2016年河南省商丘市高考数学二模试卷(文科)(解析版)

合集下载

河南省商丘市高考数学二模试卷(文科)

河南省商丘市高考数学二模试卷(文科)

河南省商丘市高考数学二模试卷(文科)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2020·漳州模拟) 复数满足,则()A .B .C .D .2. (2分)设全集U={x|x<4,x∈N},A={0,1,2},B={2,3},则B∪∁UA等于()A . {3}B . {2,3}C . ∅D . {0,1,2,3}3. (2分)设6件产品中有4件合格品2件不合格品,从中任意取2件,则其中至少一件是不合格品的概率为()A . 0.4B . 0.5C . 0.6D . 0.74. (2分) (2016高二上·和平期中) 设Sn是等差数列{an}的前n项和,若a1+a3+a5=3,则S5=()A . 5B . 7C . 9D . 115. (2分) (2016高二下·东莞期末) 已知函数f(x)= 在点(1,2)处的切线与f (x)的图象有三个公共点,则b的取值范围是()A . [﹣8,﹣4+2 )B . (﹣4﹣2 ,﹣4+2 )C . (﹣4+2 ,8]D . (﹣4﹣2 ,﹣8]6. (2分) (2018高二下·温州期中) 椭圆与双曲线有相同的焦点坐标,则()A . 3B .C . 5D .7. (2分)(2020·江西模拟) 已知是球O的内接三棱锥,球O的半径为2,且,,,则点A到平面的距离为()A .B .C .D .8. (2分)(2017·上高模拟) 公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近于圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的(四舍五入精确到小数点后两位)的值为()(参考数据:sin15°=0.2588,sin75°=0.1305)A . 3.10B . 3.11C . 3.12D . 3.139. (2分)设,若函数在上单调递增,则的取值范围是()A .B .C .D .10. (2分) (2019高二上·惠州期末) 函数的极大值为()A .B . 6C .D . 711. (2分)(2017·揭阳模拟) 某工件的三视图如图所示,现将该工件通过切割,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工件的一个面内,则新工件的体积为()A .B . 1C . 2D .12. (2分) (2019高一上·东至期中) 若函数单调递增,则实数的取值范围是()A .B .C .D .二、填空题 (共4题;共4分)13. (1分)已知向量,若,则 ________.14. (1分) (2016高一下·雅安期末) 若变量x、y满足约束条件:,则y﹣2x的最大值为________.15. (1分)(2012·辽宁理) 已知等比数列{an}为递增数列,且a52=a10 , 2(an+an+2)=5an+1 ,则数列{an}的通项公式an=________.16. (1分)已知双曲线的方程为,点是其左右焦点,是圆上的一点,点在双曲线的右支上,则的最小值是________.三、解答题 (共7题;共65分)17. (10分) (2019高三上·郑州期中) 在中,点在边上,,,.(1)若的面积为3,求;(2)若,求 .18. (10分)如图所示的空间几何体中,四边形是边长为2的正方形,平面,,,, .(1)求证:平面平面;(2)求平面与平面所成的锐二面角的余弦值.19. (5分) (2017高二下·肇庆期末) 某数学教师对所任教的两个班级各抽取20名学生进行测试,分数分布如表,若成绩120分以上(含120分)为优秀.分数区间甲班频率乙班频率[0,30)0.10.2[30,60)0.20.2[60,90)0.30.3[90,120)0.20.2[120,150]0.20.1优秀不优秀总计甲班乙班总计k0 2.072 2.706 3.841 5.024 6.6357.87910.828P(K2≥k0)0.150.100.050.0250.0100.0050.001(Ⅰ)求从乙班参加测试的90分以上(含90分)的同学中,随机任取2名同学,恰有1人为优秀的概率;(Ⅱ)根据以上数据完成上面的2×2列联表:在犯错概率小于0.1的前提下,你是否有足够的把握认为学生的数学成绩是否优秀与班级有关?20. (10分)(2017·鄂尔多斯模拟) 设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F 为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.21. (10分)已知函数在处的切线方程为 .(1)求,的值;(2)求的单调区间与极值.22. (10分)(2017·郴州模拟) 在平面直角坐标系xoy中,曲线C的参数方程为(θ为参数),直线l的参数方程为(t为参数)以坐标原点O为极点,x轴的正半轴为极轴的极坐标系.(1)写出直线l的普通方程以及曲线C的极坐标方程;(2)若直线l与曲线C的两个交点分别为M,N,直线l与x轴的交点为P,求|PM|•|PN|的值.23. (10分) (2020高二上·安徽月考)(1)已知 , , ,试比较与的大小;(2)求证:.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共65分) 17-1、17-2、18-1、18-2、19-1、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、。

河南省商丘市高三数学下学期第二次模拟考试试题文(扫描版)

河南省商丘市高三数学下学期第二次模拟考试试题文(扫描版)

河南省商丘市2016届高三数学下学期第二次模拟考试试题文(扫描版)商丘市2016年第二次模拟考试参考答案高三数学(文科)一、选择题(每小题5分,共60分)B C D A B C C A D B A D 二、填空题(每小题5分,共20分)(13) 12 (14)45 (15) 73 (16) 34π 三、解答题(本大题共6小题,共70分)(17)解:(Ⅰ)设等比数列{}n a 的公比为q ,∵33S a +,55S a +,44S a +成等差数列, ∴ 2(55S a +)=(33S a +)+(44S a +),………………………………… 2分∴534a a =,因此,25314a q a ==, …………………………………………4分 ∴12q =±, ∵数列{}n a 不是递减数列,∴12q =-, ……………………………………5分∴11*313()(1),222n n n n a n --=-=-∈N . …………………………………… 6分 (Ⅱ)∵1133(1)(1)22n n n n n nn a b n -+⋅=-⨯-=,…………………………………………7分∴231233()2222n n nT =++++ , …………………………………………… 8分∴23111213()22222n n n n nT +-=++++ , ……………………………………10分 以上两式相减得:1211111113()3(1)2222222n n n n n n nT ++=+++-=-- ,∴126(1)2n n n T ++=-.………………………………………………………………12分(18) 解:(I )由频率分布直方图可得,损失不少于6000元的居民共有(0.00003 + 0.00003)×2000×50 = 6户,…………………………………………1分损失为6000~8000元的居民共有0.00003×2000×50 = 3户, (2)分损失不少于8000元的居民共有0.00003×2000×50 = 3户,……………………3分因此,记损失为6000~8000元的3个居民为,,A B C ,损失不少于8000元的3居民为,,D E F .6户中抽2户的组合为,,,,,,,,,,,,,,.AB AC AD AE AF BC BD BE BF CD CE CF DE DF EF共15种,其中同一分组的有,,,,,.AB AC BC DE DF EF 共6种,………………5分 所以这两户在同一分组的概率为62155p ==. ……………………………………6分…………………… 8分K2=50×(30×6-9×5)239×11×35×15= 40501001= 4.046 >3.841.……………………………10分所以有95℅以上的把握认为捐款数额是否多于或少于500元和自身经济损失是否4000元有关.……………………………………………………………………………………12分 (19)解:(Ⅰ)证明:连AC 交BD 于O ,四边形ABCD 为菱形,∴AC BD ⊥, …………1分∵⊥AE 平面ABCD ,⊂BD 平面ABCD ,∴AE BD ⊥, (2)分又∵AAE AC =⋂,∴⊥BD 平面EA ,……………………………4分由于⊂AF 平面EACF ,∴AF BD ⊥,又∵BE AF ⊥,BBE BD =⋂,∴⊥AF 平面B D E .………………6分(Ⅱ)由(Ⅰ)⊥AF 平面BDE ,EO BDE ⊂平面,得AF EO ⊥, ……………………………7分 ∴CAF AEO ∠=∠,AC FCAE AO CAF AEO ==∠=∠tan tan ,……8分 ∴21=FC .………………………………………9分 所求多面体的体积为B A V VV --=+113=33ACEF ACEF S OB S OD ⋅+⋅=分 (20)解:(Ⅰ)由题意212=p ,则1=p ,故抛物线方程为x y 22=,…………………………2分由0522p NF x =+=,则4,2200==y x , ∵00>y ,∴20=y ,所以(2,2)N . (4)分(Ⅱ)由题意知直线的斜率不为0,则可设直线l 的方程为b ty x +=,联立方程组⎩⎨⎧+==bty x xy 22,得0222=--b ty y .设两个交点211(,)2y A y ,222(,)2y B y (122,2y y ≠±≠±),则2480t b ∆=+>122y y t+=,122y y b =-,………………………………6分由122212122242(2)(2)2222NA NB y y k k y y y y --⋅=⋅==-++--整理得 32+=t b ,此时,0)64(42>++=∆t t 恒成O立,……………………8分故直线l 的方程可化为)2(3+=-y t x ,从而直线l 过定点(3,2)E -, 因为(2,2)M -,所以,M E 所在直线平行x轴,所以△MAB的面积2)2(64212221++=++=-=t t t y y ME S …10分当2t =-时有最小值为2,此时直线'l 的方程为012=++y x .…………12分解法二:(Ⅱ)当l 的斜率不存在时,:2l x =(舍) 或3x =,△MAB的面积S =5分当斜率存在时,设:l y kx b =+,22222(22)0y xk x kb x b y kx b⎧=⇒+-+=⎨=+⎩ ,212122222,kb b x x x x k k-+==,121222,by y y y k k+==, …………………………………………………7分由122212122242(2)(2)2222NA NB y y k k y y y y --⋅=⋅==-++--,整理得 226(52)4032k b k b b k +-+-=⇒=--或22b k =--(舍) (8)分点M到直线的距离d =,22AB k k ==, ……………9分12S AB d =⋅==. ………………10分综上,所以△MAB 的面积最小值为2, 此时12k =-,直线'l 的方程为012=++y x . ………………………12分(21)解:(I )()f x 的定义域为(0,)+∞,2()x af x x-'= , ………………………………2分①若0,a ≤ 则()0f x '>,()f x 在(0,)+∞上单调递增; …………………3分②若0a >,当(0,)x a ∈时,()0f x '<,()f x 在(0,)a 单调递减, 当(,)x a ∈+∞时,()0f x '>,()f x 在(,)a +∞单调递增. (5)分综上0a ≤时,()f x 的递增区间为(0,)+∞;0a >时,()f x 的递减区间为(0,)a ,递增区间为(,)a +∞.………………………………………………………………6分(II ) 11(1,2)ln 1x m x x ∈-<- 等价于1ln (1)ln x x m x x --<-, 即(1,2)x ∈,不等式(1)ln 10mx m x x -+-+>恒成立, (8)分令()(1)ln 1g x mx m x x =-+-+, 则1ln (1)1()ln 1mx m mx x m x mg x m x x x+-+-+-'=+-=, 令()ln (1)1h x mx x m x m =+-+-,则()ln 21h x m x m '=+-, ①当0m ≤时,(1,2)x ∈时,()0h x '<,∴()h x 在(1,2)上单调递减,()(1)0,h x h <=∴(1,2)x ∈,()0g x '<,()g x 在(1,2)上单调递减,∴(1,2)x ∈,()(1)0,g x g <=与(1,2)x ∈,()0g x >矛盾,此种情况不可能. …9分②当102m <<时,由()h x '在(1,2)上单调递增,且(1)210h m '=-<, ∴一定存在00,(1,2)x x ∈,使得0(1,)x x ∈时,()0h x '<, ∴()h x 在0(1,)x 上单调递减,0(1,)x x ∈时,()(1)0,h x h <= ∴0(1,)x x ∈,()0g x '<,()g x 在0(1,)x 上单调递减, ∴0(1,)x x ∈,()(1)0,g x g <= 与(1,2)x ∈时,()0g x >矛盾,此种情况不可能. …………………………………10分③当12m ≥时,(1,2)x ∈,()0h x '>,()h x 在(1,2)上单调递增,()(1)0,h x h >=∴(1,2)x ∈,()0g x '>,()g x 在(1,2)上单调递增, ∴(1,2)x ∈,()(1)0,g x g >=恒成立, ……………………………………………11分综上可知m的范围为1,2⎡⎫+∞⎪⎢⎣⎭.………………………………………………12分 (22)解:(Ⅰ)因为CA 为⊙O 的切线,所以B EAC ∠=∠.…………………………………1分因为DC 是ACB ∠的平分线,所以ACD DCB ∠=∠………………………2分所以B DCB EAC ACD ∠+∠=∠+∠,即ADF AFD ∠=∠………………3分因为90DAE ∠=︒,所以1(180)452ADF DAE ∠=︒-∠=︒………………5分 (Ⅱ)因为B EAC ∠=∠,ACB ECA ∠=∠,所以ACE ∆∽BCA ∆,所以AC AEBC AB=,……………………………………7分在ABC ∆中,又因为AC AB =,所以30B ACB ∠=∠=︒, (8)分分 (23)解:(Ⅰ)∵圆C 的极坐标方程为4sin()6πρθ=-,∴214sin()4cos )62πρρθρθθ=-=-.……………………………2分 又∵222x y ρ=+,cos ,sinx y ρθρθ==,∴222x yx +=-, ∴圆C 的普通方程为2220x y x++-=………………………………5分(Ⅱ)设zy =+,由圆C 的方程2220xy x ++-=,即22(1)(4x y ++=, ∴圆C 的圆心是(1-,半径是2, 将112x y t ⎧=-⎪⎪⎨⎪=⎪⎩, 代入z y =+得z t=-,……………………7分又∵直线l 过点(1C -,圆C 的半径是2,∴22t -≤≤, (8)分∴22t -≤-≤,即z y =+的取值范围是[2,2]-.…………………………………………10分(24)解:(Ⅰ)当2a =,12)(+≥x x f ,即122+-≥-x x ,即⎩⎨⎧≥-+-≥-02122x x x 或⎩⎨⎧<-+-≥-02122x x x ,………………………………………3分 解得{}1-≥x x . …………………………………………………………………5分(Ⅱ)37)2(2-+≥a x x f 可化为37)2(2-≥-a x x f ,令()(2)7g x f x x =-, 3()2()(2)72()2a x a x g x f x x x a x a a x x ⎧-≥⎪⎪=-=-+=⎨⎪-<⎪⎩, …………………………6分 因为(,)2a x ∈-∞,()g x 单调递减,(,)2a x ∈+∞,()g x 单调递增; 所以当2ax =时,()g x 有最小值,min ()()22a a g x g ==,………………………………8分 若使原命题成立,只需232a a ≥-,……………………………………………………………………9分 解得(]2,0∈a .………………………………………………………………………………………………………10分。

河南省八市重点高中高考数学二模试卷(文科).docx

河南省八市重点高中高考数学二模试卷(文科).docx

2016年河南省八市重点高中高考数学二模试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.复平面内表示复数z=cos2+isin3的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知集合A={3,log2(a2+3a)},B={a,b},若A∩B={2},则集合A∪B所有元素的和等于()A.1 B.5 C.6 D.1或63.执行如图所示的程序框图,输出c的结果为()A.13 B.21 C.17 D.154.已知直线ax﹣by+c=0(abc≠0)与圆O:x2+y2=1相离,且|a|+|b|>|c|,则|a|,|b|,|c|为边长的三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不存在5.从六个数1,3,4,6,7,9中任取4个数,则这四个数的平均数是5的概率为()A.B.C.D.6.如图所示的某几何体的三视图,则该几何体的体积为()A.2 B.3 C.D.67.已知点A(1,1),B(2,1),C(1,2),若λ∈[﹣1,2],μ∈[2,3],则|λ+μ|的取值范围是()A.[2,10]B.[,]C.[1,5]D.[2,]8.在直角坐标平面内,过定点P的直线l:ax+y﹣1=0与过定点Q的直线m:x﹣ay+3=0相交于点M,则|MP|2+|MQ|2的值为()A.B. C.5 D.109.将函数y=cos4x+sin2x﹣(x∈R)图象向右平移m(m>0)个单位长度后,所得到的图象关于原点对称,则m的最小值为()A.B.C.D.10.已知一个实心铁质的几何体的正视图和侧视图是全等的正三角形,俯视图是半径为3的圆,将3个这样的几何体熔成一个实心正方体,则正方体的表面积为()A.54B.54C.54D.5411.已知函数y=在(0,π)上是()A.增函数B.减函数C.既是增函数又是偶函数 D.既是减函数又是偶函数12.已知双曲线﹣=1(a>0,b>0)的左、右焦点分别为F1,F2,c是半焦轴距,P是双曲线上异于顶点的点,满足ctan∠PF1F2=atan∠PF2F1,则双曲线的离心率e的取值范围是()A.(1,1+)B.(,1+)C.(1+,1+)D.(1+,+∞)二、填空题:本大题共4小题,每小题5分13.已知命题p:若x2﹣1>0,则x>1,命题q:若x2﹣1>0,则x<﹣1,写出命题p∨q 为______.14.已知实数x,y满足约束条件,则变量z=x+y的取值范围为______.15.已知函数f(x)=,则不等式f(x)≤0的解集为______.16.已知函数f(x)=,若存在x∈(1,2],使得f′(x)x+f(x)>0,则实数m的取值范围是______.三、解答题(共5小题,满分60分)17.已知数列{a n}的前n项和为S n,满足2S n+a n=n2+2n+2,n∈N*,数列{b n}满足b n=a n﹣n.(Ⅰ)求数列{b n}的通项公式;(Ⅱ)求数列{nb n}的前n项和T n.18.如图已知三棱锥P﹣ABC,PA⊥平面ABC,AB=AC=PA=2,∠BAC=90°,D,E分别为AB,PC的中点,BF=2FC.(I)求证:PD∥平面AEF;(Ⅱ)求几何体P﹣AEF的体积.19.某校高三文科500名学生参加了1月份的模拟考试,学校为了了解高三文科学生的数学、语文情况,利用随机表法从中抽取100名学生进行统计分析,抽出的100名学生的数学、语文成绩如表:语文优良及格数学优8 m 9 良9 n 11 及格8 9 11(1)将学生编号为000,001,002,…499,500,若从第五行第五列的数开始右读,请你依次写出最先抽出的5个人的编号(下面是摘自随机数表的第4~第7行);12 56 85 99 2696 96 68 27 3105 03 72 93 1557 12 10 14 2188 26 49 81 7655 59 56 35 6438 54 82 46 2231 62 43 09 9006 18 44 32 5323 83 01 30 3016 22 77 94 3949 54 43 54 8217 37 93 23 7887 35 20 96 4384 26 34 91 6484 42 17 53 3157 24 55 06 8877 04 74 47 6721 76 3350 2583 92 12 06 76(2)若数学成绩优秀率为35%,求m,n的值;(3)在语文成绩为良的学生中,已知m≥13,n≥11,求数学成绩“优”比良的人数少的概率.20.已知F是抛物线C:y2=2px(p>0)的焦点,⊙M过坐标原点和F点,且圆心M到抛物线C的准线距离为(Ⅰ)求抛物线C的方程;(Ⅱ)已知抛物线C上的点N(s,4),过N作抛物线C的两条互相垂直的弦NA和NB,判断直线AB是否过定点?并说明理由.21.已知函数f(x)=e x lnx+,x>0(Ⅰ)求曲线y=f(x)在x=1处的切线方程;(Ⅱ)函数g(x)=f(x),求证:g(x)>对x>0恒成立.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.如图,过圆外一点P的直线交圆O于A、B两点,PE是圆O的切线,CP平分∠APE,分别与AE、BE交于点C,D.求证:(1)CE=DE;(2)=.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C上的点M满足:M到原点的距离与M到直线y=﹣p(p>0)的距离之比为常数e(e>0),直线l:ρ=(Ⅰ)求曲线C的极坐标方程,并说明曲线C的形状;(Ⅱ)当e=1,p=1时,M,N分别为曲线C与直线l上的两动点,求|MN|的最小值及此时M点的坐标.[选修4-5:不等式选讲]24.已知函数f(x)=|x+3|﹣m+1,m>0,f(x﹣3)≥0的解集为(﹣∞,﹣2]∪[2,+∞).(Ⅰ)求m的值;(Ⅱ)若∃x∈R,f(x)≥|2x﹣1|﹣t2+t成立,求实数t的取值范围.2016年河南省八市重点高中高考数学二模试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分。

2016届河南省商丘市高三(上)期末数学(文)试题(解析版)

2016届河南省商丘市高三(上)期末数学(文)试题(解析版)

2015-2016学年河南省商丘市高三(上)期末数学试卷(文科)一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.集合A={x∈N|x≤6},B={x∈R|x2﹣3x>0},则A∩B=()A.{3,4,5} B.{4,5,6} C.{x|3<x≤6} D.{x|3≤x<6} 2.若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为()A.﹣4 B.C.4 D.3.巳知角α的终边与单位圆交于点(﹣,),则sin2α的值为()A.B.﹣C.﹣D.4.下列选项叙述错误的是()A.命题“若x≠0,则e x≠1”的逆否命题是“若e x=1,则x=0”B.“x>2”是“<1”的充分不必要条件C.若命题p:∀x∈R,x2+x+1>0,则¬p:∃x0∈R,使得x02+x0+1≤0D.若p∧q为假命题,则p,q均为假命题5.已知双曲线﹣=1的右焦点与抛物线y2=12x的焦点重合,则该双曲线的焦点到其渐近线的距离等于()A.B.C.3 D.56.已知数列{a n}满足a2=1,3a n+1+a n=0(n∈N*),则数列{a n}的前10项和S10为()A.B.C.D.7.执行如图所示的程序框图,输出的S的值为()A.1 B.2 C.3 D.48.根据统计知识,则不正确的命题是()A.传染病医院感染禽流感的医务人员数与医院收治的禽流感病人数是具有相关关系的两个变量B.从参加高三模拟考试的1200名学生中,随机抽取100人了解试卷难易情况可以用系统抽样C.回归直线=bx+a必过样本点的中心(,)D.对一组数据进行适当整理后,众数所在的一组频数最大9.一个四棱锥的底面为正方形,其三视图如图所示,则这个四棱锥的体积是()A.1 B.2 C.3 D.410.设函数f(x)=sin(2x+φ)+cos(2x+φ)(|φ|<),且其图象关于直线x=0对称,则()A.y=f(x)的最小正周期为π,且在(0,)上为增函数B.y=f(x)的最小正周期为,且在(0,)上为增函数C.y=f(x)的最小正周期为π,且在(0,)上为减函数D.y=f(x)的最小正周期为,且在(0,)上为减函数11.若实数x,y满足不等式组,则的最小值为()A.B.4 C.D.12.定义:如果函数f(x)在[a,b]上存在x1,x2(a<x1<x2<b)满足,,则称函数f(x)是[a,b]上的“双中值函数”.已知函数f(x)=x3﹣x2+a是[0,a]上的“双中值函数”,则实数a的取值范围是()A.B.()C.(,1)D.(,1)二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数y=f(x)+x是偶函数,且f(3)=1,则f(﹣3)=.14.抛物线y2=2px过点M(2,2),则点M到抛物线焦点的距离为.15.正三棱柱有一个直径为2的内切球,则此棱柱的体积是.16.已知向量,及实数t满足|+t|=3,若=1,则t的最大值是.三、解答题(本大题共6小题,共70分。

2016年河南省商丘市高考数学二模试卷(文科)(解析版)

2016年河南省商丘市高考数学二模试卷(文科)(解析版)

2016年河南省商丘市高考数学二模试卷(文科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合M={x|x2﹣4x+3<0},集合N={x|lg(3﹣x)>0},则M∩N=()A.{x|2<x<3}B.{x|1<x<3}C.{x|1<x<2}D.∅2.若是z的共轭复数,且满足•(1﹣i)2=4+2i,则z=()A.﹣1+2i B.﹣1﹣2i C.1+2i D.1﹣2i3.曲线y=x3﹣3x+1在点(0,1)处的切线方程为()A.y=x+1 B.y=﹣3x+1 C.y=x﹣1 D.y=3x﹣14.若x∈(e﹣1,1),a=lnx,b=,c=e lnx,则a,b,c的大小关系为()A.c>b>a B.b>c>a C.a>b>c D.b>a>c5.某算法的程序框图如图所示,若输入的a,b值分别为60与32,则执行程序后的结果是()A.0 B.4 C.7 D.286.命题p:函数y=log2(x2﹣2x)的单调增区间是[1,+∞),命题q:函数y=的值域为(0,1),下列命题是真命题的为()A.p∧q B.p∨q C.p∧(¬q)D.¬q7.在△ABC中,内角A,B,C所对的边分别是a,b,c,若c2=(a﹣b)2+6,C=,则△ABC的面积是()A.B.C.D.38.已知双曲线﹣=1 (a>0,b>0)的一条渐近线过点(2,),且双曲线的一个焦点在抛物线y2=4x的准线上,则双曲线的方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=19.一个几何体的三视图如图所示,则这个几何体外接球的体积为()A.1000π B.200π C.πD.π10.已知椭圆C: +=1,M,N是坐标平面内的两点,且M与C的焦点不重合.若M关于C的焦点的对称点分别为A,B,线段MN的中点在C上,则|AN|+|BN|=()A.4 B.8 C.12 D.1611.已知均为单位向量,且.若,则的取值范围是()A.B.[3,5]C.[3,4]D.12.设函数f(x)=,若关于x的方程f(x)=a有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4,则+的取值范围是()A.(﹣3,+∞)B.(﹣∞,3)C.[﹣3,3)D.(﹣3,3]二、填空题:(本题共4小题,每题5分,共20分)13.等差数列{a n}的前n项和S n,若a1=2,S3=12,则a6=.14.在长为10cm的线段AB上任取一点C.现作一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积不小于9cm2的概率为.15.已知不等式组表示的平面区域的面积为2,则的最小值为.16.若存在实数t,对任意实数x∈[0,a],均有(sinx﹣t)(cosx﹣t)≤0,则实数a的最大值是.三、简答题(本大题共5小题,共70分。

河南省六市联考高考数学二模试卷(文科)

河南省六市联考高考数学二模试卷(文科)

2016年河南省六市联考高考数学二模试卷(文科)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={0,1,2},B={x|x=2a,a∈A},则A∩B中元素的个数为()A.0 B.1 C.2 D.32.已知=b+i(a,b∈R),其中i为虚数单位,则a+b=()A.﹣1 B.1 C.2 D.33.下列函数中既是奇函数又在区间,[﹣1,1]上单调递减的是()A.y=sinx B.y=﹣|x+1|C.D.y=(2x+2﹣x)4.下列说法错误的是()A.自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系B.在线性回归分析中,相关系数r的值越大,变量间的相关性越强C.在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高D.在回归分析中,R2为0.98的模型比R2为0.80的模型拟合的效果好5.在明朝程大位《算法统宗》中有这样的一首歌谣:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯”.这首古诗描述的这个宝塔古称浮屠,本题说它一共有7层,每层悬挂的红灯数是上一层的2倍,共有381盏灯,问塔顶有几盏灯?你算出顶层有()盏灯.A.2 B.3 C.5 D.66.已知不重合的直线m、l和平面α、β,m⊥α,l⊂β,则α∥β是“m⊥l”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既非充分也非必要条件7.已知x,y∈R,且满足,则z=|x+2y|的最大值为()A.10 B.8 C.6 D.38.执行如图所示的程序框图,若输入x=2,则输出y的值为()A.23 B.11 C.5 D.29.一个几何体的三视图如图所示,其主(正)视图是一个等边三角形,则这个几何体的体积为()。

河南省顶级名校高考数学二模试卷 文(含解析)

河南省顶级名校高考数学二模试卷 文(含解析)

2016年河南省顶级名校高考数学二模试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分。

1.若集合A={x|log(2x+1)>﹣1},集合B={x|1<3x<9},则A∩B=()A.(0,) B.(﹣,)C.(0,2)D.(,2)2.i是虚数单位,复数(1+3i)(a﹣i)在复平面内对应的点在第四象限,则a的范围()A.(﹣3,+∞)B.(﹣∞,)C.(﹣3,)D.(﹣3,1)3.若椭圆(a>b>0)的离心率为,则双曲线的离心率是()A.2 B.C.D.34.设直线y=x+b是曲线y=lnx的一条切线,则b的值为()A.ln2﹣1 B.ln2﹣2 C.2ln2﹣1 D.2ln2﹣25.设a∈R,则“a=1是“f(x)=ln(a+)为奇函数”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.已知实数x∈[1,10],执行如图所示的程序框图,则输出x的值不小于55的概率为()A.B.C.D.7.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A. B.7 C.6 D.8.若某几何体的三视图(单位:cm)如图所示,则该几何体的体积等于()A.10cm3B.20cm3 C.30cm3D.40cm39.等差数列的前n项和为S n,且S1006>S1008>S1007,则满足S n S n﹣1<0的正整数n为()A.2015 B.2013 C.2014 D.201610.已知△ABC的三个顶点在以O为球心的球面上,且cosA=,BC=1,AC=3,三棱锥O﹣ABC的体积为,则球O的表面积为()A.36π B.16π C.12π D.11.在△ABC中,AB=3,AC=4,∠BAC=60°,若P是△ABC所在平面内一点,且AP=2,则•的最大值为()A.10 B.12 C.10+2 D.812.设过点P(﹣1,1)作两直线,PA,PB与抛物线y2=4x任相切于点A,B,若F为抛物线y2=4x的焦点,||•||=()A. B.5 C.8 D.9二、填空题:本大题共4小题。

2016年高考文科数学全国卷2(含详细答案)

2016年高考文科数学全国卷2(含详细答案)

数学试卷 第1页(共33页) 数学试卷 第2页(共33页) 数学试卷 第3页(共33页)绝密★启用前2016年普通高等学校招生全国统一考试(全国新课标卷2)文科数学使用地区:海南、宁夏、黑龙江、吉林、辽宁、新疆、内蒙古、青海、甘肃、重庆、陕西、西藏本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共24题,共150分,共6页.考试结束后,将本试卷和答题卡一并交回. 注意事项:1. 答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内.2. 选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.3. 请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效.4. 作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5. 保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.第Ⅰ卷一、选择题:本题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知集合{}123A =,,,{}2|9B x x =<,则A B =( ) A. {2,1,0,1,2,3}--B. {2,1,0,1,2}--C. {1,2,3}D. {1,2}2. 设复数z 满足3z i i +=-,则=z ( )A. 12i -+B. 12i -C. 32i +D. 32i -3. 函数()sin y A x ωϕ=+的部分图像如图所示,则A. 2sin(2)6y x π=-B. 2sin(2)3y x π=-C. 2sin()6y x π=+D. 2sin()3y x π=+4. 体积为8的正方体的顶点都在同一球面上,则该球面的表面积为( )A. 12πB. 323πC. 8πD. 4π5. 设F 为抛物线C :24y x =的焦点,曲线0ky k x =>()与C 交于点P ,PF x ⊥轴,则=k( )A.12 B. 1 C. 32D. 26. 圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则=a( )A. 43-B. 34-C.D. 27. 如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积( )A. 20πB. 24πC. 28πD. 32π8. 某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为 ( )A. 710B. 58C. 38D. 3109. 中国古代有计算多项式值得秦九韶算法,下图是实现该算法的程序框图.执行该程序框图,若输入的2x =,2n =,依次输入的a 为2,2,5,则输出的s = ( )A. 7B. 12C. 17D. 3410. 下列函数中,其定义域和值域分别与函数lg 10x y =的定义域和值域相同的是 ( )A. y x =B. lg y x =C. 2x y =D. 1y x=11. 函数() = cos26cos()2f x x x π+-的最大值为( )A. 4B. 5C. 6D. 712. 已知函数()()f x x ∈R 满足()(2)f x f x =-,若函数223y x x =--与()y f x =图象的交点为11x y (,),22x y (,),…,m m x y (,),则1mi i x =∑=A. 0B. mC. 2mD. 4m姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第4页(共6页) 数学试卷 第5页(共6页) 数学试卷 第6页(共6页)第Ⅱ卷本卷包括必考题和选考题两部分.第13~12题为必考题,每个试题考生都必须作答.第22~24为选考题,考生根据要求作答.二、填空题:本题共4小题,每小题5分. 13. 已知向量a ()4m =,,b ()32=-,,且a ∥b ,则m =________.14. 若x ,y 满足约束条件10,30,30,x y x y x -++--⎧⎪⎨⎪⎩≥≥≤则2z x y =-的最小值为________.15. ABC ∆的内角A B C ,,的对边分别为a b c ,,,若4cos 5A =,5cos 13C =,1a =,则b =________.16. 有三张卡片,分别写有1和2,1和3,2和3.甲、乙、丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17. (本小题满分12分)等差数列{}n a 中,344a a +=,576a a +=.(Ⅰ)求{}n a 的通项公式;(Ⅱ)设[]n n b a =,求数列{}n b 的前10项和,其中[]x 表示不超过x 的最大整数,如[0.9]0=,[2.6]2=.18. (本小题满分12分)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:(Ⅰ)记A 为事件:“一续保人本年度的保费不高于基本保费”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年河南省商丘市高考数学二模试卷(文科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合M={x|x2﹣4x+3<0},集合N={x|lg(3﹣x)>0},则M∩N=()A.{x|2<x<3}B.{x|1<x<3}C.{x|1<x<2}D.∅2.若是z的共轭复数,且满足•(1﹣i)2=4+2i,则z=()A.﹣1+2i B.﹣1﹣2i C.1+2i D.1﹣2i3.曲线y=x3﹣3x+1在点(0,1)处的切线方程为()A.y=x+1 B.y=﹣3x+1 C.y=x﹣1 D.y=3x﹣14.若x∈(e﹣1,1),a=lnx,b=,c=e lnx,则a,b,c的大小关系为()A.c>b>a B.b>c>a C.a>b>c D.b>a>c5.某算法的程序框图如图所示,若输入的a,b值分别为60与32,则执行程序后的结果是()A.0 B.4 C.7 D.286.命题p:函数y=log2(x2﹣2x)的单调增区间是[1,+∞),命题q:函数y=的值域为(0,1),下列命题是真命题的为()A.p∧q B.p∨q C.p∧(¬q)D.¬q7.在△ABC中,内角A,B,C所对的边分别是a,b,c,若c2=(a﹣b)2+6,C=,则△ABC的面积是()A.B.C.D.38.已知双曲线﹣=1 (a>0,b>0)的一条渐近线过点(2,),且双曲线的一个焦点在抛物线y2=4x的准线上,则双曲线的方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=19.一个几何体的三视图如图所示,则这个几何体外接球的体积为()A.1000π B.200π C.πD.π10.已知椭圆C: +=1,M,N是坐标平面内的两点,且M与C的焦点不重合.若M关于C的焦点的对称点分别为A,B,线段MN的中点在C上,则|AN|+|BN|=()A.4 B.8 C.12 D.1611.已知均为单位向量,且.若,则的取值范围是()A.B.[3,5]C.[3,4]D.12.设函数f(x)=,若关于x的方程f(x)=a有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4,则+的取值范围是()A.(﹣3,+∞)B.(﹣∞,3)C.[﹣3,3)D.(﹣3,3]二、填空题:(本题共4小题,每题5分,共20分)13.等差数列{a n}的前n项和S n,若a1=2,S3=12,则a6=.14.在长为10cm的线段AB上任取一点C.现作一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积不小于9cm2的概率为.15.已知不等式组表示的平面区域的面积为2,则的最小值为.16.若存在实数t,对任意实数x∈[0,a],均有(sinx﹣t)(cosx﹣t)≤0,则实数a的最大值是.三、简答题(本大题共5小题,共70分。

解答应写出文字说明,证明过程或演算步骤)17.已知首项为的等比数列{a n}不是递减数列,其前n项和为S n(n∈N*),且S3+a3,S5+a5,S4+a4成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=(﹣1)n+1•n(n∈N*),求数列{a n•b n}的前n项和T n.18.2015年7月9日21时15分,台风“莲花”在我国广东省陆丰市甲东镇沿海登陆,造成直接经济损失12.99亿元.适逢暑假,小明调查了某小区的50户居民由于台风造成的经济损失,将收集的数据分成[0,2000],小明向班级同学发出倡议,为该小区居民捐款.现从损失超过6000元的居民中随机抽出2户进行捐款援助,求这两户在同一分组的概率;(Ⅱ)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如表,在表格空白处填写正确数字,并说明是否有95%以上的把握认为捐款数额多于或少于5004000附:K2=.19.如图,已知多面体A﹣BCDEF中,ABCD为菱形,∠ABC=60°,AE⊥平面ABCD,AE ∥CF,AB=AE=1,AF⊥BE.(I)求证:AF⊥平面BDE;(Ⅱ)求多面体ABCDEF的体积.20.已知为抛物线y2=2px(p>0)的焦点,点N(x0,y0)(y0>0)为其上一点,点M与点N关于x轴对称,直线l与抛物线交于异于M,N的A,B两点,且.(I)求抛物线方程和N点坐标;(II)判断直线l中,是否存在使得△MAB面积最小的直线l′,若存在,求出直线l′的方程和△MAB面积的最小值;若不存在,说明理由.21.已知函数f(x)=lnx﹣(a∈R)(1)求f(x)的单调区间;(2)若对一切的x∈(1,2),不等式﹣<m恒成立,求实数m的范围.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.选修4﹣1:几何证明选讲如图,已知C点在⊙O直径的延长线上,CA切⊙O于A点,DC是∠ACB的平分线,交AE于F点,交AB于D点.(1)求∠ADF的度数;(2)若AB=AC,求AC:BC.[选修4-4:坐标系与参数方程]23.已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=4sin(θ﹣).(1)求圆C的直角坐标方程;(2)若P(x,y)是直线l与圆面ρ≤4sin(θ﹣)的公共点,求x+y的取值范围.[选修4-5:不等式选讲].24.已知函数f(x)=|x﹣a|+4x(a>0)(Ⅰ)当a=2时,求不等式f(x)≥2x+1的解集;(Ⅱ)若x∈R时,恒有f(2x)≥7x+a2﹣3,求实数a的取值范围.2016年河南省商丘市高考数学二模试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合M={x|x2﹣4x+3<0},集合N={x|lg(3﹣x)>0},则M∩N=()A.{x|2<x<3}B.{x|1<x<3}C.{x|1<x<2}D.∅【考点】交集及其运算.【分析】求出M与N中不等式的解集,确定出M与N,找出两集合的交集即可.【解答】解:由M中的不等式x2﹣4x+3<0,变形得:(x﹣1)(x﹣3)<0,解得:1<x<3,即M={x|1<x<3},由N中的不等式变形得:lg(3﹣x)>0=lg1,即3﹣x>1,解得:x<2,即N={x|x<2},则M∩N={x|1<x<2}.故选:C.2.若是z的共轭复数,且满足•(1﹣i)2=4+2i,则z=()A.﹣1+2i B.﹣1﹣2i C.1+2i D.1﹣2i【考点】复数代数形式的乘除运算.【分析】直接利用复数的运算法则化简求解即可.【解答】解:•(1﹣i)2=4+2i,可得•(﹣2i)=4+2i,可得=(2+i)i=﹣1+2i.z=﹣1﹣2i.故选:B.3.曲线y=x3﹣3x+1在点(0,1)处的切线方程为()A.y=x+1 B.y=﹣3x+1 C.y=x﹣1 D.y=3x﹣1【考点】利用导数研究曲线上某点切线方程.【分析】求出导数,求得切线的斜率,由直线的斜截式方程即可得到所求切线方程.【解答】解:y=x3﹣3x+1的导数为y′=3x2﹣3,可得在点(0,1)处的切线斜率为﹣3,即有在点(0,1)处的切线方程为y=﹣3x+1.故选B.4.若x∈(e﹣1,1),a=lnx,b=,c=e lnx,则a,b,c的大小关系为()A.c>b>a B.b>c>a C.a>b>c D.b>a>c【考点】有理数指数幂的化简求值;对数值大小的比较.【分析】依题意,由对数函数与指数函数的性质可求得a<0,b>1,<c<1,从而可得答案.【解答】解:∵x∈(e﹣1,1),a=lnx∴a∈(﹣1,0),即a<0;又y=为减函数,∴b=>==1,即b>1;又c=e lnx=x∈(e﹣1,1),∴b>c>a.故选B.5.某算法的程序框图如图所示,若输入的a,b值分别为60与32,则执行程序后的结果是()A.0 B.4 C.7 D.28【考点】程序框图.【分析】由题意,模拟程序框图的运行过程,即可得出该程序输出的结果.【解答】解:根据题意,模拟程序框图的运行过程,得出该程序输出的是用辗转相除法求两个数a、b的最大公约数;当a=60,b=32时,最大公约数是4.故选:B.6.命题p:函数y=log2(x2﹣2x)的单调增区间是[1,+∞),命题q:函数y=的值域为(0,1),下列命题是真命题的为()A.p∧q B.p∨q C.p∧(¬q)D.¬q【考点】复合命题的真假.【分析】求出函数y=log2(x2﹣2x)的定义域,找出定义域内的内层函数t=x2﹣2x的增区间,结合外层函数y=log2t的单调性求出函数y=log2(x2﹣2x)的单调增区间,从而判断出命题p的真假,利用指数函数的值域求出函数y=的值域,判断出命题q的真假,最后结合复合命题的真假判断得到正确的结论.【解答】解:令t=x 2﹣2x ,则函数y=log 2(x 2﹣2x )化为y=log 2t , 由x 2﹣2x >0,得:x <0或x >2,所以,函数y=log 2(x 2﹣2x )的定义域为(﹣∞,0)∪(2,+∞). 函数t=x 2﹣2x 的图象是开口向上的抛物线,且对称轴方程为x=1, 所以,函数t=x 2﹣2x 在定义域内的增区间为(2,+∞).又因为函数为y=log 2t 是增函数,所以,复合函数y=log 2(x 2﹣2x )的单调增区间是(2,+∞).所以,命题p 为假命题; 再由3x >0,得3x +1>1,所以,所以,函数y=的值域为(0,1),故命题q 为真命题.所以p ∧q 为假命题,pVq 为真命题,p ∧(¬q )为假命题,¬q 为假命题. 故选B .7.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,若c 2=(a ﹣b )2+6,C=,则△ABC 的面积是( )A .B .C .D .3【考点】余弦定理.【分析】将“c 2=(a ﹣b )2+6”展开,另一方面,由余弦定理得到c 2=a 2+b 2﹣2abcosC ,比较两式,得到ab 的值,计算其面积.【解答】解:由题意得,c 2=a 2+b 2﹣2ab +6,又由余弦定理可知,c 2=a 2+b 2﹣2abcosC=a 2+b 2﹣ab , ∴﹣2ab +6=﹣ab ,即ab=6.∴S △ABC ==.故选:C .8.已知双曲线﹣=1 (a >0,b >0)的一条渐近线过点(2,),且双曲线的一个焦点在抛物线y 2=4x 的准线上,则双曲线的方程为( )A .﹣=1 B .﹣=1C .﹣=1D .﹣=1【考点】双曲线的标准方程.【分析】由抛物线标准方程易得其准线方程,从而可得双曲线的左焦点,再根据焦点在x轴上的双曲线的渐近线方程渐近线方程,得a、b的另一个方程,求出a、b,即可得到双曲线的标准方程.【解答】解:由题意,=,∵抛物线y2=4x的准线方程为x=﹣,双曲线的一个焦点在抛物线y2=4x的准线上,∴c=,∴a2+b2=c2=7,∴a=2,b=,∴双曲线的方程为.故选:D.9.一个几何体的三视图如图所示,则这个几何体外接球的体积为()A.1000π B.200π C.πD.π【考点】由三视图求面积、体积.【分析】根据几何体的三视图,得出该几何体是底面为直角三角形,高为10的直三棱柱,且三棱柱外接球的半径是三棱柱对角线的一半,结合图形即可求出它的体积.【解答】解:根据几何体的三视图,得;该几何体是底面为直角三角形,且直角边长分别为6和8,高为10的直三棱柱,如图所示;所以该三棱柱外接球的球心为A1B的中点,因为A1B=10,所以外接球的半径为5,体积为π•=π.故选:D.10.已知椭圆C: +=1,M,N是坐标平面内的两点,且M与C的焦点不重合.若M关于C的焦点的对称点分别为A,B,线段MN的中点在C上,则|AN|+|BN|=()A.4 B.8 C.12 D.16【考点】椭圆的简单性质.【分析】根据已知条件,作出图形,MN的中点连接椭圆的两个焦点,便会得到三角形的中位线,根据中位线的性质及椭圆上的点到两焦点的距离和为2a即可求出|AN|+|BN|.【解答】解:设MN的中点为D,椭圆C的左右焦点分别为F1,F2,如图,连接DF1,DF2,∵F1是MA的中点,D是MN的中点,∴F1D是△MAN的中位线;∴,同理;∴|AN|+|BN|=2(|DF1|+|DF2|),∵D在椭圆上,∴根据椭圆的标准方程及椭圆的定义知:|DF1|+|DF2|=4,∴|AN|+|BN|=8.故选:B.11.已知均为单位向量,且.若,则的取值范围是()A.B.[3,5]C.[3,4]D.【考点】平面向量数量积的运算.【分析】由题意建立平面直角坐标系,得到的坐标,设出的坐标,代入,由其几何意义可得的终点的轨迹,再由的几何意义求得取值范围.【解答】解:∵均为单位向量,且.∴设,再设,代入,得.即(x,y)到A(4,0)和B(0,3)的距离和为5,∴的终点轨迹是点(4,0)和(0,3)之间的线段,=,表示M(﹣1,0)到线段AB上点的距离,最小值是点(﹣1,0)到直线3x+4y﹣12=0的距离.∴=.最大值为|MA|=5.∴的取值范围是[3,5].故选:B.12.设函数f(x)=,若关于x的方程f(x)=a有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4,则+的取值范围是()A.(﹣3,+∞)B.(﹣∞,3)C.[﹣3,3)D.(﹣3,3]【考点】分段函数的应用.【分析】作出函数f(x)的图象,由图象可得x1+x2=﹣4,x3x4=1;1<x4≤4;从而化简+,再利用函数的单调性求出它的取值范围.【解答】解:作出函数f(x)的图象,由图可知,x1+x2=﹣4,x3x4=1;当|log2x|=2时,x=4或x=,则1<x4≤4;故+=+=+x4,其在1<x4≤4上是增函数,故﹣4+1<+x4≤﹣1+4;即﹣3<+x4≤3;即+的取值范围是(﹣3,3],故选:D二、填空题:(本题共4小题,每题5分,共20分)13.等差数列{a n}的前n项和S n,若a1=2,S3=12,则a6=12.【考点】等差数列的前n项和.【分析】根据等差数列的通项公式以及前n项和公式进行求解即可.【解答】解:∵S3=12,∴S3=3a1+d=3a1+3d=12.解得d=2,则a6=a1+5d=2+2×5=12,故答案为:1214.在长为10cm的线段AB上任取一点C.现作一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积不小于9cm2的概率为.【考点】几何概型.【分析】根据几何概型的概率公式,设AC=x,则BC=10﹣x,由矩形的面积S=x(10﹣x)≥9可求x的范围,利用几何概率的求解公式可求.【解答】解:设AC=x,则BC=10﹣x,矩形的面积S=x(10﹣x)≥9,∴x2﹣10x+9≤0,∴1≤x≤9,由几何概率的求解公式可得,矩形面积不小于9cm2的概率P=,故答案为:.15.已知不等式组表示的平面区域的面积为2,则的最小值为.【考点】简单线性规划.【分析】先根据面积为2求出m值,又z==2+,设k=,利用k的几何意义,结合数形结合即可得到结论.【解答】解:作出不等式组对应的平面区域,,其中A(0,2),B(2,0),则△OAB的面积S=×2×2=2,即m=0又z==2+,设k=,其中的几何意义是可行域内的点与点D(﹣1,﹣1)构成的直线的斜率问题.由图象可知DB的斜率最小,此时k==,则的最小值2+=,故答案为:.16.若存在实数t,对任意实数x∈[0,a],均有(sinx﹣t)(cosx﹣t)≤0,则实数a的最大值是.【考点】三角函数的最值;函数恒成立问题.【分析】根据已知不等式得到,或,利用正弦函数、余弦函数图象的性质进行解答即可.【解答】解:∵(sinx﹣t)(cosx﹣t)≤0,∴,或,∴sinx≤t≤cosx,或sinx≥t≥cosx;当x∈[0,]时sinx≤≤cosx;当x∈[,]时cosx≤≤sinx,∴a的最大值是.故答案为:三、简答题(本大题共5小题,共70分。

相关文档
最新文档