决胜2017年高考全国名校试题数学分项汇编(江苏特刊) 专题13 复数(原卷版) Word版无答案

合集下载

决胜2017年高考全国名校试题数学分项汇编(江苏特刊) 专题14 选讲部分(原卷版)

决胜2017年高考全国名校试题数学分项汇编(江苏特刊) 专题14 选讲部分(原卷版)

解答题1.【 2016年第二次全国大联考(江苏卷)】【选修4—1几何证明选讲】(本小题满分10分)若AB 为定圆O 一条弦(非直径),4AB =,点N 在线段AB 上移动,F 90∠ON =,F N 与圆O 相交于点F ,求F N 的最大值.2.【 2016年第二次全国大联考(江苏卷)】【选修4—2:矩阵与变换】(本小题满分10分)已知矩阵a b A c d ⎡⎤=⎢⎥⎣⎦,若矩阵A 属于特征值6的一个特征向量为111α⎡⎤=⎢⎥⎣⎦,属于特征值1的一个特征向量为232α⎡⎤=⎢⎥-⎣⎦.求A 的逆矩阵.3. 【 2016年第二次全国大联考(江苏卷)】【选修4—4:坐标系与参数方程】(本小题满分10分)过点P (-3,0)且倾斜角为30°的直线和曲线2cos 24ρθ=相交于A 、B 两点.求线段AB 的长.4.【 2016年第二次全国大联考(江苏卷)】【选修4—5:不等式选讲】(本小题满分10分)设 x ,y ,z ∈R +,且1x y z ++=,求证:2222221x y z y z z x x y++≥+++ 5【 2016年第二次全国大联考(江苏卷)】一个袋中有若干个红球与白球,一次试验为从中摸出一个球并放回袋中,摸出红球概率为p ,摸出白球概率为q ,摸出红球加1分,摸出白球减1分,现记“n 次试验总得分为n S ”.(Ⅰ)当21==q p 时,记||3S =ξ,求ξ的分布列及数学期望; (Ⅱ)当32,31==q p 时,求)4,3,2,1(028=≥=i S S i 且的概率.6. 【 2016年第二次全国大联考(江苏卷)】数列}{n a 各项均为正数,211=a ,且对任意的*N ∈n ,有)0(21>+=+c ca a a n n n .(Ⅰ)求证:121ni icca =<+∑;(Ⅱ)若20161=c ,是否存在*N ∈n ,使得1>n a ,若存在,试求出n 的最小值,若不存在,请说明理由.7.【2016年第三次全国大联考【江苏卷】】[选修4-1:几何证明选讲](本小题满分10分) 如图,⊙O 的直径AB 的延长线与弦CD 的延长线相交于点P ,E 为⊙O 上一点,AE AC =,求证:PDE POC ∠=∠.A8.【2016年第三次全国大联考【江苏卷】】[选修4-2:矩阵与变换](本小题满分10分) 变换1T 是逆时针旋转2π的旋转变换,对应的变换矩阵是1M ;变换2T 对应用的变换矩阵是21101M ⎡⎤=⎢⎥⎣⎦.求函数2y x =的图象依次在1T ,2T 变换的作用下所得曲线的方程. 9.【2016年第三次全国大联考【江苏卷】】[选修4-4:坐标系与参数方程](本小题满分10分)已知参数方程为0cos sin x x t y t θθ=+⎧⎨=⎩(t 为参数)的直线l 经过椭圆2213x y +=的左焦点1F ,且交y 轴正半轴于点C ,与椭圆交于两点A 、B (点A 位于点C 上方).若1F C B =A ,求直线l 的倾斜角θ的值.10.【2016年第三次全国大联考【江苏卷】】[选修4-5:不等式选讲](本小题满分10分)已知函数()2(0)f x x a x a =-+->,若正实数c b ,满足1=++c b a ,且不等式cb c b a x f +++≥222)(对任意实数x 都成立,求a 的取值范围.11.【2016年第三次全国大联考【江苏卷】】(本小题满分10分) 袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为71.现有甲、乙两人从袋中轮流、不放回地摸取1球,甲先取,乙后取,然后甲再取……直到袋中的球取完即终止.若摸出白球,则记2分,若摸出黑球,则记1分.每个球在每一次被取出的机会是等可能的.用ξ表示甲,乙最终得分差的绝对值. (1)求袋中原有白球的个数;(2)求随机变量ξ的概率分布列及期望E ξ.12.【2016年第三次全国大联考【江苏卷】】(本小题满分10分)已知三位数abc ,其中c b a ,,不全相同,若将这个三位数的三个数字按大小重新排列,得出最大数和最小数(如百位数字为0,也视作三位数),两者相减得到一个新数,定义这一操作为f ,如792038830)308(=-=f ,再对新数进行第二次操作f ,依次类推,若记经过第n 次后所得新数为n f(1)已知618=abc ,求2f ,3f ;(2)设abc 的三个数字中的最大数字与最小数字之差为d ,经n 次操作后新数n n n c b a 的三个数字中的最大数字与最小数字之差为n d ①已知61=d ,求证:当1>n 时,5=n d ; ②求证:当6≥n 时,495=n f .13.【2016年第四次全国大联考【江苏卷】】【选修4—1几何证明选讲】(本小题满分10分)如图,在锐角三角形ABC 中,AB AC =,以AB 为直径的圆O 与边,BC AC 的交点分别为,D E ,且DF AC ⊥于点F .(Ⅰ)求证:DF 是O ⊙的切线;(Ⅱ)若3CD =,7=5EA ,求AB 的长.14.【2016年第四次全国大联考【江苏卷】】【选修4—2:矩阵与变换】(本小题满分10分)在平面直角坐标系xOy 中,设点P (x ,5)在矩阵M 1234⎡⎤=⎢⎥⎣⎦对应的变换下得到点Q (y -2,y ),求1x y -⎡⎤⎢⎥⎣⎦M .15. 【2016年第四次全国大联考【江苏卷】】【选修4—4:坐标系与参数方程】(本小题满分10分)以直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知点P 的直角坐标为(1,2),直线l 过点P ,且倾斜角为π6,圆C :θρsin 6=.(Ⅰ)求直线l 的参数方程和圆C 的直角坐标方程; (Ⅱ)设直线l 与圆C 相交于,A B 两点,求PA PB ⋅.16.【2016年第四次全国大联考【江苏卷】】【选修4—5:不等式选讲】(本小题满分10分)已知函数()f x =R .(Ⅰ)求实数m 的取值范围;(Ⅱ)若m 的最大值为n ,当正数b a ,满足41532n a b a b+=++时,求47a b +的最小值.17. 【2016年第四次全国大联考【江苏卷】】 (本小题满分10分)过直线2y =-上的动点P 作抛物线214y x =的两条切线,PA PB ,其中A ,B 为切点. (Ⅰ)若切线,PA PB 的斜率分别为12,k k ,求证:12k k 为定值; (Ⅱ)求证:直线AB 过定点.18. 【2016年第四次全国大联考【江苏卷】】 (本小题满分10分)设f (n )=(a +b )n(n ∈N *,n ≥2),若f (n )的展开式中,存在某连续3项,其二项式系数依次成等差数列,则称f (n )具有性质P . (Ⅰ)求证:f (7)具有性质P ;(Ⅱ)若存在n ≤2016,使f (n )具有性质P ,求n 的最大值.19.【2016年第一次全国大联考【江苏卷】】【选修4—1几何证明选讲】(本小题满分10分)如图,AB 是圆O 的直径,D 为圆O 上一点,过点D 作圆O 的切线交BA 的延长线于点C .若DB DC =,求证:CA AO =.20.【2016年第一次全国大联考【江苏卷】】【选修4—2:矩阵与变换】(本小题满分10分)已知矩阵10120206A B -⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦,,求矩阵1.A B - 21. 【2016年第一次全国大联考【江苏卷】】【选修4—4:坐标系与参数方程】(本小题满分10分)在极坐标系中,设直线l过点2),(3,)32A B ππ,且直线l 与曲线:sin (0)C a a ρθ=>有且只有一个公共点,求实数a 的值.22.【2016年第一次全国大联考【江苏卷】】【选修4—5:不等式选讲】(本小题满分10分)求函数y =的最大值.23. 【2016年第一次全国大联考【江苏卷】】在四棱锥P ABCD -中,直线,,AP AB AD 两两相互垂直,且//,AD BC 2AP AB AD BC ===. (1)求异面直线PC 与BD 所成角的余弦值; (2)求钝二面角B PC D --的大小.24. 【2016年第一次全国大联考【江苏卷】】设数列{}n a 按三角形进行排列,如图,第一层一个数1a ,第二层两个数2a 和3a ,第三层三个数45,a a 和6a ,以此类推,且每个数字等于下一层的左右两个数字之和,如123245356,,,a a a a a a a a a =+=+=+.(1)若第四层四个数为0或1,1a 为奇数,则第四层四个数共有多少种不同取法? (2)若第十一层十一个数为0或1,1a 为5的倍数,则第十一层十一个数共有多少种不同取法?12345678910a a a a a a a a aa25.【2016高考押题卷(1)【江苏卷】】【选修4—1几何证明选讲】(本小题满分10分)如图,△ABC 内接于⊙O ,点D 在OC 的延长线上,AD 与⊙O 相切,割线DM 与⊙O 相交于点M ,N ,若∠B=30°,AC=1,求DM ⋅DNA PB CD26.【2016高考押题卷(1)【江苏卷】】【选修4—2:矩阵与变换】(本小题满分10分)已知曲线C :1xy =,若矩阵M -⎥=⎥⎥⎦对应的变换将曲线C 变为曲线C ',求曲线C '的方程.27. 【2016高考押题卷(1)【江苏卷】】【选修4—4:坐标系与参数方程】(本小题满分10分)在极坐标系下,已知圆O :cos sin ρθθ=+和直线:sin()4l πρθ-=, (1)求圆O 和直线l 的直角坐标方程;(2)当()0,θπ∈时,求直线l 与圆O 公共点的一个极坐标.28.【2016高考押题卷(1)【江苏卷】】【选修4—5:不等式选讲】(本小题满分10分)已知,,a b c均为正数,证明:2222111()a b c a b c+++++≥29. 【2016高考押题卷(1)【江苏卷】】如图,在空间直角坐标系O - xyz 中,正四棱锥P -ABCD的侧棱长与底边长都为M ,N 分别在PA ,BD 上,且13PM BN PA BD ==. (1)求证:MN ⊥AD ;(2)求MN 与平面PAD 所成角的正弦值.30. 【2016高考押题卷(1)【江苏卷】】设集合{}5,4,3,2,1=S ,从S 的所有非空子集中,等可能地取出一个.(1)设S A ⊆,若A x ∈,则A x ∈-6,就称子集A 满足性质p ,求所取出的非空子集满足性质p 的概率;(2)所取出的非空子集的最大元素为ξ,求ξ的分布列和数学期望()ξE .31.【2016高考押题卷(3)【江苏卷】】【选修4—1几何证明选讲】(本小题满分10分)如图,已知圆O 的半径OB 垂直于直径M AC ,为AO 上一点,BM 的延长线交圆O 于点N ,过N 点所作的切线交CA 的延长线于点P . (1)求证:PC PA PM ⋅=2; (2)若圆O 的半径为32,且OM OA 3=,求MN 的长.PBC32.【2016高考押题卷(3)【江苏卷】】【选修4—2:矩阵与变换】(本小题满分10分)已知矩阵⎢⎣⎡-=12A ⎥⎦⎤21,⎢⎣⎡=01B ⎥⎦⎤-12. (1)计算AB ;(2)若矩阵B 将直线0232:=+-y x l 变为直线/l ,求直线/l 的方程.33. 【2016高考押题卷(3)【江苏卷】】【选修4—4:坐标系与参数方程】(本小题满分10分)已知直线l 的参数方程⎩⎨⎧-=+=t y t x l 11:(t 为参数)曲线C 的参数方程为⎩⎨⎧==θθsin cos 2:y x C (πθ20≤≤),若直线l 与曲线C 交于两点N M ,,求MN 的长度.34.【2016高考押题卷(3)【江苏卷】】【选修4—5:不等式选讲】(本小题满分10分)若c b a ,,是正数,且1=++c b a .(1)求证:9111≥++c b a ; (2)求证:29111≥+++++a c c b b a .35、【2016高考押题卷(3)【江苏卷】】某品牌汽车S 4店经销C B A ,,三种排量的汽车,其中C B A ,,三种排量的汽车依次有5,4,3款不同的车型.某单位计划购买3辆不同车型的汽车,且购买每款车型等可能.(1)求该单位购买的3辆汽车均为B 排量的概率;(2)记该单位购买的3辆汽车的排量种数为X ,求X 的分布列及数学期望.36、【2016高考押题卷(3)【江苏卷】】已知各项均为正数的数列}{n a 的首项11=a ,其前n 项和为n S ,若))(1(21*∈+=N n a a S nn n . (1)求5432,,,a a a a 的值;(2)由此归纳出通项n a 的表达式,并用数学归纳法加以证明.37.【2016高考押题卷(2)【江苏卷】】【选修4-1:几何证明选讲】(本小题满分10分) 如图,在⊙O 直径AB 的延长线上任取一点C ,过点C 做直线CE 与⊙O 交于点D 、E ,在⊙O 上取一点F ,使点A 是弧EF 的中点,连接DF 交直线AB 于G .若CB=OB ,求CGCB的值.38.【2016高考押题卷(2)【江苏卷】】【选修4-2:矩阵与变换】(本小题满分10分)若二阶矩阵M 满足:12583446M ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦.曲线22:221C x xy y ++=在矩阵M 所对应 的变换作用下得到曲线C ',求曲线C '的方程.39.【2016高考押题卷(2)【江苏卷】】【选修4-4:坐标系与参数方程】(本小题满分10分)已知曲线C 的极坐标方程是ρ=2sin θ,直线l 的参数方程是⎪⎪⎩⎪⎪⎨⎧=+-=t y t x 54253(t 为参数),设直线l 与x 轴的交点是M ,N 是曲线C 上一动点,求MN 的最大值.40.【2016高考押题卷(2)【江苏卷】】【选修4-5:不等式选讲】(本小题满分10分) 已知a ,b ,c R ∈,若444444a b c m ++=,关于x 的不等式|2|1x m -≤的整数解有且仅有一个值为3(m 为整数),求222a b c ++的最大值. 41.【2016高考押题卷(2)【江苏卷】】(本小题满分10分)如图,在四棱锥ABCD S -中,底面ABCD 为正方形,⊥SA 平面ABCD ,E 为SC 的中点,F 为AC 上一点,且2=AB ,22=SA .(Ⅰ)若//EF 平面SBD ,试确定F 点的位置; (Ⅱ)求二面角D SC B --的余弦值.42. 【2016高考押题卷(2)【江苏卷】】(本小题满分10分)对于数列{}n a ,称∑-=+--=11111)(k i i i k a a k a P ,其中N k k ∈≥,2为数列{}n a 的前k 项“波动均值”.若对任意的N k k ∈≥,2,都有)()(1k k a P a P <+,则称数列{}n a 为“趋稳数列”. (1)若数列2,,1x 为“趋稳数列”,求x 的取值范围;(2)已知数列{}n a 的首项为1,各项均为整数,前k 项的和为k S ,且对任意N k k ∈≥,2,都有)(2)(3k k a P S P =,试计算:)()1()(2)(3322n nn n n a P C n a P C a P C -+++ , 其中N n n ∈≥,243.【2016高考冲刺卷(2)【江苏卷】】【选修4—1几何证明选讲】(本小题满分10分)如图,PAQ ∠是直角,圆O 与射线AP 相切于点T ,与射线AQ 相交于两点,B C .求证:BT 平分OBA ∠.44.【2016高考冲刺卷(2)【江苏卷】】【选修4—2:矩阵与变换】(本小题满分10分)已知矩阵1252M x -⎡⎤⎢⎥=⎢⎥⎣⎦的一个特征值为2-,求2M . 45. 【2016高考冲刺卷(2)【江苏卷】】【选修4—4:坐标系与参数方程】(本小题满分10分)在极坐标系中,求圆θρsin 8=上的点到直线3πθ=(R ∈ρ)距离的最大值.46.【2016高考冲刺卷(2)【江苏卷】】【选修4—5:不等式选讲】(本小题满分10分) 设,x y 均为正数,且x y >,求证:2212232x y x xy y +≥+-+.47. 【2016高考冲刺卷(2)【江苏卷】】 一位网民在网上光顾某网店,经过一番浏览后,对该店铺中的,,A B C 三种商品有购买意向.已知该网民购买A 种商品的概率为34,购买B 种商品的概率为23,购买C 种商品的概率为12.假设该网民是否购买这三种商品相互独立. (1)求该网民至少购买2种商品的概率;(2)用随机变量h 表示该网民购买商品的种数,求h 的概率分布和数学期望. 48. 【2016高考冲刺卷(2)【江苏卷】】设集合{}1,2,3,,(3)M n n =≥,记M 的含有三个元素的子集个数为n S ,同时将每一个子集中的三个元素由小到大排列,取出中间的数,所有这些中间的数的和记为n T . (1)求33T S ,44T S ,55T S ,66T S 的值; (2)猜想nnT S 的表达式,并证明之.49.【2016高考冲刺卷(4)【江苏卷】】【选修4—1几何证明选讲】如图,PAQ ∠是直角,圆O 与射线AP 相切于点T ,与射线AQ 相交于两点,B C .求证:BT 平分OBA ∠.50.【2016高考冲刺卷(4)【江苏卷】】【选修4—2:矩阵与变换】在平面直角坐标系xOy 中,设点()1,2A -在矩阵1001M -⎡⎤=⎢⎥⎣⎦对应的变换作用下得到点A ',将点()3,4B 绕点A '逆时针旋转90得到点B ',求点B '的坐标.51. 【2016高考冲刺卷(4)【江苏卷】】【选修4—4:坐标系与参数方程】在平面直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.直线l 的极坐标方程为sin()3πρθ-=椭圆C 的参数方程为2cos x t y t =⎧⎪⎨=⎪⎩(t 为参数) . (1)求直线l 的直角坐标方程与椭圆C 的普通方程; (2)若直线l 与椭圆C 交于A ,B 两点,求线段AB 的长.52.【2016高考冲刺卷(4)【江苏卷】】【选修4—5:不等式选讲】设x ,y 均为正数,且x >y ,求证:x +4x 2-2xy +y 2≥y +3.53. 【2016高考冲刺卷(4)【江苏卷】】如图,在直角梯形11AA B B 中,190A AB ∠=︒,11//A B AB ,11122AB AA A B ===.直角梯形11AAC C 通过直角梯形11AA B B 以直线1AA 为轴旋转得到,且使得平面11AA C C ⊥平面11AA B B .M 为线段BC 的中点,P 为线段1BB 上的动点. (Ⅰ)当点P 是线段1BB 中点时,求二面角P AM B --的余弦值; (Ⅱ)是否存在点P ,使得直线1A C //平面AMP ?请说明理由.54. 【2016高考冲刺卷(4)【江苏卷】】设(1-x )n=a 0+a 1x +a 2x 2+…+a n x n,n ∈N ,n ≥2.(1)设n =11,求|a 6|+|a 7|+|a 8|+|a 9|+|a 10|+|a 11|的值; (2)设b k =1k n k +-a k +1(k ∈N ,k ≤n -1),S m =b 0+b 1+b 2+…+b m (m ∈N ,m ≤n -1),求1||m m n S C -55.【2016高考冲刺卷(8)【江苏卷】】【选修4—1几何证明选讲】如图,△ABC 内接于圆O ,D 为弦BC 上一点,过D 作直线DP // AC ,交AB 于点E ,交圆O 在A 点处的切线于点P .求证:△PAE ∽△BDE .56.【2016高考冲刺卷(8)【江苏卷】】【选修4—2:矩阵与变换】 已知a ,b 是实数,如果矩阵A =32a b ⎡⎤⎢⎥-⎣⎦所对应的变换T 把点(2,3)变成点(3,4). (1)求a ,b 的值.(2)若矩阵A 的逆矩阵为B ,求B 2.57. 【2016高考冲刺卷(8)【江苏卷】】【选修4—4:坐标系与参数方程】在平面直角坐标系xOy 中,直线l 过点(12)M ,,倾斜角为3π﹒以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,圆:6cos C ρθ=﹒若直线l 与圆C 相交于A B ,两点,求MA MB ⋅的值.AMPCBA 1C 1B 158.【2016高考冲刺卷(8)【江苏卷】】【选修4—5:不等式选讲】求函数f (x )=的最大值.59. 【2016高考冲刺卷(8)【江苏卷】】 如图,在平面直角坐标系xOy 中,抛物线y 2=2px (p >0)的准线l 与x 轴交于点M ,过M 的直线与抛物线交于A ,B 两点.设A (x 1,y 1)到准线l 的距离为d ,且d =λp (λ>0).(1)若y 1=d =1,求抛物线的标准方程;(2)若AM AB λ+=0,求证:直线AB 的斜率为定值.60. 【2016高考冲刺卷(8)【江苏卷】】设实数12n a a a ,,,满足120n a a a +++=,且12||||||1n a a a +++≤(*n ∈N 且2)n ≥,令(*)nn a b n n=∈N .求证:1211||22n b b b n+++-≤(*)n ∈N . 61.【2016高考冲刺卷(1)【江苏卷】】【选修4-1:几何证明选讲】(本小题满分10分) 如图,AB 为⊙O 的直径,直线CD 与⊙O 相切于点D ,AC ⊥CD ,DE ⊥AB ,C 、E 为垂足,连接,AD BD . 若4AC =,3DE =,求BD 的长.62.【2016高考冲刺卷(1)【江苏卷】】【选修4-2:矩阵与变换】(本小题满分10分)已知矩阵1214A ⎡⎤=⎢⎥-⎣⎦,求矩阵A 的特征值和特征向量. 63.【2016高考冲刺卷(1)【江苏卷】】【选修4-4:坐标系与参数方程】(本小题满分10分) 在极坐标系中,求圆θρsin 8=上的点到直线3πθ=(R ∈ρ)距离的最大值.64.【2016高考冲刺卷(1)【江苏卷】】【选修4-5:不等式选讲】(本小题满分10分) 已知正实数,,a b c 满足231a b c ++=,求证:24627111a b c ++≥. 65.【2016高考冲刺卷(1)【江苏卷】】(本小题满分10分)如图,在三棱柱ABC -A 1B 1C 1中,AB =3,AA 1=AC =4,AA 1⊥平面ABC ; AB ⊥AC ,(1)求二面角A 1-BC 1-B 1的余弦值; (2)在线段BC 1存在点D ,使得AD ⊥A 1B ,求BDBC 1的值.66【2016高考冲刺卷(1)【江苏卷】】(本小题满分10分)已知,N*k m ∈,若存在互不相等的正整数12,,a a …,m a ,使得1223,,a a a a …11,,m m m a a a a -同时小于k ,则记()f k 为满足条件的m 的最大值.(1)求(6)f 的值;(2)对于给定的正整数n (1)n >,1A 1B 1C ABCABDEOC·(ⅰ)当(2)(1)(2)n n k n n +<≤++时,求()f k 的解析式; (ⅱ)当(1)(2)n n k n n +<≤+时,求()f k 的解析式.67.【2016高考冲刺卷(3)【江苏卷】】【选修4-1:几何证明选讲】(本小题满分10分) 如图,过点P 作圆O 的割线PBA 与切线PE ,E 为切点,连接AE BE ,,APE ∠的平分线与AE BE ,分别交于C D ,,其中30APE ∠=︒.(Ⅰ)求证:ED PB PDBD PA PC⋅=; (Ⅱ)求PCE ∠的大小.68.【2016高考冲刺卷(3)【江苏卷】】【选修4-2:矩阵与变换】(本小题满分10分)已知矩阵1252M x -⎡⎤⎢⎥=⎢⎥⎣⎦的一个特征值为2-,求2M . 69.【2016高考冲刺卷(3)【江苏卷】】【选修4-4:坐标系与参数方程】(本小题满分10分) 在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线2:sin 2cos (0)C a a ρθθ=>过点(2,4)P --的直线(t为参数)与曲线C 相交于点,M N 两点.(1)求曲线C 的平面直角坐标系方程和直线l 的普通方程; (2成等比数列,求实数a 的值.70.【2016高考冲刺卷(3)【江苏卷】】【选修4-5:不等式选讲】(本小题满分10分) 已知函数()121f x x x =++- (1)解不等式()4f x <(2)若不等式()1f x a ≥+对任意的x R ∈恒成立,求实数a 的取值范围. 71.【2016高考冲刺卷(3)【江苏卷】】(本小题满分10分) 袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为17。

2017年高考数学江苏试题及解析

2017年高考数学江苏试题及解析

2017年1.(2017年)集合A={1,2},B={a,a2+3},假设A∩B={1},那么实数a的值为.1.1 【解析】由题意1∈B,显然a2+3≥3,所以a=1,此时a2+3=4,满足题意,故答案为1.2. (2017年)复数z=(1+i)(1+2i),其中i是虚数单位,那么z的模是.2.10 【解析】|z|=|(1+i)(1+2i)|=|1+i||1+2i|=2×5=10.故答案为10.3.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进展检验,那么应从丙种型号的产品中抽取▲ 件.【答案】18【解析】应从丙种型号的产品中抽取30060181000⨯=件,故答案为18.【考点】分层抽样【名师点睛】在分层抽样的过程中,为了保证每个个体被抽到的可能性是一样的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i∶N i=n∶N.4. (2017年)右图是一个算法流程图,假设输入x的值为116,那么输出y的值是.4. -2 【解析】由题意得y=2+log2116=-2.故答案为-2.5. (2017年)假设tan(α+π4)=16那么tan α=.5. 75 【解析】tan α= tan[(α-π4)+π4]=tan(α-π4)+tan π41- tan(α-π4) tan π4=16+11-16=75.故答案为75.6. (2017年)如图,在圆柱O 1O 2有一个球O ,该球与圆柱的上、下底面与母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,那么V 1V 2的值是.6. 32 【解析】设球半径为r ,那么V1V2=πr2×2r 43πr3=32.故答案为32.7. (2017年)记函数f 〔x 〕=6+x-x 2的定义域为D .在区间[-4,5]上随机取一个数x ,那么x∈D 的概率是.7. 59 【解析】由6+x-x 2≥0,即x 2-x-6≤0,得-2≤x≤3,根据几何概型的概率计算公式得x∈D 的概率是3-〔-2〕5-〔-4〕=59.8. (2017年)在平面直角坐标系xOy 中,双曲线x23-y 2=1的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是F 1,F 2,那么四边形F 1PF 2Q 的面积是.8. 2 3 【解析】右准线方程为x=310=31010,渐近线方程为y=±33x ,设P 〔31010,3010〕,那么Q 〔31010,-3010〕,F 1〔-10,0〕,F 2〔10,0〕,那么S=210×3010=2 3.9.(2017·高考)等比数列{a n }的各项均为实数,其前n 项和为S n .S 3=74,S 6=634,那么a 8=________.[解析]设等比数列{a n }的公比为q ,那么由S 6≠2S 3,得q ≠1,那么⎩⎪⎨⎪⎧S 3=a 11-q 31-q =74,S 6=a 11-q 61-q=634,解得⎩⎪⎨⎪⎧q =2,a 1=14,那么a 8=a 1q 7=14×27=32.[答案]3210.(2017·高考)某公司一年购置某种货物600吨,每次购置x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,那么x 的值是________.解析:由题意,一年购置600x次,那么总运费与总存储费用之和为600x×6+4x =4⎝ ⎛⎭⎪⎫900x+x ≥8900x·x =240,当且仅当x =30时取等号,故总运费与总存储费用之和最小时x 的值是30.答案:3011. (2017年)函数f(x)=x 3-2x+e x-1e x ,其中e 是自然对数的底数.假设f(a-1)+f(2a 2)≤0,那么实数a 的取值围是___________.11. [-1,12] 【解析】因为f 〔-x 〕=-x 3+2x+1e x - e x=-f 〔x 〕,所以函数f 〔x 〕是奇函数,因为f′〔x 〕=3x 2-2+e x +e -x ≥3x 2-2+2e x ·e -x ≥0,所以函数f 〔x 〕在R 上单调递增,又f 〔a-1〕+ f(2a 2)≤0,即f(2a 2)≤f〔1-a 〕,所以2a 2≤1-a ,即2a 2+a-1≤0,解得-1≤a≤12,故实数a 的取值围为[-1,12].12. (2017年)如图,在同一个平面,向量→OA ,→OB ,→OC 的模分别为1,1,2,→OA 与→OC 的夹角为α,且tan α=7,→OB 与→OC 的夹角为45°.假设→OC =m →OA +n →OB(m ,n∈R),那么m n +=___________.12.3 【解析】由tan α=7可得sin α=7210,cos α=210,根据向量的分解, 易得⎩⎨⎧ncos 45°+mcos α=2,nsin 45°-msin α=0,即⎩⎪⎨⎪⎧22n+210m=2,22n-7210m=0,即⎩⎨⎧5n+m=10,5n-7m=0,即得m=54,n=74,所以m+n=3.13. (2017年)在平面直角坐标系xOy 中,A (-12,0),B (0,6),点P 在圆O :x 2+y 2=50上,假设→PA ·→PB ≤20,那么点P 的横坐标的取值围是_________. 【答案】 [52,1]【解析】设P (x ,y ,)由→PA ·→PB ≤20易得2x -y +5≤0,由⎩⎨⎧2x -y +5=0,x 2+y 2=50可得A :⎩⎨⎧x =-5,y =-5或B :⎩⎨⎧x =1,y =7.由2x -y +5≤0得P 点在圆左边弧⌒AB 上,结合限制条件-52≤x ≤52,可得点P 横坐标的取值围为 [52,1].14. (2017·高考)设f (x )是定义在R 上且周期为1的函数,在区间[0,1)上,f (x )=⎩⎪⎨⎪⎧x 2,x ∈D ,x ,x ∉D ,其中集合D =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =n -1n ,n ∈N *,那么方程f (x )-lg x =0的解的个数是________.解析:由于f (x )∈[0,1),因此只需考虑1≤x <10的情况,在此围,当x ∈Q 且x ∉Z 时,设x =q p,q ,p ∈N *,p ≥2且p ,q 互质.假设lg x ∈Q ,那么由lg x ∈(0,1),可设lg x =n m,m ,n ∈N *,m ≥2且m ,n 互质, 因此10n m =q p,那么10n=⎝ ⎛⎭⎪⎫q p m ,此时左边为整数,右边为非整数,矛盾,因此lg x ∉Q ,故lg x 不可能与每个周期x ∈D 对应的局部相等, 只需考虑lg x 与每个周期x ∉D 局部的交点.画出函数草图(如图),图点除(1,0)外其他交点横坐标均为无理数,属于每个周期x∉D 的局部,且x=1处(lg x)′=1x ln 10=1ln 10<1,那么在x=1附近仅有一个交点,因此方程f(x)-lg x=0的解的个数为8.答案:815.(2017年)如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D 不重合)分别在棱AD,BD上,且EF⊥AD.求证:〔1〕EF∥平面ABC;〔2〕AD⊥AC.【分析】〔1〕先由平面几何知识证明EF∥AB,再由线面平行判定定理得结论;〔2〕先由面面垂直性质定理得BC⊥平面ABD,那么BC⊥AD,再由AB⊥AD与线面垂直判定定理得AD⊥平面ABC,即可得AD⊥AC.【证明】〔1〕在平面ABC,∵AB⊥AD,EF⊥AD,∴EF∥AB.又∵EF⊄平面ABC,AB⊂平面ABC,∴EF∥平面ABC.〔2〕∵平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,BC⊂平面BCD,BC⊥BD,∴BC⊥平面ABD.∵AD⊂平面ABD,∴BC⊥AD.又AB⊥AD,BC∩AB=B,AB⊂平面ABC,BC⊂平面ABC,∴AD⊥平面ABC.又∵AC ⊂平面ABC ,∴AD ⊥AC .16.(2017年)向量a =(cos x ,sin x ),b =(3,-3),x ∈[0,π]. 〔1〕假设a ∥b ,求x 的值;〔2〕记f (x )=a ·b ,求f (x )的最大值和最小值以与对应的x 的值. 【解析】〔1〕∵a =(cos x ,sin x ),b =(3,-3),a ∥b , ∴-3cos x =3sin x .假设cos x =0,那么sin x =0,与sin 2x +cos 2x =1矛盾,∴cos x ≠0. 于是tan x =-33.又x ∈[0,π],∴x =5π6.〔2〕f (x )=a ·b =(cos x ,sin x )·(3,-3)=3cos x -3sin x =23cos ⎝ ⎛⎭⎪⎫x +π6.∵x ∈[0,π],∴x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6,∴-1≤cos ⎝ ⎛⎭⎪⎫x +π6≤32. 当x +π6=π6,即x =0时,f (x )取得最大值3; 当x +π6=π,即x =5π6时,f (x )取得最小值-2 3.17.(2017年)如图,在平面直角坐标系xOy 中,椭圆E :x 2a 2+y 2b 2=1〔a >b >0〕的左、右焦点分别为F 1,F 2,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点F 1作直线PF 1的垂线l 1,过点F 2作直线PF 2的垂线l 2. 〔1〕求椭圆E 的标准方程;〔2〕假设直线l 1,l 2的交点Q 在椭圆E 上,求点P 的坐标.17.解:〔1〕设椭圆的半焦距为c .因为椭圆E 的离心率为12,两准线之间的距离为8,所以c a =12,2a 2c =8,解得a=2,c=1,于是b=a 2-c 2=3,因此椭圆E 的标准方程是x 24+y23=1. 〔2〕由〔1〕知,F 1〔-1,0〕,F 2〔1,0〕.设P 〔x 0,y 0〕,因为P 为第一象限的点,故x 0>0,y 0>0. 当x 0=1时,l 2与l 1相交于F 1,与题设不符.当x 0≠1时,直线PF 1的斜率为y 0x 0+1,直线PF 2的斜率为y 0x 0-1.因为l 1⊥PF 1,l 2⊥PF 2,所以直线l 1的斜率为-x 0+1y 0,直线l 2的斜率为-x 0-1y 0, 从而直线l 1的方程:y=-x 0+1y 0〔x+1〕, ① 直线l 2的方程:y=-x 0-1y 0〔x-1〕. ②由①②,解得x=-x 0,y=x 02-1y 0,所以Q 〔-x 0,x 02-1y 0〕.因为点Q 在椭圆上,由对称性,得x 02-1y 0=±y 0,即x 02-y 02=1或x 02+y 02=1. 又P 在椭圆E 上,故x 024+y 023=1.由⎩⎪⎨⎪⎧x 02-y 02=1,x 024+y 023=1,解得x 0=477,y 0=377;⎩⎪⎨⎪⎧x 02-y 02=1,x 024+y 023=1,无解.因此点P 的坐标为〔477,377〕.18.(2017年)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32 cm ,容器Ⅰ的底面对角线AC 的长为107 cm ,容器Ⅱ的两底面对角线EG ,E 1G 1的长分别为14 cm 和62 cm .分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12 cm .现有一根玻璃棒l ,其长度为40 cm .〔容器厚度、玻璃棒粗细均忽略不计〕〔1〕将l 放在容器Ⅰ中,l 的一端置于点A 处,另一端置于侧棱CC 1上,求l 没入水中局部的长度;〔2〕将l 放在容器Ⅱ中,l 的一端置于点E 处,另一端置于侧棱GG 1上,求l 没入水中局部的长度.18.解:〔1〕由正棱柱的定义,CC 1⊥平面ABCD ,所以平面A 1ACC 1⊥平面ABCD ,CC 1⊥AC. 记玻璃棒的另一端落在CC 1上点M 处.因为AC=107,AM=40,所以MC=402-〔107〕2=30,从而sin∠MAC=34,记AM 与水面的交点为P 1,过P 1作P 1Q 1⊥AC,Q 1为垂足, 那么P 1Q 1⊥平面ABCD ,故P 1Q 1=12,从而AP 1=P 1Q 1sin∠MAC =16.答:玻璃棒l 没入水中局部的长度为16 cm.(如果将“没入水中局部〞理解为“水面以上局部〞,那么结果为24 cm)〔2〕如图,O ,O 1是正棱台的两底面中心.由正棱台的定义,OO 1⊥平面EFGH ,所以平面E 1EGG 1⊥平面EFGH ,O 1O⊥EG. 同理,平面E 1EGG 1⊥平面E 1F 1G 1H 1,O 1O⊥E 1G 1. 记玻璃棒的另一端落在GG 1上点N 处. 过G 作GK⊥E 1G 1,K 为垂足,那么GK =OO 1=32. 因为EG = 14,E 1G 1= 62,所以KG 1=62-142=24,从而GG 1=KG 12+GK 2=242+322=40.设∠EGG 1=α,∠ENG=β,那么sin α=sin〔π2+∠KGG 1〕=cos∠KGG 1=45.记EN与水面的交点为P2,过P2作P2Q2⊥EG,Q2为垂足,那么P2Q2⊥平面EFGH,答:玻璃棒l没入水中局部的长度为20 cm.(如果将“没入水中局部〞理解为“水面以上局部〞,那么结果为20 cm)19. (2017年)对于给定的正整数k,假设数列{a n}满足:a n-k+a n-k+1+…+a n-1+a n+1+…+a n+k-1+a n+k=2ka n对任意正整数n〔n>k〕总成立,那么称数列{a n}是“p〔k〕数列〞.〔1〕证明:等差数列{a n}是“p〔3〕数列〞;〔2〕假设数列{a n}既是“p〔2〕数列〞,又是“p〔3〕数列〞,证明:{a n}是等差数列.19.解:〔1〕因为{a n}是等差数列,设其公差为d,那么a n=a1+(n-1)d,从而,当n≥4时,a n-k+a n+k=a1+(n-k-1)d+a1+(n+k-1)d=2a1+2(n-1)d=2a n,k=1,2,3,所以a n-3+a n-2+a n-1+a n+1+a n+2+a n+3=6a n,因此等差数列{a n}是“p〔3〕数列〞.〔2〕数列{a n}既是“p〔2〕数列〞,又是“p〔3〕数列〞,因此,当n≥3时,a n-2+a n-1+a n+1+a n+2=4a n,①当n≥4时,a n-3+a n-2+a n-1+a n+1+a n+2+a n+3=6a n.②由①知,a n-3+a n-2=4a n-(a n+a n+1),③a n+2+a n+3=4a n+1-(a n-1+a n),④将③④代入②,得a n-1+a n+1=2a n,其中n≥4,所以a3,a4,a5,…是等差数列,设其公差为d′.在①中,取n=4,那么a2+a3+a5+a6=4a4,所以a2=a3- d′,在①中,取n=3,那么a 1+a 2+a 4+a 5=4a 3,所以a 1=a 3-2d′, 所以数列{a n }是等差数列.20. (2017年)函数f(x)=x 3+ax 2+bx+1(a >0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.〔极值点是指函数取极值时对应的自变量的值〕 〔1〕求b 关于a 的函数关系式,并写出定义域; 〔2〕证明:b 2>3a ;〔3〕假设f(x),f′(x)这两个函数的所有极值之和不小于-72,求a 的取值围.因为f′(x)的极值点是f(x)的零点.当a=3时,f′(x)>0〔x≠-1〕,故f(x)在R 上是增函数,f(x)没有极值;列表如下:故f(x)的极值点是x 1,x 2.从而a >3.因此b 2>3a.〔3〕由〔1〕知,f(x)的极值点是x 1,x 2,且x 1+x 2=-23a ,x 12+x 22=4a 2-6b9. 从而f(x 1)+f(x 2)=x 13+ax 12+bx 1+1+x 23+ax 22+bx 2+1=x 13(3x 12+2ax 1+b)+x 23(3x 22+2ax 2+b)+13a(x 12+ x 22)+23b(x 1+x 2)+2 =4a 3-6ab 27-4ab9+2=0.记f(x),f′(x)所有极值之和为h(a),因为f′(x)的极值为b-a 23=-19a 2+3a ,所以h(a)=-19a 2+3a ,a >3. 因为h′(a)=-29a-3a 2<0,于是h(a)在〔3,+∞〕上单调递减. 因为h 〔6〕=-72,于是h 〔a 〕≥h〔6〕,故a≤6. 因此a 的取值围为〔3,6].21. (2017年)A .[选修4-1:几何证明选讲]如图,AB 为半圆O 的直径,直线PC 切半圆O 于点C ,AP ⊥PC ,P 为垂足. 求证:〔1〕∠PAC=∠CAB; 〔2〕AC 2=AP·AB.解:〔1〕因为PC 切半圆O 于点C ,所以∠PCA=∠CBA, 因为AB 为半圆O 的直径,所以∠ACB=90°. 因为AP⊥PC,所以∠APC=90°,所以∠APC=∠CBA.〔2〕由〔1〕知,△APC∽△ACB,故AP AC =ACAB ,即AC 2=AP·AB.B .[选修4-2:矩阵与变换] 矩阵A=[0 11 0],B=[1 0 0 2].〔1〕求AB ;〔2〕假设曲线C 1:x 28+y22=1在矩阵AB 对应的变换作用下得到另一曲线C 2,求C 2的方程. 解:〔1〕因为A=[0 11 0],B=[1 00 2],所以AB=[0 11 0] [1 00 2] = [0 12 0].〔2〕设Q 〔x 0,y 0〕为曲线C 1上的任意一点, 它在矩阵AB 对应的变换作用下变为P(x ,y),因此曲线C 1在矩阵AB 对应的变换作用下得到曲线C 2:x 2+y 2=8.C .[选修4-4:坐标系与参数方程](2017年)在平面直角坐标系xOy 中,直线l 的参考方程为⎩⎪⎨⎪⎧x =-8+t ,y =t 2(t 为参数),曲线C的参数方程为⎩⎨⎧x =2s 2,y =22s (s 为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.【解析】直线l 的普通方程为x -2y +8=0. 因为点P 在曲线C 上,设P (2s 2,22s),所以点P 到直线l 的距离d =|2s 2-42s +8|12+(-2)2=2(s -2)2+45. 当s =2时,d min =455.所以当点P 的坐标为(4,4)时,曲线C 上点P 到直线l 的距离的最小值为455.D .[选修4-5:不等式选讲]a ,b ,c ,d 为实数,且a 2+b 2=4,c 2+d 2=16.求证:ac +bd ≤8.【证明】由柯西不等式得(ac+bd)2≤(a2+b2)(c2+d2).因为a2+b2=4,c2+d2=16,所以(ac+bd)2≤64,所以ac+bd≤8.22. (2017年)如图,在平行六面体ABCD-A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=3,∠BAD=120°.〔1〕求异面直线A1B与AC1所成角的余弦值;〔2〕求二面角B-A1D-A的正弦值.22.解:在平面ABCD,过点A作AE⊥AD,交BC于点E.因为AA1 平面ABCD,所以AA1⊥AE,AA1⊥AD.如图,以{→AE ,→AD ,→AA1 }为正交基底,建立空间直角坐标系A-xyz.因为AB=AD=2,AA1=3,∠BAD=120°.那么A〔0,0,0〕,B〔3,-1,0〕,D〔0,2,0〕,E〔3,0,0〕,A1〔0,0,3〕,C1〔3,1,3〕.〔1〕→A1B =〔3,-1,-3〕,→AC1=〔3,1,3〕,那么cos<→A1B ,→AC1>=→A1B ·→AC1|→A1B ||→AC1|=〔3,-1,-3〕·〔3,1,3〕7=-17.设m =〔x ,y ,z 〕为平面BA 1D 的一个法向量,23. (2017年)一个口袋中有m 个白球,n 个黑球〔m ,n∈N *,n≥2〕,这些球除颜色外全部一样.现将口袋中的球随机地逐个取出,并放入如下图的编号为1,2,3,…,m+n 的抽屉,其中第k 次取出的球放入编号为k 的抽屉〔k=1,2,3,…,m+n 〕.〔1〕试求编号为2的抽屉放的是黑球的概率P ;〔2〕随机变量X 表示最后一个取出的黑球所在抽屉编号的倒数,E(X)是X 的数学期望,证明:E(X)<n〔m+n 〕〔n-1〕.〔2〕随机变量X 的概率分布为。

2017年高考数学试卷分类汇编(复数)

2017年高考数学试卷分类汇编(复数)

2017年高考数学试卷分类汇编复数北京文理相同(2)若复数(1–i )(a +i )在复平面内对应的点在第二象限,则实数a 的取值范围是(A )(–∞,1) (B )(–∞,–1)(C )(1,+∞) (D )(–1,+∞)(2)若复数(1i)(i)a -+在复平面内对应的点在第二象限,则实数a 的取值范围是(A )(,1)-∞ (B )(,1)-∞-(C )(1,)+∞ (D )(1,)-+∞全国1理3.设有下面四个命题1p :若复数z 满足1z∈R ,则z ∈R ; 2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为A .13,p pB .14,p pC .23,p pD .24,p p 全国1文3.下列各式的运算结果为纯虚数的是A .i(1+i)2B .i 2(1-i)C .(1+i)2D .i(1+i)全国2理 1.31i i+=+( ) A .12i + B .12i - C .2i + D .2i - 全国2文2.(1+i )(2+i )=-i B. 1+3i C. 3+i D.3+3i全国3理2.设复数z 满足(1+i)z =2i ,则∣z ∣=A .12B .2CD .2全国3文2.复平面内表示复数z=i(–2+i)的点位于A .第一象限B .第二象限C .第三象限D .第四象限 山东理(2)已知a R ∈,i 是虚数单位,若,4z a z z =⋅=,则a=(A )1或-1 (B (C )(D山东文(2)已知i 是虚数单位,若复数z 满足i 1i z =+,则2z =(A)-2i ( B)2i (C)-2 (D)2天津文理相同(9)已知a ∈R ,i 为虚数单位,若i 2ia -+为实数,则a 的值为 . 江苏2.已知复数z=(1+i )(1+2i ),其中i 是虚数单位,则z 的模是__________浙江12.已知a ,b ∈R ,2i 34i a b +=+()(i 是虚数单位)则22a b += ,ab = 。

决胜2017年高考全国名校试题数学分项汇编(江苏特刊) 专题13 复数(解析版) 含解析

决胜2017年高考全国名校试题数学分项汇编(江苏特刊) 专题13 复数(解析版) 含解析

一、填空题1. 【 2016年第二次全国大联考(江苏卷)】已知复数z 满足(23i)32i z -=+(i 是虚数单位),则z 的模为_______.2. 【2016年第三次全国大联考【江苏卷】】已知,a b ∈R ,i ibia 231-=++,其中i 是虚数单位,则ab += . 【答案】6【解析】由i i i bi a +=-+=+5)23)(1(得1,5==b a ,故6=+b a .3. 【2016年第四次全国大联考【江苏卷】】已知复数z 满足(1i)i z -=(i 是虚数单位),则z 的模为_______.【解析】因为z ==,则||z == 4. 【2016年第一次全国大联考【江苏卷】】已知复数21iz i-=+,则z 的共轭复数的模为_______.【答案】2【解析】因为()()212131(1)(1)22i i i z i i i i ---===-++-,所以1322z i =+,则||z =本题若用模的性质,则能简化运算:2|2||||z|||1|1|2i i z i i --=====++ 5. 【2016高考押题卷(1)【江苏卷】】已知23(,,ia bi ab R i i+=+∈为虚数单位),则a b +=_______.【答案】1 【解析】23323,2, 1.ia bi i a bi ab a b i+=+⇒-=+⇒==-+= 6. 【2016高考押题卷(3)【江苏卷】】设复数2(a,b R,z a bi i =-∈是虚数单位)的模为1,则复数2z 的共轭复数的模是 . 【答案】1.【解析】由题设可知1422=+b a ,而abi b a bi a z 44)2(2222--=-=,其共轭复数为abi b a z 44222+-=,其模为1)4(16)4(||222222222=+=+-=b a b a b a z .7. 【2016高考冲刺卷(2)【江苏卷】】已知复数z 满足42-=z ,若z 的虚部大于0,则=z .【答案】2i 【解析】试题分析:设222(,,0),24z a bi a b R b z a b abi =+∈>=-+=-则,因此 20,4,2a b b =-=-=±,又0b >则2,2b z i ==8. 【南京市、盐城市2016届高三年级第二次模拟考试】若复数z =(1+m i)(2-i)(i 是虚数单位)是纯虚数,则实数m 的值为 ▲ .9. 【江苏省扬州中学2016届高三4月质量监测】若复数z 1=3+4i ,z 2=a +i ,且z 1·¯z 2是实数(其中¯z 2为z 2的共轭复数),则实数a =___________. 【答案】34【解析】试题分析:因为i a a i a i z z )34(43))(43(21-++=-+=⋅是实数,所以.43,034==-a a10. 【2016高考押题卷(2)【江苏卷】】已知i为虚数单位,计算()21i=【答案】14-【解析】原式=ii 32231+-i i 4341)31(2)31(2--=+-=11. 【2016高考冲刺卷(1)【江苏卷】】已知复数()1z i i =-(i 为虚数单位),则复数z 在复平面上对应的点位于第 象限.12. 【2016高考冲刺卷(3)【江苏卷】】设复数22i(1i)z +=+(i 为虚数单位),则z 的虚部是_____________. 【答案】1- 【解析】()2221221ii z i i i ++===-+,所以虚部为1- 13. 【2016高考冲刺卷(5)【江苏卷】】 复数iz 251+=的共轭复数为____▲_____.29i【解析】复数299z i ===-29i . 14. 【2016高考冲刺卷(6)【江苏卷】】若复数i i z (21-=为虚数单位),则=+⋅z z z .【答案】i 26-【解析】i i z z z 26215-=-+=+⋅15. 【2016高考冲刺卷(7)【江苏卷】】已知复数z =(3+i)2(i 为虚数单位),则|z|=________ 【答案】10【解析】22(3)9686z i i i i =+=++=+,10z ==.16. 【2016高考冲刺卷(9)【江苏卷】】设复数122,12z i z i =+=+,在复平面的对应的向量分别为,OA OB ,则向量AB 对应的复数所对应的点的坐标为____________. 【答案】(1,1)-【解析】∵复数122,12z i z i =+=+,∴(2,1)OA =,(1,2)OB =,∴(1,1)AB OB OA =-=-,∴向量AB 对应的复数所对应的点的坐标为(1,1)-.17. 【南通市2016届高三下学期第三次调研考试数学试题】已知复数()22z i =-(i 为虚数单位),则z 的共轭复数为 . 【答案】34i + 【解析】 试题分析:()22=34,34.z i i z i =--=+18. 【盐城市2016届高三年级第三次模拟考试】若复数z 满足(2)43i z i -=+(i 为虚数单位),则||z = ▲.19. 【江苏省苏锡常镇四市2016届高三教学情况调研(二)数学试题】已知2(i)2i a -=,其中i 是虚数单位,那么实数a = ▲ . 【答案】1- 【解析】试题分析:22210(i)2i 122 1.22a a a ai i a a ⎧-=-=⇒--=⇒⇒=-⎨-=⎩20. 【江苏省南京市2016届高三年级第三次学情调研适应性测试数学】已知0<a <2,复数z 的实部为a ,虚部为1,则|z |的取值范围是 ▲ .【答案】【解析】试题分析:由题意得(1。

2017年普通高等学校招生全国统一考试数学试题(江苏卷,含解析)

2017年普通高等学校招生全国统一考试数学试题(江苏卷,含解析)

绝密★启用前2017年普通高等学校招生全国统一考试数学试题江苏卷参考公式:柱体的体积V Sh =,其中S 是柱体的底面积,h 是柱体的高. 球的体积34π3R V =,其中R 是球的半径.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{1,2}A =,2{,3}B a a =+,若{1}A B = ,则实数a 的值为 ▲ .【答案】1【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意,故答案为1. 【考点】集合的运算、元素的互异性【名师点睛】(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致错误.(3)防范空集.在解决有关,A B A B =∅⊆ 等集合问题时,往往容易忽略空集的情况,一定要先考虑∅时是否成立,以防漏解.2.已知复数(1i)(12i)z =++,其中i 是虚数单位,则z 的模是 ▲ .【解析】(1i)(12i)1i 12i z =++=++==【考点】复数的模【名师点睛】对于复数的四则运算,要切实掌握其运算技巧和常规思路,如(i)(i)a+b c+d =()()i(,)ac bd +ad +bc a,b,c d -∈R .其次要熟悉复数相关概念,如复数i(,)a+b a b ∈R 的实部为a 、虚部为b (,)a b 、共轭复数为i a b -.3.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取 ▲ 件. 【答案】18【解析】应从丙种型号的产品中抽取30060181000⨯=件,故答案为18. 【考点】分层抽样【名师点睛】在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i ∶N i =n ∶N . 4.右图是一个算法流程图,若输入x 的值为116,则输出y 的值是 ▲ .【答案】2-【解析】由题意得212log 216y =+=-,故答案为2-. 【考点】条件结构的流程图【名师点睛】算法与流程图的考查,侧重于对流程图循环结构、条件结构和伪代码的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环的初始条件、循环次数、循环的终止条件,要通过循环规律,明确流程图研究的数学问题,是求和还是求项. 5.若π1tan(),46α-=则tan α= ▲ .【答案】75【考点】两角和的正切公式【名师点睛】三角函数求值的三种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数. (2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.一般有如下两种思路:①适当变换已知式,进而求得待求式的值;②变换待求式,便于将已知式的值代入,从而达到解题的目的. (3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,进而确定角. 6.如图,在圆柱12O O 内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱12O O 的体积为1V ,球O 的体积为2V ,则12V V 的值是 ▲ .【答案】32【解析】设球半径为r ,则213223423V r r V r π⨯==π.故答案为32. 【考点】圆柱的体积、球的体积【名师点睛】空间几何体体积问题的常见类型及解题策略:①若给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解;②若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.7.记函数()f x D .在区间[4,5]-上随机取一个数x ,则x D ∈的概率是 ▲ .【答案】59【考点】几何概型【名师点睛】(1)当试验的结果构成的区域为长度、面积或体积等时,应考虑使用几何概型求解. (2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.(3)几何概型有两个特点:①无限性,②等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.8.在平面直角坐标系xOy 中,双曲线2213xy -=的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是12,F F ,则四边形12F PF Q 的面积是 ▲ .【答案】【考点】双曲线渐近线、准线【名师点睛】(1)已知双曲线方程22221x y a b-=求渐近线:22220x y by x a b a -=⇒=±;(2)已知渐近线y mx =可设双曲线方程为222m x y λ-=;(3)双曲线的焦点到渐近线的距离为b ,垂足为对应准线与渐近线的交点.9.等比数列{}n a 的各项均为实数,其前n 项和为n S ,已知3676344S S ==,,则8a = ▲ .【答案】32【解析】当1q =时,显然不符合题意;当1q ≠时,3161(1)714(1)6314a q q a q q ⎧-=⎪-⎪⎨-⎪=⎪-⎩,解得1142a q ⎧=⎪⎨⎪=⎩,则7812324a =⨯=. 【考点】等比数列的前n 项和公式、通项公式【名师点睛】在解决等差、等比数列的运算问题时,有两个处理思路:①利用基本量,将多元问题简化为一元问题,虽有一定量的运算,但思路简洁,目标明确;②利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质成立的前提条件,有时需要进行适当变形.在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.10.某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是 ▲ . 【答案】30【解析】总费用为600900464()4240x x x x +⨯=+≥⨯=,当且仅当900x x=,即30x =时等号成立.【考点】基本不等式求最值【名师点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.11.已知函数31()2e exx f x x x =-+-,其中e 是自然对数的底数.若2(1)(2)0f a f a -+≤,则实数a 的取值范围是 ▲ . 【答案】1[1,]2-【考点】利用函数性质解不等式【名师点睛】解函数不等式时,首先根据函数的性质把不等式转化为(())(())f g x f h x >的形式,然后根据函数()f x 的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在函数()f x 的定义域内.12.如图,在同一个平面内,向量OA ,OB ,OC 的模分别为1,1OA 与OC的夹角为α,且tan α=7,OB 与OC 的夹角为45°.若OC mOA nOB =+(,)m n ∈R ,则m n += ▲ .【答案】3【解析】由tan 7α=可得sin α=cos α=易得cos 45cos sin 45sin 0n m n m αα⎧︒+=⎪⎨︒-=⎪⎩2100n m m +=⎪⎪=,即510570n m n m +=⎧⎨-=⎩,即得57,44m n ==,所以3m n +=. 【考点】向量表示【名师点睛】(1)向量的坐标运算将向量与代数有机结合起来,这就为向量和函数、方程、不等式的结合提供了前提,运用向量的有关知识可以解决某些函数、方程、不等式问题.(2)以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题.通过向量的坐标运算,可将原问题转化为解不等式或求函数值域的问题,是此类问题的一般方法. (3)向量的两个作用:①载体作用,关键是利用向量的意义、作用脱去“向量外衣”,转化为我们熟悉的数学问题;②工具作用,利用向量可解决一些垂直、平行、夹角与距离问题.13.在平面直角坐标系xOy 中,(12,0),(0,6),A B -点P 在圆22:50O x y +=上,若20,PA PB ⋅≤则点P 的横坐标的取值范围是 ▲ .【答案】[-【考点】直线与圆、线性规划【名师点睛】对于线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求横坐标或纵坐标、直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等,最后结合图形确定目标函数的最值或取值范围.14.设()f x 是定义在R 上且周期为1的函数,在区间[0,1)上,2,,(),,x x D f x x x D ⎧∈⎪=⎨∉⎪⎩其中集合1{n D x x n -==,*}n ∈N ,则方程()lg 0f x x -=的解的个数是 ▲ .【答案】8【解析】由于()[0,1)f x ∈,则需考虑110x ≤<的情况, 在此范围内,x ∈Q 且x D ∈时,设*,,,2qx p q p p=∈≥N ,且,p q 互质, 若lg x ∈Q ,则由lg (0,1)x ∈,可设*lg ,,,2nx m n m m=∈≥N ,且,m n 互质,因此10n mq p=,则10()nm q p =,此时左边为整数,右边为非整数,矛盾,因此lg x ∉Q ,因此lg x 不可能与每个周期内x D ∈对应的部分相等, 只需考虑lg x 与每个周期x D ∉的部分的交点,画出函数图象,图中交点除外(1,0)其他交点横坐标均为无理数,属于每个周期x D ∉的部分, 且1x =处11(lg )1ln10ln10x x '==<,则在1x =附近仅有一个交点,因此方程()lg 0f x x -=的解的个数为8.【考点】函数与方程【名师点睛】对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)如图,在三棱锥A-BCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E ,F (E 与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD .求证:(1)EF ∥平面ABC ; (2)AD ⊥AC .【答案】(1)见解析;(2)见解析.【解析】试题分析:(1)先由平面几何知识证明EF AB ∥,再由线面平行判定定理得结论;(2)先由面面垂直性质定理得BC ⊥平面ABD ,则BC ⊥AD ,再由AB ⊥AD 及线面垂直判定定理得AD ⊥平面ABC ,即可得AD ⊥AC .试题解析:(1)在平面ABD 内,因为AB ⊥AD ,EF AD ⊥,所以EF AB ∥. 又因为EF ⊄平面ABC ,AB ⊂平面ABC ,所以EF ∥平面ABC .【考点】线面平行判定定理、线面垂直判定与性质定理、面面垂直性质定理【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直. 16.(本小题满分14分)已知向量(cos ,sin ),(3,[0,π].x x x ==∈a b (1)若a ∥b ,求x 的值;(2)记()f x =⋅a b ,求()f x 的最大值和最小值以及对应的x 的值.【答案】(1)5π6x =;(2)0x =时,取得最大值3;5π6x =时,取得最小值-.【解析】试题分析:(1)先由向量平行的坐标表示得3sin x x =,再根据同角三角函数的基本关系可得5π6x =;(2)先由向量数量积的坐标表示并结合配角公式得π(6))f x x =+,再根据x 的取值范围及余弦函数的性质可求得最值.试题解析:(1)因为co ()s ,sin x x =a ,(3,=b ,a ∥b ,所以3sin x x =. 若cos 0x =,则sin 0x =,与22sin cos 1x x +=矛盾,故cos 0x ≠.于是tan3x =-,所以5π6x =.(2)π(cos ,sin )(3,3cos ())6f x x x x x x =⋅=⋅==+a b .因为,所以ππ7π[,]666x +∈,从而π1cos()6x -≤+≤于是,当ππ66x +=,即0x =时,取到最大值3;当π6x +=π,即5π6x =时,取到最小值-.【考点】向量共线、数量积、三角函数的最值【名师点睛】(1)向量平行:1221x y x y ⇒=∥a b ,,,λλ≠⇒∃∈=0R ∥a b b a b ,BA AC OA λ=⇔=111OB OC λλλ+++ ;(2)向量垂直:121200x x y y ⊥⇔⋅=⇔+=a b a b ;(3)向量加减乘:±=a b 221212(,),||,||||cos ,x x y y ±±=⋅=⋅<>a a a b a b a b . 17.(本小题满分14分)如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y E a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点1F 作直线1PF 的垂线1l ,过点2F 作直线2PF 的垂线2l . (1)求椭圆E 的标准方程;(2)若直线1l ,2l 的交点Q 在椭圆E 上,求点P 的坐标.【答案】(1)22143x y +=;(2).试题解析:(1)设椭圆的半焦距为c .因为椭圆E 的离心率为12,两准线之间的距离为8,所以12c a =,228a c=,解得2,1a c ==,于是b ==E 的标准方程是22143x y+=.因为11l PF ⊥,22l PF ⊥,所以直线1l 的斜率为001x y +-,直线2l 的斜率为001x y --,从而直线1l 的方程:001(1)x y x y +=-+, ① 直线2l 的方程:001(1)x y x y -=--. ② 由①②,解得20001,x x x y y -=-=,所以2001(,)x Q x y --. 因为点Q 在椭圆上,由对称性,得20001x y y -=±,即22001x y -=或22001x y +=. 又P 在椭圆E 上,故2200143x y +=.由220022001143x y x y ⎧-=⎪⎨+=⎪⎩,解得0077x y ==220022001143x y x y ⎧+=⎪⎨+=⎪⎩,无解. 因此点P的坐标为. 【考点】椭圆方程、直线与椭圆的位置关系【名师点睛】直线与圆锥曲线的位置关系,一般转化为直线方程与圆锥曲线方程组成的方程组,利用根与系数关系或求根公式进行转化,要充分利用椭圆和双曲线的几何性质、点在曲线上(点的坐标满足曲线方程)等. 18.(本小题满分16分)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm ,容器Ⅰ的底面对角线AC 的长为,容器Ⅱ的两底面对角线EG ,11E G 的长分别为14cm 和62cm .分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm .现有一根玻璃棒l ,其长度为40cm .(容器厚度、玻璃棒粗细均忽略不计)(1)将l 放在容器Ⅰ中,l 的一端置于点A 处,另一端置于侧棱1CC 上,求l 没入水中部分的长度; (2)将l 放在容器Ⅱ中,l 的一端置于点E 处,另一端置于侧棱1GG 上,求l 没入水中部分的长度.【答案】(1)16;(2)20.【解析】试题分析:(1)转化为直角三角形ACM 中,利用相似性质求解AP 1;(2)转化到三角形EGN 中,先利用直角梯形性质求角1EGG ∠,再利用正弦定理求角ENG ∠,最后根据直角三角形求高,即为l 没入水中部分的长度.(如果将“没入水中部分”理解为“水面以上部分”,则结果为24cm)(2)如图,O ,O 1是正棱台的两底面中心.由正棱台的定义,OO 1⊥平面EFGH ,所以平面E 1EGG 1⊥平面EFGH ,O 1O ⊥EG . 同理,平面E 1EGG 1⊥平面E 1F 1G 1H 1,O 1O ⊥E 1G 1. 记玻璃棒的另一端落在GG 1上点N 处. 过G 作GK ⊥E 1G 1,K 为垂足,则GK =OO 1=32. 因为EG = 14,E 1G 1= 62,所以KG 1=6214242-=,从而140GG ===.于是4s i 3s555N Eα=∠. 记EN 与水面的交点为P 2,过P 2作P 2Q 2⊥EG ,Q 2为垂足,则P 2Q 2⊥平面EFGH , 故P 2Q 2=12,从而EP 2=2220sin P NEGQ =∠.答:玻璃棒l 没入水中部分的长度为20cm .(如果将“没入水中部分”理解为“水面以上部分”,则结果为20cm) 【考点】正、余弦定理【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向;第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化; 第三步:求结果. 19.(本小题满分16分)对于给定的正整数k ,若数列{}n a 满足:1111n k n k n n n k n k a a a a a a --+-++-++++++++ 2n ka =对任意正整数()n n k >总成立,则称数列{}n a 是“()P k 数列”. (1)证明:等差数列{}n a 是“(3)P 数列”;(2)若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列.【答案】(1)见解析;(2)见解析.试题解析:(1)因为{}n a 是等差数列,设其公差为d ,则1(1)n a a n d =+-, 从而,当4n ≥时,n k n k a a a -++=+11(1)(1)n k d a n k d --+++-122(1)2n a n d a =+-=,1,2,3,k =所以n n n n n n n a a a a a a a ---+++++=321123+++6, 因此等差数列{}n a 是“(3)P 数列”.(2)数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,因此, 当3n ≥时,n n n n n a a a a a --+++++=21124,①当4n ≥时,n n n n n n n a a a a a a a ---++++++++=3211236.② 由①知,n n n a a a ---+=-32141()n n a a ++,③n n n a a a ++++=-23141()n n a a -+,④将③④代入②,得n n n a a a -++=112,其中4n ≥,所以345,,,a a a 是等差数列,设其公差为d'.在①中,取4n =,则235644a a a a a +++=,所以23a a d'=-, 在①中,取3n =,则124534a a a a a +++=,所以132a a d'=-, 所以数列{}n a 是等差数列. 【考点】等差数列定义及通项公式【名师点睛】证明{}n a 为等差数列的方法:①用定义证明:1(n n a a d d +-=为常数);②用等差中项证明:122n n n a a a ++=+;③通项法:n a 为关于n 的一次函数;④前n 项和法:2n S An Bn =+.20.(本小题满分16分)已知函数32()1(0,)f x x ax bx a b =+++>∈R 有极值,且导函数()f x '的极值点是()f x 的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b 关于a 的函数关系式,并写出定义域; (2)证明:23b a >;(3)若()f x ,()f x '这两个函数的所有极值之和不小于72-,求a 的取值范围.【答案】(1)3a >;(2)见解析;(3)36a <≤.试题解析:(1)由32()1f x x ax bx =+++,得222()323()33a a f x x axb x b '=++=++-.当3a x =-时,()f x '有极小值23ab -.因为()f x '的极值点是()f x 的零点.所以33()1032793a a a ab f -=-+-+=,又0a >,故2239a b a=+.因为()f x 有极值,故()=0f x '有实根,从而231(27)039a b a a-=-≤,即3a ≥.当3a =时,()>0(1)f x x '≠-,故()f x 在R 上是增函数,()f x 没有极值;当3a >时,()=0f x '有两个相异的实根1=3a x -,2=3a x -.列表如下:故()f x 的极值点是12,x x .从而3a >.因此2239a b a=+,定义域为(3,)+∞.(3)由(1)知,()f x 的极值点是12,x x ,且1223x x a +=-,22212469a b x x -+=.从而323212111222()()11f x f x x ax bx x ax bx +=+++++++2222121122121212(32)(32)()()23333x x x ax b x ax b a x x b x x =++++++++++346420.279a ab ab -=-+=记()f x ,()f x '所有极值之和为()h a ,因为()f x '的极值为221339a b a a-=-+,所以213()=9h a a a -+,3a >.因为223()=09h a a a '--<,于是()h a 在(3,)+∞上单调递减. 因为7(6)=2h -,于是()(6)h a h ≥,故6a ≤.因此a 的取值范围为(36],. 【考点】利用导数研究函数得单调性、极值及零点【名师点睛】涉及函数的零点问题、方程解的个数问题、函数图象的交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题.......,并在相应的答题区域内作答............,若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修4-1:几何证明选讲](本小题满分10分)如图,AB 为半圆O 的直径,直线PC 切半圆O 于点C ,AP ⊥PC ,P 为垂足. 求证:(1)PAC CAB ∠=∠; (2)2AC AP AB =⋅.【答案】(1)见解析;(2)见解析.(2)由(1)知,APC ACB △∽△,故AP ACAC AB=,即2·AC AP AB =. 【考点】圆的性质、相似三角形【名师点睛】(1)解决与圆有关的成比例线段问题的两种思路:①直接应用相交弦、切割线定理及其推论;②当比例式(等积式)中的线段分别在两个三角形中时,可转化为证明三角形相似,一般思路为“相似三角形→比例式→等积式”.在证明中有时还要借助中间比来代换,解题时应灵活把握. (2)应用相交弦定理、切割线定理要抓住几个关键内容:如线段成比例与相似三角形、圆的切线及其性质、与圆有关的相似三角形等. B .[选修4-2:矩阵与变换](本小题满分10分) 已知矩阵0110,.1002⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦A B(1)求AB ;(2)若曲线221:182x y C +=在矩阵AB 对应的变换作用下得到另一曲线2C ,求2C 的方程. 【答案】(1);(2)228x y +=.(2)设00(,)Q x y 为曲线1C 上的任意一点, 它在矩阵AB 对应的变换作用下变为(,)P x y ,则000210x x y y ⎡⎤⎡⎤=⎡⎢⎥⎢⎥⎣⎦⎣⎤⎥⎣⎦⎦⎢,即002y x x y =⎧⎨=⎩,所以002x yx y =⎧⎪⎨=⎪⎩. 因为点00(,)Q x y 在曲线1C 上,所以2200188x y +=,从而22188x y +=,即228x y +=.因此曲线1C 在矩阵AB 对应的变换作用下得到曲线2:C 228x y +=. 【考点】矩阵乘法、线性变换【名师点睛】(1)矩阵乘法注意对应相乘:a b m p am bn ap bq c d n q cm dn cp dq ++⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥++⎣⎦⎣⎦⎣⎦; (2)矩阵变换:a b x x c d y y '⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦⎣⎦表示点(,)x y 在矩阵a b c d ⎡⎤⎢⎥⎣⎦变换下变成点(,)x y ''. C .[选修4-4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,已知直线l 的参考方程为82x tty =-+⎧⎪⎨=⎪⎩(t 为参数),曲线C的参数方程为22x sy ⎧=⎪⎨=⎪⎩(s 为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.【解析】试题分析:先将直线l 的参考方程化为普通方程,再根据点到直线距离公式得点P 到直线l 的的距离d ==【考点】参数方程与普通方程的互化【名师点睛】(1)将参数方程化为普通方程,消参数时常用代入法、加减消元法、三角恒等变换法;(2)把参数方程化为普通方程时,要注意哪一个量是参数,并且要注意参数的取值对普通方程中x 及y 的取值范围的影响.D .[选修4-5:不等式选讲](本小题满分10分)已知,,,a b c d 为实数,且22224,16,a b c d +=+=证明:8.ac bd +≤【答案】见解析【考点】柯西不等式【名师点睛】柯西不等式的一般形式:设a 1,a 2,…,a n ,b 1,b 2,…,b n 为实数,则(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2,当且仅当b i =0或存在一个数k ,使a i =kb i (i =1,2,…,n )时,等号成立.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,在平行六面体ABCD-A 1B 1C 1D 1中,AA 1⊥平面ABCD ,且AB =AD =2,AA 1120BAD ∠=︒. (1)求异面直线A 1B 与AC 1所成角的余弦值; (2)求二面角B-A 1D-A 的正弦值.【答案】(1)17;(2)4. 【解析】试题分析:(1)先根据条件建立空间直角坐标系,进而得相关点的坐标,求出直线A 1B 与AC 1的方向向量,根据向量数量积求出方向向量夹角,最后根据异面直线所成角与方向向量夹角之间相等或互补可得夹角的余弦值;(2)根据建立的空间直角坐标系,得相关点的坐标,求出各半平面的法向量,根据向量数量积求出法向量的夹角,最后根据二面角与法向量夹角之间关系确定二面角的正弦值. 试题解析:在平面ABCD 内,过点A 作AE ⊥AD ,交BC 于点E . 因为AA 1⊥平面ABCD ,所以AA 1⊥AE ,AA 1⊥AD .如图,以1{,,}AE AD AA为正交基底,建立空间直角坐标系A -xyz . 因为AB =AD =2,AA 1120BAD ∠=︒.则11(0,0,0),1,0),(0,2,0),A B D E A C -.(1)111,AB AC =-= ,则1111111,1cos ,77||||A B AC A B AC A B AC ⋅-⋅===-. 因此异面直线A 1B 与AC 1所成角的余弦值为17.设二面角B -A 1D -A 的大小为θ,则3|cos |4θ=. 因为[0,]θ∈π,所以sin θ==.因此二面角B -A 1D -A. 【考点】空间向量、异面直线所成角及二面角【名师点睛】利用法向量求解空间线面角、面面角的关键在于“四破”:①破“建系关”,构建恰当的空间直角坐标系;②破“求坐标关”,准确求解相关点的坐标;③破“求法向量关”,求出平面的法向量;④破“应用公式关”. 23.(本小题满分10分)已知一个口袋中有m 个白球,n 个黑球(,*,2m n n ∈N ≥),这些球除颜色外全部相同.现将口袋中的球随机地逐个取出,并放入如图所示的编号为1,2,3,,m n + 的抽屉内,其中第k 次取出的球放入编号为k 的抽屉(1,2,3,,)k m n =+ .(1)试求编号为2的抽屉内放的是黑球的概率p ;(2)随机变量X 表示最后一个取出的黑球所在抽屉编号的倒数,()E X 是X 的数学期望,证明:()()(1)nE X m n n <+-.【答案】(1)nm n+;(2)见解析. 试题解析:(1)编号为2的抽屉内放的是黑球的概率p 为:11C C n m n n m nn p m n -+-+==+. (2)随机变量X 的概率分布为随机变量X 的期望为11C 111(1)!()C C (1)!()!n m nm nk n nk n k n m nm n k E X k k n k n -++-==++-=⋅=⋅--∑∑. 所以1(2)!1(2)!()C (1)!()!(1)C (2)!()!m nm nn n k n k nm nm nk k E X n k n n n k n ++==++--<=-----∑∑ 222121(1C C C )(1)C n n n n n m n nm nn ----+-+=++++- 12221121(C C C C )(1)C n n n n n n n m n nm nn ------+-+=++++- 12221(C C C )(1)C n n n n n m n nm nn ---+-+=+++- 12221(C C )(1)C n n m n m n nm nn --+-+-+==+- 11C (1)C ()(1)n m n n m nn n m n n -+-+==-+-, 即()()(1)nE X m n n <+-.【考点】古典概型概率、排列组合、随机变量及其分布、数学期望 【名师点睛】求解离散型随机变量的数学期望的一般步骤为:(1)“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;(2)“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率和公式、独立事件的概率积公式,以及对立事件的概率公式等),求出随机变量取每个值时的概率;(3)“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;(4)“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布(,)X B n p ),则此随机变量的期望可直接利用这种典型分布的期望公式(()E X np =)求得.因此,应熟记常见的典型分布的期望公式,可加快解题速度.。

【推荐】专题13 复数-决胜2017年高考全国名校试题数学第一学期分项汇编(江苏特刊)

【推荐】专题13 复数-决胜2017年高考全国名校试题数学第一学期分项汇编(江苏特刊)

一、填空
1.【江苏省苏州市2017届高三暑假自主学习测试】已知是虚数单位,复数z的共轭复数为,若2z =+ 2 - 3,则z=▲ .
2
【答案】i-
2.【江苏省泰州中学2017届高三摸底考试】已知复数满足()
+⋅=-,则的模为.
1i z i
【解析】
3.【南京市2017届高三年级学情调研】设复数满足()34
+=-+(为虚数单位),则的
z i i i
模为 .
【解析】
4.【泰州中学2016-2017
则复数的虚部为.
-
【答案】2
【解析】
,所以复数的虚部为2-
5.【苏北四市(淮安、宿迁、连云港、徐州)2017届高三上学期期中】已知复数满足(1i)2
z-=,其中为虚数单位,则的实部为▲ .
【答案】1
【解析】
1
6. 【2017届高三七校联考期中考试】已知复数i z i z +=+=33121 (i 为虚数单位).在复平面内,21z z -对应的点在第 ▲ 象限.
【答案】二
7. 【无锡市普通高中2017届高三上学期期中基础性检测】若复数
()()()1120,x y i i x y R -+++=∈⎡⎤⎣⎦,则x y +=_____________.
【答案】
【解析】
试题分析:因为02≠+i ,所以0)1(1=++-i y x ,故1,1-==y x ,则0=+y x ,故应填答案.。

2017年高考数学江苏卷(附参考答案及详解)

2017年高考数学江苏卷(附参考答案及详解)
""!0平面 "$&'#且 "$'"''$#""!'槡(#.$"''!$#;! $!%求异面直线 "!$ 与"&! 所成角的余弦值* $$%求二面角 $5"!'5" 的正弦值!
第 $$ 题 图
#"
参考答案与详细解析
"#!$ 年 普 通 高 等 学 校 招 生 全 国 统 一 考 试 江 苏 卷
$$%若直线:!#:$ 的交点 - 在椭圆A 上#求点 * 的坐标!
!9!$本 小 题 满 分 !& 分%对 于 给 定 的 正 整 数?#若 数 列!0%"满 足 &0%)? 10%)?1! 1 ' 10%)! 10%1! 1 ' 10%1?)! 10%1? '$?0%#对 任 意 正 整 数 %$%$?%总 成 立 #则 称 数 列 !0% "是 -*$?%数 列 .! $!%证 明 &等 差 数 列 !0% "是 -*$(%数 列 .* $$%若 数 列 !0% "既 是 -* $$%数 列 .#又 是 -* $(%数 列 .# 证 明 &!0% "是 等 差 数 列 !
写在题中横线上
!!已知集合 "'!!#$"#$'!0#0$1("!若 "%$'!!"#则 实 数0 的
值为!!!!!
$!已知复数.'$!10%$!1$0%#其中0是虚数单位#则. 的模是!!
!!!
(!某工厂生产甲,乙,丙,丁四种不同型号的产品#产 量 分 别 为 $###

2017年度高考数学江苏试题及解析

2017年度高考数学江苏试题及解析

2017年江苏1.(2017年江苏)已知集合A={1,2},B={a,a2+3},若A∩B={1},则实数a的值为.1.1 【解析】由题意1∈B,显然a2+3≥3,所以a=1,此时a2+3=4,满足题意,故答案为1.2. (2017年江苏)已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是.2.10 【解析】|z|=|(1+i)(1+2i)|=|1+i||1+2i|=2×5=10.故答案为10.3. 某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取▲ 件.【答案】18【解析】应从丙种型号的产品中抽取30060181000⨯=件,故答案为18.【考点】分层抽样【名师点睛】在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i∶N i=n∶N.4. (2017年江苏)右图是一个算法流程图,若输入x的值为116,则输出y的值是.4. -2 【解析】由题意得y=2+log2116=-2.故答案为-2.5. (2017年江苏)若tan(α+π4)=16则tan α= .5. 75 【解析】tan α= tan[(α-π4)+π4]=tan(α-π4)+tan π41- tan(α-π4) tan π4=16+11-16=75.故答案为75.6. (2017年江苏)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是 .6. 32 【解析】设球半径为r ,则V1V2=πr2×2r 43πr3=32.故答案为32.7. (2017年江苏)记函数f (x )=6+x-x 2的定义域为D .在区间[-4,5]上随机取一个数x ,则x ∈D 的概率是 .7. 59 【解析】由6+x-x 2≥0,即x 2-x-6≤0,得-2≤x≤3,根据几何概型的概率计算公式得x ∈D 的概率是3-(-2)5-(-4)=59.8. (2017年江苏)在平面直角坐标系xOy 中,双曲线x 23-y 2=1的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是F 1,F 2,则四边形F 1PF 2Q 的面积是 .8. 2 3 【解析】右准线方程为x=310=31010,渐近线方程为y=±33x ,设P (31010,3010),则Q (31010,-3010),F 1(-10,0),F 2(10,0),则S=210×3010=2 3.9.(2017·江苏高考)等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8=________.[解析] 设等比数列{a n}的公比为q ,则由S 6≠2S 3,得q ≠1,则⎩⎪⎨⎪⎧S 3=a 1(1-q 3)1-q=74,S 6=a 1(1-q 6)1-q=634,解得⎩⎪⎨⎪⎧q =2,a 1=14, 则a 8=a 1q 7=14×27=32.[答案] 3210. (2017·江苏高考)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.解析:由题意,一年购买600x 次,则总运费与总存储费用之和为600x ×6+4x =4⎝⎛⎭⎫900x +x ≥8900x·x =240,当且仅当x =30时取等号,故总运费与总存储费用之和最小时x 的值是30.答案:3011. (2017年江苏)已知函数f(x)=x 3-2x+e x-1e x ,其中e 是自然对数的底数.若f(a-1)+f(2a 2)≤0,则实数a 的取值范围是___________.12. (2017年江苏)如图,在同一个平面内,向量→OA ,→OB ,→OC 的模分别为1,1,2,→OA 与→OC 的夹角为α,且tan α=7,→OB 与→OC 的夹角为45°.若→OC =m →OA +n →OB (m ,n ∈R),则m n +=___________.12.3 【解析】由tan α=7可得sin α=7210,cos α=210,根据向量的分解, 易得⎩⎨⎧ncos 45°+mcos α=2,nsin 45°-msin α=0,即⎩⎨⎧22n+210m=2,22n-7210m=0,即⎩⎨⎧5n+m=10,5n-7m=0,即得m=54,n=74, 所以m+n=3.13. (2017年江苏)在平面直角坐标系xOy 中,A (-12,0),B (0,6),点P 在圆O :x 2+y 2=50上,若→PA ·→PB ≤20,则点P 的横坐标的取值范围是_________. 【答案】 [52,1]【解析】设P (x ,y ,)由→PA ·→PB ≤20易得2x -y +5≤0,由⎩⎨⎧2x -y +5=0,x 2+y 2=50可得A :⎩⎨⎧x =-5,y =-5或B :⎩⎨⎧x =1,y =7.由2x -y +5≤0得P 点在圆左边弧⌒AB 上,结合限制条件-52≤x ≤52,可得点P横坐标的取值范围为 [52,1].14. (2017·江苏高考)设f (x )是定义在R 上且周期为1的函数,在区间[0,1)上,f (x )=⎩⎪⎨⎪⎧x 2,x ∈D ,x ,x ∉D ,其中集合D =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪x =n -1n ,n ∈N *,则方程f (x )-lg x =0的解的个数是________.解析:由于f (x )∈[0,1),因此只需考虑1≤x <10的情况,在此范围内,当x ∈Q 且x ∉Z 时,设x =qp ,q ,p ∈N *,p ≥2且p ,q 互质.若lg x ∈Q ,则由lg x ∈(0,1),可设lg x =nm ,m ,n ∈N *,m ≥2且m ,n 互质,因此10n m =qp ,则10n =⎝⎛⎭⎫q p m ,此时左边为整数,右边为非整数,矛盾,因此lg x ∉Q , 故lg x 不可能与每个周期内x ∈D 对应的部分相等, 只需考虑lg x 与每个周期内x ∉D 部分的交点.画出函数草图(如图),图中交点除(1,0)外其他交点横坐标均为无理数,属于每个周期x∉D的部分,且x=1处(lg x)′=1x ln 10=1ln 10<1,则在x=1附近仅有一个交点,因此方程f(x)-lgx=0的解的个数为8.答案:815.(2017年江苏)如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.【分析】(1)先由平面几何知识证明EF∥AB,再由线面平行判定定理得结论;(2)先由面面垂直性质定理得BC⊥平面ABD,则BC⊥AD,再由AB⊥AD及线面垂直判定定理得AD ⊥平面ABC,即可得AD⊥AC.【证明】(1)在平面ABC内,∵AB⊥AD,EF⊥AD,∴EF∥AB.又∵EF⊄平面ABC,AB⊂平面ABC,∴EF∥平面ABC.(2)∵平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,BC ⊂平面BCD ,BC ⊥BD , ∴BC ⊥平面ABD .∵AD ⊂平面ABD ,∴BC ⊥AD .又AB ⊥AD ,BC ∩AB =B ,AB ⊂平面ABC ,BC ⊂平面ABC , ∴AD ⊥平面ABC .又∵AC ⊂平面ABC ,∴AD ⊥AC .16. (2017年江苏)已知向量a =(cos x ,sin x ),b =(3,-3),x ∈[0,π]. (1)若a ∥b ,求x 的值;(2)记f (x )=a ·b ,求f (x )的最大值和最小值以及对应的x 的值. 【解析】(1)∵a =(cos x ,sin x ),b =(3,-3),a ∥b , ∴-3cos x =3sin x .若cos x =0,则sin x =0,与sin 2x +cos 2x =1矛盾,∴cos x ≠0. 于是tan x =-33.又错误!未找到引用源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、填空题
1. 【 2016年第二次全国大联考(江苏卷)】已知复数z 满足(23i)32i z -=+(i 是虚数单位),则z 的模为_______.
2. 【2016年第三次全国大联考【江苏卷】】已知,a b ∈R ,i
i bi
a 231-=++,其中i 是虚数单位,
则a b += .
3. 【2016年第四次全国大联考【江苏卷】】已知复数z
满足(1i)i z -=(i 是虚数单位),
则z 的模为_______.
4. 【2016年第一次全国大联考【江苏卷】】已知复数
21i
z i -=
+,则z 的共轭复数的模为_______.
5. 【2016高考押题卷(1)【江苏卷】】已知23(,,i
a bi a
b R i i +=+∈为虚数单位),则
a b +=_______.
6. 【2016高考押题卷(3)【江苏卷】】设复数2(a,b R,z a bi i =-∈是虚数单位)的模为1,则复数2
z 的共轭复数的模是 .
7. 【2016高考冲刺卷(2)【江苏卷】】已知复数z 满足42
-=z ,若z 的虚部大于0,则
=z .
8. 【南京市、盐城市2016届高三年级第二次模拟考试】若复数z =(1+mi)(2-i)(i 是虚数单位)是纯虚数,则实数m 的值为 ▲ .
9. 【江苏省扬州中学2016届高三4月质量监测】若复数z1=3+4i ,z2=a +i ,且z1·¯z2是实数(其中¯z2为z2的共轭复数),则实数a =___________.
10. 【2016高考押题卷(2)【江苏卷】】已知i
为虚数单位,计算
i
=
11. 【2016高考冲刺卷(1)【江苏卷】】已知复数()
1z i i =-(i 为虚数单位),则复数z 在复
平面上对应的点位于第 象限.
12. 【2016高考冲刺卷(3)【江苏卷】】设复数2
2i
(1i)z +=
+(i 为虚数单位),则z 的虚部是
_____________.
13. 【2016高考冲刺卷(5)【江苏卷】】 复数
i z 251
+=
的共轭复数为____▲_____.
14. 【2016高考冲刺卷(6)【江苏卷】】若复数i i z (21-=为虚数单位),则
=+⋅z z z .
15. 【2016高考冲刺卷(7)【江苏卷】】已知复数z =(3+i)2(i 为虚数单位),则|z|=________ 16. 【2016高考冲刺卷(9)【江苏卷】】设复数
122,12z i z i
=+=+,在复平面的对应的向量
分别为,OA OB ,则向量AB 对应的复数所对应的点的坐标为____________. 17. 【南通市2016届高三下学期第三次调研考试数学试题】已知复数()
2
2z i =-(i 为虚数
单位),则z 的共轭复数为 .
18. 【盐城市2016届高三年级第三次模拟考试】若复数z 满足(2)43i z i -=+(i 为虚数单位),则||z = ▲ .
19. 【江苏省苏锡常镇四市2016届高三教学情况调研(二)数学试题】已知
2
(i)2i a -=,其中i 是虚数单位,那么实数a = ▲ .
20. 【江苏省南京市2016届高三年级第三次学情调研适应性测试数学】已知0<a <2,复数z 的实部为a ,虚部为1,则|z|的取值范围是 ▲ .。

相关文档
最新文档