个容量为4的样本,则总体中每个个体被抽到的概率是________.解析:总体个数为N =8,样本容量为M =4,则每一个个体被抽到的概率为P =M N =48=12. 答案:12(2)老师在班级50名学生中,依次抽取学号为5,10,15,20,25,30,35,40,45,50的学生进行作业检查,这种抽样方法是________.解析:因为抽取学号是以5为公差的等差数列,故采用的抽样方法应是系统抽样. 答案:系统抽样(3)某公司共有1 000名员工,下设若干部门,现采用分层抽样方法,从全体员工中抽取一个样本容量为80的样本,已告知广告部门被抽取了4个员工,则广告部门的员工人数为________.解析:1 00080=x4,x =50. 答案:50(4)某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.解析:设应从高二年级抽取x 名学生,则x 50=310.解得x =15. 答案:15[全析考法]1.抽签法的步骤第一步,将总体中的N个个体编号;第二步,将这N个号码写在形状、大小相同的号签上;第三步,将号签放在同一不透明的箱中,并搅拌均匀;第四步,从箱中每次抽取1个号签,连续抽取k次;第五步,将总体中与抽取的号签的编号一致的k个个体取出.2.随机数法的步骤第一步,将个体编号;第二步,在随机数表中任选一个数开始;第三步,从选定的数开始,按照一定抽样规则在随机数表中选取数字,取足满足要求的数字就得到样本的号码.[例1](1)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()C.02 D.01(2)下列抽取样本的方式不属于简单随机抽样的有________.①从无限多个个体中抽取100个个体作为样本.②盒子里共有80个零件,从中选出5个零件进行质量检验.在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里.③从20件玩具中一次性抽取3件进行质量检验.④某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛.[解析](1)由题意知前5个个体的编号为08,02,14,07,01.(2)①不是简单随机抽样.因为不满足总体的有限性.②不是简单随机抽样.因为它是放回抽样.③不是简单随机抽样.因为这是“一次性”抽取,而不是“逐个”抽取.④不是简单随机抽样.因为指定个子最高的5名同学是56名中特指的,不存在随机性,不是等可能抽样.[答案] (1)D (2)①②③④系统抽样系统抽样的步骤[例2] (1)为了解1 000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )A .50B .40C .25D .20(2)将高一(九)班参加社会实践编号为1,2,3,…,48的48名学生,采用系统抽样的方法抽取一个容量为4的样本,已知5号,29号,41号学生在样本中,则样本中还有一名学生的编号是________.[解析] (1)由系统抽样的定义知,分段间隔为1 00040=25.故选C.(2)根据系统抽样的概念,所抽取的4个样本的编号应成等差数列,因为在这组数中的间距为41-29=12,所以所求的编号为5+12=17.[答案] (1)C (2)17 [易错提醒]用系统抽样法抽取样本,当Nn 不为整数时,取k =⎣⎡⎦⎤N n ,即先从总体中用简单随机抽样的方法剔除(N -nk )个个体,且剔除多余的个体不影响抽样的公平性.分层抽样进行分层抽样的相关计算时,常利用以下关系式巧解:(1)样本容量n 总体的个数N =该层抽取的个体数该层的个体数; (2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.[例3] (1)(2018·南昌模拟)某校为了解学生学习的情况,采用分层抽样的方法从高一1 000人、高二1 200 人、高三n 人中,抽取81人进行问卷调查.已知高二被抽取的人数为30,那么n =( )A .860B .720C .1 020D .1 040(2)(2017·江苏高考)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________件.(3)某学校三个兴趣小组的学生人数分布如下表(每名同学只参加一个小组)(单位:人).篮球组 书画组 乐器组 高一 45 30 a 高二151020个兴趣小组的学生中抽取30人,结果篮球组被抽出12人,则a 的值为________.[解析] (1)根据分层抽样方法,得 1 2001 000+1 200+n ×81=30,解得n =1 040.故选D.(2)本题考查分层抽样方法及用样本估计总体.从丙种型号的产品中抽取的件数为60×300200+400+300+100=18.(3)由题意知1245+15=3045+15+30+10+a +20,解得a =30.[答案] (1)D (2)18 (3)30 [方法技巧]分层抽样的解题策略(1)分层抽样中分多少层,如何分层要视具体情况而定,总的原则是:层内样本的差异要小,两层之间的样本差异要大,且互不重叠.(2)为了保证每个个体等可能入样,所有层中每个个体被抽到的可能性相同. (3)在每层抽样时,应采用简单随机抽样或系统抽样的方法进行抽样.(4)抽样比=样本容量总体容量=各层样本数量各层个体数量.[全练题点]1.[考点一]某工厂的质检人员对生产的100件产品,采用随机数法抽取10件检查,对100件产品采用下面的编号方法:①1,2,3,…,100; ②001,002,…,100; ③00,01,02,…,99; ④01,02,03,…,100. 其中正确的序号是( ) A .②③④ B .③④ C .②③D .①②解析:选C 根据随机数法编号可知,①④编号位数不统一.2.[考点一、二、三]对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p 1,p 2,p 3,则( )A .p 1=p 2<p 3B .p 2=p 3<p 1C .p 1=p 3<p 2D .p 1=p 2=p 3解析:选D 由于三种抽样过程中,每个个体被抽到的概率都是相等的,因此p 1=p 2=p 3.3.[考点二]某班共有52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号学生在样本中,那么样本中还有一个学生的学号是( )A .10B .11C .12D .16解析:选D 从被抽中的3名学生的学号中可以看出学号间距为13,所以样本中还有一个学生的学号是16,故选D.4.[考点三]某校高一年级有学生400人,高二年级有学生360人,现采用分层抽样的方法从全校学生中抽取55人,其中从高一年级学生中抽取20人,则从高三年级学生中抽取的人数为________.解析:设从高二年级学生中抽取x 人,由题意得x 360=20400,解得x =18,则从高三年级学生中抽取的人数为55-20-18=17人.答案:175.[考点二]为了了解本班学生对网络游戏的态度,高三(6)班计划在全班60人中展开调查,根据调查结果,班主任计划采用系统抽样的方法抽取若干名学生进行座谈,为此先对60名学生进行编号为:01,02,03,…,60,已知抽取的学生中最小的两个编号为03,09,则抽取的学生中最大的编号为________.解析:由最小的两个编号为03,09可知,抽取时的分段间隔是6.即抽取10名同学,其编号构成首项为3,公差为6的等差数列,故最大编号为3+9×6=57.答案:57突破点(二)用样本估计总体[基本知识]1.频率分布直方图和茎叶图(1)作频率分布直方图的步骤①求极差(即一组数据中最大值与最小值的差);②决定组距与组数;③将数据分组;④列频率分布表;⑤画频率分布直方图.(2)频率分布折线图和总体密度曲线茎叶图的优点是可以保留原始数据,而且可以随时记录,这对数据的记录和表示都能带来方便.2.样本的数字特征(1)众数、中位数、平均数①标准差:样本数据到平均数的一种平均距离,一般用s 表示,s = ②方差:标准差的平方s 2=1n [(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2],其中x i (i =1,2,3,…,n )是样本数据,n 是样本容量,x -是样本平均数.③方差与标准差相比,都是衡量样本数据离散程度的统计量,但方差因为对标准差进行了平方运算,夸大了样本的偏差程度.(3)平均数、方差公式的推广若数据x 1,x 2,…,x n 的平均数为x -,方差为s 2,则数据mx 1+a ,mx 2+a ,…,mx n+a 的平均数为m x -+a ,方差为m 2s 2.[基本能力]1.判断题(1)在频率分布直方图中,最高的小长方形底边中点的横坐标是众数.( ) (2)在频率分布直方图中,众数左边和右边的小长方形的面积和是相等的.( ) (3)从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了.( )(4)茎叶图一般左侧的叶按从大到小的顺序写,右侧的叶按从小到大的顺序写,相同的数据可以只记一次.( )(5)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势.( ) (6)一组数据的众数可以是一个或几个,中位数也具有相同的结论.( ) 答案:(1)√ (2)× (3)√ (4)× (5)√ (6)× 2.填空题(1)某校为了了解教科研工作开展状况与教师年龄之间的关系,将该校不小于35岁的80名教师按年龄分组,分组区间为[35,40),[40,45),[45,50),[50,55),[55,60],由此得到频率分布直方图如图,则这80名教师中年龄小于45岁的有________人.解析:由频率分布直方图可知45岁以下的教师的频率为5×(0.040+0.080)=0.6,所以共有80×0.6=48(人).答案:48(2)对某市“四城同创”活动中800名志愿者的年龄抽样调查统计后得到频率分布直方图(如图),但是年龄组为[25,30)的数据不慎丢失,则依据此图可得:①[25,30)年龄组对应小矩形的高度为________;②据此估计该市“四城同创”活动中志愿者年龄在[25,35)的人数为________.解析:设[25,30)年龄组对应小矩形的高度为h,则5×(0.01+h+0.07+0.06+0.02)=1,解得h=0.04.则志愿者年龄在[25,35)年龄组的频率为5(0.04+0.07)=0.55,故志愿者年龄在[25,35)年龄组的人数约为0.55×800=440.答案:①0.04②440(3)对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是____________.解析:由题意知各数为12,15,20,22,23,23,31,32,34,34,38,39,45,45,45,47,47,48,48,49,50,50,51,51,54,57,59,61,67,68,中位数是46,众数是45,最大数为68,最小数为12,极差为68-12=56.答案:46,45,56(4)一组数据分别为:12,16,20,23,20,15,28,23,则这组数据的中位数是________.解析:这组数据从小到大排列为:12,15,16,20,20,23,23,28,∴这组数据的中位数是20+202=20.答案:20(5)已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________.解析:5个数的平均数x =4.7+4.8+5.1+5.4+5.55=5.1,所以它们的方差s 2=15[(4.7-5.1)2+(4.8-5.1)2+(5.1-5.1)2+(5.4-5.1)2+(5.5-5.1)2]=0.1.答案:0.1[全析考法][例1] (2017·北京高考)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),…,[80,90],并整理得到如下频率分布直方图:(1)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数; (3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.[解] (1)根据频率分布直方图可知,样本中分数不小于70的频率为(0.02+0.04)×10=0.6,所以样本中分数小于70的频率为1-0.6=0.4.所以从总体的400名学生中随机抽取一人,其分数小于70的概率估计值为0.4. (2)根据题意,样本中分数不小于50的频率为(0.01+0.02+0.04+0.02)×10=0.9, 故样本中分数小于50的频率为0.1,故分数在区间[40,50)内的人数为100×0.1-5=5.所以总体中分数在区间[40,50)内的人数估计为400×5100=20.(3)由题意可知,样本中分数不小于70的学生人数为 (0.02+0.04)×10×100=60,所以样本中分数不小于70的男生人数为60×12=30.所以样本中的男生人数为30×2=60, 女生人数为100-60=40,男生和女生人数的比例为60∶40=3∶2.所以根据分层抽样原理,总体中男生和女生人数的比例估计为3∶2.[方法技巧]1.绘制频率分布直方图时需注意的两点(1)制作好频率分布表后,可以利用各组的频率之和是否为1来检验该表是否正确; (2)频率分布直方图的纵坐标是频率组距,而不是频率.2.与频率分布直方图计算有关的两个关系式 (1)频率组距×组距=频率; (2)频数样本容量=频率,此关系式的变形为频数频率=样本容量,样本容量×频率=频数.茎叶图1.(1)“叶”的位置只有一个数字,而“茎”的位置的数字位数一般不需要统一; (2)重复出现的数据要重复记录,不能遗漏,特别是“叶”的位置上的数据. 2.茎叶图通常用来记录两位数的数据,可以用来分析单组数据,也可以用来比较两组数据.通过茎叶图可以确定数据的中位数,数据大致集中在哪个茎,数据是否关于该茎对称,数据分布是否均匀等.[例2] 为了比较两种治疗失眠症的药(分别称为A 药,B 药)的疗效,随机地选取20位患者服用A 药,20位患者服用B 药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下:服用A 药的20位患者日平均增加的睡眠时间: 0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4 服用B 药的20位患者日平均增加的睡眠时间: 3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好? (2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?[解] (1)设A 药观测数据的平均数为x -,B 药观测数据的平均数为y -.由观测结果可得x -=120×(0.6+1.2+1.2+1.5+1.5+1.8+2.2+2.3+2.3+2.4+2.5+2.6+2.7+2.7+2.8+2.9+3.0+3.1+3.2+3.5)=2.3,y -=120×(0.5+0.5+0.6+0.8+0.9+1.1+1.2+1.2+1.3+1.4+1.6+1.7+1.8+1.9+2.1+2.4+2.5+2.6+2.7+3.2)=1.6.由以上计算结果可得x ->y -,因此可看出A 药的疗效更好. (2)由观测结果可绘制如下茎叶图:从以上茎叶图可以看出,A 药疗效的试验结果有710的叶集中在茎2,3上,而B 药疗效的试验结果有710的叶集中在茎0,1上,由此可看出A药的疗效更好.[方法技巧]茎叶图问题的求解策略(1)由于茎叶图完全反映了所有的原始数据,解决由茎叶图给出的统计图表问题时,要充分对这个图表提供的样本数据进行相关的计算或者是对某些问题作出判断.(2)茎叶图不能直接反映总体的分布情况,这就需要通过茎叶图数据求出样本数据的数字特征,进一步估计总体情况.样本的数字特征(1)用样本估计总体时,样本的平均数、标准差只是总体的平均数、标准差的近似.实际应用中,需先计算数据的平均数,分析平均水平,再计算方差(标准差),分析稳定情况.(2)若给出图形,一方面可以由图形得到相应的样本数据,计算平均数、方差(标准差);另一方面,可以从图形直观分析样本数据的分布情况,大致判断平均数的范围,并利用数据的波动性比较方差(标准差)的大小.考法(一)与频率分布直方图交汇命题[例3]某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数.[解](1)由(0.002+0.009 5+0.011+0.012 5+x+0.005+0.002 5)×20=1,得x=0.007 5,∴直方图中x的值为0.007 5.(2)月平均用电量的众数是220+2402=230.∵(0.002+0.009 5+0.011)×20=0.45<0.5,∴月平均用电量的中位数在[220,240)内,设中位数为a ,则(0.002+0.009 5+0.011)×20+0.012 5×(a -220)=0.5,解得a =224,即中位数为224.[方法技巧]频率分布直方图与众数、中位数、平均数的关系(1)最高的小长方形底边中点的横坐标为众数; (2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.考法(二) 与茎叶图交汇命题[例4] (1)如图所示的茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分),已知甲组数据的中位数为17,乙组数据的平均数为17.4,则x ,y 的值分别为( )A.7,8 B .5,7 C .8,5D .7,7(2)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91.现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示:则7个剩余分数的方差为________.[解析] (1)甲组数据的中位数为17, 故y =7,乙组数据的平均数为3×10+20+(9+6+6+x +9)5=17.4,解得x =7.(2)由图可知去掉的两个数是87,99,所以87+90×2+91×2+94+90+x =91×7,解得x =4.s 2=17[(87-91)2+(90-91)2×2+(91-91)2×2+(94-91)2×2]=367.[答案] (1)D (2)367[易错提醒]在使用茎叶图时,一定要观察所有的样本数据,弄清楚这个图中数字的特点,不要漏掉了数据,也不要混淆茎叶图中茎与叶的含义.考法(三) 与优化决策问题交汇命题[例5] 甲、乙、丙、丁四人参加某运动会射击项目选拔赛,四人的平均成绩和方差如下表所示:甲 乙 丙 丁 平均环数x 8.3 8.8 8.8 8.7 方差s 23.53.62.25.4( ) A .甲 B .乙 C .丙D .丁[解析] 由题目表格中数据可知,丙平均环数最高,且方差最小,说明成绩好,且技术稳定,选C.[答案] C [方法技巧]利用样本的数字特征解决优化决策问题的依据(1)平均数反映了数据取值的平均水平;标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大,越不稳定;标准差、方差越小,数据的离散程度越小,越稳定.(2)用样本估计总体就是利用样本的数字特征来描述总体的数字特征.[全练题点]1.[考点二]在样本的频率分布直方图中,共有7个小长方形,若中间一个小长方形的面积等于其他6个小长方形的面积的和的14,且样本容量为80,则中间一组的频数为( )A .0.25B .0.5C .20D .16解析:选D 设中间一组的频数为x ,依题意有x 80=14⎝⎛⎭⎫1-x 80,解得x =16. 2.[考点二](2017·山东高考)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为( )A.3,5 B .5,5 C .3,7D .5,7解析:选A 由两组数据的中位数相等可得65=60+y ,解得y =5,又它们的平均值相等,所以15×[56+62+65+74+(70+x )]=15×(59+61+67+65+78),解得x =3.3.[考点一]为了了解某校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1∶2∶3,第1小组的频数为6,则报考飞行员的学生人数是( )A .36B .40C .48D .50解析:选C 由题知,题图中从左到右的前3个小组的频率之和为1-(0.037+0.013)×5=0.75.又图中从左到右的前3个小组的频率之比为1∶2∶3,所以第1小组的频率为0.75×11+2+3=0.125,所以报考飞行员的学生人数是60.125=48.4.[考点三·考法(二)]如图是某学校举行的运动会上七位评委为某体操项目打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A .84,4.84B .84,1.6C .85,1.6D .85,4解析:选C 依题意,所剩数据的平均数是80+15×(4×3+6+7)=85,所剩数据的方差是15×[3×(84-85)2+(86-85)2+(87-85)2]=1.6.5.[考点三·考法(三)]甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环):.解析:x -甲=x -乙=9,s 2甲=15×[(9-10)2+(9-8)2+(9-9)2+(9-9)2+(9-9)2]=25,s 2乙=15×[(9-10)2+(9-10)2+(9-7)2+(9-9)2+(9-9)2]=65>s 2甲,故甲更稳定. 答案:甲6.[考点三·考法(一)](2017·安徽黄山二模)全世界越来越关注环境保护问题,某监测站点于2017年1月某日起连续n 天监测空气质量指数(AQI),数据统计如下表:(1)根据所给统计表和频率分布直方图中的信息求出n ,m 的值,并完成频率分布直方图;(2)由频率分布直方图,求该组数据的平均数与中位数.解:(1)∵0.004×50=20n ,∴n =100,∵20+40+m +10+5=100,∴m =25.40100×50=0.008;25100×50=0.005;10100×50=0.002;5100×50=0.001.由此完成频率分布直方图,如图:(2)由频率分布直方图得该组数据的平均数为25×0.004×50+75×0.008×50+125×0.005×50+175×0.002×50+225×0.001×50=95,∵[0,50)的频率为0.004×50=0.2,[50,100)的频率为0.008×50=0.4,∴中位数为50+0.5-0.20.4×50=87.5.[全国卷5年真题集中演练——明规律]1.(2017·全国卷Ⅰ)为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg)分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A .x 1,x 2,…,x n 的平均数B .x 1,x 2,…,x n 的标准差C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数解析:选B 标准差能反映一组数据的稳定程度.故选B.2.(2017·全国卷Ⅲ)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( ) A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳解析:选A根据折线图可知,2014年8月到9月、2014年10月到11月等月接待游客量都在减少,所以A错误.由图可知,B、C、D正确.3.(2016·全国卷Ⅲ)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15 ℃,B点表示四月的平均最低气温约为5 ℃.下面叙述不正确的是()A.各月的平均最低气温都在0 ℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20 ℃的月份有5个解析:选D由图形可得各月的平均最低气温都在0 ℃以上,A正确;七月的平均温差约为10 ℃,而一月的平均温差约为5 ℃,故B正确;三月和十一月的平均最高气温都在10 ℃左右,基本相同,C正确;故D错误.4.(2013·全国卷Ⅰ)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是() A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样解析:选C由于该地区的中小学生人数比较多,不能采用简单随机抽样,排除选项A;由于小学、初中、高中三个学段的学生视力差异性比较大,可采取按照学段进行分层抽样,而男女生视力情况差异性不大,不能按照性别进行分层抽样,排除B和D.故选C.5.(2014·全国卷Ⅰ)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?解:(1)如图所示:(2)质量指标值的样本平均数为x=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100.质量指标值的样本方差为s2=(-20)2×0.06+(-10)2×0.26+0×0.38+102×0.22+202×0.08=104.所以这种产品质量指标值的平均数的估计值为100,方差的估计值为104.(3)质量指标值不低于95的产品所占比例的估计值为0.38+0.22+0.08=0.68.由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定.[课时达标检测][小题对点练——点点落实]对点练(一) 随机抽样1.某学校为了了解某年高考数学的考试成绩,在高考后对该校1 200名考生进行抽样调查,其中有400名文科考生,600名理科考生,200名艺术和体育类考生,从中抽取120名考生作为样本,记这项调查为①;从10名家长中随机抽取3名参加座谈会,记这项调查为②,则完成①,②这两项调查宜采用的抽样方法依次是( )A .分层抽样法,系统抽样法B .分层抽样法,简单随机抽样法C .系统抽样法,分层抽样法D .简单随机抽样法,分层抽样法解析:选B 在①中,文科考生、理科考生、艺术和体育类考生会存在差异,采用分层抽样法较好;在②中,抽取的样本个数较少,宜采用简单随机抽样法.2.某校高三年级共有学生900人,编号为1,2,3,…,900,现用系统抽样的方法抽取一个容量为45的样本,则抽取的45人中,编号落在[481,720]的人数为( )A .10B .11C .12D .13解析:选C 系统抽样,是抽多少人就把总体分成多少组,于是抽样间隔就是用总体数量除以样本容量:90045=20.于是落在[481,720]内的人数为720-48020=12,故选C. 3.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A .93B .123C .137D .167解析:选C 初中部的女教师人数为110×70%=77,高中部的女教师人数为150×(1-60%)=60,该校女教师的人数为77+60=137,故选C.4.高三(3)班共有学生56人,座号分别为1,2,3,…,56,现根据座号,用系统抽样的方法,抽取一个容量为4的样本.已知3号、17号、45号同学在样本中,那么样本中还有。

2018-2019学年高中新创新一轮复习理数通用版:课时达标检测(五十一) 统计案例 含解析

2018-2019学年高中新创新一轮复习理数通用版:课时达标检测(五十一) 统计案例 含解析

课时达标检测(五十一) 统计案例[小题对点练——点点落实]对点练(一) 回归分析1.设某大学的女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y ^=0.85x -85.71,则下列结论中不正确的是( )A .y 与x 具有正的线性相关关系B .回归直线过样本点的中心(x -,y -)C .若该大学某女生身高增加1 cm ,则其体重约增加0.85 kgD .若该大学某女生身高为170 cm ,则可断定其体重必为58.79 kg解析:选D 由于线性回归方程中x 的系数为0.85,因此y 与x 具有正的线性相关关系,故A 正确.又线性回归方程必过样本点的中心(x -,y -),故B 正确.由线性回归方程中系数的意义知,x 每增加1 cm ,其体重约增加0.85 kg ,故C 正确.当某女生的身高为170 cm 时,其体重估计值是58.79 kg ,而不是具体值,因此D 不正确.2.为了解某商品销售量y (件)与其单价x (元)的关系,统计了(x ,y )的10组值,并画成散点图如图,则其回归方程可能是( )A.y ^=-10x -198 B.y ^=-10x +198 C.y ^=10x +198D.y ^=10x -198解析:选B 由图象可知回归直线方程的斜率小于零,截距大于零,故选B.3.若一函数模型为y =ax 2+bx +c (a ≠0),为将y 转化为t 的回归直线方程,需作变换t =( )A .x 2B .(x +a )2 C.⎝⎛⎭⎫x +b 2a 2 D .以上都不对解析:选C y 关于t 的回归直线方程,实际上就是y 关于t 的一次函数.因为y =a ⎝⎛⎭⎫x +b2a2+4ac -b 24a,所以可知选项C 正确.4.(2018·湖北七市(州)联考)广告投入对商品的销售额有较大影响,某电商对连续5个年度的广告费和销售额进行统计,得到统计数据如表(单位:万元)由表可得回归方程为y =10.2x +a ,据此模拟,预测广告费为10万元时的销售额约为( )A .101.2B .108.8C .111.2D .118.2解析:选C 由题意得:x -=4,y -=50,∴50=4×10.2+a ^,解得a ^=9.2,∴回归直线方程为y ^=10.2x +9.2,∴当x =10时,y ^=10.2×10+9.2=111.2,故选C.5.某考察团对10个城市的职工人均工资x (千元)与居民人均消费y (千元)进行调查统计,得出y 与x 具有线性相关关系,且回归方程为y ^=0.6x +1.2.若某城市职工人均工资为5千元,估计该城市人均消费额占人均工资收入的百分比为( )A .66%B .67%C .79%D .84%解析:选D 因为y 与x 具有线性相关关系,满足回归方程y ^=0.6x +1.2,该城市居民人均工资为x =5,所以可以估计该城市的职工人均消费水平y =0.6×5+1.2=4.2,所以可以估计该城市人均消费额占人均工资收入的百分比为4.25=84%. 6.在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为( )A .-1B .0 C.12D .1解析:选D 因为所有样本点都在直线y =12x +1上,所以这组样本数据完全正相关,故其相关系数为1.7.在2018年1月15日那天,某市物价部门对本市的5家商场的某商品的一天销售量及其价格进行调查,5家商场的售价x 元和销售量y 件之间的一组数据如下表所示:。

高考数学一轮总复习第10章计数原理概率与统计第2节二项式定理及其应用模拟创新题理

高考数学一轮总复习第10章计数原理概率与统计第2节二项式定理及其应用模拟创新题理

【2019最新】精选高考数学一轮总复习第10章计数原理概率与统计第2节二项式定理及其应用模拟创新题理一、选择题1.(2016·湖北天门模拟)在的二项展开式中,如果x3的系数为20,那么ab3=( )A.20B.15C.10D.5解析Tr+1=Ca4-rbrx24-7r,令24-7r=3,得r=3,则4ab3=20,∴ab3=5.答案D2.(2015·安徽江南十校模拟)在二项式n(n∈N*)的展开式中,常数项为28,则n的值为( )A.12B.8C.6D.4解析展开式中第r+1项是C(x3)n-r·=Cx3n-4r(-1)r=28,则=28,))∴n=8,r=6.答案B3.(2015·东北三省三校模拟)设二项式(n∈N*)展开式的二项式系数和与各项系数和分别为an、bn,则=( )A.2n-1+3B.2(2n-1+1)C.2n+1D.1解析由题意知an=2n成等比数列,令x=1则bn=也成等比数列,所以=2n+1,故选C.答案C4.(2014·衡水模拟)已知(1+x)10=a0+a1(1-x)+a2(1-x)2+…+a10(1-x)10,则a8等于( )A.180B.90C.-5D.5解析(1+x)10=[2-(1-x)]10,其通项公式为Tr+1=C210-r·(-1)r(1-x)r,a8是r=8时,第9项的系数.∴a8=C22(-1)8=180.故选A.答案A二、填空题5.(2016·河南郑州模拟)已知(1+ax)(1+x)2的展开式中x2的系数为5,则a=________.解析∵(1+ax)(1+x)2=(1+ax)(1+2x+x2)=ax3+(1+2a)x2+(a+2)x+1,∵展开式中x2的系数为5,∴1+2a=5,解得a=2.答案26.(2014·湖北十堰3月)若(1+x+x2)6=a0+a1x+a2x2+…+a12x12,则a2+a4+…+a12=________.解析令x=1,则a0+a1+a2+…+a12=36,令x=-1,则a0-a1+a2-…+a12=1,∴a0+a2+a4+…+a12=.令x=0,则a0=1,∴a2+a4+…+a12=-1=364.答案364创新导向题求二项展开式中的特定项问题7.若(-)n的二项展开式中各项的二项式系数的和是64,则n=________,展开式中的常数项为________(用数字作答).解析由题意知2n=64,即n=6.则=,Tr+1=C()6-r=(-1)rCx,令=0,得r=2.常数项为(-1)2C=15.答案 6 15二项展开式中的系数问题8.若(1+ax)7(a≠0)的展开式中x5与x6的系数相等,则a=________.解析展开式的通项为Tr+1=C(ax)r,∵x5与x6系数相等,∴Ca5=Ca6,解得a=3.答案3专项提升测试模拟精选题一、选择题9.(2016·南京模拟)在的展开式中,x的幂指数是整数的项共有( )A.3项B.4项C.5项D.6项解析Tr+1=C()24-r=Cx12-,故当r=0,6,12,18,24时,幂指数为整数,共5项.答案C二、填空题10.(2016·天津南开中学模拟)已知a=,则二项式的展开式中,含x2项的系数是________.π2(sin cos)dx x x +解析a==2,则=,展开式的通项为Tr+1=C(2)6-r·(-1)r()-r=(-1)rC·26-r·x3-r,令3-r=2,得r=1.故含x2项的系数是(-1)1·C·26-1=-192.ππ2 20 (sin cos)d(sin cos)x x x x x=⎰++答案-19211.(2015·安徽皖南八校三联)的展开式中第五项和第六项的二项式系数最大,则第四项为________.解析由已知条件第五项和第六项的二项式系数最大,得n=9,则的展开式中第四项T4=C()6=.答案21212.(2016·安徽安庆二模)将展开后,常数项是________.解析=,展开后的通项为C()6-k=(-2)kC()6-2k,令6-2k =0,得k=3,故常数项为C(-2)3=-160.答案-160三、解答题13.设(2-x)100=a0+a1x+a2x2+…+a100x100,求下列各式的值:(1)a0;(2)a1+a3+a5+…+a99;(3)(a0+a2+a4+…+a100)2-(a1+a3+…+a99)2.解(1)由(2-x)100展开式中的常数项为C·2100,即a0=2100,或令x=0,则展开式可化为a0=2100.(2)令x=1,得a0+a1+a2+…+a99+a100=(2-)100①令x=-1.可得a0-a1+a2-a3+…+a100=(2+)100②联立①②得:a1+a3+…+a99=.(3)原式=[(a0+a2+…+a100)+(a1+a3+…+a99)]·[(a0+a2+…+a100)-(a1+a3+…+a99)]=(a0+a1+a2+…+a100)(a0-a1+a2-a3+…+a98-a99+a100)=(2-)100(2+)100=1.创新导向题利用二项式定理求代数式值的问题14.若(1-3x)2 015=a0+a1x+…+a2 015x2 015(x∈R),则++…+的值为( )A.3B.0C.-1D.-3解析展开式的每一项系数ar=C·(-3)r,∴++…+a2 01532 015=-C+C-C+…+C-C,∵C-C+C-C+…+C-C2 0152 015=(1-1)2 015=0.∴++…+=-C=-1.答案C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十章⎪⎪⎪统计与统计案例第一节 统 计本节主要包括2个知识点: 1.随机抽样; 2.用样本估计总体.突破点(一) 随机抽样[基本知识]1.简单随机抽样(1)定义:设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N ),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.(2)最常用的简单随机抽样的方法:抽签法和随机数法. 2.系统抽样在抽样时,将总体分成均衡的几个部分,然后按照事先确定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样方法叫做系统抽样(也称为机械抽样).3.分层抽样在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.4.三种抽样方法的比较[基本能力]1.判断题(1)简单随机抽样是一种不放回抽样.( )(2)简单随机抽样每个个体被抽到的机会不一样,与先后有关.( )(3)系统抽样在起始部分抽样时采用简单随机抽样.()(4)要从1 002个学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2个学生,这样对被剔除者不公平.()(5)分层抽样中,每个个体被抽到的可能性与层数及分层有关.()答案:(1)√(2)×(3)√(4)×(5)×2.填空题(1)利用简单随机抽样从含有8个个体的总体中抽取一个容量为4的样本,则总体中每个个体被抽到的概率是________.解析:总体个数为N=8,样本容量为M=4,则每一个个体被抽到的概率为P=MN=48=1 2.答案:1 2(2)老师在班级50名学生中,依次抽取学号为5,10,15,20,25,30,35,40,45,50的学生进行作业检查,这种抽样方法是________.解析:因为抽取学号是以5为公差的等差数列,故采用的抽样方法应是系统抽样.答案:系统抽样(3)某公司共有1 000名员工,下设若干部门,现采用分层抽样方法,从全体员工中抽取一个样本容量为80的样本,已告知广告部门被抽取了4个员工,则广告部门的员工人数为________.解析:1 00080=x4,x=50.答案:50(4)某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.解析:设应从高二年级抽取x名学生,则x50=3 10.解得x=15.答案:15[全析考法]1.抽签法的步骤第一步,将总体中的N个个体编号;第二步,将这N个号码写在形状、大小相同的号签上;第三步,将号签放在同一不透明的箱中,并搅拌均匀;第四步,从箱中每次抽取1个号签,连续抽取k次;第五步,将总体中与抽取的号签的编号一致的k个个体取出.2.随机数法的步骤第一步,将个体编号;第二步,在随机数表中任选一个数开始;第三步,从选定的数开始,按照一定抽样规则在随机数表中选取数字,取足满足要求的数字就得到样本的号码.[例1](1)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()C.02 D.01(2)下列抽取样本的方式不属于简单随机抽样的有________.①从无限多个个体中抽取100个个体作为样本.②盒子里共有80个零件,从中选出5个零件进行质量检验.在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里.③从20件玩具中一次性抽取3件进行质量检验.④某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛.[解析](1)由题意知前5个个体的编号为08,02,14,07,01.(2)①不是简单随机抽样.因为不满足总体的有限性.②不是简单随机抽样.因为它是放回抽样.③不是简单随机抽样.因为这是“一次性”抽取,而不是“逐个”抽取.④不是简单随机抽样.因为指定个子最高的5名同学是56名中特指的,不存在随机性,不是等可能抽样.[答案](1)D(2)①②③④系统抽样的步骤[例2] (1)为了解1 000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )A .50B .40C .25D .20(2)将高一(九)班参加社会实践编号为1,2,3,…,48的48名学生,采用系统抽样的方法抽取一个容量为4的样本,已知5号,29号,41号学生在样本中,则样本中还有一名学生的编号是________.[解析] (1)由系统抽样的定义知,分段间隔为1 00040=25.故选C.(2)根据系统抽样的概念,所抽取的4个样本的编号应成等差数列,因为在这组数中的间距为41-29=12,所以所求的编号为5+12=17.[答案] (1)C (2)17 [易错提醒]用系统抽样法抽取样本,当Nn 不为整数时,取k =⎣⎡⎦⎤N n ,即先从总体中用简单随机抽样的方法剔除(N -nk )个个体,且剔除多余的个体不影响抽样的公平性.分层抽样进行分层抽样的相关计算时,常利用以下关系式巧解:(1)样本容量n 总体的个数N =该层抽取的个体数该层的个体数; (2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.[例3] (1)(2018·南昌模拟)某校为了解学生学习的情况,采用分层抽样的方法从高一1000人、高二1 200 人、高三n 人中,抽取81人进行问卷调查.已知高二被抽取的人数为30,那么n =( )A .860B .720C .1 020D .1 040(2)(2017·江苏高考)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________件.(3)某学校三个兴趣小组的学生人数分布如下表(每名同学只参加一个小组)(单位:人).篮球组 书画组 乐器组 高一 45 30 a 高二151020学校要对这三个小组的活动效果进行抽样调查,按小组分层抽样的方法,从参加这三个兴趣小组的学生中抽取30人,结果篮球组被抽出12人,则a 的值为________.[解析] (1)根据分层抽样方法,得 1 2001 000+1 200+n ×81=30,解得n =1 040.故选D.(2)本题考查分层抽样方法及用样本估计总体. 从丙种型号的产品中抽取的件数为60×300200+400+300+100=18.(3)由题意知1245+15=3045+15+30+10+a +20,解得a =30.[答案] (1)D (2)18 (3)30 [方法技巧]分层抽样的解题策略(1)分层抽样中分多少层,如何分层要视具体情况而定,总的原则是:层内样本的差异要小,两层之间的样本差异要大,且互不重叠.(2)为了保证每个个体等可能入样,所有层中每个个体被抽到的可能性相同. (3)在每层抽样时,应采用简单随机抽样或系统抽样的方法进行抽样. (4)抽样比=样本容量总体容量=各层样本数量各层个体数量.[全练题点]1.[考点一]某工厂的质检人员对生产的100件产品,采用随机数法抽取10件检查,对100件产品采用下面的编号方法:①1,2,3,...,100; ②001,002,...,100; ③00,01,02,...,99; ④01,02,03, (100)其中正确的序号是()A.②③④B.③④C.②③D.①②解析:选C根据随机数法编号可知,①④编号位数不统一.2.[考点一、二、三]对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则()A.p1=p2<p3B.p2=p3<p1C.p1=p3<p2D.p1=p2=p3解析:选D由于三种抽样过程中,每个个体被抽到的概率都是相等的,因此p1=p2=p3.3.[考点二]某班共有52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号学生在样本中,那么样本中还有一个学生的学号是() A.10 B.11C.12 D.16解析:选D从被抽中的3名学生的学号中可以看出学号间距为13,所以样本中还有一个学生的学号是16,故选D.4.[考点三]某校高一年级有学生400人,高二年级有学生360人,现采用分层抽样的方法从全校学生中抽取55人,其中从高一年级学生中抽取20人,则从高三年级学生中抽取的人数为________.解析:设从高二年级学生中抽取x人,由题意得x360=20400,解得x=18,则从高三年级学生中抽取的人数为55-20-18=17人.答案:175.[考点二]为了了解本班学生对网络游戏的态度,高三(6)班计划在全班60人中展开调查,根据调查结果,班主任计划采用系统抽样的方法抽取若干名学生进行座谈,为此先对60名学生进行编号为:01,02,03,…,60,已知抽取的学生中最小的两个编号为03,09,则抽取的学生中最大的编号为________.解析:由最小的两个编号为03,09可知,抽取时的分段间隔是6.即抽取10名同学,其编号构成首项为3,公差为6的等差数列,故最大编号为3+9×6=57.答案:57突破点(二)用样本估计总体[基本知识]1.频率分布直方图和茎叶图(1)作频率分布直方图的步骤①求极差(即一组数据中最大值与最小值的差);②决定组距与组数;③将数据分组;④列频率分布表;⑤画频率分布直方图.(2)频率分布折线图和总体密度曲线茎叶图的优点是可以保留原始数据,而且可以随时记录,这对数据的记录和表示都能带来方便.2.样本的数字特征(1)众数、中位数、平均数①标准差:样本数据到平均数的一种平均距离,一般用s表示,s=②方差:标准差的平方s 2=1n [(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2],其中x i (i =1,2,3,…,n )是样本数据,n 是样本容量,x -是样本平均数.③方差与标准差相比,都是衡量样本数据离散程度的统计量,但方差因为对标准差进行了平方运算,夸大了样本的偏差程度.(3)平均数、方差公式的推广若数据x 1,x 2,…,x n 的平均数为x -,方差为s 2,则数据mx 1+a ,mx 2+a ,…,mx n+a 的平均数为m x -+a ,方差为m 2s 2.[基本能力]1.判断题(1)在频率分布直方图中,最高的小长方形底边中点的横坐标是众数.( ) (2)在频率分布直方图中,众数左边和右边的小长方形的面积和是相等的.( ) (3)从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了.( )(4)茎叶图一般左侧的叶按从大到小的顺序写,右侧的叶按从小到大的顺序写,相同的数据可以只记一次.( )(5)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势.( ) (6)一组数据的众数可以是一个或几个,中位数也具有相同的结论.( ) 答案:(1)√ (2)× (3)√ (4)× (5)√ (6)× 2.填空题(1)某校为了了解教科研工作开展状况与教师年龄之间的关系,将该校不小于35岁的80名教师按年龄分组,分组区间为[35,40),[40,45),[45,50),[50,55),[55,60],由此得到频率分布直方图如图,则这80名教师中年龄小于45岁的有________人.解析:由频率分布直方图可知45岁以下的教师的频率为5×(0.040+0.080)=0.6,所以共有80×0.6=48(人).答案:48(2)对某市“四城同创”活动中800名志愿者的年龄抽样调查统计后得到频率分布直方图(如图),但是年龄组为[25,30)的数据不慎丢失,则依据此图可得:①[25,30)年龄组对应小矩形的高度为________;②据此估计该市“四城同创”活动中志愿者年龄在[25,35)的人数为________. 解析:设[25,30)年龄组对应小矩形的高度为h ,则5×(0.01+h +0.07+0.06+0.02)=1,解得h =0.04.则志愿者年龄在[25,35)年龄组的频率为5(0.04+0.07)=0.55,故志愿者年龄在[25,35)年龄组的人数约为0.55×800=440.答案:①0.04 ②440(3)对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是____________.解析:由题意知各数为12,15,20,22,23,23,31,32,34,34,38,39,45,45,45,47,47,48,48,49,50,50,51,51,54,57,59,61,67,68,中位数是46,众数是45,最大数为68,最小数为12,极差为68-12=56.答案:46,45,56(4)一组数据分别为:12,16,20,23,20,15,28,23,则这组数据的中位数是________. 解析:这组数据从小到大排列为:12,15,16,20,20,23,23,28,∴这组数据的中位数是20+202=20.答案:20(5)已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________. 解析:5个数的平均数x =4.7+4.8+5.1+5.4+5.55=5.1,所以它们的方差s 2=15[(4.7-5.1)2+(4.8-5.1)2+(5.1-5.1)2+(5.4-5.1)2+(5.5-5.1)2]=0.1.答案:0.1[全析考法][例1] (2017·北京高考)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),…,[80,90],并整理得到如下频率分布直方图:(1)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数; (3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.[解] (1)根据频率分布直方图可知,样本中分数不小于70的频率为(0.02+0.04)×10=0.6,所以样本中分数小于70的频率为1-0.6=0.4.所以从总体的400名学生中随机抽取一人,其分数小于70的概率估计值为0.4. (2)根据题意,样本中分数不小于50的频率为 (0.01+0.02+0.04+0.02)×10=0.9, 故样本中分数小于50的频率为0.1,故分数在区间[40,50)内的人数为100×0.1-5=5. 所以总体中分数在区间[40,50)内的人数估计为400×5100=20. (3)由题意可知,样本中分数不小于70的学生人数为 (0.02+0.04)×10×100=60,所以样本中分数不小于70的男生人数为60×12=30.所以样本中的男生人数为30×2=60, 女生人数为100-60=40,男生和女生人数的比例为60∶40=3∶2.所以根据分层抽样原理,总体中男生和女生人数的比例估计为3∶2.[方法技巧]1.绘制频率分布直方图时需注意的两点(1)制作好频率分布表后,可以利用各组的频率之和是否为1来检验该表是否正确;(2)频率分布直方图的纵坐标是频率组距,而不是频率.2.与频率分布直方图计算有关的两个关系式 (1)频率组距×组距=频率; (2)频数样本容量=频率,此关系式的变形为频数频率=样本容量,样本容量×频率=频数.茎叶图1.(1)“叶”的位置只有一个数字,而“茎”的位置的数字位数一般不需要统一; (2)重复出现的数据要重复记录,不能遗漏,特别是“叶”的位置上的数据. 2.茎叶图通常用来记录两位数的数据,可以用来分析单组数据,也可以用来比较两组数据.通过茎叶图可以确定数据的中位数,数据大致集中在哪个茎,数据是否关于该茎对称,数据分布是否均匀等.[例2] 为了比较两种治疗失眠症的药(分别称为A 药,B 药)的疗效,随机地选取20位患者服用A 药,20位患者服用B 药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下:服用A 药的20位患者日平均增加的睡眠时间: 0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4 服用B 药的20位患者日平均增加的睡眠时间: 3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好? (2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?[解] (1)设A 药观测数据的平均数为x -,B 药观测数据的平均数为y -.由观测结果可得x -=120×(0.6+1.2+1.2+1.5+1.5+1.8+2.2+2.3+2.3+2.4+2.5+2.6+2.7+2.7+2.8+2.9+3.0+3.1+3.2+3.5)=2.3,y -=120×(0.5+0.5+0.6+0.8+0.9+1.1+1.2+1.2+1.3+1.4+1.6+1.7+1.8+1.9+2.1+2.4+2.5+2.6+2.7+3.2)=1.6.由以上计算结果可得x ->y -,因此可看出A 药的疗效更好. (2)由观测结果可绘制如下茎叶图:从以上茎叶图可以看出,A 药疗效的试验结果有710的叶集中在茎2,3上,而B 药疗效的试验结果有710的叶集中在茎0,1上,由此可看出A 药的疗效更好.[方法技巧]茎叶图问题的求解策略(1)由于茎叶图完全反映了所有的原始数据,解决由茎叶图给出的统计图表问题时,要充分对这个图表提供的样本数据进行相关的计算或者是对某些问题作出判断.(2)茎叶图不能直接反映总体的分布情况,这就需要通过茎叶图数据求出样本数据的数字特征,进一步估计总体情况.样本的数字特征(1)用样本估计总体时,样本的平均数、标准差只是总体的平均数、标准差的近似.实际应用中,需先计算数据的平均数,分析平均水平,再计算方差(标准差),分析稳定情况.(2)若给出图形,一方面可以由图形得到相应的样本数据,计算平均数、方差(标准差);另一方面,可以从图形直观分析样本数据的分布情况,大致判断平均数的范围,并利用数据的波动性比较方差(标准差)的大小.考法(一) 与频率分布直方图交汇命题[例3] 某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数.[解] (1)由(0.002+0.009 5+0.011+0.012 5+x +0.005+0.002 5)×20=1,得x =0.007 5,∴直方图中x 的值为0.007 5.(2)月平均用电量的众数是220+2402=230.∵(0.002+0.009 5+0.011)×20=0.45<0.5,∴月平均用电量的中位数在[220,240)内,设中位数为a ,则(0.002+0.009 5+0.011)×20+0.012 5×(a -220)=0.5,解得a =224,即中位数为224.[方法技巧]频率分布直方图与众数、中位数、平均数的关系(1)最高的小长方形底边中点的横坐标为众数; (2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.考法(二) 与茎叶图交汇命题[例4] (1)如图所示的茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分),已知甲组数据的中位数为17,乙组数据的平均数为17.4,则x ,y 的值分别为( )A.7,8 B .5,7 C .8,5D .7,7(2)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91.现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示:则7个剩余分数的方差为________.[解析] (1)甲组数据的中位数为17, 故y =7,乙组数据的平均数为 3×10+20+(9+6+6+x +9)5=17.4,解得x =7.(2)由图可知去掉的两个数是87,99,所以87+90×2+91×2+94+90+x =91×7,解得x =4.s 2=17[(87-91)2+(90-91)2×2+(91-91)2×2+(94-91)2×2]=367.[答案] (1)D (2)367[易错提醒]在使用茎叶图时,一定要观察所有的样本数据,弄清楚这个图中数字的特点,不要漏掉了数据,也不要混淆茎叶图中茎与叶的含义.考法(三) 与优化决策问题交汇命题[例5] 甲、乙、丙、丁四人参加某运动会射击项目选拔赛,四人的平均成绩和方差如下表所示:甲 乙 丙 丁 平均环数x 8.3 8.8 8.8 8.7 方差s 23.53.62.25.4( ) A .甲 B .乙 C .丙D .丁[解析] 由题目表格中数据可知,丙平均环数最高,且方差最小,说明成绩好,且技术稳定,选C.[答案] C [方法技巧]利用样本的数字特征解决优化决策问题的依据(1)平均数反映了数据取值的平均水平;标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大,越不稳定;标准差、方差越小,数据的离散程度越小,越稳定.(2)用样本估计总体就是利用样本的数字特征来描述总体的数字特征.[全练题点]1.[考点二]在样本的频率分布直方图中,共有7个小长方形,若中间一个小长方形的面积等于其他6个小长方形的面积的和的14,且样本容量为80,则中间一组的频数为( )A .0.25B .0.5C .20D .16解析:选D 设中间一组的频数为x ,依题意有x 80=14⎝⎛⎭⎫1-x 80,解得x =16. 2.[考点二](2017·山东高考)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为( )A.3,5 B .5,5 C .3,7D .5,7解析:选A 由两组数据的中位数相等可得65=60+y ,解得y =5,又它们的平均值相等,所以15×[56+62+65+74+(70+x )]=15×(59+61+67+65+78),解得x =3.3.[考点一]为了了解某校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1∶2∶3,第1小组的频数为6,则报考飞行员的学生人数是( )A .36B .40C .48D .50解析:选C 由题知,题图中从左到右的前3个小组的频率之和为1-(0.037+0.013)×5=0.75.又图中从左到右的前3个小组的频率之比为1∶2∶3,所以第1小组的频率为0.75×11+2+3=0.125,所以报考飞行员的学生人数是60.125=48.4.[考点三·考法(二)]如图是某学校举行的运动会上七位评委为某体操项目打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A .84,4.84B .84,1.6C .85,1.6D .85,4解析:选C 依题意,所剩数据的平均数是80+15×(4×3+6+7)=85,所剩数据的方差是15×[3×(84-85)2+(86-85)2+(87-85)2]=1.6.5.[考点三·考法(三)]甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环):.解析:x -甲=x -乙=9,s 2甲=15×[(9-10)2+(9-8)2+(9-9)2+(9-9)2+(9-9)2]=25,s 2乙=15×[(9-10)2+(9-10)2+(9-7)2+(9-9)2+(9-9)2]=65>s 2甲,故甲更稳定. 答案:甲6.[考点三·考法(一)](2017·安徽黄山二模)全世界越来越关注环境保护问题,某监测站点于2017年1月某日起连续n 天监测空气质量指数(AQI),数据统计如下表:(1)根据所给统计表和频率分布直方图中的信息求出n ,m 的值,并完成频率分布直方图;(2)由频率分布直方图,求该组数据的平均数与中位数. 解:(1)∵0.004×50=20n ,∴n =100,∵20+40+m +10+5=100,∴m =25.40100×50=0.008;25100×50=0.005;10100×50=0.002;5100×50=0.001.由此完成频率分布直方图,如图:(2)由频率分布直方图得该组数据的平均数为25×0.004×50+75×0.008×50+125×0.005×50+175×0.002×50+225×0.001×50=95,∵[0,50)的频率为0.004×50=0.2,[50,100)的频率为0.008×50=0.4,∴中位数为50+0.5-0.20.4×50=87.5.[全国卷5年真题集中演练——明规律]1.(2017·全国卷Ⅰ)为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg)分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A .x 1,x 2,…,x n 的平均数B .x 1,x 2,…,x n 的标准差C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数解析:选B 标准差能反映一组数据的稳定程度.故选B.2.(2017·全国卷Ⅲ)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( ) A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳 解析:选A 根据折线图可知,2014年8月到9月、2014年10月到11月等月接待游客量都在减少,所以A 错误.由图可知,B 、C 、D 正确.3.(2016·全国卷Ⅲ)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15 ℃,B点表示四月的平均最低气温约为5 ℃.下面叙述不正确的是()A.各月的平均最低气温都在0 ℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20 ℃的月份有5个解析:选D由图形可得各月的平均最低气温都在0 ℃以上,A正确;七月的平均温差约为10 ℃,而一月的平均温差约为5 ℃,故B正确;三月和十一月的平均最高气温都在10 ℃左右,基本相同,C正确;故D错误.4.(2013·全国卷Ⅰ)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是() A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样解析:选C由于该地区的中小学生人数比较多,不能采用简单随机抽样,排除选项A;由于小学、初中、高中三个学段的学生视力差异性比较大,可采取按照学段进行分层抽样,而男女生视力情况差异性不大,不能按照性别进行分层抽样,排除B和D.故选C.5.(2014·全国卷Ⅰ)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?解:(1)如图所示:(2)质量指标值的样本平均数为x=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100.质量指标值的样本方差为s2=(-20)2×0.06+(-10)2×0.26+0×0.38+102×0.22+202×0.08=104.所以这种产品质量指标值的平均数的估计值为100,方差的估计值为104.(3)质量指标值不低于95的产品所占比例的估计值为0.38+0.22+0.08=0.68.由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定.[课时达标检测][小题对点练——点点落实]对点练(一) 随机抽样1.某学校为了了解某年高考数学的考试成绩,在高考后对该校1 200名考生进行抽样调查,其中有400名文科考生,600名理科考生,200名艺术和体育类考生,从中抽取120名考生作为样本,记这项调查为①;从10名家长中随机抽取3名参加座谈会,记这项调查为②,则完成①,②这两项调查宜采用的抽样方法依次是( )A .分层抽样法,系统抽样法B .分层抽样法,简单随机抽样法C .系统抽样法,分层抽样法D .简单随机抽样法,分层抽样法解析:选B 在①中,文科考生、理科考生、艺术和体育类考生会存在差异,采用分层抽样法较好;在②中,抽取的样本个数较少,宜采用简单随机抽样法.2.某校高三年级共有学生900人,编号为1,2,3,…,900,现用系统抽样的方法抽取一个容量为45的样本,则抽取的45人中,编号落在[481,720]的人数为( )A .10B .11C .12D .13解析:选C 系统抽样,是抽多少人就把总体分成多少组,于是抽样间隔就是用总体数量除以样本容量:90045=20.于是落在[481,720]内的人数为720-48020=12,故选C.3.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A .93B .123C .137D .167解析:选C 初中部的女教师人数为110×70%=77,高中部的女教师人数为150×(1-60%)=60,该校女教师的人数为77+60=137,故选C.4.高三(3)班共有学生56人,座号分别为1,2,3,…,56,现根据座号,用系统抽样的方法,抽取一个容量为4的样本.已知3号、17号、45号同学在样本中,那么样本中还有一个同学的座号是( )A .30B .31C .32D .33解析:选B 由系统抽样的特点,得到样本中的座号形成一个以3为首项,公差为17-3=14的等差数列,则第三个座号是17+14=31.故选B.5.假设要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,先将800袋牛奶按000,001,…,799进行编号,。

相关文档
最新文档