2015学年七年级数学上学期期中模拟试题(3套卷) 苏科版
苏科版七年级上册数学—第一学期期中考试试卷.docx

2014—2015学年第一学期期中考试试卷初一数学(考试时间100分钟,满分100分) 2014.11【卷首语】亲爱的同学,这份试卷将再次记录你的自信、沉着、智慧和收获. 我们一直投给你信任的目光.请认真审题,看清要求,仔细答题. 预祝你取得好成绩!一、选择题(本大题为单选题,共8题,每题3分,共24分)1.-5的相反数是 ( )A .15-B .15C .-5D .5 2.在数-21,-|-2|,+[-(-2)], (-2)3,中负数的个数是 ( ) A.4个 B.3个 C.2个 D.1个3.下面的计算正确的是 ( )A. 6a -5a=1B. a+2a 2=3a 3C.-(a -b)=-a+bD.2(a+b)=2a+b4.下列代数式中,单项式共有 ( )a , -2ab , 3x , x y +, 22x y +, -1, 2312ab c A .3个 B .4个 C .5个 D .6个5.下列各组代数式中,是同类项的是 ( )A .5x 2y 与15xyB .-5x 2y 与15yx 2C .5a x 2与15yx 2 D .83与x 3 6. 下列说法中,正确的有( )个.⑴-a 表示负数; ⑵多项式-3a 2b +7a 2b 2-2ab +l 的次数是3 ;⑶单项式-2xy 29的系数为-2; ⑷若| x |=-x ,则x <0. A .0个 B .1个 C .2个 D .3个7.用代数式表示“m 的3倍与n 的差的平方”,正确的是……………( )A. 2)3(n m -B. 2)(3n m -C.23n m -D. 2)3(n m -8.观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,…按此规律第5个图中共有点的个数是( )二、填空题(每空2分,共26分)9. 6320000用科学记数法表示为 。
10. 32-的倒数为;绝对值等于3的数是 . 11.比较大小,用“<”“>”或“=”连接:(1) (2)-3.14 -︱-π︱ 12. 数轴上与表示-2的点距离3个长度单位的点所表示的数是__________. 13.在数—10,4.5,— 720, 0,—(—3),2.10010001…,42,—2π中, 整数是 ,无理数是 .14.定义新运算“⊗”,规定:a ⊗b = 13a -4b ,则12⊗ (-1)= . 15. 若a 、b 互为相反数,c 、d 互为倒数,m 到原点的距离为2,则代数式|m |-cd +a +b m的值为 . 16. 若代数式x 2+3x -5的值为2,则代数式-2x 2-6x +3的值为 .17.如图是一个简单的数值运算程序,当输入n 的值为3时,则输出的结果为 .18.观察表一,寻找规律.表二、表三、表四分别是从表一中截取的一部分,其中a+b+c 的值为 .三、解答题(合计50分)19.计算(每题3分,共12分)(1)10(16)(24)---+- (2) 355();53÷-⨯(3)()42)733261(-⨯+- (4)-12-61×[(-2)3+(-3)2];⎪⎭⎫ ⎝⎛----32_______43输 入n 计算n 2-n >28 输出结果 Yes No20.(4分)将-2.5,12,2,-2-,-(-3),0在数轴上表示出来,并用“<”号把它们连接起来.21.化简.(每小题3分,共6分)(1)2x +(5x -3y )-(3x +y ) (2)3(4x 2-3x +2)-2(1-4x 2-x )22. (4分)化简并求值. 2214(1)2(1)(42)2x x x x --+--,其中3x =-.23. (4分)有理数a 、b 、c 在数轴上的位置如图,化简:|c -b |+|a +b |-|a -c |.24.(4分)已知多项式A 、B ,其中122+-=x x A ,小马在计算B A +时,由于粗心把B A +看成了B A -求得结果为1232---x x ,请你帮小马算出B A +的正确结果.25.(7分)(1)在下列横线上用含有a ,b 的代数式表示相应图形的面积.① ② ③ ④(2)通过拼图,你发现前三个图形的面积与第四个图形面积之间有什么关系?请用数学式子表示: ;(3)利用(...2.)的结论....计算992+198+1的值.a a a ab b b b① ② ③ ④ (第25题)26.(9分)如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、b满足|a+2|+ (c-7)2=0.(1)a=,b=,c= ;与数表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB=,AC=,BC=.(用含t的代数式表示)(4)请问:3BC-2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.2014—2015学年第一学期期中考试试卷初一数学参考答案一.选择题 (每题3分,共24分)D CC B B A A B二.填空题(每空2分,共26分)9、6.32 ×106 ; 10、23-;3或 -3 ; 11、 <,> ; 12、—5,1 ; 1 3、整数是—10,0,—(—3),42; 无理数是2.10010001…,—2π.14、8; 15、1 ; 16、—11; 17、30; 18、76.三.解答题(合计50分)19、(每题3分,共12分)分步给分(1)-18 (2)9125-(3)3 (4)67- 20. (4分) 画图略……………2分-2.5<-2-<0<12<2<-(-3) ……………2分 21.化简:(每题3分,共6分)(1)原式=2x+5x-3y-3x-y ……2分 (2) 原式=12x2-9x+6-2+8x2+2x ……2分 =4x-4y ……3分 =20x2-7x+4 ……3分22.(4分) 原式=2452x x -+- ……………2分= -57 …………2分23. (4分)原式=(c —b )—(a+b) +(a —c) ………………2分=c —b —a —b+a —c ………………1分=—2b ………………1分24. (4分) 解:242+=x B ……………………2分3252+-=+x x B A . ……………………2分25.(7分)(1)①2a ②ab 2 ③2b ④()2b a + ……………4分 (2) ()2222b a b ab a +=++ ……………1分 (3)992+198+1=()2199+ ……………1分100001002== ……………1分(说明:计算中只有10000的得1分)26.(9分)(1)a=-2,b=1,c=7 …………3分(2) 4 …………1分(3)AB=33+t ,AC=95+t ,BC=62+t …………3分初中数学试卷桑水出品。
2015七年级数学上期中试卷(带答案和详解)

2015七年级数学上期中试卷(带答案和详解)2014-2015学年江苏省南京市玄武区七年级(上)期中数学试卷一、选择题(每题2分,共12分) 1.的绝对值是() A. 3 B.�3 C. D. 2.扬州市某天最高气温8℃,最低气温�1℃,那么这天的日温差是() A.7℃ B.9℃ C.�9℃ D.�7℃ 3.代数式�7,x,x2y,,�5a2b3,中,单项式有()个. A. 3 B. 4 C. 5 D. 6 4.下列说法中,正确的是() A.一个有理数的平方总是正数 B.最大的负数是�1 C.有理数包括正有理数和负有理数 D.没有最大的正数,也没有最小的负数 5.如图是一个由六个小正方体组成的几何体,每个小正方体的六个面上都写有�1,2,3,�4,5,�6,那么图中所有看不见的面上的数字和是() A. 9 B. 8 C.�15 D.�13 二、填空题(每题2分,共20分) 6.�1 的相反数是,倒数是. 7.单项式的系数是;次数是. 8.钓鱼诸岛是中国的固有领土,位于中国东海,面积约6344000平方米,数据6344000用科学记数法表示为. 9.若实数a满足a�2a�1003=0,则2a�4a+5= .10.若x=2是方程的解,则的值是. 11.初一(1)班原有学生40人,其中有男生a人,开学几天后又转来2名女生,则现在女生占全班的比例为. 12.请你做评委:在一堂数学活动课上,在同一合作学习小组的小明、小亮、小丁、小彭对刚学过的知识发表了自己的一些感受:①小明说:“到表示�1的点距离不大于2的所有的点有5个.” ②小亮说:“当m=3时,代数式3x�y�mx+2中不含x项” ③小丁说:“若|a|=3,|b|=2,则a+b的值为5或1.” ④小彭说:“多项式2x3y�x2y2+25的次数是5是一次三项式.” 你觉得他们的说法正确的是(填序号) 13.某商场购进一批衣服,进价为每套240元,若每套以280元的价格销售,每天可销售200套.经调查发现如果每套比原售价降低5元销售,则每天可多销售10套.现若每套降低x元,则每天可获的总利润元.(用含x的代数式表示)(总利润=销售总额�总进价) 14.如图,已知直径为1个单位长度的圆形纸片上的点A与数轴上表示�1的点重合,若将该圆形纸片沿数轴顺时针滚动一周(无滑动)后点A 与数轴上的点A′重合,则点A′表示的数为. 15.这是一根起点为0的数轴,现有同学将它弯折,如图所示,例如:第一行0,第二行6,第三行21…则虚线上的第10行的数是.三、解答题(共68分) 16.计算:(1)24+(�14)+(�16)+8;(2);(3);(4)�14�(�5 )× . 17.化简:(1)5a�4b�3a+b;(2). 18.解方程:(1)3x�4(2x+5)=x+4 (2)2�=x�. 19.已知多项式A、B、C满足:A+B�C=�4(x2�t�1),且B=�.(1)求多项式A;(2)若t=�,求A的值. 20.有理数a、b、c在数轴上的位置如图:(1)用“>”或“<”填空:b+c 0;b�a 0;a+c 0;(2)化简|b+c|+|b�a|�|a+c|. 21.魔术师为大家表演魔术.他请观众想一个数,然后将这个数按以下步骤操作:魔术师立刻说出观众想的那个数.(1)如果小明想的数是�1,那么他告诉魔术师的结果应该是;(2)如果小聪想了一个数并告诉魔术师结果为93,那么魔术师立刻说出小聪想的那个数是;(3)观众又进行了几次尝试,魔术师都能立刻说出他们想的那个数,请你说出其中的奥妙. 22.某展览馆对学生参观实行优惠,个人票每张6元,团体票每10人45元.(1)如果参观的学生人数为37人,至少应付多少元;(2)如果参观的学生人数为48人,至少应付多少元;(3)如果参观的学生人数是一个两位数,十位数字为a,个位数字为b,用含a、b的代数式表示至少应付多少元? 23.如图所示,在边长为a米的正方形草坪上修建两条宽为b米的道路.(1)为了求得剩余草坪的面积,小明同学想出了两种方法,结果分别如下方法①:.方法②:.(2)从小明的两种方法中,你能写出(a�b)2、a2和ab这三个代数式之间的等量关系吗?(3)根据(2)题中的等量关系,解决如下问题:若m2+n2=9,mn=4,则求m�n. 24.甲乙两辆车在一个公路上匀速行驶,为了确定汽车的位置,我们用数轴表示这条公路,并规定向右为正方向,原点o为零千米路标,并作如下约定:位置为正,表示汽车位于零千米的右侧,位置为负,表示汽车位于零千米的左侧,位置为零,表示汽车位于零千米处.(1)根据题意,填写下列表格;时间 0 5 7 x 甲车位置 190 �10 乙车位置170 270 (2)甲乙两车能否相遇?如果相遇,求相遇时的时刻以及在公路上的位置,如果不能相遇,请说明理由;(3)甲乙两车能否相距135km?如果能,求相距135km的时刻和位置;如不能,请说明理由.2014-2015学年江苏省南京市玄武区七年级(上)期中数学试卷参考答案与试题解析一、选择题(每题2分,共12分) 1.的绝对值是() A. 3 B.�3 C. D.考点:绝对值.分析:计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.解答:解:|� |= .故�的绝对值是.故选:C.点评:此题考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 2.扬州市某天最高气温8℃,最低气温�1℃,那么这天的日温差是() A.7℃ B.9℃ C.�9℃ D.�7℃ 考点:有理数的减法.分析:用最高气温减去最低气温,然后根据减去一个数等于加上这个数的相反数计算即可得解.解答:解:8�(�1)=8+1=9℃.故选B.点评:本题考查了有理数的减法,是基础题,熟记减去一个数等于加上这个数的相反数是解题的关键. 3.代数式�7,x,x2y,,�5a2b3,中,单项式有()个. A. 3 B. 4 C. 5 D. 6考点:单项式.分析:根据单项式的定义求解.解答:解:单项式有:�7,x,x2y,�5a2b3,共4个.故选B.点评:本题考查了单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式. 4.下列说法中,正确的是()A.一个有理数的平方总是正数 B.最大的负数是�1 C.有理数包括正有理数和负有理数 D.没有最大的正数,也没有最小的负数考点:有理数.分析:利用有理数的定义判定即可.解答:解:A、0的平方是0,故本选项错误, B、没有最大的负数,故本选项错误, C、有理数包括正有理数和负有理数和0,故本选项错误, D、没有最大的正数,也没有最小的负数,故本选项正确.故选:D.点评:本题主要考查了有理数,解题的关键是熟记有理数的定义. 5.如图是一个由六个小正方体组成的几何体,每个小正方体的六个面上都写有�1,2,3,�4,5,�6,那么图中所有看不见的面上的数字和是() A. 9 B. 8 C.�15 D.�13考点:专题:正方体相对两个面上的文字.分析:一个正方体的数字之和是�1,六个正方体的数字之和是�1×6=�6,然后六个正方体的数字之和减去可以得出隐藏的数字之和.解答:解:六个小正方体的数字总和为(�1+2+3�4+5�6)×6=�6,图中看得见的数字为�1+2+5�6+3+5+2�6+3�4�1+2+3=7,所以图中所有看不见的面上的数字和=�6�7=�13.故选D.点评:本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.二、填空题(每题2分,共20分) 6.�1 的相反数是 1 ,倒数是�.考点:相反数;倒数.分析:根据相反数与倒数的概念解答即可.解答:解:∵�1 的相反数是1 ,∵�1 =�,∴�1 倒数是�.故答案为:1 ,�.点评:本题考查了相反数与倒数的意义.注意互为相反数的两数和为零,互为倒数的两数积为1. 7.单项式的系数是�;次数是 3 .考点:单项式.分析:根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.解答:解:根据单项式系数、次数的定义可知:单项式的系数是�,次数是3.点评:确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键. 8.钓鱼诸岛是中国的固有领土,位于中国东海,面积约6344000平方米,数据6344000用科学记数法表示为6.344×106.考点:科学记数法―表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:6344000=6.344×106.故答案为:6.344×106.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 9.若实数a满足a�2a�1003=0,则2a�4a+5= 2011 .考点:代数式求值.专题:计算题.分析:由题意求出a�2a的值,代入原式计算即可.解答:解:由a�2a�1003=0,得到a�2a=1003,则原式=2(a�2a)+5=2006+5=2011,故答案为:2011.点评:此题考查了代数式求值,熟练掌握运算法则是解本题的关键. 10.若x=2是方程的解,则的值是�2 .考点:一元一次方程的解;有理数的乘方.专题:计算题.分析:虽然是关于x的方程,但是含有两个未知数,其实质是知道一个未知数的值求另一个未知数的值,最后求得的值.解答:解:把x=2代入得:6�4=1�a,解得:a=�1 把a=�1代入 =(�1)2005+ =�1�1=�2.故填�2.点评:本题主要考查的是已知原方程的解,求原方程中未知系数.只需把原方程的解代入原方程,把未知系数当成新方程的未知数求解即可. 11.初一(1)班原有学生40人,其中有男生a人,开学几天后又转来2名女生,则现在女生占全班的比例为.考点:列代数式.分析:现在的女生人数为40�a+2=42�a人,全班人数为40+2=42人,根据分数除法的意义列式求得答案即可.解答:解:现在的女生人数为40�a+2=42�a人,全班人数为40+2=42人,则现在女生占全班的比例为.故答案为:.点评:此题考查列代数式,找出前后数量的变化是解决问题的关键. 12.请你做评委:在一堂数学活动课上,在同一合作学习小组的小明、小亮、小丁、小彭对刚学过的知识发表了自己的一些感受:①小明说:“到表示�1的点距离不大于2的所有的点有5个.” ②小亮说:“当m=3时,代数式3x�y�mx+2中不含x项” ③小丁说:“若|a|=3,|b|=2,则a+b的值为5或1.” ④小彭说:“多项式2x3y�x2y2+25的次数是5是一次三项式.” 你觉得他们的说法正确的是②(填序号)考点:多项式;数轴;绝对值.分析:根据多项式、数轴、绝对值的概念求解.解答:解:①到表示�1的点距离不大于2的所有的点有无数个,原说法错误;②当m=3时,代数式3x�y�mx+2=�y+2,不含x项,该说法正确;③若|a|=3,|b|=2,则a+b的值为±5或±1,原说法错误;④多项式2x3y�x2y2+25是四次三项式,原说法错误.正确的为②.故答案为:②.点评:本题考查了多项式、数轴、绝对值的知识,掌握各知识点的概念是解答本题的关键. 13.某商场购进一批衣服,进价为每套240元,若每套以280元的价格销售,每天可销售200套.经调查发现如果每套比原售价降低5元销售,则每天可多销售10套.现若每套降低x元,则每天可获的总利润�2x2�120x+8000 元.(用含x的代数式表示)(总利润=销售总额�总进价)考点:列代数式.分析:依据利润=每件的获利×件数,列出式子(200+ ×10) =(40�x)(200+2x)即可解决.解答:解:(280�240�x)=�2x2�120x+8000(元).故答案为:�2x2�120x+8000.点评:此题考查列代数式,找出题目蕴含的数量关系是解决问题的关键. 14.如图,已知直径为1个单位长度的圆形纸片上的点A与数轴上表示�1的点重合,若将该圆形纸片沿数轴顺时针滚动一周(无滑动)后点A与数轴上的点A′重合,则点A′表示的数为π�1 .考点:实数与数轴.分析:先求得圆的周长,再用周长减去1即可得出点A′表示的数解答:解:∵圆的直径为1,∴圆的周长为π,∴点A′所表示的数为π�1,故答案为:π�1.点评:本题考查了实数与数轴,数轴上两点之间的距离的求法是大数减去小数. 15.这是一根起点为0的数轴,现有同学将它弯折,如图所示,例如:第一行0,第二行6,第三行21…则虚线上的第10行的数是378 .考点:规律型:数字的变化类.分析:观察根据排列的规律得到第一行为0,第二行为0加6个数即为6,第三行为从6开始加15个数得到21,第四行为从21开始加24个数即45,…,由此得到后面加的数比前一行加的数多9,由此得到第10行为0+6+(6+9×1)+(6+9×2)+…+(6+9×8).解答:解:∵第一行为0,第二行为0+6=6,第三行为0+6+15=21,第四行为0+6+15+24=45,第五行为0+6+15+24+33=78,… ∴第10行为0+6+(6+9×1)+(6+9×2)+…+(6+9×8)=6×9+9(1+2+3+4+5+6+7+8)=378.故答案为:378.点评:此题考查数字的变化规律,通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.三、解答题(共68分) 16.计算:(1)24+(�14)+(�16)+8;(2);(3);(4)�14�(�5 )× .考点:有理数的混合运算.分析:(1)先化简再计算即可;(2)将除法变为乘法,再约分计算即可求解;(3)直接运用乘法的分配律计算;(4)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.解答:解:(1)24+(�14)+(�16)+8 =24�14�16+8 =32�30 =2;(2) =�× × =�;(3) = × + ×6�×0.6 =1+5�0.5 =5.5;(4)�14�(�5 )×=�1+2�8÷|�9+1| =�1+2�8÷8 =�1+2�1 =0.点评:本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:��得+,�+得�,++得+,+�得�. 17.化简:(1)5a�4b�3a+b;(2).考点:整式的加减.分析:(1)直接合并同类项即可;(2)先去括号,再合并同类项即可.解答:解:(1)原式=(5�3)a+(1�4)b =2a�3b;(2)原式=x2+ x��2x+2x2�2 =3x2� x�.点评:本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键. 18.解方程:(1)3x�4(2x+5)=x+4 (2)2�=x�.考点:解一元一次方程.专题:计算题.分析:(1)方程去括号,移项合并,将x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.解答:解:(1)方程去括号得:3x�8x�20=x+4,移项合并得:�6x=24,解得:x=�4;(2)方程去分母得:12�(x+5)=6x�2(x�1),去括号得:12�x�5=6x�2x+2,移项合并得:5x=5,解得:x=1.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解. 19.已知多项式A、B、C满足:A+B�C=�4(x2�t�1),且B=�.(1)求多项式A;(2)若t=�,求A的值.考点:整式的加减;代数式求值.分析:(1)根据已知得出A=C�B�4(x2�t+1),把B、C的值代入,去括号后合并同类项即可;(2)把t的值代入求出即可.解答:解:(1)∵A+B�C=�4(x2�t�1),且B=�,∴A=C�B�4(x2�t+1) =2(x2�t�1)+ (x2�t�1)�4(x2�t�1) =2x2�2t�2+ x2�t��4x2+4t+4 =�x2+ t+ ;(2)当t=�时,A=�x2+ ×(�)+ =�x2+1.点评:本题考查了整式的混合运算的应用,解此题的关键是求出多项式A的值,难度一般. 20.有理数a、b、c在数轴上的位置如图:(1)用“>”或“<”填空:b+c >0;b�a >0;a+c <0;(2)化简|b+c|+|b�a|�|a+c|.考点:数轴.分析:(1)先由数轴得出a<c<0<b,|c|<|b|<|a|,即可判定.(2)先由数轴得出a<c<0<b,|c|<|b|<|a|,再去绝对值求解即可.解答:解:(1)∵由数轴可得:a<c<0<b,|c|<|b|<|a|.∴b+c>0;b�a>0;a+c<0;故答案为:>,>,<.(2)∵由数轴可得:a<c<0<b,|c|<|b|<|a|.∴|b+c|+|b�a|�|a+c| =b+c+b�a+(a+c) =2b+2c.点评:本题主要考查了数轴,解题的关键是由数轴得出a<c<0<b,|c|<|b|<|a|. 21.魔术师为大家表演魔术.他请观众想一个数,然后将这个数按以下步骤操作:魔术师立刻说出观众想的那个数.(1)如果小明想的数是�1,那么他告诉魔术师的结果应该是 4 ;(2)如果小聪想了一个数并告诉魔术师结果为93,那么魔术师立刻说出小聪想的那个数是88 ;(3)观众又进行了几次尝试,魔术师都能立刻说出他们想的那个数,请你说出其中的奥妙.考点:一元一次方程的应用.专题:创新题型.分析:(1)利用已知条件,这个数按步骤操作,直接代入即可;(2)假设这个数,根据运算步骤,求出结果等于93,得出一元一次方程,即可求出;(3)结合(2)中方程,关键是发现运算步骤的规律.解答:解:(1)(�1×3�6)÷3+7=4;故填:4;(2)设这个数为x,(3x�6)÷3+7=93;解得:x=88;(3)设观众想的数为a..因此,魔术师只要将最终结果减去5,就能得到观众想的数了.点评:此题主要考查了数的运算,以及运算步骤的规律性,题目比较新颖. 22.某展览馆对学生参观实行优惠,个人票每张6元,团体票每10人45元.(1)如果参观的学生人数为37人,至少应付多少元;(2)如果参观的学生人数为48人,至少应付多少元;(3)如果参观的学生人数是一个两位数,十位数字为a,个位数字为b,用含a、b的代数式表示至少应付多少元?考点:列代数式;有理数的混合运算.专题:分类讨论.分析:(1)若参观的学生人数36人,则应买3张团体票,买6张个人票;(2)参观的学生人数为48人,分两种情况进行计算,买5张团体票应付225元,买4张团体票,8张个人票应付228元,故至少应付225元;(3 )应分类讨论,当0≤b≤7,且为整数时,至少应付(45a+6b)元;当8≤b≤9,且为整数时,至少应付(45a+45)元.解答:解:(1)若参观的学生人数36人,则应付费用:3×45+6×6=171(元)(2)参观的学生人数为48人,如买4张团体,8张个人票,应付:4×45+6×8=228(元),若买5张团体票,应付:5×45=225<228,∴至少付225元.(3)当0≤b≤7,且为整数时,至少应付(45a+6b)元;当8≤b≤9,且为整数时,至少应付(45a+45)元.点评:此题考查了根据实际问题列代数式,把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.解题的关键是读懂题意,正确表达,作出最优选择. 23.如图所示,在边长为a米的正方形草坪上修建两条宽为b米的道路.(1)为了求得剩余草坪的面积,小明同学想出了两种方法,结果分别如下方法①:S=(a�b)2 .方法②:S=a2�2ab+b2 .(2)从小明的两种方法中,你能写出(a�b)2、a2和ab这三个代数式之间的等量关系吗?(3)根据(2)题中的等量关系,解决如下问题:若m2+n2=9,mn=4,则求m�n.考点:列代数式.分析:(1)方法①根据已知条件先表示出矩形的长和宽,再根据矩形的面积公式即可得出答案;方法②是正方形的面积减去两条道路的面积,即可得出剩余草坪的面积;(2)根据(1)得出的结论可得出(a�b)2=a2�2ab++b2;(3)先把m2+n2=9化成(m�n)2+2mn=9,然后代值计算即可得出m�n的值.解答:解:(1)方法①:草坪的面积S=(a�b)(a�b)=(a�b)2.方法②:草坪的面积S=a2�2ab+b2;故答案为:S=(a�b)2,S=a2�2ab+b2;(2)从小明的两种方法中,可以得到:(a�b)2=a2�2ab++b2;(3)∵m2+n2=9,∴(m�n)2+2mn=9,∵mn=4,∴m�n=±1.点评:此题考查了列代数式,关键是读懂题意,找到所求的量的数量关系,表示出矩形的长和宽. 24.甲乙两辆车在一个公路上匀速行驶,为了确定汽车的位置,我们用数轴表示这条公路,并规定向右为正方向,原点o为零千米路标,并作如下约定:位置为正,表示汽车位于零千米的右侧,位置为负,表示汽车位于零千米的左侧,位置为零,表示汽车位于零千米处.(1)根据题意,填写下列表格;时间 0 5 7 x 甲车位置 190 �10 �90 190�4x 乙车位置�80 170 270 �80+50x (2)甲乙两车能否相遇?如果相遇,求相遇时的时刻以及在公路上的位置,如果不能相遇,请说明理由;(3)甲乙两车能否相距135km?如果能,求相距135km的时刻和位置;如不能,请说明理由.考点:一元一次方程的应用.专题:图表型.分析:(1)根据速度=路程÷时间,可求出甲乙两车的速度,从而可填写表格;(2)相遇,则两车的位置相等,得出方程,求解即可;(3)相距135千米,需要分两种情况,①乙车在左,甲车在右,②乙车在右,甲车在左,分别得出方程求解即可.解答:解:(1)填表如下:时间(h) 0 5 7 x 甲车位置(km) 190 �10 �90 190�40x 乙车位置(km)�80 170 270 �80+50x (2)由题意得:190�40x=�80+50x,解得:x=3, 190�40×3=70,答:相遇时刻为3小时,且位于零千米右侧70km处;实用精品文献资料分享(3)①190�40x+135=�80+50x,解得:x=4.5, 190�40×4.5=10,�80+50×4.5=145,②190�40x=�80+50x+135,解得x=1.5,190�40×1.5=130,�80+50×1.5=�5.答:相距180km的时刻为4.5小时或1.5小时,甲乙两车分别位于零千米左侧10km、右侧145km 处,或者甲乙两车分别位于零千米右侧130km、左侧5km处.点评:本题考查了一元一次方程的应用,解答本题的关键是表示出x小时时,甲乙两车的位置,注意利用方程思想的求解,有一定难度.。
【苏科版】七年级数学上期中模拟试卷附答案

一、选择题1.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为( )A .64B .77C .80D .852.下列去括号正确的是( )A .112222x y x y ⎛⎫ =⎭-⎪⎝--- B .()12122x y x y ++=+- C .()16433232x y x y --+=-++ D .()22x y z x y z +-+=-+ 3.下列去括号正确的是( )A .221135135122x y x x y y ⎛⎫--+=-++ ⎪⎝⎭B .()8347831221a ab b a ab b --+=---C .()()222353261063x y xx y x +--=+-+ D .()()223423422x y x x y x--+=--+ 4.小明通常上学时走上坡路,通常的速度为m 千米时,放学回家时,原路返回,通常的速度为n 千米时,则小明上学和放学路上的平均速度为( )千米/时 A .2m n + B .mn m n + C .2mn m n + D .m nn m + 5.下列说法正确的是( )A .0不是单项式B .25R π的系数是5C .322a 是5次单项式D .多项式2ax +的次数是26.如图是按照一定规律画出的“树形图”,经观察可以发现:图A 2比图A 1多出2个“树枝”,图A 3比图A 2多出4个“树枝”,图A 4比图A 3多出8个“树枝”……照此规律,图A 6比图A 2多出“树枝”( )A .32个B .56个C .60个D .64个7.某测绘小组的技术员要测量A ,B 两处的高度差(A ,B 两处无法直接测量),他们首先选择了D ,E ,F ,G 四个中间点,并测得它们的高度差如下表:根据以上数据,可以判断A ,B 之间的高度关系为( )A .B 处比A 处高B .A 处比B 处高C .A ,B 两处一样高D .无法确定8.下列说法中,其中正确的个数是( )(1)有理数中,有绝对值最小的数;(2)有理数不是整数就是分数;(3)当a 表示正有理数,则-a 一定是负数;(4)a 是大于-1的负数,则a 2小于a 3A .1B .2C .3D .49.下列算式中,计算结果是负数的是( )A .3(2)⨯-B .|1|-C .(2)7-+D .2(1)- 10.计算2136⎛⎫--- ⎪⎝⎭的结果为( ) A .-12 B .12 C .56 D .5611.如果向右走5步记为+5,那么向左走3步记为( )A .+3B .-3C .+13 D .-1312.已知 1b a 0-<<< ,那么 a b,a b,a 1,a 1+-+- 的大小关系是( ) A .a b a b a 1a 1+<-<-<+B .a 1a b a b a 1+>+>->-C .a 1a b a b a 1-<+<-<+D .a b a b a 1a 1+>->+>-二、填空题13.数字解密:第一个数是3=2+1,第二个数5=3+2,第三个数是9=5+4,第四个数17=9+8,……,观察并猜想第六个数是_______.14.将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,我们称“4”是第2组第1个数字,“16”是第4组第2个数字,若2020是第m 组第n 个数字,则m +n =_____.15.观察下列一组图形中点的个数,其中第1个图中共有 4 个点,第2个图中共有 10 个点,第3个图中共有 19 个点, 按此规律第4个图中共有点的个数比第3个图中共有点的个数多 ________________ 个;第20个图中共有点的个数为________________ 个.16.已知22 251,34A x ax y B x x by =+-+=+--,且对于任意有理数,x y ,代数式 2A B - 的值不变,则12()(2)33a Ab B ---的值是_______. 17.在数轴上,若点A 与表示3-的点相距6个单位,则点A 表示的数是__________. 18.已知a 是7的相反数,b 比a 的相反数大3,则b 比a 大____.19.(1)-23与25的差的相反数是_____. (2)若|a +2|+|b -3|=0,则a -b =_____.(3)-13的绝对值比2的相反数大_____. 20.分别输入1-,2-,按如图所示的程序运算,则输出的结果依次是_________,________.输入→+4 →(-(-3))→-5→输出三、解答题21.计算:(1)6÷(-3)×(-32) (2)-32×29-+(-1)2019-5÷(-54) 22.已知22134,2313P x mx y Q x y nx =+-+=-+-, (1)关于,x y 的式子2P Q -的取值与字母x 的取值无关,求式子(3)(3)m n m n +--的值;(2)当0x ≠且0y ≠时,若135333P Q -=恒成立,求,m n 的值。
苏科版七年级上册数学期中试卷带答案

苏科版七年级上册数学期中试题一、单选题1.下列各组数中,互为相反数的是()A .﹣1与(﹣1)2B .(﹣1)2与1C .2与12D .2与|﹣2|2.下列说法不正确的是()A .任何一个有理数的绝对值都是正数B .0既不是正数也不是负数C .有理数可以分为正有理数,负有理数和零D .0的绝对值等于它的相反数3.下列运用等式性质进行的变形,正确的是()A .如果a =b ,那么a +c =b ﹣cB .如果a 2=3a ,那么a =3C .如果a =b ,那么a b c c =D .如果a bc c=,那么a =b 4.有理数a 、b 在数轴上的对应的位置如图所示,则正确的是()A .a ﹣b >0B .a ﹣b <0C .a ﹣b=0D .a+b <05.代数式y 2-2y+7的值是-3,则3y 2-6y-5的值是()A .35B .-25C .-35D .76.有一个程序,当输入任意一个有理数时,显示屏上的结果总是1与输入的有理数的差的倒数,若第一次输入3,并将显示的结果第二次输入,则此时显示的结果是()A .3B .12-C .23D .-3二、填空题7.-2.5的倒数是______,(2)--的相反数是_______;53-的倒数的绝对值是_____.8.单项式23x y-的系数是______,次数______,多项式2xy 2-3x 2y 3-8是____次____项式.9.点A 在数轴上距离原点3个单位长度,将A 向左移动2个单位长度,再向右移动4个单位长度,此时A 点所表示的数是_____________.10.绝对值大于2而小于6的所有整数的和是__________.11.﹣38040000000用科学记数表示为_____.12.用火柴棍象如图这样搭图形,搭第n 个图形需要根火柴棍.三、解答题13.计算:(1)—7.5×(—42)—(—3)3÷(—1)2017;(2)()271112669126⎛⎫--+⨯- ⎪⎝⎭14.化简下列各式:(1)()()2232157a a a a --++-+(2)()()()()4567a b a b a b a b +----++15.解方程:4 1.50.59x x x -=--16.如果关于m 的方程21m b m +=-的解是4-,求b 的值?17.小刘、小张两位同学玩数学游戏,小刘说“任意选定一个数,然后按下列步骤进行计算:加上20,乘2,减去4,除以2,再减去你所选定的数”,小张说“不用算了,无论我选什么数,结果总是18”,小张说得对吗?说明理由.18.已知2(x 3)+与y 2-互为相反数,z 是绝对值最小的有理数,求y (x y)xyz ++的值.19.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是1,则()a ba b cd m m m++++-的值?20.化简计算:求当输入x =0.5,y =7时输出结果.21.某登山队以二号营地为基准,开始向距二号营地500米的顶峰冲击,他们记向上为正,行进过程记录如下:(单位:米):+150,-35,-40,+210,-32,+20,-18,-5,+20,+85,-25.(1)他们最终有没有登上顶峰?若没有,距顶峰还有多少米?(2)登山时,若5名队员在记录的行进路线上都使用了氧气,且每人每米要消耗氧气0.04升,则他们共耗氧多少升?22.如果两个关于x 、y 的单项式2mx a y 3与﹣4nx 3a ﹣6y 3是同类项(其中xy ≠0).(1)求a 的值;(2)如果他们的和为零,求(m ﹣2n ﹣1)2016的值.23.观察下列等式:111111111111,,,13233523557257⎛⎫⎛⎫⎛⎫=⨯-=⨯-=⨯- ⎪ ⎪ ⎪⨯⨯⨯⎝⎭⎝⎭⎝⎭请解答下列问题:(1)按以上规律列出第5个算式:(2)由此计算:11111 (1335572013201520152017)+++++⨯⨯⨯⨯⨯()()(3)用含n 的代式表示第n 个等式:a n =(n 为正整数);参考答案1.A【解析】【分析】根据相反数的定义,对每个选项进行判断即可.【详解】解:A、(﹣1)2=1,1与﹣1互为相反数,正确;B、(﹣1)2=1,故错误;C、2与12互为倒数,故错误;D、2=|﹣2|,故错误;故选:A.【点睛】本题考查了相反数的定义,解题的关键是掌握相反数的定义.2.A【解析】A、任何一个有理数的绝对值都是非负数.错误;B、C、D都正确.故选A.3.D【解析】【分析】根据等式的基本性质逐一判断即可.【详解】A.当a=b时,a+c=b+c,故A错误;B.当a=0时,此时a≠3,故B错误;C.当c=0时,此时ac与bc无意义,故C错误;D.当a bc c 时,等式两边同时乘c,那么a=b,故D正确.故选:D.【点睛】此题考查的是等式的基本性质,利用等式的基本性质将等式变形是解决此题的关键. 4.A【解析】【分析】根据题意和图形可知a,b取值范围,a>1,﹣1<b<0,由此即可得到结论.【详解】∵﹣1<b<0.又∵a>1,∴a﹣b>0,a+b>0.故选A.【点睛】注意原点左边的为负数,右边的为正数.且绝对值越大到原点的距离就越大.5.C【解析】【分析】先求出y2﹣2y=﹣10,变形后代入,即可求出答案.【详解】根据题意得:y2﹣2y+7=﹣3,y2﹣2y=﹣10,所以3y2﹣6y﹣5=3(y2﹣2y)﹣5=3×(﹣10)﹣5=﹣35.故选C.【点睛】本题考查了求代数式的值,能够整体代入是解答此题的关键.6.C【解析】【分析】直接利用已知得出第一次与第二次输出的结果即可.【详解】由题意可得:1﹣3=﹣2,则输出﹣12,故第二次输入﹣12,得到:1﹣(﹣12)=32,输出23.故选C.【点睛】本题主要考查了倒数以及有理数的减法运算,正确理解题意是解题的关键.7.25--235【解析】【分析】根据倒数的意义,相反数的意义,绝对值的性质,可得答案.【详解】﹣2.5的倒数是﹣25,﹣(﹣2)的相反数是﹣2;﹣53的倒数的绝对值是35.故答案为﹣25,﹣2,35.【点睛】本题考查了倒数、相反数、绝对值,理解倒数的意义、相反数的意义是解题的关键.8.13-,3,五,三.【解析】【分析】根据单项式系数、次数的定义,多项式次数、项数的定义,进行解答即可.【详解】单项式﹣23x y的系数是﹣13,次数是3次,多项式2xy2﹣3x2y3﹣8是五次三项式.故答案为﹣13、3、五、三.【点睛】本题考查了单项式及多项式的知识,掌握多项式次数的定义及单项式系数、次数的定义是解题的关键.9.-1或5.【解析】【分析】由于点A与原点0的距离为3,那么A应有两个点,分别位于原点两侧,且到原点的距离为3,这两个点对应的数分别是﹣3和3.A向左移动2个单位长度,再向右移动4个单位长度,通过数轴上“右加左减”的规律,即可求得平移后点A表示的数.【详解】∵点A在数轴上距原点3个单位长度,∴点A表示的数为3或﹣3;当点A表示的数是﹣3时,移动后的点A所表示的数为:﹣3﹣2+4=﹣1;当点A表示的数是3时,移动后的点A所表示的数为:3﹣2+4=5;综上所述:移动后点A所表示的数是:﹣1或5.故答案为:﹣1或5.【点睛】本题考查了数轴.根据正负数在数轴上的意义来解答:在数轴上,向右为正,向左为负.10.0.【解析】【分析】根据题意画出图形,由绝对值的几何意义可知:绝对值大于2小于6的所有整数即为到原点的距离大于2小于6,观察数轴即可得到满足题意的所有整数,求出这些整数之和即可.【详解】根据题意画出数轴,如图所示:根据图形得:绝对值大于2而小于6的所有整数有:﹣3,﹣4,﹣5,3,4,5,这几个整数的和为:(﹣3)+(﹣4)+(﹣5)+3+4+5=[(﹣3)+3]+[(﹣4)+4]+[(﹣5)+5]=0.故答案为0.【点睛】本题考查了绝对值的几何意义,即一个数的绝对值就是在数轴上表示这个数的点到原点的距离,离原点越近,绝对值越小;离原点越远,绝对值越大.另外在求和时利用加法的运算律可以简化运算,同时注意数形结合思想的灵活运用.11.-3.804×1010【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是正数;当原数的绝对值<1时,n是负数.【详解】-38040000000用科学记数表示为-3.804×1010.故答案为-3.804×1010.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.2n+1.【解析】试题分析:搭第一个图形需要3根火柴棒,结合图形,发现:后边每多一个三角形,则多用2根火柴.解:结合图形,发现:搭第n个三角形,需要3+2(n﹣1)=2n+1(根).故答案为2n+1.考点:规律型:图形的变化类.13.(1)93(2)25【解析】【分析】(1)根据有理数混合运算法则计算可得出结果;(2)利用乘法分配律给括号中每一项都乘以36,然后根据有理数加减法混合运算法则计算即可.【详解】(1)原式=7.5×16-27÷1=120-27=93;(2)原式=7111 26369126⎛⎫--+⨯⎪⎝⎭=26-(28-33+6)=26-1=25.【点睛】本题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先计算括号里边的,且先小括号,再中括号,最后算大括号,同级运算从左到右依次计算,有时可以利用运算律来简化运算,熟练掌握各种运算法则是解答本题的关键.14.(1)-2a2-3a+6(2)22b【解析】【分析】(1)首先利用去括号法则化简,进而合并同类项得出答案;(2)首先将(a+b),(a﹣b)看作整体合并同类项,进而利用去括号法则求出即可.【详解】(1)原式=﹣3a2+2a﹣1+a2﹣5a+7=﹣2a2﹣3a+6;(2)原式=11(a+b)﹣11(a﹣b)=11a+11b-11a+11b=22b.【点睛】本题主要考查了去括号法则以及合并同类项,正确掌握去括号法则是解题的关键.15.x=-3【解析】【分析】先移项得到4x﹣1.5x+0.5x=﹣9,然后合并同类项,再把x的系数化为1即可.【详解】移项得:4x﹣1.5x+0.5x=﹣9合并得:3x=﹣9系数化为1得:x=﹣3.【点睛】本题考查了解一元一次方程:先去分母,再去括号,接着移项,把含未知数的项移到方程左边,不含未知数的项移到方程右边,然后合并同类项,最后把未知数的系数化为1得到原方程的解.16.b=3【解析】【分析】将m =﹣4代入可得关于b 的方程,解出即可.【详解】把m =﹣4代入方程2m +b =m ﹣1中,得:2×(﹣4)+b =(﹣4)﹣1,解得:b =3.【点睛】本题含有一个未知的系数.根据已知条件求未知系数的方法叫待定系数法,在以后的学习中,常用此法求函数解析式.17.正确【解析】【分析】设此整数是a ,再根据题意列出式子进行计算即可.【详解】正确,理由如下:设此整数是a ,由题意得()a 20242+⨯--a=a+20-2=18,所以说小张说的对.【点睛】本题考查了整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.18.1.【解析】试题分析:由题意可得2(3)200x y z ++-==,,由此可求出x y 、的值,再代值计算即可.试题解析:由题意可得2(3)200x y z ++-==,,∴3020x y +=-=,,解得32x y =-=,.∴()y x y xyz ++=2(32)(3)201-++-⨯⨯=.点睛:(1)互为相反数的两个式子的和为0;(2)两个非负数的和为0,则这两个数都为0;(3)绝对值最小的数是0.19.0或-2.【解析】【分析】利用相反数,倒数,以及绝对值的定义求出a +b ,cd ,及m 的值,代入计算即可求出值.【详解】根据题意得:a +b =0,cd =1,m =±1.①当m =1时,原式=1﹣1=0;②当m =﹣1时,原式=﹣1﹣1=﹣2.【点睛】本题考查了有理数的混合运算,相反数,绝对值,以及倒数,熟练掌握各自的定义是解答本题的关键.20.618.【解析】【分析】根据流程图可得输出结果为2(21)2x y ++÷,代入求值即可.【详解】根据流程图可得输出结果为2(21)2x y ++÷.当输入x =0.5,y =7时,原式=2(0.5271)2+⨯+÷=618.【点睛】本题考查了有理数的混合运算.读懂流程图是解答本题的关键.21.(1)170米;(2)128升.【解析】【分析】(1)根据有理数的加法,可得到达的地点,再根据有理数的减法,可得他们距顶峰的距离;(2)根据路程乘以5个人的单位耗氧量,可得答案.【详解】(1)+150﹣35﹣40+210﹣32+20﹣18﹣5+20+85﹣25=330(米),500﹣330=170(米).答:他们最终没有登顶,距顶峰还有170米;(2)(+150+|﹣35|+|﹣40|+210+|﹣32|+20+|﹣18|+|﹣5|+20+85+|﹣25|)×(5×0.04)=640×0.2=128(升).答:他们共耗氧气128升.【点睛】本题考查了正数和负数,利用有理数的加法是解题的关键,注意路程乘以5个人的单位耗氧量是总耗氧量.22.(1)a=3;(2)1.【解析】【分析】(1)根据同类项是字母相同且相同字母的指数也相同,可得答案;(2)根据单项式的和为零,可得单项式的系数互为相反数,根据互为相反数的和为零,可得m,n的关系,根据负数的偶数次幂是正数,可得答案.【详解】解:(1)依题意,得a=3a﹣6,解得a=3;(2)∵2mx3y3+(﹣4nx3y3)=0,故m﹣2n=0,∴(m﹣2n﹣1)2016=(﹣1)2016=1.【点睛】本题考查了同类项的定义及合并同类项,利用同类项是字母相同且相同字母的指数也相同得出关于a的方程是解题关键.23.(1)1111;9112911⎛⎫=⨯-⎪⨯⎝⎭(2)10082017;(3)()()1111212122121n n n n⎛⎫=-⎪-+-+⎝⎭.【解析】【分析】(1)由题意可知:分子为1,分母是两个连续奇数的乘积,可以拆成分子是1,分母是以这两个奇数为分母差的12,由此得出答案即可;(2)利用发现的规律代入计算即可;(3)由题意可知:分子为1,分母是两个连续奇数的乘积,可以拆成分子是1,分母是以这两个奇数为分母差的12,由此得出答案即可.【详解】(1)第5个等式:a 5=1911⨯=12×(19﹣111);(2)原式=12×(1﹣13)+12×(13﹣15)+12×(15﹣17)+…+12×(12015﹣12017)=12×(1﹣13+13﹣15+15﹣17+…+12015﹣12017)=12×(1﹣12017)=12×20162017=10082017;(3)()()1111212122121n a n n n n ⎛⎫==- ⎪-+-+⎝⎭.【点睛】本题考查了数字的变化规律,找出数字之间的运算规律,利用运算规律解决问题.。
2015年七年级上学期数学期中试卷(汇编)

2015年七年级上学期数学期中试卷(汇编)
2015年七年级上学期数学期中试卷(汇编)
》》》秋季学期初一数学物期中考试卷:2015—2016年
》》》2016届初一年级数学上册期中试卷:必备
》》》16届初一数学第一学期期中质量检测(新人教)
》》》2015年秋季学期七年级数学期中试卷(附答案)
》》》2015-2016年初一数学上学期期中试卷
为大家推荐的2015年七年级上学期数学期中试卷的内容,还满意吗?相信大家都会仔细阅读,加油哦!
为大家策划了七年级上学期期中复习专题,为大家提供了七年级期中考试复习知识点、七年级期中考试复习要点、七年级期中考试模拟题、七年级期中考试试卷、七年级语文期中复习要点、七年级数学期中模拟题、七年级期中模拟题等相关内容,供大家考前复习参考。
江苏省2015年七年级数学期中试卷.doc(答案)

2015年春学期期中学业质量测试七年级数学试卷注意:1.本试卷共4页,满分为150分,考试时间为120分钟.2.答题前,考生务必将本人的学校、班级、姓名、学号填写在答题纸相应的位置上.3.考生答题必须用0.5毫米黑色墨水签字笔,写在答题纸指定位置处,答在试卷、草稿纸等其他位置上一律无效.一、选择题(本大题共有6小题,每小题3分,共18分)1.计算83a a⋅的结果是(▲)A.a24 B.a11 C.2a3 D.2a82.计算(-xy2)3,结果正确的是(▲)A.xy6B.x3y2C.-x3y6D.x2y63.下列式子中,计算结果为x2+2x-15的是(▲)A.(x+5)(x-3)B.(x-5)(x+3)C.(x+5)(x+3)D.(x-5)(x-3)4.下列从左到右的变形属于因式分解的是(▲)A.x2+3x-4=x(x+3)-4 B.x2-4+3x=(x+2)(x-2)+3xC.x2-4=(x+2)(x-2) D.(x+2)(x-2)=x2-45.不等式x≥3的解集在数轴上表示为(▲)AB.CD.6.哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁,”如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,下列方程组正确的是(▲)A.1818x yy x y=-⎧⎨-=-⎩,B.1818y xy y x=-⎧⎨-=-⎩,C.1818x yy x y+=⎧⎨-=+⎩,D.1818y xx y y-=⎧⎨-=+⎩,二、填空题(本大题共有10小题,每小题3分,共30分)7.(▲)3=27x6.8.计算:(-3x)5÷(-3x)= ▲.9.已知方程3x-y=-4,用含x的代数式表示y,y= ▲.10.肥皂泡的泡壁厚度大约是0.0007mm,换算成以米为单位用科学记数法来表示是▲m.11.已知a>b,则3-2a ▲3-2b.(填>、=或<)12.若(x+P)与(x+2)的乘积中,不含x的一次项,则常数P的值是▲ . 13.用不等式表示数量关系:小明今年x岁,小强今年y岁,爷爷今年70岁,小明年龄的2倍与小强年龄的5倍的和不小于爷爷的年龄: ▲ . 14.若32+=n m ,则2244m mn n -+的值是 ▲ .15.若二项式m 2+9加上一个单项式后是一个多项式的完全平方,请写出一个这样的单项式 ▲ . 16.今年学校举行足球联赛,共赛17轮(即每队均需参赛17场),记分办法是:胜1场得3分,平1场得1分,负1场得0分.在这次足球比赛中,小虎足球队得 16分,且踢平场数是所负场数的整数倍,则小虎足球队所负场数的情况有 ▲ 种可能性.三、解答题(本大题共有10小题,共102分.解答时应写出必要的步骤)17.(本题满分12分)用适当的不等式表示下列数量关系:(1)a 与b 的和是负数; (2)x 的5倍大于-3; (3)x 的41与-5的和小于1; (4)y 的4倍与9的和不是正数. 18.(本题满分8分)计算:(1)2233342)(-a a a a a ⋅+⋅; (2)x (y -5)+y (3-x ). 19.(本题满分8分)已知不等式x+3<7. (1)把不等式化成x >a 或x <a 的形式;(2)把这个不等式的解集在数轴上表示出来,并求出这个不等式的正整数解.20.(本题满分8分)因式分解:(1)50182-x ; (2)32244b b a ab --.21.(本题满分10分)解方程组: (1)⎩⎨⎧=+-=②y x ①x y .823,32 (2)⎩⎨⎧=-=+②y x ①y x .623,43222.(本题满分10分)(1)计算:22201520141111()()()3()5553-++-⨯-;(2)先化简,再求值:()()()y y y 4343432-+++,其中y=52. 23.(本题满分10分)(1)设a+b =5,ab=3,求a 2+b 2和(a-b )2的值;(2)观察下列式子:1×3+1=4,2×4+1=9,3×5+1=16,4×6+1=25,…, 探索以上式子的规律,试写出第n 个等式,并说明第n 个等式成立.24.(本题10分)某铁路桥长1000m ,现有一列火车从桥上通过,测得该火车从开 始上桥到完全过桥共用了1min ,整列火车完全在桥上的时间共40s .求火车的速度和长度.(1)写出题目中的两个等量关系; (2)给出上述问题的完整解答过程.25.(本题满分14分)(1)图1是一个长为2m 、宽为2n 的长方形,沿图中虚线 用剪刀平均分成四块小长方形,然后按图2的形状拼成一个正方形.①用两种不同的方法计算图2中的阴影部分的面积: ▲ 或 ▲ .②观察①中的结果,可发现代数式(m+n) 2、(m-n) 2、mn间的等量关系是▲.图1 图2 图3(2)如图3所示,用若干块m×n型长方形和m×m型、n×n型正方形硬纸片拼成一个新的长方形.试由图形写出一个等式.(3)现有若干块m×n型长方形和m×m型、n×n型正方形硬纸片,请你用拼图的方法推出m2+4mn+3n2因式分解的结果,并画出你拼出的图形.26.(本题满分14分)某公司有火车车皮和货车可供租用,货主准备租用火车车皮第一次第二次火车车皮(节) 6 8货车(辆)15 10累计运货(吨)360 440(1(2)若货主需要租用该公司的火车车皮7节,货车10辆,刚好运完这批货物,如按每吨付运费60元,则货主应付运费总额为多少元?(3)若货主共有300吨货,计划租用该公司的火车车皮或货车正好..(每节车皮和每辆货车都满载)把这批货运完,该公司共有哪几种运货方案?写出所有的方案.2015年春学期期中学业质量测试七年级数学参考答案与评分标准一、选择题(本大题共有6小题,每小题3分,共18分)1.B;2.C;3.A;4.C;5.D;6.B.二、填空题(本大题共有10小题,每小题3分,共30分)7.3x 2;8.81x 4;9.3x+4;10.7×10-7;11.<;12.-2;13.2x+5y ≥70;14.9;15.答案不唯一,如4361m ,6m ,-6m 等;16.3.三、解答题(共10题,102分.下列答案仅供参考........,有其它答案或解法.......,参照标准给分.......) 17.(本题满分12分)(1)b a +<0;(2)5x >-3;(3)541-x <1;(4)94+y ≤0(每题3分). 18.(本题满分8分)(1)原式=2666-a a a +(3分)=2a 6(4分);(2)原式=xy-5x+3y-xy (3分)=-5x+3y (4分).19.(本题满分8分)(1)不等式两边加上-3,得x+3-3<7-3,即x <4(3分);(2)数轴表示略(3分),这个不等式的正整数解为1,2,3(5分). 20.(本题满分8分)(1)原式=2(9x 2-25)(2分)=2(3x-5)(3x+5)(4分);(2)原式=-b (4a 2-4ab+b 2)(2分)=-b (2a-b )2(4分).21.(本题满分10分)(1)①代入②有,3x+2(2x-3)=8(1分),x=2(3分),把x=2代入①,得y=1(4分),∴⎩⎨⎧==.1,2y x (5分);(2)①×2+②×3得:13x =26(2分),x =2(3分).将x =2代入②,得y =0(4分),∴⎩⎨⎧==.0,2y x (5分)(用其他方法的类比给分). 22.(本题满分10分)(1)原式=251+1+25-3(4分)=23251(5分);(2)原式=16y 2+24y+9 +9-16y 2(3分)=18+24y (4分),当y=52时,原式=2753(5分).23.(本题满分10分)(1)a 2+b 2=19(3分),(a-b )2=13(2分);(2)结论:n (n+2)+1=(n+1)2(n 为正整数,3分,不写“n 为正整数”不扣分).验证:n (n+2)+1=n 2+2n+1=(n+1)2(2分).24.(本题满分10分)(1)火车1min 行驶的路程等于桥长与火车长的和,火车40s 行驶的路程等于桥长与火车长的差(4分,每个等量关系2分);(2)设火车的速度为xm/s ,火车的长度为ym (1分),根据题意得601000,401000.x y x y =+⎧⎨=-⎩(3分)解得20,200.x y =⎧⎨=⎩(1分),答(1分).25.(本题满分12分)(1)①(m -n)2或(m+n)2-4mn (4分);②(m -n)2=(m+n)2-4mn (6分);(2)2232))(2(n mn m n m n m ++=++(9分);(3)m 2+4mn +3n 2=(m +n)(m +3n)图略(12分).26.(本题满分14分)(1)设每节火车车皮可装x 吨,每辆货车可装y 吨(1分).根据题意,得⎩⎨⎧=+=+.440108,360156y x y x (4分)解方程组得⎩⎨⎧==.4,50y x (6分)答:每节火车车皮和和每辆货车可分别平均装50吨、4吨(7分);(2)60×(7×50+10×4)=23400(元).答:货主应付货款23400元(9分);(3)设租用火车车皮共a 节,货车b 辆.根据题意得50a +4b =300,此方程的非负整数解共有四个:⎩⎨⎧==;75,0b a ⎩⎨⎧==;50,2b a ⎩⎨⎧==;25,4b a ⎩⎨⎧==.0,6b a 答:共有如下表所示的四种方案(14分):。
【苏科版】初一数学上期中模拟试卷(带答案)

一、选择题1.如果,A B 两个整式进行加法运算的结果为3724x x -+-,则,A B 这两个整式不可能是( )A .3251x x +-和3933x x ---B .358x x ++和31212x x -+-C .335x x -++和341x x -+-D .3732x x -+-和2x --2.已知322x y 和m 2x y -是同类项,则式子4m 24-的值是( ) A .21-B .12-C .36D .123.下列各式中,符合代数书写规则的是( ) A .273x B .14a ⨯C .126p - D .2y z ÷4.下列判断中错误的个数有( )(1)23a bc 与2bca -不是同类项; (2)25m n不是整式;(3)单项式32x y -的系数是-1; (4)2235x y xy -+是二次三项式.A .4个B .3个C .2个D .1个 5.若252A x x =-+,256B x x =--,则A 与B 的大小关系是( )A .AB > B .A B =C .A B <D .无法确定6.式子5x x-是( ). A .一次二项式 B .二次二项式C .代数式D .都不是7.计算:11322⎛⎫⎛⎫-÷-÷- ⎪ ⎪⎝⎭⎝⎭的结果是( ) A .﹣3B .3C .﹣12D .128.已知n 为正整数,则()()2200111n-+-=( )A .-2B .-1C .0D .29.下列说法中错误的有( )个①绝对值相等的两数相等.②若a ,b 互为相反数,则ab=﹣1.③如果a 大于b ,那么a 的倒数小于b 的倒数.④任意有理数都可以用数轴上的点来表示.⑤x 2﹣2x ﹣33x 3+25是五次四项.⑥两个负数比较大小,绝对值大的反而小.⑦一个数的相反数一定小于或等于这个数.⑧正数的任何次幂都是正数,负数的任何次幂都是负数. A .4个B .5个C .6个D .7个10.甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是( ) A .1℃~3℃B .3℃~5℃C .5℃~8℃D .1℃~8℃11.某市11月4日至7日天气预报的最高气温与最低气温如表: 日期11月4日11月5日 11月6日 11月7日 最高气温(℃) 19 1220 9 最低气温(℃) 43-45其中温差最大的一天是( ) A .11月4日 B .11月5日 C .11月6日 D .11月7日 12.把实数36.1210-⨯用小数表示为()A .0.0612B .6120C .0.00612D .612000二、填空题13.观察下面的一列单项式:2342,4,8,16,,x x x x --根据你发现的规律,第n 个单项式为__________.14.与22m m +-的和是22m m -的多项式为__________.15.将一个正方形纸片剪成如图中的四个小正方形,用同样的方法,每个小正方形又被剪成四个更小的正方形,这样连续5次后共得到______个小正方形.16.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m 为________,第n 个正方形的中间数字为______.(用含n 的代数式表示)…………17.数轴上,如果点 A 所表示的数是3-,已知到点 A 的距离等于 4 个单位长度的点所表示的数为负数,则这个数是_______.18.把35.89543精确到百分位所得到的近似数为________.19.一个跳蚤在一条数轴上,从0开始,第1次向右跳1单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,依此规律下去,当它跳第100落下时,落点在数轴上表示的数是_________ . 20.比较大小:364--_____________()6.25--. 三、解答题21.小明早晨跑步,他从自己家出发,向东跑了2km 到达小彬家,继续向东跑了1.5km 到达小红家,然后又向西跑了4.5km 到达学校,最后又向东跑回到自己家.(1)以小明家为原点,以向东为正方向,用1个单位长度表示1km ,在图中的数轴上,分别用点A 表示出小彬家,用点B 表示出小红家,用点C 表示出学校的位置;(2)求小红家与学校之间的距离;(3)如果小明跑步的速度是250m/min ,那么小明跑步一共用了多长时间?22.观察下列各式:(1)-a +b =-(a -b);(2)2-3x =-(3x -2);(3)5x +30=5(x +6);(4)-x -6=-(x +6).探索以上四个式子中括号的变化情况,思考它和去括号法则有什么不同?利用你探索出来的规律,解答下面的题目: 已知a 2+b 2=5,1-b =-2,求-1+a 2+b +b 2的值. 23.计算(1)(-1)2019+0.25×(-2)3+4÷23(2)21233()12323-÷+-⨯+24.计算:(1)()110822⎫⎛---÷-⨯- ⎪⎝⎭(2)()2313232154⎫⎛-⨯--⨯-÷-⎪⎝⎭25.用代数式表示:(1)a 的5倍与b 的平方的差; (2)m 的平方与n 的平方的和;(3)x ,y 两数的平方和减去它们积的2倍.26.当0.2x =-时,求代数式22235735x x x x -+-+-的值。
【苏科版】七年级数学上期中模拟试题及答案

一、选择题1.在代数式a 2+1,﹣3,x 2﹣2x ,π,1x 中,是整式的有( ) A .2个 B .3个 C .4个 D .5个2.如果,A B 两个整式进行加法运算的结果为3724x x -+-,则,A B 这两个整式不可能是( )A .3251x x +-和3933x x ---B .358x x ++和31212x x -+-C .335x x -++和341x x -+-D .3732x x -+-和2x --3.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( )A .100(1+x )B .100(1+x )2C .100(1+x 2)D .100(1+2x ) 4.一个多项式与²21x x -+的和是32x -,则这个多项式为( ) A .253x x -+B .21x x -+-C .253x x -+-D .2513x x -- 5.代数式21a b-的正确解释是( ) A .a 与b 的倒数的差的平方 B .a 与b 的差的平方的倒数C .a 的平方与b 的差的倒数D .a 的平方与b 的倒数的差 6.若23,33M N x M x +=-=-,则N =( )A .236x x +-B .23x x -+C .236x x --D .23x x - 7.13-的倒数的绝对值( )A .-3B .13- C .3 D .138.下列计算中,错误的是( )A .(2)(3)236-⨯-=⨯=B .()144282⎛⎫÷-=⨯-=- ⎪⎝⎭C .363(6)3--=-++=D .()()2399--=--=9.下列计算正确的是( )A .|﹣3|=﹣3B .﹣2﹣2=0C .﹣14=1D .0.1252×(﹣8)2=1 10.下列有理数大小关系判断正确的是( )A .11910⎛⎫-->- ⎪⎝⎭B .010>-C .33-<+D .10.01->-11.一个数的绝对值是3,则这个数可以是( )A .3B .3-C .3或者3-D .1312.已知 1b a 0-<<< ,那么 a b,a b,a 1,a 1+-+- 的大小关系是( )A .a b a b a 1a 1+<-<-<+B .a 1a b a b a 1+>+>->-C .a 1a b a b a 1-<+<-<+D .a b a b a 1a 1+>->+>-二、填空题13.观察下列顺序排列的等式:9×0+1 = 1,9×1+2 = 11,9×2+3=21, 9×3+4=31, 9×4+5=41,……,猜想:第n 个等式(n 为正整数)用n 表示,可表示成_________. 14.计算7a 2b ﹣5ba 2=_____.15.仅当b =______,c =______时,325x y 与23b c x y 是同类项。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学期中模拟试卷二班级:_________姓名:_________一、细心填一填:(1—16题每空1分,17—18题每空2分,共29分) 1.绝对值等于3的数是 .5.1-的倒数的为_____________。
2.在数轴上,与表示-2的点距离5个单位的点所对应的数是 。
3.平方得9的有理数是 。
比较大小: 32-52-。
4. 单项式—7434n m 的系数是 ,次数是 。
多项式23332--xy y x 是 次 项式。
5.把-(-11)-(+2)+(-1)-(-3)写成省略括号的和的形式_________ ,6.直接写出下列算式的结果: ① 4―()―12=______ , ②-14―6÷(-3)= ________ ③2332⨯-=________.7.某公交车原坐有22人,经过4个站点时上下车情况如下(上车为正,下车为负):(+4,-8),(-5,6),(-3,2),(1,-7),则车上还有________人 8.若单项式ay x 221与-2x b y 3的和仍为单项式,则其和为 9.若a 、b 互为相反数,c 、d 互为倒数,且m 的绝对值为2,则 =+-+)(312b a cd m 。
10.联系实际背景,说明代数式62a 的实际意义 .11.今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题空格的地方被钢笔水弄污了,那么空格中的一项是:222222_______21)23421()213(y x y xy x y xy x +-=-+---+- 12.一列数:0、1、2、3、6、7、14、15、30、31、 、 这串数是由小明按照一定规则写下来的,他第一次写下“0、1”,第二次按着写“2、3”,第三次接着写“6、7”第四次接着写“14、15”,就这样一直接着往下写,把这串数的最后二个数填在横线上。
13.如图所示是计算机某计算程序,若开始输入2-=x ,则最后输出的结果是 .14. 若a b a ab =+☆,则6(5)-☆=____________.15. 如图,“爱家”超市中某种商品的价格标签,则它的原价是 元.16.为了解用电量的多少,李明在六月初连续一星期在同一时刻观察电表显示的度数,居民用电每度0.54元。
记录如下:这个星期李明家共用电 度,李明家这个星期的电费为___________。
17.如图,在边长为1的正方形纸板上,依次贴上面积为21,41,81,…,n 21的长方形彩色纸片(n 为大于1的整数),请你用“数形结合”的思想,依数形变化的规律,计算 1-(+++814121…+n 21)=___________. 18.a 是不为1的有理数,我们把11a-称为a 的差倒数....如:2的差倒数是1112=--,1-的差倒数是111(1)2=--.已知1a =3,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,…,依此类推,则2009a =二、精心选一选: (本大题共8小题,每小题2分,共16分)1.飞机上升了-80米,实际上是 【 】 A .上升80米 B .下降-80米 C .先上升80米,再下降80米 D .下降80米2.冬季某天我国三个城市的最高气温分别是-10℃,1℃,-7℃,它们任意两城市中最高温度相差最大的是 【 】A.3℃B. 8℃C. 11℃D.17℃3.在下列数-56,+100,6.7,-14,0,722,-5,)1(--,31-中,属于非负整数的有 【 】A .2个B .3个C .4个D .5个4.下列去括号正确的是 【 】 A 、-(a +b -c )=-a +b -c B 、-2(a +b -3c )=-2a -2b +6c C 、-(-a -b -c )=-a +b +c D 、-(a -b -c )=-a +b -c5.第29届北京奥运会火炬接力活动历时130天,传递行程约为137000km ,用 科学计数法表示是 【 】 A .13.7×103km B .13.7×104kmC .1.37×105kmD .0.137×106km6.下列代数式:(1)mn 32-,(2)m ,(3)21,(4)a b,(5)12+m (6)5y x +,(7)y x y x -+2(8)3222++x x (9)yy y 353+-之中整式有 【 】A .3个B .4个C .6个D .7个7.下列各组是同类项的一组是 【 】 A .xy 2与-x 212y B .3x 2y 与-4x 2yz C .a 3与b 3 D .–2a 3b 与21ba 3第17题图8.32,33和34分别可以按如图所示方式“分裂”成2个、3个和4个连续奇数的和,36也能按此规律进行“分裂”,则36“分裂”出的奇数中最大的是【 】 A .41 B .39 C .31 D .29三、计算:(3×4=12分)1.)5()58(23--++- 2. ⎪⎭⎫⎝⎛-⨯⎪⎭⎫ ⎝⎛-÷53132413.48)1214361(⨯-+- 4.5)4()1(3242⨯---⨯+-四、化简求值:(3+3+4+4共14分) 1.22223xy y x xy y x ++- 2.()()b a b a 4392222--++3.3-3x [3x +)76(2x x -])43(223x x x ---,其中31-=x 。
4.已知2xy =-,3x y -=,求整式()[]3743(2)xy y x xy y x --+-+-的值五、解答题:(本大题共29分)1.在数轴上表示出下列各数,并把它们用“﹤”连接起来。
(4分) -∣-2∣,38-,0,3, 30)1(-3413 1517 19339 11732 352.(本小题共4分)某中学七年级A 班有45人,某次活动中分为四组,第一组有a 人,第二组比第一组的一半多6人,第三组的人数等于前两组人数的和。
(1)求第四组的人数。
(用含a 的式子表示) (2)当a =6时,求第四组的人数。
3.(本题5分)小明靠勤工俭学的收入维持上大学的费用,下面是小明某一周的收支情况表(收入为正,(1)在这一周小明有多少节余?(2)照这样小明一个月(按30天计算)能有多少节余?(3)按以上的支出水平,小明一个月(按30天计算)至少要有多少收入才能维持正常开支?4.(本小题共5分)如图,奥运福娃在5×5的方格(每小格边长为1m )上沿着网格线运动。
贝贝从A 处出发去寻找B 、C 、D 处的其它福娃,规定:向上向右走为正,向下向左走为负。
如果从A 到B 记为:A →B (+1,+4),从B 到A 记为:B →A (-1,-4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)A →D ( , ),B →C ( , ),C →(-3,-4);(2)若贝贝的行走路线为A →B →C →D ,请计算贝贝走过的路程; (3)若贝贝从A 处去寻找妮妮的行走路线依次为(+1,+2),(+2,-1),(-2,+3),(1,-2),请在图中标出妮妮的位置E 点.5.(本小题共5分)已知在纸面上有一数轴(如图),折叠纸面.(1)若1表示的点与-1表示的点重合,则-3表示的点与数 表示的点重合; (2)若-1表示的点与3表示的点重合,回答以下问题:①2表示的点与数 表示的点重合;②若数轴上A 、B 两点之间的距离为9(A 在B 的左侧),且A 、B 两点经折叠后重合,求A 、B 两点表示的数是多少?6.(本小题共6分)初一(1)班学生在5名教师的带领下去公园秋游,公园的门票为每人30元.现有两种优惠方案,甲方案:带队教师免费,学生按8折收费;乙方案:师生都7.5折收费.(1)若有m 名学生,则甲方案师生共需_____________元, 乙方案师生共需__________元(用含m 代数式表示).(2)当m=70时,采用哪种方案优惠? (3)当m=100时,采用哪种方案优惠? (4)有多少名学生时,两种方案一样优惠?七年级数学期中考试卷三班级: 姓名:一、填空:(第1~7题每空1分,第8~12题每空2分,共22分) 1. 3的相反数是 ,—211的倒数是______ ,______的绝对值是4 2.化简:-|-8|= ,-(-5)= , 3.比较大小:(1)13-____0; (2)2332--; (3)23-____-0.6.4. 国家体育场“鸟巢”的建筑面积达258000m2,它用科学记数法表示应为 m2.5.如果全班某次数学测试的平均成绩为83分,某同学考了85分,记作+2分,得分80分应记作____________________.6. 若单项式43ax y -与8413b x y +的和是单项式,则b a = 7. 在如图所示的运算流程中,若输出的数y=5,则输入的数x= 。
8. 若方程021=++k kx是关于x 的一元一次方程,则k =9. 方程7354+=+x x 与方程+=+x x 638________(填一个常数)有相同的解。
10. 如果3=x 时,代数式13++qx px 的值为2011,则当3-=x 时,代数式13++qx px 的值是 11.我们知道:式子||x -3的几何意义是数轴上表示数x 的点与表示数3的点之间的距离,则式子||x -2+||x +1的最小值为 12.a 是不等于1的有理数,我们把11a-称为a 的差倒数....如:2的差倒数是1112=--,1-的差倒数是111(1)2=--.已知211-=a ,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,…,依此类推,则a 2013= .二.精心选一选(每题3分,共21分) 13. 下列计算正确的是( )(A)633a a a =+ (B) 3332a a a =+ (C) 6332a a a =+ (D) 933a a a =+14.在-(-8),1-,0-,()32-这四个数中非负数共有( )个.A 、4B 、3C 、2D 、1 15. 下列方程中,是一元一次方程的是( )(A )()232x x x x +-=+ (B)()40x x +-= (C)1x y += (D)10x y+= 16.下列说法中,正确的有( )个.①单项式2522--的系数是yx ,次数是3 ②单项式a 的系数为0,次数是1 ③24a b 2c 的系数是2,次数为8④一个n 次多项式(n 为正整数),它的每一项的次数都不大于n A 、4 B 、3 C 、2 D 、117.a 、b 两数在数轴上的位置如图所示,则下列各式正确的有( )个。