概率论1.1

合集下载

概率论与数理统计 第一章1.1随机事件

概率论与数理统计 第一章1.1随机事件

事件的关系与运算
注:(1) 事件的关系与运算可用维恩图形象表之
(2) 事件的和与积的运算可推广到有限个事 件或可数无限个事件的情形.
A B A B, (3) 事件的和与积的另一记法:
A B AB.
事件的关系与运算
8. 完备事件组 设 A1 , A2 ,, An , 是有限或可数个事件,若其 满足:

随机事件
在随机试验中,人们除了关心试验的结果本身外,
往往还关心试验的结果 是否具备某一指定的可观
察的特征,概率论中将这一可观察的特征称为一 个事件 , 它分三类:
随机事件
1. 随机事件:在试验中可能发生也可能不发生的 事件; 2. 必然事件:在每次试验中都必然发生的事件; 3. 不可能事件:在任何一次试验中都不可能发 生的事件. 例如,在抛掷一枚骰子的试验中,我们也许会关
A : “点数为奇数”,B : “点数小于5”.
则 A B {1,2,3,4,5}; A B {1,3};
A - B {5}.
6. 若 A B , 则称事件 A 与 B 是互不相 容的(或互斥的).
7. 若 A B S 且 A B ,
事件的关系与运算
由于随机现象的结果事先不能预知, 初看似乎 毫无规律. 然而人们发现 同一随机现象大量重 其每种可能的结果 出现的频率具有 复出现时,
稳定性, 从而表明随机现象也有其固有的规律
性. 人们把随机现象在大量重复出现时 所表现 出的量的规律性 称为随机现象的统计规律性.
随机现象的统计规律性
概率论与数理统计是研究 随机现象统计规律性 的一门学科. 为了对随机现象的统计规律性进行研究,就需 对随机现象进行重复观察,我们把对随机现象

概率论知识点

概率论知识点

第一章 随机事件及其概率§1.1 随机事件及其运算随机现象:概率论的基本概念之一。

是人们通常说的偶然现象。

其特点是,在相同的条件下重复观察时,可能出现这样的结果,也可能出现那样的结果,预先不能断言将出现哪种结果.例如,投掷一枚五分硬币,可能“国徽”向上,也可能“伍分”向上;从含有5件次品的一批产品中任意取出3件,取到次品的件数可能是0,1,2或3.随机试验:概率论的基本概念之一.指在科学研究或工程技术中,对随机现象在相同条件下的观察。

对随机现象的一次观察(包括试验、实验、测量和观测等),事先不能精确地断定其结果,而且在相同条件下可以重复进行,这种试验就称为随机试验。

样本空间: 概率论术语。

我们将随机试验E 的一切可能结果组成的集合称为E 的样本空间,记为Ω。

样本空间的元素,即E 的每一个结果,称为样本点。

随机事件:实际中,在进行随机试验时,人们常常关心满足某种条件的那些样本点所组成的集合.称试验E 的样本空间Ω的子集为E 的随机事件,简称事件.在每次试验中,当且仅当这一子集中的一个样本点出现时,称这一事件发生.特别,由一个样本点组成的单点集,称为基本事件.样本空间Ω包含所有的样本点,它是Ω自身的子集,在每次试验中它总是发生的,称为必然事件.空集Ø不包含任何样本点,它也作为样本空间的子集,它在每次试验中都不发生,称为不可能事件.互斥事件(互不相容事件): 若事件A 与事件B 不可能同时发生,亦即ΦB A = ,则称事件A 与事件B 是互斥(或互不相容)事件。

互逆事件: 事件A 与事件B 满足条件ΦB A = ,Ω=B A ,则称A 与B 是互逆事件,也称A 与B 是对立事件,记作A B =(或B A =)。

互不相容完备事件组:若事件组n A A A ,,21满足条件ΦA A j i = ,(n 1,2j i, =),Ω== n 1i i A,则称事件组n A A A ,,21为互不相容完备事件组(或称n A A A ,,21为样本空间Ω的一个划分)。

第1章 概率论的基本概念

第1章 概率论的基本概念

试验者
德•摩根 蒲 丰 K•皮尔逊 K•皮尔逊 维 尼
n
2048 4040 12000 24000 30000
nH
1061 2048 60199 12012 14994
fn(H)
0.5181 0.5069 0.5016 0.5005 0.4998
nA 频率 f n ( A) 具有如下基本性质: n
统计概率的性质
1. 非负性:对每个事件A有 1 P ( A) 0; 2. 规范性:对必然事件S有 P ( S ) 1;
3. 有限可加性:设A1,A2,…An是两两互不相容事件 则 P( A1 A2 ... An ) P( A1 ) P( A2 ) ... P( An )


交换律 A B B A
A B B A
结合律 ( A B) C A ( B C )
( A B) C A ( B C )
分配律 ( A B) C ( A C ) ( B C )
A ( B C ) ( A B) ( A C )
其结果可能为:
正品、次品。
其结果可能为: 红、黄、绿。
实例6 “出生的婴儿可能是男,也可能是 女”。
实例7 “明天的天气可能是晴 , 也可能是多云 或雨 ”。
在我们所生活的世界上, 充满了不确定性
如何来研究随机现象?
随机现象是通过随机试验来研究的。
问题 什么是随机试验?
1. 试验(Experiment):包括各种各样的科学实 验,也包括对客观事物的“观察”、“测量”等。 2. 随机试验(E,Random experiment):具有以 下三个特征的试验: (1)可以在相同的条件下重复地进行; (2)每次试验的可能结果不止一个,并且能 事先明确试验的所有可能结果; (3)进行一次试验之前不能确定哪一个结果 会出现。

概率论与数理统计教程

概率论与数理统计教程
第一章 事件与概率
1.1 随机事件和样本空间
一、随机现象 二、随机试验 三、样本空间 样本点 四、随机事件的概念 五、随机事件的关系
一、随机试验
1.必然现象(确定) 2.偶然现象(不确定)随机
说明: 1.随机现象揭示了条件和结果之间的非确定性联系 ,
其数量关系无法用函数加以描述. 2.随机现象在一次观察中出现什么结果具有偶然性,
1、包含关系 若事件 A 出现, 必然导致 B 出现 则称事件 B 包含事件 A,记作B A 或 A B.
特别地 若事件A包含事件B,而且事件B包含 事件A, 则称事件A与事件B相等,记作 A=B.
2.两事件的和与并
“二事件 A, B至少发生一个”也是一个事件, 称为事件 A 与事件B的和事件.记作A B,显然 A B {e | e A或e B}.
若事件 A 、B 满足 A B 且 AB .
则称 A 与B 为互逆(或对立)事件. A 的逆记
作 A.
事件间的运算规律
设 A, B, C 为事件, 则有
(1) 交换律 A B B A, AB BA. ( AB)C A(BC).
(2) 结合律 ( A B) C A (B C),
实例 抛掷一枚骰子, 观察出现的点数。 试验中,骰子“出现1点”, “出现2 点”, … ,“出现6点”, “点数不大于4”, “点 数为偶数” 等都为随机事件.
五、随机事件的关系及运算
(1)、随机事件间的关系
设试验 E 的样本空间为 , 而 A, B, Ak (k 1,2,)是 的子集.
推广:
N元情形
n
推广 称 Ak 为n个事件 A1, A2 ,, An 的积事件,
k 1
即A1, A2 ,, An同时发生;

概率论的基本概念

概率论的基本概念

概率论的基本概念1.1 随机试验1.随机现象在一定条件下具有多个可能的结果,个别几次观察中结果呈现出随机性(不确定性),在大量重复观察中结果又呈现出固有的客观规律性的自然现象称为随机现象.随机现象的三大特点:(1)在一定条件下具有多个可能的结果,所有可能的结果已知;(2)在一次观察中,结果呈现出随机性,不能确定哪一个结果将会出现;(3)在大量的重复观察(相同条件下的观察)中,结果的出现又呈现出固有的客观规律性.2.随机试验具有以下几个特点的实验称为随机实验,常用E 来表示1)可以在相同的条件下重复进行;2)试验的结果不止一个,并且能事先明确试验所有可能的结果;3)进行一次试验之前不能确定哪一个结果会出现.注:随机试验即可在相同条件下重复进行的针对随机现象的试验.1.2 样本空间与随机事件1. 样本空间与随机事件的概念1) 样本空间随机试验E的所有可能结果E的样本空间,记为S.样本空间的元素,即E的每个结果,称为样本点.样本空间依据样本点数可分为以下三类(1)有限样本空间:样本空间中样本点数是有限的;(2)无限可列样本空间:样本空间中具有可列无穷多个样本点;(3)无限不可列样本空间:样本空间中具有不可列无穷多个样本点.2) 随机事件一般,称随机试验E的样本空间S的任何一个子集为E的随机事件,简称为事件. 在一次试验中,当且仅当这一子集中的一个样本点出现时,称这一事件发生.注:(1):随机事件在一次试验中可能发生,也可能不发生;(2):由一个样本点构成的单点集,称为基本事件;(3):样本空间S是必然事件,空集 是不可能事件,它们两个发生与否不具有随机性,为了方便将它们两个也称为随机事件。

2. 事件之间的关系与运算 假设,,,,1,2,i i A B A B i =是随机事件,1) 包含关系 若事件B 发生必然导致事件A 发生,则称事件B 包含于事件A 或事件A 包含事件B ,记作B A ⊂.若A B ⊂,且B A ⊂,则称事件A 与事件B 相等,记作A B =. 2) 和事件 事件{|}A B x x A x B =∈∈或称为事件A 与事件B 的和事件,当且仅当事件,A B 中至少有一个发生(或者A 发生或者B 发生)时事件AB 发生.类似地,称1n i i A =为n 个事件12,,n A A A 的和事件;称1i i A ∞=为可列个事件12,,,n A A A 的和事件.3) 积事件 事件{|}A B x x A x B =∈∈且称为事件A 与事件B 的积事件,当且仅当事件,A B 同时发生(A 发生且B 发生)时事件AB 发生.类似地,称1n i i A =为n 个事件12,,n A A A 的积事件;称1i i A ∞=为可列个事件12,,,n A A A 的积事件.4) 差事件 事件{|}A B x x A x B -=∈∉且称为事件A 与事件B 的差事件.当且仅当事件A 发生且事件B 不发生时事件A B -发生.5) 互斥关系 若AB φ=,则称事件A 与事件B 是互斥的,或称为互不相容的.两个互不相容的事件不能同时发生.6) 对立关系 若A B S =且A B φ=,则称事件A 与事件B 互为对立事件,或互为逆事件.每次试验中互为对立的两个事件有且仅有一个发生.事件A 的对立事件一般记作A .图1.1 事件之间关系文氏图3. 事件的运算律 1) 交换律;A B BA AB BA ==.2) 结合律 ()();A B C A B C = ()()A B C A B C =. 3)分配律 ()()()AB C A B A C =;()()()A B C A B A C =.4)狄-摩根(De-Morgan )律 ;AB A B = A B A B =;11i i i i A A ∞∞===;11i i i i A A ∞∞===1.3 频率与概率2. 概率的概念及其性质1) 概率的统计定义:对于随机试验E ,当试验次数逐渐增大时,频率()n f A 将逐渐稳定与唯一确定的实数:()n f A 的稳定值,所以将此稳定值定义为随机事件A 的概率,记为()P A .它反映了随机事件A 在一次实验中发生可能性大小.1.4 等可能概型(古典概型)1. 古典概型的特点1)样本空间由有限个样本点构成12{,,}n S e e e =;2)每个样本点出现的可能性相等:12()()()1/n P e P e P e n ===.2. 古典概型中事件A 的概率计算公式()/P A m n =其中n 为样本空间中样本点的个数,m 为事件A 中样本点的个数.1.5 条件概率1. 条件概率1) 条件概率的定义:设,A B 是两事件,且()0P A >,则称()(|)()P AB P B A P A =为事件A 发生的条件下,事件B 发生的条件概率.条件概率也满足性质(1)非负性:对任一事件B ,(|)0P B A ≥; (2)规范性:(|)1P S A =;(3)可列可加性:设12,,B B 是一列两两互不相容的随机事件,则有()11||i i i i P B A P B A ∞∞==⎛⎫= ⎪⎝⎭∑注:条件概率也满足概率的上述三条基本性质,所以条件概率它也是概率:样本空缩小为事件A 的概率,因而它满足概率的所有性质.2. 乘法原理 乘法原理:设,A B是两个事件,且()0P A >,则有()(|)()P AB P B A P A =;一般,设12,,n A A A 是n 个事件,2n ≥,且121()0n P A A A ->,则有1211112211()(|)(|)(|)()n n n n n P A A A P A A A P A A A P A A P A ---=乘法原理是计算积事件的概率的基本公式.3. 全概率公式与贝叶斯公式1)样本空间的划分:设随机试验的样本空间是S ,12,,n B B B 为一组事件,如果满足(1),,,1,2,,i j B B i j i j n φ=≠=;(2)12n B B B S =.则称12{,,}n B B B 是样本空间S 的一个划分.2)全概率公式:设S 是试验E 的样本空间,12{,,}n B B B 是S的一个划分,且()0,1,2,i P B i n >=,对任一事件A ,则有1()(|)()ni i i P A P A B P B ==∑3)贝叶斯公式:设S 是试验E 的样本空间,12{,,}n B B B 是S的一个划分,A 是一个随机事件,且()0,1,2,i P B i n >=,()0P A >,则有1(|)()(|)1,2,(|)()i i i njjj P A B P B P B A i n P A B P B ===∑注:(1)一个复杂的随机事件往往有若干个互不相容的原因导致发生,求这一类随机事件的概率时就要用到全概率公式;而已知事件已经发生,求由某一个原因导致发生的概率时,用贝叶斯公式.(2) 用全概率公式和贝叶斯公式求事件概率时,样本空间划分的选取是关键.一般划分由导致事件发生的互不相容的所有原因组成,即由题设中给出的或隐含的所有条件概率的条件组成.1.6 事件的独立性1. 两个事件的独立性两个事件独立:设,A B 是两个事件,如果满足等式()()()P AB P A P B =则称随机事件A 与B 相互独立.(1)若,A B 是两个事件,()0P A >,则A 与B 独立等价于(|)()P B A P B =.(2) 若事件A 与B 相互独立,则事件A 与B ,A 与B ,A 与B 也相互独立.2. 多个事件的独立性1)两两独立:设,,A B C 是三个事件,若满足()()()()()()()()()P AB P A P B P AC P A P C P BC P B P C === 则称事件,,A B C 两两独立.一般,设12,,n A A A 是n 个事件,若对任意的,1,2,i j i j n ≠=,有()()()i j i jP A A P AP A =,则称12,,n A A A 两两独立.2)相互独立:设,,A B C 是三个事件,若满足()()()()()()()()()()()()()P AB P A P B P AC P A P C P BC P B P C P ABC P A P B P C ====则称事件,,A B C 相互独立.一般,设12,,n A A A 是n 个事件,从中任取(2)k k n ≤≤个事件12,,k i i i A A A ,总有1212(,,)()()()k k i i i i i i P A A A P A P A P A =成立,则称12,,n A A A 相互独立.。

第1章 概率论的基本概念.

第1章 概率论的基本概念.
, B不可能同时发生 概率论表述:事件 A .. A不能都不发生, 概率论表述:事件 A 不发生 . 事件 A 和 概率论表述:事件 A 发生,而事件 B 发生 . , , 概率论表述:事件 概率论表述:事件 概率论表述:事件 A A A , B B B 相等意味着它们是同一个集合 中至少有一个发生 同时发生 . . 概率论表述:事件A发生必然导致事件B发生. 也不能都发生,只能恰好发生其中一个.
注意事项
可能结果——样本点——基本事件
(1) (2)在概率论中常用一个长方形来 (3) 由中的单个元素组成的子集称为基本事件,常用表示. 判定一个事件是否发生的标准是看它所包含的样本点是否 表示概率空间,用椭圆或者其它的 A 出现 ① .事件发生当且仅当该事件包含的某个样本点出现 样本空间的最大子集称为必然事件,常用 表示; . ● 1 几何图形来表示事件.这类图形被称 ● ② 样本空间的最小子集称为不可能事件,常用 表示 .2 为维恩(Venn)图,又叫文氏图.
例1.1.2 一天内进入某商场的人数的样本空间为 ={0,1, 2, …}. 例1.1.3 电视机寿命的样本空间为 ={t|t0} . 在以后的数学处理上,我们往往把有限个或可列个 样本点的情况归为一类,称为离散样本空间;而将不可 列无限个样本点的情况归为另一类,称为连续样本空间.
随机事件 (random event) 随机试验的某些子集称为随机事件, 简称事件.它在随机试验中可能出现也可能不出现,而在大量重复试 验中具有某种规律性. 常用符号 (1)大写的英文字母:A,B,C. (2)大写的英文字母加下标:A1, A2, A3, … .
例1.1.7 设A, B, C是某个随机现象的三个事件,则 (1)事件“A与B发生,C不发生”:ABC (2)事件“A, B, C中至少有一个发生”:A B C (3)事件“A, B, C中至少有两个发生”:AB AC BC

概率第一章

概率第一章

第1章 随机事件1.1 随机事件1.1.1 随机现象与随机试验概率论与数理统计是研究随机现象统计规律的一门数学分科.什么是随机现象呢?下面让我们先做两个简单的试验:试验一:一个盒子中有10个完全相同的白球,搅匀后从中任意摸取一球;试验二:一个盒子中有10个相同的球,其中5个是白色的,另外5个是黑色的,搅匀后从中任意摸取一球.分析上述两个试验结果给出下述两个基本概念:确定性现象:在一定条件下必然发生的现象称为确定性现象.试验一所代表的类型即是确定性现象.试验二所代表的类型,有多于一种可能的试验结果,而且在一次试验之前不能确定会出现哪一个结果,这一类试验称为随机试验.在客观世界中随机现象也是极为普遍的,例如:某地区的年降雨量;检查流水生产线上的一件产品,是合格品还是不合格;打靶射击时,弹着点离靶心的距离,等等.在条件相同的一系列重复观察中,会时而出现时而不出现,呈现出不确定性,并且在每次观察之前不能准确预料其是否出现,这类现象称之为随机现象.在相同条件下多次重复某一试验或观察时,虽然结果具有不确定性,但会表现出一定的规律性,这种规律性称之为统计规律性.那么如何来研究随机现象的统计规律呢?对随机现象进行的实验与观察统称为试验.具有下列特征的试验称为随机试验:1.可在相同的条件下重复进行;2.试验结果不止一个,但在试验之前能明确试验所有可能的结果;3.试验前不能确定到底会出现哪一个结果.随机试验一般用大写英文字母E 表示.如:1E :抛一枚硬币,观察出现正面还是反面(分别用“H ” 和“T ” 表示出现正面和反面);2E :抛两枚硬币,观察出现的结果;3E :掷一颗骰子,观察出现的点数;4E :记录某网站一分钟内被点击的次数;5E :对一目标进行射击,直到命中为止,观察其结果;6E :在一批灯泡中任取一只,测其寿命.1.1.2 样本空间与随机事件对于随机试验,虽然在我们试验之前不能预知试验的结果,但可以确定试验的所有可能的结果.定义1.1.1 样本空间:随机试验所有可能的结果组成的集合称为样本空间,通常用字母Ω表示.定义1.1.2 样本点:随机试验每一个可能的结果称为样本点,通常用字母ω表示样本点,即为Ω中的元素.例1.1.1 一盒子中有黑球、白球,从中任取一球,观察其颜色,记1ω={取得白球},2ω={取得黑球},则12{,}ωωΩ=.例 1.1.2 一个盒子中有十个完全相同球,分别标以号码1210,,,,从中任取一球,令 i ={取得球的号码为i },则{1,210}Ω=.例1.1.3 写出16~E E 的样本空间.解 16~E E 的样本空间分别为:(1) 1{,}H T Ω=;(2) 2{,,,}HH HT TH TT Ω=;(3) 3{1,2,3,4,5,6}Ω=;(4) 4{0,1,2}Ω=;(5) 5{(,)|0,0}x y x y Ω=>>;(6) 6{|0}t t Ω=≥.在实际中,我们通常并不关心所有的样本点,而是只关注一些满足一定条件的样本点,如在随机试验6E 中,若规定这种灯泡的寿命超过1000小时为一级品,那么我们只关心{|1000}t t >中的样本点,所以我们有如下定义:定义1.1.3 随机事件:样本空间Ω的子集,称为随机事件,用大写字母,,,,A B C D 表示,即随机事件为满足一定条件的样本点组成的集合.特别的,仅由一个样本点的事件称为基本事件,它是随机试验的直接结果,每次试验必定发生且只可能发生一个基本事件;全体样本点组成的事件称为必然事件,记为Ω,每次试验必然事件必定发生;不包含任何样本点的事件称为不可能事件,记为∅,每次试验不可能事件必定不发生.在每次试验中,当且仅当事件A 中的一个样本点出现时,称事件A 发生.例如在3E 中,如果用A 表示事件“掷出奇点数”,那么A 是一个随机事件.由于在一次投掷中,当且仅当掷出的点数是1,3,5中的任何一个时才称事件A 发生了,所以我们把事件A 表示为{}1,3,5A =;“掷出的点数不超过6”就是必然事件,用集合表示这一事件就是3E 的样本空间{}1,2,3,4,5,6Ω=.而事件“掷出的点数大于6”是不可能事件,这个事件不包括3E 的任何一个可能结果,所以用空集∅表示.一个样本空间Ω中,可以有很多的随机事件.概率论的任务之一,是研究随机事件的规律,通过对较简单事件规律的研究去掌握更复杂事件的规律.下面我们来介绍事件之间的关系和事件之间的运算规律.1.1.3 事件的关系及运算因为事件是一个集合,因而事件间的关系和运算是按集合间的关系和运算来处理的.下面给出这些关系和运算在概率中的提法,并根据“事件发生”的含义,给出它们在概率中的含义.设随机试验E 的样本空间为Ω,,,(1,2,)k A B A k =是Ω的子集.1. 事件的关系(1) 事件的包含与相等:若事件A 发生必然导致事件B 发生,则称事件A 包含于事件 B ,记为A B ⊃或者B A ⊂.:{}A B A,B ⊂∈∈ωω则.见文氏(Venn )图1.1.若B A ⊂且A B ⊂,即B A =,则称事件A 与事件B 相等.(2) 事件的和:事件A 与事件B 至少有一个发生的事件称为事件A 与事件B 的和事件, 记为A B .事件A B 发生意味着:或事件A 发生,或事件B 发生,或事件A 与事件B 都发生.{}A B A,B =∈∈ωω或.见文氏(Venn )图1.1.推广121ni n i A A A A ==,表示12,,,n A A A 至少有一个发生, 121i i A A A ∞==,表示12,,A A 至少有一个发生.(3) 事件的积:事件A 与事件B 都发生的事件称为事件A 与事件B 的积事件,记为A B ,也简记为AB .事件A B (或AB )发生意味着事件A 发生且事件B 也发生,即A 与B 都发生.{}A B A,B =∈∈ωω且.见文氏图1.1.推广121ni n i A A A A ==,表示12,,,n A A A 同时发生, 121i i A A A ∞==,表示12,,A A 同时发生.(4) 事件的差:事件A 发生而事件B 不发生的事件称为事件A 与事件B 的差事件,记为B A -,}A B {A,B -=ω∈ω∉且.见文氏图1.1.注:A B A AB -=-.(5) 互不相容事件(互斥): 若事件A 与事件B 不能同时发生,即AB =∅,则称事件A 与事件B 是互斥的,或称它们是互不相容的.见文氏图1.1.若事件12,,,n A A A 中的任意两个都互斥,则称这些事件是两两互斥的. (6) 对立事件:“A 不发生”的事件称为事件A 的对立事件,记为A .A 和A 满足:A A =Ω,AA =∅.见文氏图1.1:注:① __A A =Ω-;②在一次随机试验中A 和A 有一个发生而且只有一个发生.图1.1事件的关系图 由上述可见概率论中事件间的关系与集合论中集合之间的关系是一致的,于是事件之间的运算规律与集合之间的运算规律也是一致的.2.事件的运算规律设C B A ,,为事件,则事件之间的运算满足:(1) 交换律:A B B A =,BA AB =.(2) 结合律:()()A B C A B C =,)()(BC A C AB =.(3) 分配律:()()()A B C AC BC =,()()()AB C A C B C =. (4) 对偶律:A B AB =;___AB A B =.例1.1.4 甲,乙,丙三人各射一次靶,记事件A ={甲中靶},事件B ={乙中靶},事件C ={丙中靶},用上述三个事件的运算来分别表示下列各事件:(1)“甲未中靶”;(2)“甲中靶而乙未中靶”;(3)“三人中只有丙未中靶”;(4)“三人中恰好有一人中靶”;(5)“ 三人中至少有一人中靶”;(6)“三人中至少有一人未中靶”;(7)“三人中恰有两人中靶”;(8)“三人中至少两人中靶”;(9)“三人均未中靶”;(10)“三人中至多一人中靶”;(11)“三人中至多两人中靶”.解(1)“甲未中靶”=A;=;(2)“甲中靶而乙未中靶”AB=;(3)“三人中只有丙未中靶”ABC=;(4)“三人中恰好有一人中靶”ABC ABC ABC=;(5)“三人中至少有一人中靶”A B C==ABC;(6)“三人中至少有一人未中靶”A B C=;(7)“三人中恰有两人中靶”ABC ABC ABC=;(8)“三人中至少两人中靶”AB AC BC=;(9)“三人均未中靶”ABC=;(10)“三人中至多一人中靶”ABC ABC ABC ABC==A B C.(11)“三人中至多两人中靶”ABC注:用其它事件的运算来表示一个事件,方法往往不唯一,如上例1.1.4中的(6)和(11)所表示的事件实际上是同一事件.1.2 随机事件的概率在一次随机试验中,除必然事件一定发生,不可能事件不发生外,一般的随机事件可能发生,也可能不发生,于是需要知道它发生的可能性到底有多大.概率是用来描述随机事件发生的可能性的大小的一种数量指标,它是逐步形成和完善起来的.下面我们就先引入频率的概念,然后研究频率的性质,进而引出概率的定义.1.2.1事件的频率定义 1.2.1 对于一个随机事件A 来说,在n 次重复试验中,记A n 为随机事件A 出现的次数,又A n 称为事件A 的频数,称()n f A = A n n为事件的频率. 由上述定义,对于事件的频率,我们很容易得到如下性质:(1)0()1n f A ≤≤;(2)()1n f Ω=;(3)对于k 个两两互斥的事件12,,,k A A A ,有11()k kn i n i i i f A f A ==⎛⎫= ⎪⎝⎭∑.根据上述定义可知频率反应了一个随机事件发生的频繁程度,人们经过长期的实践发现,虽然个别随机事件在某次试验或观察中可能出现也可能不出现,但在大量试验中它却呈现出明显的规律性——频率稳定性.在掷一枚均匀的硬币时,既可能出现正面,也可能出现反面,在大量试验中出现正面和反面的频率,都应接近于50%,为了验证这点,历史上曾有不少数学家做过这个试验,其结果如下:又如,在英语中某些字母出现的频率远远高于另外一些字母.而且各个字母被使用的频率相当稳定.例如,下面就是英文字母使用频率的一份统计表.对一随机事件来说,如果它发生的频率越大,自然这个事件在一次试验中发生的可能性就越大,所以频率在一定程度上反映了事件发生可能性的大小.如上述两个试验,尽管每做n 次试验,所得到的频率()n f A 各不相同,但随着试验次数n 的增加,事件A 的频率()n f A 与会逐渐稳定在一个常数附近,而实际上这一常数即为事件A 的概率.下面给出概率的一个严密的定义.20世纪30年代中期,柯尔莫哥洛夫给出了概率的严密的公理化定义.定义1.2.2 设Ω是随机试验E 的样本空间,对于E 的每一个随机事件A ,定义一个实数()P A 与之对应.若实值集合函数()P ⋅满足下列条件:(1)非负性:对于每个随机事件A ,都有()0;P A ≥(2)规范性:()1P Ω=;(3)可列可加性:若事件12,,,A A 两两互斥,则有 11()i i i i P A P A ∞∞==⎛⎫= ⎪⎝⎭∑, (1.2.1)则称()P ⋅为概率,()P A 为事件A 的概率.由概率的定义,可得到概率的以下性质:性质1 ()0P ∅=.性质2 (有限可加性) 设12,,,n A A A 是两两互斥的事件,则 121()()nn k k P A A A P A ==∑ (1.2.2)性质3 对任意事件A ,有()1()P A P A =-.性质4 对任意事件,A B ,若,A B ⊂则()()()P B A P B P A -=-. (1.2.3)性质5 若,B A ⊂则有()()P B P A ≥.性质6 对于任一事件A ,有0()1P A ≤≤.性质7(减法公式) 对任意事件,A B ,有()()()P B A P B P AB -=-. (1.2.4) 证 因为B A B AB -=-,且AB B ⊂,由(1.2.3),()()()()P B A P B AB P B P AB -=-=-.性质8 (加法公式) 对任意事件,A B ,有()()()() P P AB A P B P AB =+-.(1.2.5) 证 由于 ()A B A B AB =-,且(),A B AB -=∅于是有()()()()()()P A B P A P B AB P A P B P AB =+-=+-.推广 ,,A B C 是任意三个事件,则有()()()()()()()().P A B C P A P B P C P AB P AC P BC P ABC =++---+一般,对于任意n 个事件12,,,n A A A 有1121111()()()()...(1)()n n n i i i j i j k n i i j n i j k n i P A P A P A A P A A A P A A A -=≤<≤≤<<≤==-+++-∑∑∑.1.3 古典概率模型古典概型是人们最初讨论的一种随机试验,本节即要讨论古典概型中随机事件的概率.下面先看第1节的三个例子:1E : 抛一枚硬币,观察出现正面还是反面.(分别用“H ” 和“T ” 表示出正面和反面); 2E :抛两枚硬币,观察出现的结果;3E :掷一颗骰子,观察出现的点数.上述三个例子即为古典概型随机试验,它们有共同的特点:(1)样本空间只包含有限个样本点;(2)每个样本点在每次随机试验中等可能出现.凡是具有上述两个特点的随机试验就称为是古典概型,那么在古典概型中随机事件的概率应该如何计算?定义1.3.1 随机试验E 是古典概型,样本空间Ω共含有n 个样本点,随机事件A 含有r 个样本点,则定义事件A 的概率为: () A r P A n==Ω中本中本样点个数 样点个数. (1.3.1) 古典概型中许多概率的计算相当困难而富有技巧,按照上述概率的计算公式,计算的要点是给定样本点,并计算它的总数,而后再计算所求事件中含的样本点的数目.下面我们看一些典型的古典概率计算的例子.例1.3.1 将一枚硬币抛掷两次,设事件1A ={恰有一次出现正面};事件2A ={至少有一次出现正面},求1()P A 和2()P A .解 正面记为“H ”,反面记为“T ”,则随机试验的样本空间为{,,,}HH HT TH TT Ω=, 而 {}1,A HT TH =,{},,2A HH HT TH =,于是121()42P A ==,23()4P A =. 例1.3.2 有10个电阻,其电阻值分别为1210ΩΩ⋯Ω,,,,从中取出三个,求取出的三个电阻,一个小于5Ω,一个等于5Ω,另一个大于5Ω的概率.解 把从10个电阻中取出3个的各种可能取法作为样本点全体,这是古典概型,样本空间的样本点数为103⎛⎫ ⎪⎝⎭,所求事件含样本点数为⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛151114.故所求概率为 41511111063P ⎛⎫⎛⎫⎛⎫ ⎪⎪⎪⎝⎭⎝⎭⎝⎭==⎛⎫ ⎪⎝⎭. 例1.3.3 30名学生中有3名运动员,将这30名学生平均分成3组,求:(1)每组有一名运动员的概率;(2)3名运动员集中在一个组的概率.解 设事件A={每组有一名运动员},B={3名运动员集中在一组},30名学生平均分成3组共有30201030!10101010!10!10!⎛⎫⎛⎫⎛⎫= ⎪⎪⎪⎝⎭⎝⎭⎝⎭种分法. (1)保证每组有一名运动员则有27!3!9!9!9!分法,所以50()30!20310!10!10!P A =27!3!9!9!9!=; (2)让3名运动员集中在一个组,则有272010371010⎛⎫⎛⎫⎛⎫⨯ ⎪⎪⎪⎝⎭⎝⎭⎝⎭分法,所以27201037101018()30!20310!10!10!P B ⎛⎫⎛⎫⎛⎫⨯ ⎪⎪⎪⎝⎭⎝⎭⎝⎭==. 例1.3.4(摸球模型)(1) (无放回地摸球)设袋中有M 个白球和N 个黑球,现从袋中无放回地依次摸出m n +个球,求所取球恰好含m 个白球,n 个黑球的概率.解 样本空间所含样本点总数为,M N m n +⎛⎫⎪+⎝⎭所求事件含的样本点数为,M N m n ⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭所以所求概率为 M N m n P M N m n ⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭=+⎛⎫ ⎪+⎝⎭. (2) 有放回地摸球设袋中有4只红球和6只黑球,现从袋中有放回地摸球3次,求前2 次摸到黑球、第3 次摸到红球的概率.解 样本空间点总数为310101010⨯⨯=,所求事件所含样本点数为664⨯⨯,故 366410P ⨯⨯= 0.144=. 例1.3.5(盒子模型)设有n 个球,每个都能以相同的概率被放到N 个盒子()N n ≥的每一个盒子中,试求:(1)某指定的n 个盒子中各有一个球的概率;(2)恰好有n 个盒子中各有一个球的概率.解 设事件A={某指定的n 个盒子中各有一个球},B={任意n 个盒子中各有一个球}. 由于每个球可落入N 个盒子中的任一个,所以n 个球在N 个盒子中的分布相当于从N 个元素中选取n 个进行有重复的排列,故共有nN 种可能分布.对于事件A ,相当于n 个球在那指定的n 个盒子中全排列,总数为!n ,所以 !()n n P A N=. 对于事件B ,n 个盒子可以任意,即可以从N 个盒子中任意选出n 个来,这种选法共有⎪⎪⎭⎫ ⎝⎛n N 种,对于每种选定的n 个盒子,再全排列,所以事件B 放法共有!N n n ⎛⎫ ⎪⎝⎭种,所以!()n N n n P B N⎛⎫ ⎪⎝⎭=. 上述例子是古典概型中一个比较典型的问题,不少问题都可以归结为它.例如概率论历史上有一个颇为有名的问题:要求参加某次集会的n 个人中没有两个人生日相同的概率.若把n个人看作上面问题中的n 个球,而把一年的365天作为盒子,则365N =,这时按照上述事件B 概率的求法就给出所求的概率.例如当40n =时,0109P =.,即40人中至少有两个人生日相同的概率为0891.,这个概率已经相当大了.例1.3.6 袋中有a 只黑球,b 只白球,它们除颜色不同外,其他方面没有差别,把球均匀混合,然后随机取出来,一次取一个,求第k 次取出的球是黑球的概率()1k a b ≤≤+. 解 设事件A ={第k 次取出的球是黑球}.法1 把a 只黑球及b 只白球都看作是不同的(例如设想把它们进行编号),若把取出的球依次放在排列成一行的a b +个位置上,则可能的排列法相当于把a b +个元素进行全排列,总数为()!a b +,把它们作为样本点全体.A 事件所含样本点数为(1)!a a b ⨯+-,这是因为第k 次取得黑球有a 种取法,而另外1a b +-次取球相当于1a b +-只球进行全排列,有(1)!a b +-种取法,故所求概率为(1)!()()!a a b a P A a b a b⨯+-==++, 结果与k 无关.实际上本例就是一抽签模型,例如在体育比赛中进行抽签,对各队机会均等,与抽签的先后次序无关.法2 把a 只黑球看作是没有区别的,把b 只白球也看作是没有区别的.仍把取出的球依次放在排列成一行的a b +位置上,因若把a 只黑球的位置固定下来则其他位置必然是放白球,而黑球的位置可以有⎪⎪⎭⎫⎝⎛+b b a 种放法,以这种放法作为样本点.对于事件A ,由于第k 次取得黑球,这个位置必须放黑球,剩下的黑球可以在1a b +-个位置上任取1a -个位置,因此共有⎪⎪⎭⎫ ⎝⎛--+11a b a 种放法.所以所求概率为b a a a b a a b a P k +=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛--+=11. 两种不同的解法答案相同,两种解法的区别在于,选取的样本空间不同.在[法一]中把球看作是“有区别的”,而在[法二]中则对同色球不加区别,因此在第一种解法中要顾及各黑球及各白球间的顺序而用排列,第二种解法则不注意顺序而用组合,但最后还是得出了相同的答案.由本例,我们必须注意,在计算样本点总数及所求事件含的样本点数时,必须对同一个确定的样本空间考虑,因此其中一个考虑顺序,另一个也必须考虑顺序,否则结果一定不正确.1.4 条件概率在许多实际问题中,除了考虑()P B 外,有时还需要考虑在一定条件下事件B 发生的概率,比如,已知事件A 发生的条件下,事件B 发生的概率,我们称这种概率为事件A 发生的条件下事件B 发生的条件概率,记为(|)P B A .1.4.1 条件概率的定义引例 盒中有4个外形相同的球,分别标有1,2,3,4,现在从盒中有放回的取两次球,每次取一球.则该试验的所有可能的结果为(1,1) (1,2) (1,3) (1,4)(2,1) (2,2) (2,3) (2,4)(3,1) (3,2) (3,3) (3,4)(4,1) (4,2) (4,3) (4,4)其中(,)i j 表示第一次取i 号球,第二次取j 号球,设A ={ 第一次取出球的标号为2},B ={ 取出的两球标号之和为4}, 则事件{(13),(2,2),(3,1)}B =,,因此事件B 的概率为 ()316P B =. 下面我们考虑在事件A 发生的条件下,事件B 发生的概率(|)P B A .由于已知事件A 已经发生,{(21),(2,2),(2,3),(2,4)}A =,,这时,事件B 在事件A 已经发生的条件下发生,那么只可能出现样本点(2,2),因此A 发生的条件下B 发生的概率为14,即 1(|)4P B A =. 由引例可以看出,事件B 在“条件A 已发生”这附加条件下的概率与不附加这个条件的概率是不同的.那么如何计算条件概率(|)P B A 呢?定义1.4.1 设A 、B 是两个随机事件,()0P A >,称()(|)()P AB P B A P A = (1.4.1) 为在事件A 已发生的条件下事件B 发生的条件概率. 在上述引例中,41(),()1616P A P AB ==,显然有()(|)()P AB P B A P A ==14. 例1.4.1 10个产品中有7个正品,3个次品,按照不放回抽样,每次一个,抽取两次,求(1) 两次都抽到次品的概率;(2 ) 第二次才取到次品的概率;(3)已知第一次取到次品,第二次又取到次品的概率.解 设A ,B 分别表示第一次和第二次抽到的是次品.(1) ()P AB =32110915⨯⨯=; (2) 737()10930P AB ⨯==⨯;(3) 12()215(|)39()1510P AB P B A P A ====.例 1.4.2 某种动物由出生算起活20岁以上的概率为0.8,活到25岁以上的概率为0.4, 如果现在有一个20岁的这种动物,问它能活到25岁以上的概率是多少?解 设事件A ={能活20岁以上},事件B ={能活25岁以上},即要求条件概率P(B A),由题()0.8P A =,()0.4P B =,()()P AB P B =,于是()(|)()P AB P B A P A =0.410.82==. 1.4.2 条件概率)|(A P ⋅的性质容易验证条件概率|P A ⋅()也有非负性、规范性和可列可加性三条性质: (1) 非负性:对任意的B ,(|)P B A ≥0; (2) 规范性: (|)1P A Ω=;(3) 可列可加性:对任意的一列两两互斥的事件,(1,2,)i B i ⋯=,有 11(|)(|)i i i i P B A P B A ∞∞===∑.因此,条件概率仍然是概率,所以条件概率也具有有限可加性、减法公式、加法公式等无条件概率所具有的一些性质.如对任意的12,B B ,有:(1) 121212(|)(|)(|)(|)P B B A P B A P B A P B B A =+-;(2)12112(|)(|)(|)P B B A P B A P B B A -=-; (3)若()(|)1()P B A B P B A P A ⊂==,则. 例1.4.3 一张储蓄卡的密码共6位数字,每位数字都可从0~9中任选一个.某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求:(1)任意按最后一位数字,不超过2次就按对的概率;(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率.解 设事件A ={任意按最后一位数字,不超过2次就按对},事件i A ={第i 次按对密码}(1,2i =),则__112()A A A A =,(1)因为事件1A 与事件12A A 互斥,由概率的加法公式得__1121911()()()101095P A P A P A A ⨯=+=+=⨯;(2)事件B ={最后一位按偶数},则____112112(|)(()|)(|)(|)P A B P A A A B P A B P A A B ==+14125545⨯=+=⨯. 1.4.3 乘法公式由条件概率定义的(1.4.1)可得,当()0P A >时,有()(|)P AB P A P B A =(), (1.4.2) 及()0P B >时,()(|)P AB P B P A B =(). (1.4.3) 推广 12,,,n A A A 为n 个事件,且12n-1()0P A A A >,则有 12n 121321n 121()()(|)(|)(|)n P A A A P A P A A P A A A P A A A A -=. (1.4.4)特别的,当3n =时,有()(|)(|)P ABC P A P B A P C AB =().乘法公式一般用于计算多个事件同时发生的概率.例1.4.4设袋中装有r 只红球,t 只白球.每次取一只观察其颜色并放回,并同时再放入a 只同色球,连续取四次,试求第一次、第二次取到红球且第三、四次取到白球的概率.解 以i A 表示事件“第i 次取到红球”1,2,3,4i =,则43,A A 分别表示第三次、第四次取到白球,即要求事件1234A A A A 的概率,由乘法公式(1.4.4)得12341213124123()()(|)(|)(|)P A A A A P A P A A P A A A P A A A A =r r a t t ar t r t a r t a a r t a a a ++=⋅⋅⋅++++++++++ ()()()()(2)(3)rt r a t a r t r t a r t a r t a ++=+++++++.1.4.4全概率公式和贝叶斯公式全概率公式和贝叶斯公式是概率论中两个比较重要的公式,它们将一个比较复杂事件的概率转化为不同条件下发生的比较简单的条件概率来计算.下面首先介绍一下样本空间划分的概念.定义 1.4.2 设Ω是随机试验E 的样本空间,12,,,n B B B 是E 的一列随机事件,若 (1),,,1,2,,i j B B i j i j n =∅≠=;(2)12n B B B =Ω,则称12,,,n B B B 为样本空间Ω的一个有限划分.定理 1.4.1 (全概率公式)设12,,,n B B B 是样本空间Ω的一个有限划分,且()0,1,2,i P B i n >=,则对任一事件A ,有()1()(|)iii P A P B P A B ∞==∑. (1.4.5)证1()()[()]ni i P A P A P A B ==Ω=1(())ni i P AB ==,对任意i j i j,B B ≠=∅,得()i AB ()()=Φi j AB AB ,由概率的有限可加性得11(())()nn i i i i P AB P AB ===∑=1()(|)ni i i P B P A B =∑.例1.4.5 有一批同一型号的产品,其中由甲厂生产的占30%,乙厂生产的占50%,丙厂生产的占20%,又知这甲、乙、丙三个厂的产品次品率分别为2%,1%,1%,问从这批产品中任取一件,取到次品的概率是多少?解 设事件A 为“任取一件为次品”,事件123,,B B B 分别为产品由甲、乙、丙厂生产,显然123,B B B =Ω且,,1,2,3i j B B i j =∅=,即123B ,B ,B 构成样本空间的划分.所以由(1.4.5)112233()()()()()()()P A P A B P B P A B P B P A B P B =++,123()0.02()0.01()0.01P A B P A B P A B ===,,,故112233()()()()()()()P A P A B P B P A B P B P A B P B =++0020300105001020013.......=⨯+⨯+⨯=.定理 1.4.2 (贝叶斯公式)设12,,,n B B B 是样本空间Ω的一个划分,()i P B 0>,1,2,3,,i n =,对任意事件A ,有1()(|)(|),1,2,...()(|)i i i njjj P B P A B P B A i n P B P A B ===∑. (1.4.6)证 i i P(B A )P(B A )P(A )=1i i njj j P(A B )P(B ),P(A B)P(B )==∑ 1,2,,i n =.例1.4.6 (续例1.4.5) 有一批同一型号的产品,其中由甲厂生产的占30%,乙厂生产的占50%,丙厂生产的占20%,又知这甲、乙、丙三个厂的产品次品率分别为2%,1%,1%,问从这批产品中任取一件,发现是次品,那么它分别由甲、乙、丙厂生产的概率是多少?解 123(),(),()P B A P B A P B A 即为所要求的条件概率,由贝叶斯公式(1.4.6),11131()(|)0.020.3(|)0.460.020.30.010.50.010.2()(|)jjj P B P A B P B A P B P A B =⨯===⨯+⨯+⨯∑;22231()(|)0.010.5(|)0.380.020.30.010.50.010.2()(|)jjj P B P A B P B A P B P A B =⨯===⨯+⨯+⨯∑;33331()(|)0.010.2(|)0.150.020.30.010.50.010.2()(|)jjj P B P A B P B A P B P A B =⨯===⨯+⨯+⨯∑.例1.4.7袋中有4个红球,6个白球,作不放回的摸球两次,求(1)第二次摸到红球的概率;(2)已知第二次摸到红球,求第一次摸到的也是红球的概率.解 设A ={第一次摸到红球},A ={第一次摸到白球},B ={第二次摸到红球}.显然11114634(),(),(|),(|)101099P A P A P B A P B A ====; (1)由全概率公式(1.4.5)111143642()()(|)()(|)1091095P B P A P B A P A P B A =+=⨯+⨯=; (2)由贝叶斯公式(1.4.5)1111111()(|)1(|)()(|)()(|)3P A P B A P A B P A P B A P A P B A ==+.例1.4.8 某一地区患有癌症的人占0.005,患者对一种试验反应是阳性的概率为0.95,正常人对这种试验反应是阳性的概率为0.04,现抽查了一个人,试验反应是阳性,问此人是癌症患者的概率有多大?解 设A ={抽查的人患有癌症},B ={试验结果是阳性},则__A ={抽查的人没有患癌症}.()0.005, ()0.995 ,(|)0.95, (|)0.04P A P A P B A P B A ====.由贝叶斯公式(1.4.5),得()(|)(|)0.1066 ()(|)()(|)P A P B A P A B P A P B A P A P B A ==+.这表明某人的试验结果为阳性,但此人确患癌症的概率却非常小,只有0.1066,即平均来说,1000个检查结果呈阳性的人中大约只有107人确患癌症.那是否说明该试验对于诊断一个人是否患有癌症没有意义?我们来分析一下.如果不做试验,随机抽取一人,那么他是癌症患者的概率为()0.005P A =,若进行试验,试验后呈阳性反应,则根据试验得到的信息:此人是癌症患者的概率为P (|)0.1066A B =.概率从0.005增加到0.1066,约增加了21倍,说明试验对于诊断一个人是否患癌症有意义.至于试验结果呈阳性患癌症的概率还如此低,是由癌症的患病率非常低0.005导致的.1.5 事件的独立性条件概率(|)P B A 通常来说与()P B 不相等,这反映了事件A 的发生与否对事件B 有影响;若(|)P B A 与()P B 相等,则反映了事件A 的发生与否对事件B 无影响.如:抛硬币两次,事件A ={第一次正面向上},B ={第二次正面向上}.1()(|)2P B P B A ==. 所以两个事件A 、B 其中一个发生与否,不影响另一件事件发生的可能性大小,此时 (|)()P B A P B =,即:()(|)()()P AB P B A P B P A ==, 于是得到()()()P AB P A P B =,我们称A 与B 相互独立.定义 1.5.1 对事件A 和B ,如果()()()P AB P A P B =,则称事件A 与事件B 相互独立.定理1.5.1 设A ,B 是两个事件, 且0)(>A P ,若A ,B 相互独立,则)()|(A P B A P =. 定理1.5.2 设事件A ,B 相互独立,则A 与B ,A 与B ,A 与B 各对事件也相互独立. 证 因为____()A A A BB ABA B =Ω==,显然__,AB A B 互斥,故______()()()()()()()P A P ABAB P AB P AB P A P B P AB ==+=+,于是____()()()()()(1())()()P A B P A P A P B P A P B P A P B =-=-=,所以A 与B 相互独立.由A ,B 相互独立可以推出A 与B 相互独立,于是,A 与B 相互独立可推出A 与B 相互独立,再由B =B ,又可推出A 与B 相互独立.定理1.5.3 若事件A ,B 相互独立,且0()1P A <<,则__(|)(|)()P B A P B A P B ==.证()()()(|)()()()P AB P A P B P B A P B P A P A ===,__________()()()(|)()()()P A B P A P B P B A P B P A P A ===. 定义1.5.2 (三个事件相互独立) 设C B A ,,为三个事件,若等式),()()()(),()()(),()()(),()()(C P B P A P ABC P C P B P BC P C P A P AC P B P A P AB P ====同时满足,则称事件C B A ,,相互独立.类似的可以定义n 个事件相互独立.定义1.5.3 设12,,,n A A A 是n 个事件,若对其中任意k 个事件12,,,k i i i A A A(2)k n ≤≤有1212()()()()k k i i i i i i P A A A P A P A P A =,则称这n 个事件是相互独立的.定义 1.5.4 设有n 个事件12,,,n A A A (3≥n ),若对其中任意两个事件i A 与)1(n j i A j ≤<≤有)()()(j i j i A P A P A A P =则称这n 个事件是两两相互独立的.显然,若n 个事件12,,,n A A A 相互独立,则n 个事件一定是两两相互独立,但反之不一定成立.在实际应用中,独立性的判断一般不会采用定义判断,而是根据问题的实际意义去判断,如抛硬币两次,事件A ={第一次正面向上},B ={第二次正面向上},第一次出现哪一面并不影响第二次出现正面的概率,所以事件,A B 相互独立.例1.5.1甲、乙两射手独立地向同一目标射击一次,其中命中率分别为0.9和0.8, (1) 求目标被击中的概率;(2) 现已知目标被击中,求它是由甲击中的概率. 解 设A ={甲命中},B ={乙命中},C ={目标被击中},(1) () () ()()()()0.90.80.90.80.98P C P A B P A P B P A P B ==+-=+-⨯=; (2) ()()(|)()[()()()()]P AC P A P A C P C P A P B P A P B ==+-0.90.920.98==. 例1.5.2 设高射炮每次击中飞机的概率为0.2,问至少需要多少门这种高射炮同时独立发射(每门射一次)才能使击中飞机的概率达到95%以上?解 设需要n 门高射炮,A ={飞机被击中},A i ={第i 门高射炮击中飞机},12)i n =⋯(,,,,则12()()n P A P A A A =⋯=_____________________121()n P A A A -______121()n P A A A =-,由相互独立的性质____________1212()()()()n n P A A A P A P A P A =,于是______12()1()()()1(10.2)n n P A P A P A P A =-=--,令1(10.2)0.95n--≥,得08005n≤..,即得14n ≥.即至少需要14门高射炮才能有95%以上的把握击中飞机.例 1.5.3 一个元件能正常工作的概率称为这个元件的可靠性,一个系统能正常工作的概率称为这个系统的可靠性.设一个系统由四个元件按图示方式(图1.2)组成,各个元件相互独立,且每个元件的可靠性都等于)10(<<p p ,求这个系统的可靠性.。

第1章 概率论的基本概念

第1章 概率论的基本概念

确定概率的常用方法有: (1)频率方法(统计方法) (2)古典方法 (3)几何方法 (4)公理化方法 (5)主观方法
古典概率
(1) 古典概率的假想世界是不存在的 .对于那些极其罕见的, 定义 1.2.5 如果试验满足下面两个特征,则称其 但并非不可能发生的事情,古典概率不予考虑.如硬币落地后 为古典概型(或有限等可能概型): 恰好站立,一次课堂讨论时突然着火等. (1 )有限性:样本点的个数有限; (2) 古典概率还假定周围世界对事件的干扰是均等的 .而在 (2)等可能性:每个样本点发生的可能性相同 . 实际生活中无次序的、靠不住的因素是经常存在的 .
(3) 如果AiAj= (1 i < j k),则
fn(A1∪A2∪ … ∪Ak ) = fn(A1 ) +fn(A2 ) + … +fn(Ak 着事件在一次试验中发生的可能性就 大,反之亦然. 人们长期的实践表明:随着试验重复次数n的增加, 频率fn(A)会稳定在某一常数a附近,我们称这个常数为频 率的稳定值.这个稳定值就是我们所说的(统计)概率.
互不相容与对立区别 随机事件间的关系与运算
(1)事件A与事件B对立 AB= , A∪B= . (2)事件 A与事件B互不相容 AB= . 关系 运算 包含 相等 互不相容 并 交 差 补
如果属于A的样本点一定 由在 中而不在事件 A 中的样本点 , B没有相同的样本点, 如果事件 A 由事件 如果 A A 与事件 B ,且 A B 中所共有的样本 B,那么 A=B. A中而不在事件B中的样 中所有的样本点 由在事件 属于B,则称 A 包含于 B , BB.B 组成的新事件,也叫 A的对立 B A A A 则称互不相容 . 记作 A ∩ B= . 点组成的新事件 即B包含 A=B A B, A B A. . 组成的新事件 .记作 A记作 ∪ B.BA 本点组成的新事件 .记作 A-B. 或 A. 记作 B. .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。





随机试验E的全体基本事件所构成的集合,称为E的 的样本空间,记为S.

在讨论一个随机试验时,首先要明确它的样本空间。 对一个具体的试验来说,其样本空间可以由试验的 具体内容确定. 下面看几个例子.
例1 掷一枚质量均匀对称的硬币,观察正反面出现 情况,这是个随机试验. 可能的结果有两个:正(正面朝上),反(反面朝上). 故样本空间



19世纪末,俄国数学家切比雪夫、马尔可夫、李亚 普诺夫等人用分析方法建立了大数定律及中心极限 定理的一般形式,科学地解释了为什么实际中遇到 的许多随机变量近似服从正态分布. 20世纪初受物理学的刺激,人们又开始研究随机过 程.这方面柯尔莫哥洛夫、维纳(N.Wiener)、马尔可 夫、辛钦、莱维及费勒(W.Feller)等人做了杰出的 贡献.

数理统计学是概率论的一个姐妹学科,研究怎样有 效地收集、整理和分析带有随机性质的数据,以对 所观察的问题作出推断和预测,直至为采取一定的 决策和行动提供依据和建议. 统计学自古有之,例如人口统计、社会调查等.但它 不是现代意义下的数理统计学,只是数据的记录和 整理. 数理统计学是随着概率论的发展而发展起来的.



对随机现象,是否有规律可寻呢? 人们经过长期的反复实践,发现这类现象虽然就每 次试验结果来说,具有不确定性,但大量重复试验, 所得的结果却呈现出某种规律性. 例如: (1)掷一枚质量均匀的硬币,当投掷次数很大时, 就会发现正面和反面出现的次数几乎各占1/2.



历史上,蒲丰(Buffon) 掷过4040次,得到2048次 正面;皮尔逊(K.Pearson) 掷过24000次,得到 12012次正面.
概率论与数理统 计
第一章 随机事件及其概率



概率论是研究随机现象的数量规律的数学分支. 所谓随机现象,是相对于决定性现象而言的.

一定条件下必然发生(或出现)某一结果的现象称为 决定性现象.
例如,在没有外力作用下,作匀速直线运动的物体 必然继续作匀速直线运动; 又如在标准大气压下,纯水加热到100℃时必然会沸 腾等等.




如何定义概率,如何把概率论建立在严格的逻辑基 础上,是概率论发展的困难所在,对这一问题的探 索一直持续了三个世纪. 二十世纪初完成的勒贝格测度(H.L.Lebesgue)与积 分理论及随后发展的抽象测度与积分理论,为概率 公理体系的建立奠定了基础. 在这种背景下苏联数学家柯尔莫哥洛夫1933年在他 的《概率论基础》一书中第一次给出了概率的测度 论式的定义和一套严密的公理体系.他的公理化方 法成为现代概率论的基础,使概率论成为严谨的数 学分支,对近几十年概率论的迅速发展起了积极的 作用.



这些条件和结果之间存在着必然联系的现象就是决 定性现象.

在自然现象和社会现象中还广泛存在着与决定性现 象有着本质区别的一类现象,例如: 当掷一枚硬币时,可能出现正面朝上,也可能出现 反面朝上; 每天上午8:00—9:00记录一个电话交换台收到用户 的呼叫次数,可能是0次,1次,2次……; 再如,同一门炮向同一目标发射用同一工艺过程生 产的炮弹; 因为炮弹制造时种种偶然因素对炮弹质量有影响、 炮筒位置有差异、空气中气流的变化……都影响着 弹着点的位置,使弹着点在不同次发射中落在不同 的位置.

第一章

随机事件及其概率
1.1 随机试验、随机事件、样本空间
1. 必然现象和随机现象

人们在实践活动中所遇到的现象,一般来说可以分 为两类:一类是必然现象,或称确定性现象;另一 类是随机现象,或称不确定性现象. 必然现象是指在相同条件下重复试验,所得结果总 是确定的现象;只要条件不变,试验结果在试验之 前是可以预言的.

随机现象是指在相同条件下重复试验,所得结果不 一定相同的现象,即试验结果是不确定的现象: 对这种现象来说,在每次试验之前哪一个结果发生, 是无法预言的.
例如: 新生婴儿,可能是男孩,也可能是女孩; 向一个目标进行射击,可能命中目标,也可能不命 中目标; 测量某个物理量,由于许多偶然因素的影响,各次 测量的结果不一定相同等等, 这些现象都是随机现象.





从上述的几个例子可以看到,随机现象也具有规律 性,这种规律性可在相同条件下的大量重复试验或 观察中呈现出来.这种规律性称为随机现象的统计规 律性.
概率论和数理统计就是研究随机现象统计规律的一 门数学学科.


2 随机试验与事件、样本空间 对随机现象的研究,总是要进行观察、测量或做各 种科学实验(为了叙述方便,统称为试验). 例如,掷一枚硬币,观察哪面朝上; 向一个目标进行射击,观察是否命中; 从一批产品中随机抽取一个产品,检查它是否合格;



使概率论成为数学的一个分支的奠基人是瑞士数学 家伯努利(J.I.Bernoulli),他建立了概率论中第一 个极限定理,即伯努利大数定律,阐明了事件的频 率稳定于它的概率. 随后棣莫弗(A.de Moivre)和拉普拉斯(place) 又导出了第二个基本极限定理(中心极限定理)的原 始形式. 拉普拉斯在系统总结前人工作的基础上写出了《分 析的概率理论》,明确给出了概率的古典定义,并 在概率论中引入了更有利的分析工具,将概率论推 向一个新的发展阶段.

例3 记录某电话交换台在一段时间内接到的呼叫次 数,这是个随机试验.

它的基本事件(记录的结果)是一个非负的整数,
由于难以确定一个呼叫的上界,所以样本空间 S={0,1,2,…} 例4 从一批灯泡中抽取一只灯泡,测试它的使用寿 命,这是个随机试验.


设t表示灯泡的使用寿命,则样本空间 S={t|t≥0}.



随着计算机的发展与普及,概率论与数理统计已成 为处理信息、制定决策的重要理论和方法.


概率论与数理统计向各个领域渗透,产生了许多新 的分支和边缘科学,如生物统计、统计物理、数学 地质、教育统计等. 同时概率论与数理统计又是许多新的重要学科的基 础,如信息论、控制论、排队论、预测论、可靠性 理论及人工智能等. 概率论与数理统计,作为理论严谨、应用广泛、发 展迅速的数学分支正日益受到人们的重视并发挥着 重大的作用.


必然现象是指在相同条件下重复试验,所得结果总 是确定的现象.


例如: 在标准大气压下,将纯水加热到100℃,水必然沸腾; 用手向空中抛出的石子,必然下落; 作匀速直线运动的物体,如果没有外力的作用,必 然继续作匀速直线运动等等, 这些现象都是必然现象.
对这种现象来说,只要条件不变,试验结果在试验 之前是可以预言的.

例5 观察某个地区一昼夜的最低温度x和最高温度y. 设这个地区的温度不会小于T0也不会大于T1,则样 本空间 S={(x,y):T0≤x<y≤T1}.

在试验中可能发生也可能不发生的事情称为 随机事件,简称为事件,以字母A,B,C,… 等来表示.
有了样本空间的概念便可以用集合的语言来定义事 件.


如掷硬币的例子,试验是可以在相同的条件下重复 进行的,试验的可能的结果有两个,即正面和反面; 每次试验必出现其中之一,但投掷之前是不可能预 言正面出现还是反面出现. 人们将满足上述(a)、( b )、( c )三个条件的 试验,称为随机试验,简称为试验,以字母E来表 示. 为了研究随机试验,首先要知道这个试验的所有可 能的结果是哪些. 随机试验的每一个可能的结果称为基本事件,也称 作样本点,用字母e表示.


皮尔森(K.Pearson)、费希尔(R.A.Fisher)作出了 重大贡献,1946年,克拉默发表的《统计学的数学 方法》是第一部严谨且比较系统的数理统计著作, 可以把它作为数理统计学进入成熟阶段的标志.


数理统计学用到很多近代数学知识,但与其关系最 密切的是概率论. 在很大程度上可以说概率论是数理统计的理论基础, 数理统计是概率论的一种应用,并且补充和丰富了 概率论.它们是两个并列的数学分支,并无从属关系. 目前,概率论与数理统计的理论与方法已广泛的用 于自然科学、技术科学、社会科学及人文科学的各 个领域. 近年来随着科学技术的迅速发展,它在经济、管理、 工程、技术、物理、气象、海洋、地质等领域中的 作用愈益显著.

例如连续多次掷一枚硬币,随着投掷次数的增加, 出现正面的频率(出现正面的次数与投掷次数之比) 逐渐稳定于1/2,从而揭示“出现正面”这一结果发 生的可能性大小为1/2;
又如多次测量一物体的长度,其测量结果的平均值 随着测量次数的增加逐渐稳定于一个常数等等.


概率论有悠久的历史,它的起源与赌博问题有关. 16世纪,意大利的学者开始研究掷色子(骰子)等赌 博中的一些简单问题,例如比较两个色子出现点数 之和为9与10的可能性大小. 17世纪中叶,法国数学家帕斯卡、费马(P.de Fermat)及荷兰数学家惠更斯基于排列组合方法,研 究了一些较复杂的赌博问题,他们解决了“分赌注 问题”、“赌徒输光问题”等. 随着18、19世纪科学的发展,人们注意到在某些生 物、物理和社会现象与机会游戏之间有一种相似, 从而由机会游戏起源的概率论被应用到这些领域中, 同时也大大推动了概率论本身的发展.

(2)对一个目标进行射击,当射击次数不多时,弹孔 的分布看不出有什么规律性;
但当射击次数非常多时,就可以发现弹孔的分布呈 现出一定的规律性: 弹孔关于目标的分布略呈对称性,且越靠近目标的 地方弹孔越密,越远离目标的地方弹孔越稀.

y
O
x

(3)从分子物理学的观点来看,气体分子对器壁的压 力是气体分子对器壁碰撞的结果. 由于分子是时刻不停地、杂乱无章地运动着地,运 动的速度和轨道都是随机的,因而气体分子对器壁 也是随机的. 初看起来器壁所受的压力是不稳定的; 可是实验证明,由于分子的数目非常大,各分子运 动所具有的随机性在集体中互相抵消、互相平衡了, 使得器壁所受的总压力呈现一种稳定性. 分子的数目越大,压力就越稳定.
相关文档
最新文档