江苏省镇江市2014届高三数学二模试卷(WORD版,含答案)
2014届江苏省高三年级百校联合调研考试数学卷二

2014届江苏省高三年级百校联合调研考试数学卷(二)本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分.选修测试历史的而考生仅需做第I 卷,共160分,考试用时120分钟.选修测物理的考生需做第I 卷和第II 卷,共200分考试用时150分钟.第I 卷(必做题 共160分)一、填空题:本大题共14小题,每小题5分,共70分.把答案填在题中横线上。
1.设集合{1,0,1}A =-,2{|0}B x x x =+≤,则A B ⋂=________. 2.已知i 是虚数单位,则31ii-+的虚部为________. 3.执行右面的框图,若输出结果为21,则输入的实数x 的值是____. 4.直线:tan105l x y π++=的倾斜角α=_______________.5.甲、乙两名运动员在某项测试中的6次成绩如茎叶图所示, 若教 练员选派两人之一参加比赛,则 的可能性较大。
6. 已知)0,2(πα-∈,4cos 5α=,则=+)4tan(πα . 7. 将一颗骰子投掷两次分别得到点数,a b ,则直线0ax by -=与圆()2222x y -+=相交的概率为 .8.设向量1e u r 、2e u u r 满足12||||1e e ==u r u u r,非零向量12,0,0a xe ye x y =+>>r u r u u r ,若2||x a =r,则1e u r 、2e u u r 的夹角θ的最小值为________.9.在等比数列{}n a 中,1234,n a a a +=·164,n a -=且前n 项和62n S =,则项数=n 10.在ABC ∆中,7AC =,60B =︒,BC 边上的高33h =,则BC =______. 11.双曲线228xy -=的左右焦点分别是12F F ,,点n P ()()123n n x y n =L ,,,在其右支上, 且满足2121F F F P ⊥,121F P F P n n =+,则2014x 的值是12.如图所示,互不相同的点),3,2,1(,,n i C B A i i i Λ=分别在以O 为顶点的三棱锥的三条棱上,所有平面),3,2,1(n i C B A i i i Λ=相互平行,且所有三棱台111+++-i i i i i i C B A C B A 的体积均相等,设n n a OA =,若312=a ,22=a,则=86a13.已知函数⎪⎩⎪⎨⎧≥-<≤+=)1(,212)10(,1)(x x x x f x ,设0≥>b a 时,有)()(b f a f =,则)(a f b ⋅的取值范围是14.若函数32()f x x ax bx c =+++的三个零点可分别作为一个椭圆、一双曲线、一抛物线的离心率,则ba的取值范围是 . 二、解答题:本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤. 15. (本小题满分14分) 已知O 为坐标原点,对于函数()sin cos f x a x b x =+,称向量(,)OM a b =u u u u r为函数()f x 的伴随向量,同时称函数()f x 为向量OM u u u u r 的伴随函数. (Ⅰ)设函数()sin()2cos 22g x x x ππ⎛⎫=++ ⎪⎝⎭-,试求()g x 的伴随向量OM u u u u r 的模;(Ⅱ)记(1,3)ON =u u u r 的伴随函数为()h x ,求使得关于x 的方程()0h x t -=在[0,]2π内恒有两个不相等实数解的实数的取值范围.16. (本小题满分14分)如图,菱形ABCD 的边长为4,60BAD ∠=o,AC BD O =I .将菱形ABCD 沿对角线AC 折起,得到三棱锥B ACD -,点M 是棱BC 的中点,22DM =.(1)求证://OM 平面ABD ; (2)求证:平面DOM ⊥平面ABC ;17. (本小题满分14分)已知某公司生产品牌服装的年固定成本为10万元,每生产1千件,须另投入2.7万元,设该公司年内共生产品牌服装x 千件并全部销售完,每1千件的销售收入为()x R 万元,且()22110.8,010301081000,103x x R x x xx ⎧-<≤⎪⎪=⎨⎪->⎪⎩.(1)写出年利润W (万元)关于年产量x (千件)的函数解析式;(2)当年产量为多少千件时,该公司在这一品牌服装的生产中所获年利润最大?18. (本小题满分16分)如图,已知椭圆)0(1:2222>>=+b a b y a x C 的离心率为21,且经过点)23,1(,F 为椭圆的右焦点,1A 、2A 为椭圆的左、右顶点,B 为上顶点.P 为椭圆上异于1A 、2A 的任一点,点Q 满足0=⋅. (Ⅰ)求椭圆C 的方程;(Ⅱ)若=,求F PA 1∆的面积;(Ⅲ)若P 为直线PQ 与椭圆唯一的公共点,求证:Q 点恒在一条定直线上.19. (本小题满分16分)设各项均为正实数的数列}{n a 的前n 项和为n S ,且满足2)1(4+=n n a S (*N n ∈).(Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设数列}{n b 的通项公式为ta ab n nn +=,是否存在正整数t ,使1b ,2b ,mb (N m m ∈≥,3)成等差数列?若存在,求出t 和m 的值;若不存在,请说明理由; (Ⅲ)证明:存在无穷多个三边成等比数列且互不相似的三角形,其三边长为数列}{n a 中的三项1n a ,2n a ,3n a .A CE BD OF 20. (本小题满分16分)已知函数()ln f x x =,21()22g x x x =-. (Ⅰ)设)()1()(x g x f x h '-+=(其中)(x g '是()g x 的导函数),求()h x 的最大值; (Ⅱ)求证: 当0b a <<时,有()(2)2b af a b f a a-+-<; (Ⅲ)设k Z ∈,当1x >时,不等式4)(3)()1(+'+<-x g x xf x k 恒成立,求k 的最大值.第Ⅱ卷(附加题 共40分)21.【选做题】在A ,B ,C ,D 四小题中只能选做2题,每小题10分,共计20分。
江苏省镇江市丹徒区2014届中考数学二模试题

某某省某某市丹徒区2014届中考数学二模试题 一、填空题:(每题2分,共24分)1.3-的相反数是 _________.2.因式分解:322x x x -+=___________.3.千克粮食,那么每年浪费总计千克粮食,6.5亿用科学计数法表示为_________________________. (0)y kx k =≠,请选取一个k 的值,使y 随x 的增大而增大,k =________.5.如图,一块含60°的直角三角形纸片,剪去这个60°的角后,得到一个四边形,那么∠1+∠2=_________°.(第5题) (第6题) (第7题)6.如图,△ABC 中,D 、E 分别是AB 、AC 的中点,若△ADE 的面积为2,则四边形DECB 的面积是______________.7.如图,△ABC 内接于O ,∠BAC=30°,BC=2,则O 的半径是__________.8.一组数据7,3,5,x ,9的众数为7,则这组数据的中位数是__________.112y x =-与5y x =-+的交点坐标是(4,1),则方程组215x y x y -=⎧⎨+=⎩的解是___________. 10.已知圆锥的底面半径为3,母线长为6,则此圆锥侧面展开图的圆心角是________.11.如图,边长为6的正方形ABCD 内部有一点P ,BP=4,∠PBC=60°,点Q 为正方形边上一动点,且△PBQ 是等腰三角形,则符合条件的Q 点有_________个.(第11题) (第12题)12. 如图,点A 在反比例函数k y x=(x >0)的图象上,AB ⊥y 轴于点B ,点C 在x 轴正半轴上,且OC=2AB ,点E 在线段AC 上,且AE=3EC ,点D 为OB 的中点,若△ADE 的面积为6,则k 的值为2160°E D C B A O C B A_____________. 二、选择题(每题3分,共15分)1y x =+自变量的取值X 围是( )A .0x ≠B .0x ≥C .1x ≥-D .1x ->14. 8的平方根是( )A .±4B .±22C .4D .2215.下列运算正确的是( )A .236()a a -=B .339a a a =C .23246()a b a b -= D .224a a a += 16. 一个几何体的三视图如图所示,则根据已知的数据,可得这个几何体的侧面积是( )A .15πB .24πC .12πD .20π(第16题) (第17题)17. 如图是二次函数2y ax bx c =++的图象的一部分,其对称轴是直线1x =-,且过点(3-,0),有下列说法:①0abc <;②20a b -=; ③420a b c ++<; ④若(-5,1y ),(52,2y )是抛物线上两点,则12y y >,其中说法正确的是( )A .①②B .②③C .①②④D .②③④三、解答题(共11题,总计81分)18.(本题满分10分)(1)计算:3019cos 60()(12)24-︒+-+- (2)化简:22(1)n m m n m n -÷+-19. (本题满分10分)(1)解方程 32122x x x -=-- (2)解不等式213x +>1x -,写出不等式的非负整数解.20. (本题满分6分) 2013年,我国遭受了严重的雾霾天气.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了不完整的三种统计图表.对雾霾了解程度的统计表:请结合统计图表,回答下列问题.(1)本次参与调查的学生共有__________人,m=________,n=_________;(2)图2所示的扇形统计图中D部分扇形所对应的圆心角是__________度;(3)请补全图1示数的条形统计图.21.(本题满分6分)小明同学看到路边上有人设摊玩“有奖摸球”游戏,在一个不透明的纸箱里只装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中红球有2个,黄球有1个,蓝球有1个.游戏规则是:交1元钱可以玩一次摸球游戏,从纸箱里随机摸出2个球,若摸到的球颜色相同,则中奖,奖金3元.否则不中奖.小明拿不定主意究竟是玩还是不玩,请同学们帮帮忙!(1)用树状图或列表法求出中奖的概率;(2)通过以上“有奖”游戏,你能帮小明出个主意吗?简要说明理由.22.(本题满分6分)如图,四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F,垂足分别为E、F.(1)求证:BF=DE ;(2)连接CE 、AF ,证明四边形CEAF 是平行四边形.23. (本题满分6分)已知一次函数y kx b =+经过点B (-1,0),与反比例函数k y x=交于点A(1,4).(1)分别求两个函数的关系式;(2)直线AD 经过点A 与x 轴交于点D ,当∠BAD=90°时,求点D 的坐标.24. (本题满分6分)某旅游区有一景观奇异的望天洞,D 是洞的入口,游人从洞口进入参观,可经过山洞到达山顶A ,最后可坐缆车沿索道AB 返回山脚下的B.在同一平面内,若测得斜坡BD 的长为100米,坡角∠DBC=10°,在B 处测得A 的仰角∠ABC=40°,在D 处测得A 处的仰角∠ADF=85°,过D 作地面BE 的垂线,垂足为C.(1)求∠ADB 的度数;(2)求索道AB 的长.(结果保留根号)25.(本题满分6分)如图,已知二次函数y=x2+mx+n 的图象经过A (0,3),且对称轴是直线x=2.(1)求该函数解析式;(2)在抛物线上找点P ,使△PBC 的面积是△ABC 的面积的23,求出点P 的坐标.26. (本题满分7分)如图,△ABC 内接于半圆,AB 是直径,过A 作直线MN ,∠MAC=∠ABC ,D 是弧AC 的中点,连接BD 交AC 于G ,过D 作DE ⊥AB 于E ,交AC 于F .(1)求证:MN 是半圆的切线;(2)求证:FD=FG .(3)若△DFG 的面积为4.5,且DG=3,GC=4,试求△BCG 的面积.27. (本题满分8分) 如果一条抛物线()2=++0y ax bx c a ≠与x 轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.(1)“抛物线三角形”一定是__________三角形;(2)若抛物线()2=-+>0y x bx b 的“抛物线三角形”是等腰直角三角形,求b 的值;(3)如图,△OAB 是抛物线()2=-+''>0y x bx b 的“抛物线三角形”,是否存在以原点O 为对称中心的矩形ABCD ?若存在,求出过O C D 、、三点的抛物线的表达式;若不存在,说明理由.28. (本题满分10分)如图,在平面直角坐标系中,四边形OABC 为矩形, OA=6,A B=8.动点M 、N 分别从O 、B 同时出发,都以1个单位的速度运动,其中,点M 沿OA 向终点C 运动,点N 沿BC 向终点C 运动,过点N 作NP ⊥BC ,交AC 于点P ,连接MP ,已知动点运动了x 秒.(1)点B 的坐标是__________,用含x 的代数式表示点P 的坐标为___________;(2)设四边形OMPC 的面积为S ,求当S 有最小值时点P 的坐标;(3)试探究,当S 有最小值时,在线段OC 上是否存在点T ,使直线MT 把△ONC 分割成三角形和四边形两部分,且三角形的面积是△ONC 面积的13?若存在,求出点T 的坐标;若不存在,请说明理由.2014年初中毕业升学考试数学模拟试卷参考答案及评分标准21. (1)画树状图(2分略)得:∴一共有12种等可能的结果,中奖的有2种情况,∴中奖的概率为16(3分)(2)答到“最好还是不要去玩”即得分(6分)22. (1)证明△ABE≌△CDF即可(3分)(2)证明AE∥DF即可(6分)23. (1)4yx=(1分)22y x=+(3分)(2)D(9,0)(6分)24.(1)∵DC⊥CE,又∵∠DBC=10°,∴∠BDC=80°,∵∠ADF=85°∴∠ADB=105°.(2分)(2)过点D作DG⊥AB于点G,计算出3(6分)25.(1)函数解析式为y=x2-4x+3 (3分);(2)点P的坐标是(232)(6分)26. (1)如右图所示,∵AB是直径,∴∠ACB=90°,∴∠CAB+∠ABC=90°,∵∠MAC=∠ABC,∴∠CAB+∠MAC=90°,即∠MAB=90°,∴MN是半圆的切线.(3分)(2)证明:∵DE⊥AB,∴∠EDB+∠ABD=90°,∵AB是直径,∴∠ACB=90°,∴∠CBG+∠BGC=90°∵D是弧AC的中点,∴∠CBD=∠ABD,∴∠EDB=∠BGC,∵∠DGF=∠BGC,∴∠EDB=∠DGF,∴DF=FG.(6分)(3)∵DF=FG,∴∠DGF=∠FDG,∵∠DGF+∠DAG=90°,∠FDG+∠ADF=90°,∴∠DAF=∠ADF,∴AF=DF=GF,∴S△ADG=2S△DGF=9,∵△BCG∽△ADG,因为△ADG的面积为9,所以△BCG的面积是16.(9分)27.(1)等腰(2分)(2)b=2 (4分)(3)存在223y x x=+(8分)。
江苏省南通市2014届高三第二次调研测试数学试卷及答案

.分.请把答案直接填写在答题卡相应位置上70分,共5小题,每小题14一、填空题:本大题共.........▲ð,则已知集合.1R.【答案】个社团,甲、乙两位同学各自参加其中一个社团,且他俩参加各个社团的可能性相8某学校有.2 .▲同,则这两位同学参加同一个社团的概率为1.【答案】8i.▲为虚数单位)的模为i(其中复数.32.【答案】2件产品中,采用系统抽样的80的79,…,2,1,0从编号为.4 的产品在样本中,则28的样本,若编号为5方法抽取容量是.▲该样本中产品的最大编号为6≤iWhile.76【答案】.▲的值为根据如图所示的伪代码,最后输出的.5a whileEnd.48【答案】aPrint12.▲的取值范围是a,则若.6a题)5(第.【答案】,423.7 .▲的值为b则,其图象的一条切线方程为为奇函数,若函数.【答案】是平面m表示直线,m,l设8. 条件.▲成立的”“是”“则内的任意一条直线.、(在“充分不必要” “既不充分又不必要”中选填一个)、“充要”、“必要不充分” .【答案】充要22的倾斜角为)上一点,直线(:是半圆中,设xOy在平面直角坐标系.9的方程,则直线的平行线交半圆于点作,过轴的垂线,垂足为作,过点45°xOAABBAHH.▲是.【答案】.▲的值为,则20=BC,8=AD的中点,BC是D中,ABC在△.10ABAC.36【答案】-1zx11.▲的值是成等差数列,则,,成等比数列,且z15,y12,x9是实数,z,y,x设.zxzxy34.【答案】15是函数设.12内所有极值点之和为在区间的一个零点,则函数π2,6.▲14π【答案】32[1)-mx(若不等式.13.▲的值为x则实数恒成立,对任意0≥]1-m+ 1)x ( -m3, 1 【答案】22设实数.14a,则1≤c≤ b+a满足c,b,a .▲的最小值为c+b+1.【答案】2解答时应写出文字说明、证. 内作答分.请在答题卡指定区域90小题,共6二、解答题:本大题共.......明过程或演算步骤..15分)14(本小题满分ABC在△.求:中,已知,)1(的值;AB的值.)2(分 4…………………………… ,)因为1(方法)1(【解】,,,即所以2分7 …………………………… .,故亦即,c,b,a的对边依次为C,B,A)设2(方法分3 …………………………… 则由条件得.,2分7 ……………… .,即,故两式相加得,c,b,a的对边依次为C,B,A)设3(方法分 3 …………………………… .则由条件得,,由余弦定理得,222分7 …………………………… ,故两式相加得.)分10 2………………………… (由正弦定理得分14 ………… .2522cccCsin 分)14(本小题满分.16-的中点.PB是E,DC2=AB,AD=PD ,ADPP⊥平面AB,DC∥AB中,ABCD在四棱锥;ADP∥平面CE)1(求证: P .ABP⊥平面PBC)平面2( E 分2 .……DF,EF,连F的中点AP)取1(方法)1(【证】.,且AB//EF 的中点,所以PB是E因为 A 2 B ∥AB因为分4 ,………………CD∥EF,所以DC2=AB,CD 是平行四边形,DCEF,于是四边形,ADP平面,ADP平面,而DF∥CE从而题)16(第P 分7 …………………… AD .P∥平面CE故分2 ……………… .CM,EM,连M的中点AB)取2(方法 E F 是E因为.AP// EM 的中点,所以PB A// CM ,所以DC2=AB,CD∥AB因为分 4.………………AD B M ,ADP平面,ADP平面因为所以.ADP∥平面CM.同理,ADP∥平面EM D C ,CEM平面,因为,EM16(第题)分7 .………………………ADP∥平面CE,故ADP平面.而ADP∥平面CEM所以平面,且AD=PD)因为1)中方法1(接()2(.的中点,所以AP 是分10……………………… .,所以ADP平面,ADP⊥平面AB因为.,,所以DF∥CE因为.ABP平面,所以,AB因为P平面,分14 ………………………… P.AB⊥平面PBC,所以平面PBC平面因为分)14(本小题满分.17个单位的净化剂,空气中1为了净化空气,某科研单位根据实验得出,在一定范围内,每喷洒x变化的函数关系式近似为)单位:天(立方米)随着时间/(单位:毫克y释放的浓度,4≤x≤0,.,若多次喷洒,则某一时刻空气中的净化剂浓度为每次投放的净化剂在相应时刻所释放的浓度之时,它才能起到净化空气的作用.)立方米/毫克(4当空气中净化剂的浓度不低于,和.由实验知? 个单位的净化剂,则净化时间可达几天4)若一次喷洒1(a天后再喷洒6个单位的净化剂,2)若第一次喷洒2()个单位的药剂,要使接下(4≤a≤1a2.)1.4取,参考数据:0.1的最小值(精确到天中能够持续有效净化,试求4来的个单位的净化剂,4)因为一次喷洒1(【解】,4≤x≤0,所以浓度.,分3 .……………………,所以此时,解得时,由则当.,所以此时解得时,由当分7 …………… 天.8个单位的制剂,则有效净化时间可达4若一次投放综合得8≤x≤0,)天,(x)设从第一次喷洒起,经2(分10 ……浓度.因为,,而8], . 有最小值为y时,,故当且仅当所以,分14 .………的最小值为a,所以,解得令分)16(本小题满分.18yx在平面直角坐标系所围成的封闭图形的面积为:C中,设曲线22与坐标轴的交点为顶点的椭圆记C以曲线.的最短距离为O上的点到原点C曲线,24113 .C为2。
2014中考数学二模试题(含答案镇江市外国语学校)

2014中考数学二模试题(含答案镇江市外国语学校)一、填空题(本大题共有12题,每小题2分,共24分)1.计算:-2+1=_▲____.2.计算:(a+2)(2a-3)=____▲___.3.反比例函数的图像经过点(1,-2),则此图像位于第_▲_象限.4.已知圆锥的底面直径为5,母线长为5,则圆锥的侧面展开图的圆心角为▲_5.方程x(x-1)=x的解为___▲__6.数据-2、-1、0、3、5的方差是____▲_____7.如图,正方形ABCD的边长为8,点M在边DC上,且DM=2,M、N 两点关于对角线AC对称,则tan=___▲___8.若代数式可化为,则=__▲____9.将一副三角板按如图所示摆放,则与的面积比为__▲____10.如图是二次函数(为常数)的图像,则=__▲___11.对于函数可以“分解”为两个熟悉的函数:二次函数和反比例函数,则函数的取值范围是___▲____12.如图,已知A、B是线段MN上的两点,MN=4,MA=1,MB>1.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成△ABC,设AB=x,若△ABC为直角三角形,则x=__▲____二、选择题(每小题3分,共15分)13.一次函数y=-x-1不经过的象限是(▲)A.第一象限B.第二象限C.第三象限D.第四象限14.下列命题中错误的是(▲)A.B.平行四边形是中心对称图形C.单项式D.x13102.110002.001100002.000115.在中,C=90°,AC、BC的长分别是方程的两根,内一点P到三边的距离都相等,则PC为(▲)A.1B.C.D.16.阳阳根据右表,作了三个推测:(1)(x>0)的值随着x的增大越来越小(2)(x>0)的值有可能等于2(3)(x>0)的值随着x的增大越来越接近于2则推测正确的是(▲)A.(1)(2)B.(1)(3)C.(2)(3)D.(1)(2)(3)17.如图,在菱形ABCD中,AB=m,.将菱形ABCD绕点B顺时针旋转(旋转角小于90°),点A、C、D分别落在处,当时,(▲).A.B.C.D.二、解答题(共81分)18.(8分)(1)计算:tan60°—(2)19.(10分)(1)解方程:(2)解不等式组,并将解集在数轴上表示出来.20.(5分)学校为丰富学生课间自由活动的内容,随机选取本校部分学生进行调查,调查内容是“你最喜欢的自由活动项目是什么?”,已知喜欢“跳绳”的学生占被调查人数的20%,整理收集到的数据后,绘制成下图.(1)学校采用的调查方式是_▲____,被调查的学生有__▲____名;(2)求“喜欢踢毽子”的学生数,并在下图中补全图形;(3)该校共有学生800名,估计“喜欢其他”的学生数有__▲_____名21.(6分)如图,四边形ABCD的对角线AC与BD相交于O点,∠1=∠2,∠3=∠4.求证:(1)△ABC≌△ADC;(2)BO=DO.22.(6分)在物理实验中,当电流通过电子元件时,每个元件的状态有两种可能:通过或断开,并且这两种状态的可能性相等.(1)如图1,当两个电子元件a、b并联时,请用树状图或列表法表示图中P、Q之间电流能否通过的所有可能情况,并求出P、Q之间电流通过的概率;(2)如图2,当有三个电子元件并联时,请直接写出P、Q之间电流通过的概率为__▲___.图1图223.(6分)某地震救援队探测出某建筑物废墟下方点C处有生命迹象,已知废墟一侧地面上两探测点A、B相距3m,探测线与地面的夹角分别是35°和45°,试确定生命所在点C的深度。
江苏省苏锡常镇四市2014届高三教学情况调研(二)数学试题(WORD版)

江苏省苏锡常镇四市2014届高三教学情况调研(二)数学试题(WORD版)江苏省苏锡常镇四市2014届高三5月教学情况调研(二)数学Ⅰ试题命题单位:XXX注意事项:1.本试卷共4页,包含填空题(第1题~第14题)和解答题(第15题——第20题)。
本卷满分160分,考试时间为120分钟。
考试结束后请将答题卡交回。
2.答题前请认真填写姓名和准考证号,并使用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效。
作答必须使用0.5毫米黑色墨水的签字笔。
请注意字体工整,笔迹清楚。
4.如需作图,须用2B铅笔绘制,写清楚线条、符号等,须加黑、加粗。
5.请保持答题卡卡面清洁,不要折叠、破损。
一律不准使用胶带纸、修正液、可擦洗的圆珠笔。
一、填空题:1.函数y=x-1的定义域为A,函数y=lg(2-x)的定义域为B,则A∩B=(-∞,1)。
2.设z=2-i(i是虚数单位),则|z|=√5.3.在平面直角坐标系xOy中,已知双曲线x^2/9-y^2/16=1的一个焦点为(5,0),则实数m=2.4.样本容量为100的频率分布直方图如右图所示,由此估计样本数据落在[6,10]内的频数为25.5.“φ=π/2”是“函数y=sin(x+φ)的图象关于y轴对称”的充分必要条件。
6.已知Sn为等差数列{an}的前n项和,a1=-1,S3=6,则S6=0.7.函数y=lnx(x≥e)的值域是R。
8.执行右面的程序图,那么输出n的值为5.9.在1,2,3,4四个数中随机地抽取一个数记为a,再在剩余的三个数中随机地抽取一个数记为b,则“a是整数”的概率为1/2.10.已知△ABC为等腰直角三角形,斜边BC上的中线AD=2,将△ABC沿AD折成60°的二面角,连结BC,则三棱锥C-ABD的体积为4/3.11.直线y=kx与曲线y=2ex相切,则实数k=2.1.设函数f(x)=x^3-3x^2+2x-1,问是否存在正数a,使得“函数f(x)在x=1处存在长度为a的对称点”?请说明理由。
2014届镇江高三数学一模(word版,有答案)

2013~2014学年度苏锡常镇四市高三教学情况调查(一)数学Ⅰ试题 2014.3参考公式:柱体的体积公式:V 柱体=Sh ,其中S 是柱体的底面积,h 是高.直棱柱的侧面积公式:S 直棱柱侧=ch ,其中c 是直棱柱的底面周长,h 是高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{}1,2,3,4A =,{},4,7B m =,若{}1,4A B = ,则A B = ▲ . 2.若复数z =13i1i+-(i 为虚数单位),则 | z | = ▲ . 3.已知双曲线2218x y m -=的离心率为3,则实数m 的值为 ▲ .4.一个容量为20的样本数据分组后,分组与频数分别如下:(]10,20,2; (]20,30,3;(]30,40,4;(]40,50,5;(]50,60,4;(]60,70,2.则样本在(]10,50上的频率是 ▲ .5.执行如图所示的算法流程图,则最后输出的y 等于 ▲ . 6.设函数2()sin f x a x x =+,若(1)0f =,则(1)f -的值为 ▲ . 7. 四棱锥P - ABCD 的底面ABCD 是边长为2的正方形,P A ⊥底面ABCD 且P A = 4,则PC 与底面ABCD 所成角的正切值为 ▲ .8.从甲,乙,丙,丁4个人中随机选取两人,则甲乙两人中有且只有一个被选取的概率为 ▲ . 9.已知2tan()5a b +=,1tan 3b =,则tan +4p a ⎛⎫ ⎪⎝⎭的值为 ▲ .注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求 1.本试卷共4页包含填空题(第1题——第14题)、解答题(第15题——第20题).本卷满分160分,考试时间为120分钟.考试结束后请将答题卡交回.2.答题前请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请在答题卡上按照顺序在对应的答题区域内作答在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整笔迹清楚.4.如需作图须用2B 铅笔绘、写清楚线条、符号等须加黑、加粗.5.请保持答题卡卡面清洁不要折叠、破损.一律不准使用胶带纸、修正液、可擦洗的圆珠笔. 结束开始 x ← 1 y ← 1 y ← 2y + 1 输出y N Y(第5题)x ≤5x ← x + 1Y10.设等差数列{}n a 的前n 项和为n S ,若13a =-,132k a +=,12k S =-,则正整数k = ▲ . 11.已知正数,x y 满足22x y +=,则8x yxy+的最小值为 ▲ . 12.如图,在△ABC 中,BO 为边AC 上的中线,2BG GO =,设CD ∥AG ,若15AD AB AC =+λ()∈R λ,则λ的值为 ▲ .13.已知函数22(2)e ,0,()43,0,x x x x f x x x x ⎧-=⎨-++>⎩≤()()2g x f x k =+,若函数()g x 恰有两个不同的零点,则实数k 的取值范围为 ▲ .14.在平面直角坐标系xOy 中,已知点(3,0)P 在圆222:24280C x y m x y m +--+-=内,动直线AB 过点P 且交圆C 于,A B 两点,若△ABC 的面积的最大值为16,则实数m 的取值范围为 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)设函数2()6cos 23sin cos f x x x x =-. (1)求()f x 的最小正周期和值域;(2)在锐角△ABC 中,角,,A B C 的对边分别为,,a b c ,若()0f B =且2b =,4cos 5A =,求a 和sin C .16.(本小题满分14分)如图,在三棱柱111ABC A B C -中,侧面11AA B B 为菱形, 且160A AB ∠=︒,AC BC =,D 是AB 的中点.(1)求证:平面1A DC ⊥平面ABC ; (2)求证:1BC ∥平面1A DC .111DC B ACBA (第16题)(第12题)ABCDOG一个圆柱形圆木的底面半径为1m ,长为10m ,将此圆木沿轴所在的平面剖成两个部分.现要把其中一个部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形ABCD (如图所示,其中O 为圆心,,C D 在半圆上),设BOC q ∠=,木梁的体积为V (单位:m 3),表面积为S (单位:m 2). (1)求V 关于θ的函数表达式; (2)求q 的值,使体积V 最大;(3)问当木梁的体积V 最大时,其表面积S 是否也最大?请说明理由.18.(本小题满分16分)如图,在平面直角坐标系xOy 中,已知A ,B ,C 是椭圆22221(0)x y a b a b +=>>上不同的三点,32(32,)2A ,(3,3)B --,C 在第三象限,线段BC 的中点在直线OA 上. (1)求椭圆的标准方程; (2)求点C 的坐标;(3)设动点P 在椭圆上(异于点A ,B ,C )且直线PB ,PC 分别交直线OA 于M ,N 两点,证明OM ON ⋅为定值并求出该定值.θD CBAO(第17题)NMPC B AyxO(第18题)设各项均为正数的数列{}n a 的前n 项和为S n ,已知11a =,且11()(1)n n n n S a S a λ+++=+对一切*n ∈N 都成立.(1)若λ = 1,求数列{}n a 的通项公式; (2)求λ的值,使数列{}n a 是等差数列.20.(本小题满分16分)已知函数e ()ln ,()e xxf x mx a x mg x =--=,其中m ,a 均为实数. (1)求()g x 的极值;(2)设1,0m a =<,若对任意的12,[3,4]x x ∈12()x x ≠,212111()()()()f x f xg x g x -<-恒成立,求a 的最小值;(3)设2a =,若对任意给定的0(0,e]x ∈,在区间(0,e]上总存在1212,()t t t t ≠,使得120()()()f t f t g x ==成立,求m 的取值范围.数学Ⅱ(附加题)21.【选做题】在A 、B 、C 、D 四小题中只能选做两题......,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. A .选修4—1:几何证明选讲如图,⊙O 为四边形ABCD 的外接圆,且A B A D =,E 是CB 延 长线上一点,直线EA 与圆O 相切. 求证:CD ABAB BE=.B .选修4—2:矩阵与变换已知矩阵1221⎡⎤=⎢⎥⎣⎦M ,17⎡⎤=⎢⎥⎣⎦β,计算6M β.C .选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,圆的参数方程为22cos ,()2sin x y a a a=+⎧⎨=⎩为参数,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.求: (1)圆的直角坐标方程; (2)圆的极坐标方程.D .选修4—5:不等式选讲已知函数2()122f x x x a a =++---,若函数()f x 的图象恒在x 轴上方,求实数a 的取值范围.ODECB A(第21-A 题)【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)甲乙两个同学进行定点投篮游戏,已知他们每一次投篮投中的概率均为23,且各次投篮的结果互不影响.甲同学决定投5次,乙同学决定投中1次就停止,否则就继续投下去,但投篮次数不超过5次. (1)求甲同学至少有4次投中的概率; (2)求乙同学投篮次数x 的分布列和数学期望.23.(本小题满分10分)设01212(1)m mn n n n n m S C C C C ---=-+-+- ,*,m n ∈N 且m n <,其中当n 为偶数时,2nm =;当n 为奇数时,12n m -=. (1)证明:当*n ∈N ,2n ≥时,11n n n S S S +-=-; (2)记01231007201420132012201110071111120142013201220111007S C C C C C =-+-+- ,求S 的值.2014年苏、锡、常、镇四市高三教学情况调查(一)数学Ⅰ试题参考答案一、填空题:本大题共14小题,每小题5分,共70分. 1.{}1,2,3,4,7 2.5 3. 4 4.710 5.63 6.2 7.2 8. 23 9. 9810.13 11.9 12.6513. 27321,{0,}22e +⎛⎫-- ⎪⎝⎭ 14. [323,327)(327,323]++-- 二、解答题:本大题共6小题,共计90分.解答时应写出文字说明、证明过程或演算步骤. 15. 解:(1)1+cos2()63sin 22xf x x =⨯-=3cos23sin 23x x -+ =23cos(2)36x p++. …………………3分所以()f x 的最小正周期为22T pp ==, …………………4分 值域为[323,323]-+. …………………6分 (2)由()0f B =,得π3cos(2)62B +=-.B 为锐角,∴ππ7π2666B <+<,π5π266B +=,∴π3B =. …………………9分 ∵4cos 5A =,(0,)A p ∈,∴243sin 1()55A =-=. …………………10分在△ABC 中,由正弦定理得32sin 435sin 532b A a B⨯===. …………………12分∴231343sin sin()=sin()cos sin 32210C A B A A A p p +=---=+=. …………………14分 16.(1)证明:∵ 11ABB A 为菱形,且160A AB ∠=︒,∴△1A AB 为正三角形. …………………2分D 是AB 的中点,∴1AB A D ⊥.∵AC BC =,D 是AB 的中点,∴ AB CD ⊥. …………………4分1A D CD D = ,∴AB ⊥平面1A DC . …………………6分∵AB ⊂平面ABC ,∴平面1A DC ⊥平面ABC . …………………8分 (2)证明:连结1C A ,设11AC AC E = ,连结DE .∵三棱柱的侧面11AAC C 是平行四边形,∴E 为1AC 中点. …………………10分 在△1ABC 中,又∵D 是AB 的中点,∴DE ∥1BC . …………………12分 ∵DE ⊂平面1A DC ,1BC ⊄平面1A DC ,∴ 1BC ∥平面1A DC . …………………14分 17.解:(1)梯形ABCD 的面积2cos 2sin 2ABCD S q q +=⋅=sin cos sin q q q +,(0,)2pq ∈. …………………2分 体积()10(sin cos sin ),(0,)2V pq q q q q =+∈. …………………3分(2)2()10(2cos cos 1)10(2cos 1)(cos 1)V q q q q q '=+-=-+. 令()0V q '=,得1cos 2q =,或cos 1q =-(舍). ∵(0,)2pq ∈,∴3p q =. …………………5分当(0,)3p q ∈时,1cos 12q <<,()0,()V V q q '>为增函数;当(,)32p p q ∈时,10cos 2q <<,()0,()V V q q '<为减函数. …………………7分∴当3pq =时,体积V 最大. …………………8分 (3)木梁的侧面积210S AB BC CD =++⋅侧()=20(cos 2sin 1)2q q ++,(0,)2pq ∈. 2ABCD S S S =+侧=2(sin cos sin )20(cos 2sin 1)2qq q q q ++++,(0,)2p q ∈.…………………10分设()cos 2sin 12g q q q =++,(0,)2p q ∈.∵2()2sin 2sin 222g q qq =-++,∴当1sin22q =,即3p q =时,()g q 最大. …………………12分又由(2)知3pq =时,sin cos sin q q q +取得最大值, 所以3pq =时,木梁的表面积S 最大. …………………13分 综上,当木梁的体积V 最大时,其表面积S 也最大. …………………14分 18.解:(1)由已知,得222291821,991,a b ab ⎧⎪+=⎪⎨⎪+=⎪⎩ 解得2227,27.2a b ⎧=⎪⎨=⎪⎩ …………………2分所以椭圆的标准方程为22127272x y +=. …………………3分(2)设点(,)C m n (0,0)m n <<,则BC 中点为33(,)22m n --. 由已知,求得直线OA 的方程为20x y -=,从而23m n =-.① 又∵点C 在椭圆上,∴22227m n +=.②由①②,解得3n =(舍),1n =-,从而5m =-. …………………5分 所以点C 的坐标为(5,1)--. …………………6分 (3)设00(,)P x y ,11(2,)M y y ,22(2,)N y y . ∵,,P B M 三点共线,∴011033233y y y x ++=++,整理,得001003()23y x y x y -=--.…………………8分 ∵,,P C N 三点共线,∴22011255y y y x ++=++,整理,得00200523y x y x y -=-+.…………………10分 ∵点C 在椭圆上,∴2200227x y +=,2200272x y =-.从而22200000001222200000003(56)3(3627)393449241822x y x y y x y y y x y x y y x y +--+===⨯=+---+. …………………14分 所以124552OM ON y y ⋅== . …………………15分∴OM ON ⋅ 为定值,定值为452. …………………16分19.解:(1)若λ = 1,则11(1)(1)n n n n S a S a +++=+,111a S ==.又∵00n n a S >>,, ∴1111n n n nS a S a +++=+, ………………… 2分 ∴3131221212111111n n n nS S a a S a S S S a a a +++++⋅⋅⋅=⋅⋅⋅+++ , 化简,得1112n n S a +++=.① ………………… 4分 ∴当2n ≥时,12n n S a +=.②② - ①,得12n n a a +=, ∴12n na a +=(2n ≥). ………………… 6分 ∵当n = 1时, 22a =,∴n = 1时上式也成立,∴数列{a n }是首项为1,公比为2的等比数列, a n = 2n -1(*n ∈N ). …………………8分 (2)令n = 1,得21a λ=+.令n = 2,得23(1)a λ=+. ………………… 10分要使数列{}n a 是等差数列,必须有2132a a a =+,解得λ = 0. ………………… 11分 当λ = 0时,11(1)n n n n S a S a ++=+,且211a a ==.当n ≥2时,111()(1)()n n n n n n S S S S S S +-+-=+-, 整理,得2111n n n n n S S S S S +-++=+,1111n n n nS S S S +-+=+, ………………… 13分 从而3312412123111111n n n nS S S S S S S S S S S S +-+++⋅⋅⋅=⋅⋅⋅+++ , 化简,得11n n S S ++=,所以11n a +=. ……………… 15分 综上所述,1n a =(*n ∈N ),所以λ = 0时,数列{}n a 是等差数列. ………………… 16分 20.解:(1)e(1)()e xx g x -'=,令()0g x '=,得x = 1. ………………… 1分 列表如下:∵g (1) = 1,∴y =()g x 的极大值为1,无极小值. …………………3分 (2)当1,0m a =<时,()ln 1f x x a x =--,(0,)x ∈+∞.∵()0x af x x -'=>在[3,4]恒成立,∴()f x 在[3,4]上为增函数. …………………4分 设1e ()()e x h x g x x ==,∵12e (1)()x x h x x --'=> 0在[3,4]恒成立, ∴()h x 在[3,4]上为增函数. …………………5分 设21x x >,则212111()()()()f x f xg x g x -<-等价于2121()()()()f x f x h x h x -<-, 即2211()()()()f x h x f x h x -<-.设1e ()()()ln 1e xu x f x h x x a x x=-=---⋅,则u (x )在[3,4]为减函数.∴21e (1)()10e x a x u x x x-'=--⋅≤在(3,4)上恒成立. …………………6分 ∴11e ex x a x x---+≥恒成立. 设11e ()e x x v x x x --=-+,∵112e (1)()1e x x x v x x ---'=-+=121131e [()]24x x ---+,x ∈[3,4],∴1221133e [()]e 1244x x --+>>,∴()v x '< 0,()v x 为减函数.x (-∞,1)1 (1,+∞)()g x '+ 0 - g (x )↗极大值↘∴()v x 在[3,4]上的最大值为v (3) = 3 -22e 3. ………………… 8分∴a ≥3 -22e 3,∴a 的最小值为3 -22e 3. …………………9分(3)由(1)知()g x 在(0,e]上的值域为(0,1]. …………………10分 ∵()2ln f x mx x m =--,(0,)x ∈+∞,当0m =时,()2ln f x x =-在(0,e]为减函数,不合题意. ………………… 11分当0m ≠时,2()()m x m f x x-'=,由题意知()f x 在(0,e]不单调,所以20e m<<,即2e m >.① …………………12分此时()f x 在2(0,)m 上递减,在2(,e)m上递增,∴(e)1f ≥,即(e)e 21f m m =--≥,解得3e 1m -≥.② 由①②,得3e 1m -≥. …………………13分 ∵1(0,e]∈,∴2()(1)0f f m =≤成立. …………………14分下证存在2(0,]t m∈,使得()f t ≥1.取e m t -=,先证e 2m m-<,即证2e 0m m ->.③ 设()2e x w x x =-,则()2e 10x w x '=->在3[,)e 1+∞-时恒成立. ∴()w x 在3[,)e 1+∞-时为增函数.∴3e ))01((w x w ->≥,∴③成立. 再证()e m f -≥1. ∵e e 3()1e 1m m f m m m --+=>>-≥,∴3e 1m -≥时,命题成立. 综上所述,m 的取值范围为3[,)e 1+∞-. …………………16分21、【选做题】在A 、B 、C 、D 四小题中只能选做两题......,每小题10分,共计20分. A .选修4—1:几何证明选讲证明:连结AC .EA 是圆O 的切线,∴EAB ACB ∠=∠. …………………2分AB AD = ,∴ACD ACB ∠=∠. ∴ACD EAB ∠=∠. …………………4分圆O 是四边形ABCD 的外接圆,∴D ABE ∠=∠. …………………6分 ∴CDA ∆∽ABE ∆. …………………8分 ∴CD DA AB BE =, AB AD = ,∴CD ABAB BE=. …………………10分 B .选修4—2:矩阵与变换 解:矩阵M 的特征多项式为212()2321f λλλλλ--==----.令12()031f λλλ===-,解得,,对应的一个特征向量分别为111⎡⎤=⎢⎥⎣⎦α,211⎡⎤=⎢⎥-⎣⎦α. …5分令12m n =+βαα,得4,3m n ==-.6666661212112913(43)4()3()433(1)112919⎡⎤⎡⎤⎡⎤=-=-=⨯--=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦M βM ααM αM α.……………10分 C .选修4—4:坐标系与参数方程解:(1)圆的直角坐标方程为22(2)4x y -+=. …………………5分 (2)把cos ,sin ,x y ρθρθ=⎧⎨=⎩代入上述方程,得圆的极坐标方程为4cos ρθ=.…………………10分D .选修4—5:不等式选讲解:()f x 的最小值为232a a --, …………………5分由题设,得223a a -<,解得(1,3)a ∈-. …………………10分【必做题】第22题、第23题,每题10分,共计20分.22.解:(1)设甲同学在5次投篮中,有x 次投中,“至少有4次投中”的概率为P ,则(4)(5)P P x P x ==+= …………………2分=441550552222()(1)()(1)3333C C -+-=112243. …………………4分 (2)由题意1,2,3,4,5=x .2(1)3P ==x ,122(2)339P ==⨯=x ,1122(3)33327P ==⨯⨯=x ,3122(4)3381P x ⎛⎫==⨯= ⎪⎝⎭,411(5)381P x ⎛⎫===⎪⎝⎭. x 的分布表为x1 2 3 4 5P2329227 281 181…………………8分x 的数学期望22221121123453927818181E =⨯+⨯+⨯+⨯+⨯=x . …………………10分 23.解:(1)当n 为奇数时,1n +为偶数,1n -为偶数, ∵1101221112(1)n n n n nn S CC C+++++=-++- ,110122112(1)n n n n n n S C C C---+=-++- ,11012211212(1)n n n n n n S C CC------=-++- ,∴1111110011222221111111222()()(1)()(1)n n n n n n n n n n n n n n S S C C C C CCC-+-++-++-++++-=---++--+-=11012212112((1))n n n n n n CCCS --------++-=- .∴当n 为奇数时,11n n n S S S +-=-成立. …………………5分 同理可证,当n 为偶数时, 11n n n S S S +-=-也成立. …………………6分 (2)由01231007201420132012201110071111120142013201220111007S C C C C C =-+-+- ,得 0123100720142013201220111007201420142014201420142013201220111007S C C C C C =-+-+- =0112233100710072014201320132012201220112011100710071231007()()()()2013201220111007C C C C C C C C C -+++-++-+ =0121007012100620142013201210072012201120101006()()C C C C C C C C -+----+-+=20142012S S -. …………………9分 又由11n n n S S S +-=-,得6n n S S +=, 所以20142012421S S S S -=-=-,12014S =-. …………………10分。
南京市、盐城市2014届高三年级第二次模拟考试数学试题及答案

南京市2014届高三年级第二次模拟考试 数 学 2014.03 注意事项:1.本试卷共4页,包括填空题(第1题~第14题)、解答题(第15题~第20题)两部分.本试卷满分为160分,考试时间为120分钟.2.答题前,请务必将自己的姓名、学校、班级、学号写在答题纸的密封线内.试题的答案写在答题纸上对应题目的答案空格内.考试结束后,交回答题纸. 参考公式:柱体的体积公式:V =Sh ,其中S 为柱体的底面积,h 为柱体的高.圆柱的侧面积公式:S 侧=2πRh ,其中R 为圆柱的底面半径,h 为圆柱的高.一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上)1.函数f(x)=lnx +1-x 的定义域为 ▲ .2.已知复数z1=-2+i ,z2=a +2i(i 为虚数单位,a ∈R).若z1z2为实数,则a 的值为 ▲ .3.某地区教育主管部门为了对该地区模拟考试成绩进行分析,随机抽取了150分到450分之间的1000名学生的成绩,并根据这1000名学生的成绩画出样本的频率分布直方图(如图),则成绩在[300,350)内的学生人数共有 ▲ .4.盒中有3张分别标有1,2,3码,则两次抽取的卡片号码中至少有一个为偶数的概率为 5.已知等差数列{an}的公差d 不为0,且a1,a3,a76.执行如图所示的流程图,则输出的k 的值为 ▲ .7.函数f(x)=Asin (ωx +φ)(A ,ω,φ为常数,A >0,ω>0,0<φ8.在平面直角坐标系xOy 中,双曲线x2a2-y2b2=1(a >0,b A ,B 两点.若△AOB 的面积为2,则双曲线的离心率为 9.表面积为12π的圆柱,当其体积最大时,该圆柱的底面半径与高的比为 ▲ .10.已知|OA →|=1,|OB →|=2,∠AOB =2π3,OC →=12OA →+14OB →,则OA →与OC →的夹角大小为 ▲ .11.在平面直角坐标系xOy 中,过点P(5,3)作直线l 与圆x2+y2=4相交于A ,B 两点,若OA ⊥OB ,则直线l 的斜率为 ▲ .12.已知f(x)是定义在R 上的奇函数,当0≤x ≤1时,f(x)=x2,当x >0时,f(x +1)=f(x)+f(1),且.a (第7题图)若直线y =kx 与函数y =f(x)的图象恰有5个不同的公共点,则实数k 的值为 ▲ . 13.在△ABC 中,点D 在边BC 上,且DC =2BD ,AB ∶AD ∶AC =3∶k ∶1,则实数k 的取值范围为 ▲ . 14.设函数f(x)=ax +sinx +cosx .若函数f(x)的图象上存在不同的两点A ,B ,使得曲线y =f(x)在点A ,B 处的切线互相垂直,则实数a 的取值范围为 ▲ .二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内) 15.(本小题满分14分)如图,在四棱锥P -ABCD 中,底面ABCD 为矩形,平面PAB ⊥平面ABCD ,PA ⊥PB , BP =BC ,E 为PC 的中点.(1)求证:AP ∥平面BDE ; (2)求证:BE ⊥平面PAC .16.(本小题满分14分) 在平面直角坐标系xOy 中,角α的顶点是坐标原点,始边为x 轴的正半轴,终边与单位圆O 交 于点A(x1 ,y1 ),α∈(π4,π2).将角α终边绕原点按逆时针方向旋转π4,交单位圆于点B(x2,y2).(1)若x1=35,求x2;(2)过A ,B 作x 轴的垂线,垂足分别为C ,D ,记△AOC 及 △BOD 的面积分别为S1,S2,且S1=43S2,求tan α的值.17.(本小题满分14分)如图,经过村庄A 有两条夹角为60°的公路AB ,AC ,根据规划拟在两条公路之间的区域内建一工厂P ,分别在两条公路边上建两个仓库M 、N (异于村庄A),要求PM =PN =MN =2(单位:千米).如何设计,使得工厂产生的噪声对居民的影响最小(即工厂与村庄的距离最远).(第16题图) P NC PB C DE A (第15题图)18. (本小题满分16分)在平面直角坐标系xOy 中,已知椭圆C ∶x2a2+y2b2=1(a >b >0)的左、右焦点分别为F1,F2,焦距为2,一条准线方程为x =2.P 为椭圆C 上一点,直线PF1交椭圆C 于另一点Q . (1)求椭圆C 的方程;(2)若点P 的坐标为(0,b),求过P ,Q ,F2三点的圆的方程; (3)若F1P →=λQF1→,且λ∈[12,2],求OP →·OQ →的最大值.19.(本小题满分16分)已知函数f(x)=ax +bxex ,a ,b ∈R ,且a >0.(1)若a =2,b =1,求函数f(x)的极值; (2)设g(x)=a(x -1)ex -f(x).① 当a =1时,对任意x ∈(0,+∞),都有g(x)≥1成立,求b 的最大值;② 设g′(x)为g(x)的导函数.若存在x >1,使g(x)+g′(x)=0成立,求ba 的取值范围.20.(本小题满分16分)已知数列{an}的各项都为正数,且对任意n ∈N*,a2n -1,a2n ,a2n +1成等差数列, a2n ,a2n +1,a2n +2成等比数列. (1)若a2=1,a5=3,求a1的值;(2)设a1<a2,求证:对任意n ∈N*,且n ≥2,都有an +1an <a2a1.南京市2014届高三年级第二次模拟考试数学附加题 2014.03 注意事项:1.附加题供选修物理的考生使用.2.本试卷共40分,考试时间30分钟.3.答题前,考生务必将自己的姓名、学校、班级、学号写在答题纸的密封线内.试题的答案写在答题纸上对应题目的答案空格内.考试结束后,交回答题纸. 21.【选做题】在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共计20分.请在答卷卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤. A .选修4—1:几何证明选讲如图,△ABC 为圆的内接三角形,AB =AC ,BD 为圆的弦,且BD ∥AC .过点A 作圆的切线与 DB 的延长线交于点E ,AD 与BC 交于点F . (1)求证:四边形ACBE 为平行四边形;(2)若AE =6,BD =5,求线段CF 的长.B .选修4—2:矩阵与变换已知矩阵A =⎣⎡⎦⎤1 a -1 b 的一个特征值为2,其对应的一个特征向量为α=⎣⎡⎦⎤21. (1)求矩阵A ;(2)若A ⎣⎡⎦⎤x y =⎣⎡⎦⎤ab ,求x ,y 的值.C .选修4—4:坐标系与参数方程在极坐标系中,求曲线ρ=2cosθ关于直线θ=π4(ρ∈R)对称的曲线的极坐标方程.D .选修4—5:不等式选讲已知x ,y ∈R ,且|x +y|≤16,|x -y|≤14,求证:|x +5y|≤1.【必做题】第22题、第23题,每题10分,共计20分.请在答卷卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)某中学有4位学生申请A ,B ,C 三所大学的自主招生.若每位学生只能申请其中一所大学,且申请其中任何一所大学是等可能的.(1)求恰有2人申请A 大学的概率;(2)求被申请大学的个数X 的概率分布列与数学期望E(X). 23.(本小题满分10分)设f(n)是定义在N*上的增函数,f(4)=5,且满足:①任意n ∈N*,f(n)∈Z ;②任意m ,n ∈N*,有f(m)f(n)=f(mn)+f(m +n -1).A EBC F D第21题A 图(1)求f(1),f(2),f(3)的值; (2)求f(n)的表达式.南京市2014届高三年级第二次模拟考试 数学参考答案 说明:1.本解答给出的解法供参考.如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,填空题不给中间分数.一、填空题:本大题共14小题,每小题5分,计70分.1.(0,1] 2.4 3.300 4.59 5.2 6.4 7.18. 5 9.12 10.60° 11.1或723 12.22-2 13.(53,73) 14.[-1,1]二、解答题:15.证:(1)设AC ∩BD =O ,连结OE . 因为ABCD 为矩形,所以O 是AC 的中点.因为E 是PC 中点,所以OE ∥AP . …………………………………………4分 因为AP /⊂平面BDE ,OE ⊂平面BDE ,所以AP ∥平面BDE . …………………………………………6分 (2)因为平面PAB ⊥平面ABCD ,BC ⊥AB ,平面PAB ∩平面ABCD =AB ,所以BC ⊥平面PAB . …………………………………………8分 因为AP ⊂平面PAB ,所以BC ⊥PA .因为PB ⊥PA ,BC ∩PB =B ,BC ,PB ⊂平面PBC ,所以PA ⊥平面PBC . …………………………………………12分 因为BE ⊂平面PBC ,所以PA ⊥BE .因为BP =PC ,且E 为PC 中点,所以BE ⊥PC . 因为PA ∩PC =P ,PA ,PC ⊂平面PAC ,所以BE ⊥平面PAC . …………………………………………14分16.解:(1)因为x1=35,y1>0,所以y1=1-x 21=45.所以sin α=45,cos α=35. …………………………………………2分所以x2=cos(α+π4)=cos αcos π4-sin αsin π4=-210. …………………………………………6分(2)S1=12sin αcos α=-14sin2α.因为α∈(π4,π2),所以α+π4∈(π2,3π4).所以S2=-12sin (α+π4)cos (α+π4)=-14sin(2α+π2)=-14cos2α.…………………………………………8分因为S1=43S2,所以sin2α=-43cos2α,即tan2α=-43. (10)分所以2tanα1-tan2α=-43,解得tanα=2或tan α=-12.因为α∈(π4,π2),所以t anα=2. …………………………………………14分17.解法一:设∠AMN =θ,在△AMN 中,MN sin60°=AMsin(120°-θ).因为MN =2,所以AM =433sin(120°-θ) . ………………………………………2分在△APM 中,cos ∠AMP =cos(60°+θ). …………………………………………6分 AP2=AM2+MP2-2 AM·MP·cos ∠AMP =163sin2(120°-θ)+4-2×2×433 sin(120°-θ) cos(60°+θ) ………………………………8分 =163sin2(θ+60°)-1633sin(θ+60°) cos(θ+60°)+4 =83[1-cos (2θ+120°)]-833 sin(2θ+120°)+4 =-83[3sin(2θ+120°)+cos (2θ+120°)]+203=203-163sin(2θ+150°),θ∈(0,120°). …………………………………………12分 当且仅当2θ+150°=270°,即θ=60°时,AP2取得最大值12,即AP 取得最大值23.答:设计∠AMN 为60 时,工厂产生的噪声对居民的影响最小.……………………………………14分 解法二:设AM =x ,AN =y ,∠AMN =α. 在△AMN 中,因为MN =2,∠MAN =60°, 所以MN2=AM2+AN2-2 AM·AN·cos ∠MAN , 即x2+y2-2xycos60°=x2+y2-xy =4. …………………………………………2分 因为MN sin60°=AN sin α,即2sin60°=y sin α,所以sin α=34y ,cosα=x2+4-y22×2×x =x2+(x2-xy)4x =2x -y 4. …………………………………………6分cos ∠AMP =cos(α+60°)=12cos α-32sin α=12·2x -y 4-32·34y =x -2y4.……………………………8分在△AMP 中,AP2=AM2+PM2-2 AM·PM·cos ∠AMP ,即AP2=x2+4-2×2×x×x -2y4=x2+4-x(x -2y)=4+2xy .………………………………………12分因为x2+y2-xy =4,4+xy =x2+y2≥2xy ,即xy ≤4. 所以AP2≤12,即AP ≤23.当且仅当x =y =2时,AP 取得最大值23.答:设计AM =AN =2 km 时,工厂产生的噪声对居民的影响最小.………………………………14分18.(1)解:由题意得⎩⎪⎨⎪⎧2c =2,a2c =2, 解得c =1,a2=2,所以b2=a2-c2=1.所以椭圆的方程为x22+y2=1. …………………………………………2分(2)因为P(0,1),F1(-1,0),所以PF1的方程为x -y +1=0.由⎩⎪⎨⎪⎧x +y +1=0,x22+y2=1, 解得⎩⎨⎧x =0,y =1,或⎩⎨⎧x =-43,y =-13,所以点Q 的坐标为(-43,-13). ……………………4分解法一:因为kPF 1·kPF 2=-1,所以△PQF2为直角三角形. ……………………6分 因为QF2的中点为(-16,-16),QF2=523,所以圆的方程为(x +16)2+(y +16)2=2518. ……………………8分解法二:设过P ,Q ,F2三点的圆为x2+y2+Dx +Ey +F =0,则⎩⎨⎧1+E +F =0,1+D +F =0,179-43D -13E +F =0, 解得⎩⎨⎧D =13,E =13,F =-43.所以圆的方程为x2+y2+13x +13y -43=0. …………………………………………8分(3)设P(x1,y1),Q(x2,y2),则F1P →=(x1+1,y1),QF1→=(-1-x2,-y2).因为F1P →=λQF1→,所以⎩⎨⎧x1+1=λ(-1-x2),y1=-λy2,即⎩⎨⎧x1=-1-λ-λx2,y1=-λy2,所以⎩⎪⎨⎪⎧(-1-λ-λx2)22+λ2y 22=1,x 222+y 22=1,解得x2=1-3λ2λ. …………………………………………12分所以OP →·OQ →=x1x2+y1y2=x2(-1-λ-λx2)-λy 22=-λ2x22-(1+λ)x2-λ =-λ2(1-3λ2λ)2-(1+λ)·1-3λ2λ-λ=74-58(λ+1λ) . …………………………………………14分因为λ∈[12,2],所以λ+1λ≥2 λ·1λ=2,当且仅当λ=1λ,即λ=1时,取等号.所以OP →·OQ →≤12,即OP →·OQ →最大值为12. …………………………………………16分19.解:(1)当a =2,b =1时,f (x)=(2+1x)ex ,定义域为(-∞,0)∪(0,+∞).所以f ′(x)=(x +1)(2x -1)x2ex . …………………………………………2分令f ′(x)=0,得x1=-1,x2=12,列表由表知f (x)的极大值是f (-1)=e -1,f (x)的极小值是f (12)=4e .……………………………………4分(2)① 因为g (x)=(ax -a)ex -f (x)=(ax -bx -2a)ex ,当a =1时,g (x)=(x -bx-2)ex .因为g (x)≥1在x ∈(0,+∞)上恒成立,所以b≤x2-2x -xex 在x ∈(0,+∞)上恒成立. …………………………………………8分记h(x)=x2-2x -xex (x >0),则h ′(x)=(x -1)(2ex +1)ex.当0<x <1时,h ′(x)<0,h(x)在(0,1)上是减函数;当x >1时,h ′(x)>0,h(x)在(1,+∞)上是增函数. 所以h(x)min =h(1)=-1-e -1.所以b 的最大值为-1-e -1. …………………………………………10分 ② 因为g (x)=(ax -b x -2a)ex ,所以g ′(x)=(b x2+ax -bx -a)ex .由g (x)+g ′(x)=0,得(ax -b x -2a)ex +(b x2+ax -bx-a)ex =0,整理得2ax3-3ax2-2bx +b =0.存在x >1,使g (x)+g ′(x)=0成立,等价于存在x >1,2ax3-3ax2-2bx +b =0成立. …………………………………………12分 因为a >0,所以b a =2x3-3x22x -1.设u(x)=2x3-3x22x -1(x >1),则u ′(x)=8x[(x -34)2+316](2x -1)2.因为x >1,u ′(x)>0恒成立,所以u(x)在(1,+∞)是增函数,所以u(x)>u(1)=-1,所以b a >-1,即ba 的取值范围为(-1,+∞). …………………………………………16分20.解:(1)因为a3,a4,a5成等差数列,设公差为d ,则a3=3-2d ,a4=3-d .因为a2,a3,a4成等比数列,所以a2=a 23a4=(3-2d)23-d . …………………………………………3分因为a2=1,所以(3-2d)2 3-d =1,解得d =2,或d =34.因为an >0,所以d =34.因为a1,a2,a3成等差数列,所以a1=2a2-a3=2-(3-2d)=12.…………………………………5分(2)证法一:因为a2n -1,a2n ,a2n +1成等差数列,a2n ,a2n +1,a2n +2成等比数列, 所以2a2n =a2n -1+a2n +1,① a 2 2n +1=a2na2n +2.② 所以a 2 2n -1=a2n -2a2n ,n ≥2.③所以a2n -2a2n +a2na2n +2=2a2n .因为an >0,所以a2n -2 +a2n +2=2a2n . …………………………………………7分 即数列{a2n }是等差数列.所以a2n =a2 +(n -1)(a4-a2).由a1,a2及a2n -1,a2n ,a2n +1是等差数列,a2n ,a2n +1,a2n +2是等比数列,可得a4=(2a2-a1)2a2.所以a2n =a2 +(n -1)(a4-a2)=(a2-a1)n +a1a2.所以a2n =[(a2-a1)n +a1]2a2.所以a2n +2=[(a2-a1)(n +1)+a1]2a2. (10)分从而a2n +1=a2na2n +2=[(a2-a1)n +a1][(a2-a1)(n +1)+a1]a2.所以a2n -1=[(a2-a1)(n -1)+a1][(a2-a1)n +a1]a2.①当n =2m ,m ∈N*时,an +1an -a2a1=[(a2-a1)m +a1][(a2-a1)(m +1)+a1]a2[(a2-a1)m +a1]2a2-a2a1=(a2-a1)(m +1)+a1(a2-a1)m +a1-a2a1=-m(a1-a2)2a1[(a2-a1)m +a1]<0. …………………………………………14分②当n =2m -1,m ∈N*,m ≥2时,an +1an -a2a1=[(a2-a1)m +a1]2a2[(a2-a1)(m -1)+a1][(a2-a1)m +a1]a2-a2a1=(a2-a1)m +a1(a2-a1)(m -1)+a1-a2a1=-(m -1)(a1-a2)2a1[(a2-a1)(m -1)+a1]<0.综上,对一切n ∈N*,n ≥2,有an +1an <a2a1. …………………………………………16分证法二:①若n 为奇数且n ≥3时,则an ,an +1,an +2成等差数列.因为an +2an +1-an +1an =an +2an -a2n +1an +1an =(2an +1-an)an -a2n +1an +1an =-(an +1-an)2an +1an ≤0,所以an +2an +1≤an +1an .②若n 为偶数且n ≥2时,则an ,an +1,an +2成等比数列,所以an +2an +1=an +1an .由①②可知,对任意n ≥2,n ∈N*,an +2an +1≤an +1an ≤…≤a3a2.又因为a3a2-a2a1=2a2-a1a2-a2a1=2a2a1-a12-a22a2a1=-(a1-a2)2a2a1,因为a1<a2,所以-(a1-a2)2a2a1<0,即a3a2<a2a1.综上,an +1an <a2a1.南京市2014届高三年级第二次模拟考试数学附加题参考答案及评分标准 2014.03说明:1.本解答给出的解法供参考.如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,填空题不给中间分数.21.【选做题】在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共计20分.请在答卷纸指定区域内作答.解答应写出文字说明、证明过程或演算步骤.A .选修4—1:几何证明选讲解:(1)因为AE 与圆相切于点A ,所以∠BAE =∠ACB .因为AB =AC ,所以∠ABC =∠ACB .所以∠ABC =∠BAE .所以AE ∥BC .因为BD ∥AC ,所以四边形ACBE 为平行四边形.…………………………………4分(2)因为AE 与圆相切于点A ,所以AE2=EB·(EB +BD),即62=EB·(EB +5),解得BE =4. 根据(1)有AC =BE =4,BC =AE =6.设CF =x ,由BD ∥AC ,得AC BD =CF BF ,即45=x 6-x ,解得x =83,即CF =83.………………………10分 B .选修4—2:矩阵与变换解:(1)由题意,得⎣⎡⎦⎤1 a -1 b ⎣⎡⎦⎤21=2⎣⎡⎦⎤21,即⎩⎨⎧2+a =4,-2+b =2,解得a =2,b =4.所以A =⎣⎡⎦⎤1 2-1 4. ………………………………………5分 (2)解法一:A ⎣⎡⎦⎤x y =⎣⎡⎦⎤a b ,即⎣⎡⎦⎤1 2-1 4 ⎣⎡⎦⎤x y =⎣⎡⎦⎤24, 所以⎩⎨⎧x +2y =2,-x +4y =4,解得⎩⎨⎧x =0,y =1.………………………………………10分 解法二:因为A =⎣⎡⎦⎤1 2-1 4,所以A -1=⎣⎢⎡⎦⎥⎤23 -13 16 16. ………………………………………7分 因为A ⎣⎡⎦⎤x y =⎣⎡⎦⎤a b ,所以⎣⎡⎦⎤x y =A -1⎣⎡⎦⎤a b =⎣⎢⎡⎦⎥⎤23 -13 16 16 ⎣⎡⎦⎤24=⎣⎡⎦⎤01. 所以⎩⎨⎧x =0,y =1. ………………………………………10分 C .选修4—4:坐标系与参数方程解法一:以极点为坐标原点,极轴为x 轴建立直角坐标系,则曲线ρ=2cosθ的直角坐标方程为 (x -1)2+y2=1,且圆心C 为(1,0).………………………4分直线θ=π4的直角坐标方程为y =x , 因为圆心C(1,0)关于y =x 的对称点为(0,1),所以圆心C 关于y =x 的对称曲线为x2+(y -1)2=1. ………………………………………8分所以曲线ρ=2cosθ关于直线θ=π4(ρR)对称的曲线的极坐标方程为ρ=2sinθ.…………………10分 解法二:设曲线ρ=2cosθ上任意一点为(ρ′,θ′),其关于直线θ=π4对称点为(ρ,θ), 则⎩⎪⎨⎪⎧ρ′=ρ,θ′=2k π+π2-θ. ………………………………………6分 将(ρ′,θ′)代入ρ=2cosθ,得ρ=2cos(π2-θ),即ρ=2sinθ. 所以曲线ρ=2cosθ关于直线θ=π4(ρ∈R)对称的曲线的极坐标方程为ρ=2sinθ.…………………10分 D .选修4—5:不等式选讲证: 因为|x +5y|=|3(x +y)-2(x -y)|. ………………………………………5分 由绝对值不等式性质,得|x +5y|=|3(x +y)-2(x -y)|≤|3(x +y)|+|2(x -y)|=3|x +y|+2|x -y|≤3×16+2×14=1. 即|x +5y|≤1. ………………………………………10分22.(本小题满分10分)解(1)记“恰有2人申请A 大学”为事件A ,P(A)=C42×2234=2481=827. 答:恰有2人申请A 大学的概率为827. ………………………………………4分 (2)X 的所有可能值为1,2,3.P(X =1)=334=127, P(X =2)=C43×A32+3×A3234=4281=1427, P(X =3)=C42×A3334=3681=49. X所以X 的数学期望E(X)=1×127+2×1427+3×49=6527. ………………………………………10分 23.解:(1)因为f(1)f(4)=f(4)+f(4),所以5 f(1)=10,则f(1)=2.……………………………………1分 因为f(n)是单调增函数,所以2=f(1)<f(2)<f(3)<f(4)=5.因为f(n)∈Z ,所以f(2)=3,f(3)=4. ………………………………………3分(2)解:由(1)可猜想f (n)=n+1.证明:因为f (n)单调递增,所以f (n+1)>f (n),又f(n)∈Z ,所以f (n+1)≥f (n)+1.首先证明:f (n)≥n+1.因为f (1)=2,所以n =1时,命题成立.假设n=k(k≥1)时命题成立,即f(k)≥k+1.则f(k+1)≥f (k)+1≥k+2,即n=k+1时,命题也成立.综上,f (n)≥n+1.………………………………………5分由已知可得f (2)f (n)=f (2n)+f (n+1),而f(2)=3,f (2n)≥2n+1,所以3 f (n)≥f (n+1)+2n+1,即f(n+1)≤3 f (n)-2n-1.下面证明:f (n)=n+1.因为f (1)=2,所以n=1时,命题成立.假设n=k(k≥1)时命题成立,即f(k)=k+1,则f(k+1)≤3f (k)-2k-1=3(k+1)-2k-1=k+2,又f(k+1)≥k+2,所以f(k+1)=k+2.即n=k+1时,命题也成立.所以f (n)=n+1 ………………………………………10分。
2014年江苏省无锡、苏州、常州、镇江四市联考高考数学二模试卷

2014年江苏省无锡、苏州、常州、镇江四市联考高考数学二模试卷学校:___________姓名:___________班级:___________考号:___________一、填空题(本大题共14小题,共70.0分)1.函数y=的定义域为A,函数y=lg(2-x)的定义域为B,则A∩B= ______ .【答案】[1,2)【解析】解:由函数y=,得x-1≥0,即x≥1,∴A=[1,+∞);由函数y=lg(2-x),得到2-x>0,即x<2,∴B=(-∞,2),∴A∩B=[1,2).故答案为:[1,2)分别求出两函数的定义域,确定出A与B,求出两集合的交集即可.此题考查了交集及其运算,函数的定义域及其求法,熟练掌握交集的定义是解本题的关键.2.已知复数z=2-i(i是虚数单位),则|z|= ______ .【答案】【解析】解:∵复数z=2-i,∴|z|===.故答案为:.根据复数模长的定义直接进行计算即可.本题主要考查复数的长度的计算,比较基础.3.在平面直角坐标系x O y中,已知双曲线-=1的一个焦点为(5,0),则实数m= ______ .【答案】16【解析】解:∵双曲线-=1的一个焦点为(5,0),∴9+m=25,∴m=16,故答案为:16.利用双曲线-=1的一个焦点为(5,0),可得9+m=25,即可求出m的值.本题考查双曲线的简单性质,考查学生的计算能力,比较基础.4.样本容量为100的频率分布直方图如图所示,由此估计样本数据落在[6,10]内的频数为______ .【答案】32【解析】解:由频率分布直方图得样本数据落在[6,10]内的频率为0.08×4=0.32∴由频数=频率×样本容量得:样本数据落在[6,10]内的频数为0.32×100=32故答案为:32由频率分布直方图得样本数据落在[6,10]内的频率,由频数=频率×样本容量得样本数据落在[6,10]内的频数.本题考查频率分布直方图,关键是直方图中的纵坐标是频率÷组距;属于一道基础题.5.“φ=”是“函数y=sin(x+φ)的图象关于y轴对称”的______ 条件.(在“充分必要”、“充分不必要”、“必要不充分”、“既不充分也不必要”中选一个合适的填空)【答案】充分不必要【解析】解:若函数y=sin(x+φ)的图象关于y轴对称,则φ=+kπ,k∈Z,∴必要性不成立,若φ=,则函数y=sin(x+φ)=cosx的图象关于y轴对称,∴充分性成立,故“φ=”是“函数y=sin(x+φ)的图象关于y轴对称”的充分不必要条件,故答案为:充分不必要根据函数奇偶性的定义和性质,结合充分条件和必要条件的定义即可得到结论.本题主要考查充分条件和必要条件的判断,利用三角函数的图象和性质是解决本题的关键.6.已知S n为等差数列{a n}的前n项和,a1=-1,S3=6,则S6= ______ .【答案】39【解析】解:在等差数列{a n}中,设公差为d,由a1=-1,S3=6,得:3a1+3d=6,即3×(-1)+3d=6,解得d=3.∴=6×(-1)+3×5×3=39.故答案为:39.由已知条件求出等差数列的公差,然后代入等差数列的求和公式得答案.本题考查等差数列的通项公式,考查等差数列的前n项和,是基础的计算题.7.函数y=(x≥e)的值域是______ .【答案】(0,1]【解析】解:∵对数函数y=lnx在定义域上是增函数,∴y=在(1,+∞)上是减函数,且x≥e时,lnx≥1,∴0<≤1;∴函数y的值域是(0,1].故答案为:(0,1].根据函数y=lnx的单调性,判定y=在x≥e时的单调性,从而求出函数y的值域.本题考查了求函数的值域问题,解题时应根据基本初等函数的单调性,判定所求函数的单调性,从而求出值域来,是基础题.8.执行如图的程序图,那么输出n的值为______ .【答案】6【解析】解:由程序框图知:第一次循环n=1+1=2,S=1;第二次循环n=2+1=3,S=2×1+1=3;第三次循环n=3+1=4,S=2×3+1=7;第四次循环n=4+1=5,S=2×7+1=15;第五次循环n=5+1=6,S=2×15+1=31.满足条件S>20,跳出循环体,输出n=6.故答案为:6.根据框图的流程依次计算程序运行的结果,直到满足条件S>20,跳出循环体,确定输出的n值.本题考查了循环结构的程序框图,根据框图的流程依次计算程序运行的结果是解答此类问题的常用方法.9.在1,2,3,4四个数中随机地抽取一个数记为a,再在剩余的三个数中随机地抽取一个数记为b,则“是整数”的概率为______ .【答案】【解析】解:从1,2,3,4四个数中随机地抽取一个数记为a,再在剩余的三个数中随机地抽取一个数记为b,共有=12种不同情况,而且这些情况都是等可能性发生的,其中“是整数”的情况有:(2,1),(3,1),(4,1),(4,2)共四种,故“是整数”的概率P==,故答案为:分别计算从1,2,3,4四个数中随机地抽取一个数记为a,再在剩余的三个数中随机地抽取一个数记为b的所有情况,及满足“是整数”的情况,进而利用古典概型公式,可得答案.此题考查了古典概型概率公式,掌握古典概型概率公式:概率=所求情况数与总情况数之比是解题的关键.10.已知△ABC为等腰直角三角形,斜边BC上的中线AD=2,将△ABC沿AD折成60°的二面角,连结BC,则三棱锥C-ABD的体积为______ .【答案】【解析】解:∵AD⊥BD,AD⊥DC,BD∩DC=C,∴AD⊥平面BCD,∵△BCD是正三角形,且边长为2,∴S=×2×=∴三棱锥C-ABD的体积V=×AD×S△BCD=×2×=∴三棱锥c-ABD的体积为:.故答案为:.首先,根据直角三角形的性质,得到AD⊥平面BCD,然后,结合三棱锥的体积公式进行求解即可.本题综合考查了等腰三角形中的边角关系、线面垂直的判定方法、三棱锥的体积公式等知识,属于中档题.11.直线y=kx与曲线y=2e x相切,则实数k= ______ .【答案】2e【解析】解:设切点为(x0,y0),则y0=2e x0,∵y′=(2e x)′=2e x,∴切线斜率k=2e x0,又点(x0,y0)在直线上,代入方程得y0=kx0,即2e x0=2e x0x0,解得x0=1,∴k=2e.故答案为:2e.设切点为(x0,y0),求出切线斜率,利用切点在直线上,代入方程,即可得到结论.本题考查切线方程,考查导数的几何意义,考查学生的计算能力,属于中档题12.已知平面内的四点O,A,B,C满足•=2,•=3,则•= ______ .【答案】-5【解析】解;∵•=•()=-=2,①•==-=3,②则①+②得,,∴=5∴=5,∴故答案为:-5.利用向量的加减运算,计算即可..本题主要考查了向量的加减运算的几何意义,属于基础题.13.已知奇函数f(x)是R上的单调函数,若函数y=f(x2)+f(k-x)只有一个零点,则实数k的值是______ .【答案】【解析】解:∵函数y=f(x2)+f(k-x)只有一个零点,∴只有一个x的值,使f(x2)+f(k-x)=0,∵函数f(x)是奇函数,∴只有一个x的值,使f(x2)=f(x-k),又函数f(x)是R上的单调函数,∴只有一个x的值,使x2=x-k,即方程x2-x+k=0有且只有一个解,∴△=1-4k=0,解得:k=.故答案为:.由函数y=f(x2)+f(k-x)只有一个零点⇒f(x2)+f(k-x)=0只有一解⇔f(x2)=f(x-k)只有一解⇒x2=x-k有唯一解⇒△=1-4k=0,问题得解.本题考察了函数的零点,函数的单调性,函数的奇偶性,只要基础牢固,问题容易解决.14.已知x,y∈R,满足2≤y≤4-x,x≥1,则的最大值为______ .【答案】【解析】解:由x,y满足2≤y≤4-x,x≥1,画出可行域如图所示.则A(2,2),B(1,3).==,令k=,则k表示可行域内的任意点Q(x,y)与点P(-1,1)的斜率.而k PA=,,∴,令f(k)=k+,则′≤0.∴函数f(k)单调递减,因此当k=时,f(k)取得最大值,.故答案为:.把原式化简可得,利用可行域和斜率计算公式可得的取值范围,再利用导数即可得出最大值.本题综合考查了线性规划的可行域和斜率计算公式、利用导数求函数最大值等基础知识与基本技能方法,考查了分析问题和解决问题的能力,属于难题.二、解答题(本大题共7小题,共100.0分)15.在△ABC中,设角A,B,C的对边分别为a,b,c,满足A=B+30°.(1)若c=1,b=sin B,求B.(2)若a2+c2-ac=b2,求sin A的值.【答案】解:(1)∵=,∴sin C=•sin B=1,∵0<C<π,∴C=,则A+B=,∵A=B+30°,∴B=.(2)∵a2+c2-ac=b2,∴cos B==,∵0<B<π,∴sin B==,∴sin A=sin(B+)=sin B+cos B=×+×=.【解析】(1)利用正弦定理和已知条件求得sin C的值,进而求得C,然后利用内角和和已知A,B的关系求得B.(2)利用余弦定理与已知等式求得cos B,进而求得sin B,利用两角和公式求得sin(B+)的值,进而求得sin A.本题主要考查了正弦定理和余弦定理的应用.考查了学生正弦定理和余弦定理公式的熟练运用.16.如图,正四棱锥P-ABCD的高为PO,PO=AB=2.E,F分别是棱PB,CD的中点,Q是棱PC上的点.(1)求证:EF∥平面PAD;(2)若PC⊥平面QDB,求PQ.【答案】(1)证明:取PA中点M,连结ME,MD,由条件,得ME∥AB,DF∥AB,∴ME∥DF,且ME=AB,DF=AB,∴ME=DF,∴四边形EFDM是平行四边形.则EF∥MD,由MD⊂平面PAD,EF不属于面PAD,∴EF∥平面PAD.(2)连结OQ,∵PC⊥平面QDB,OQ⊂平面QDB,∴PC⊥OQ,∵PO⊥平面ABCD,OC⊂平面ABCD,∴PO⊥OC,∵PO=2,∴PC==则PQ=PO•cos∠CPO=2•=【解析】(1)取PA中点M,连结ME,MD,根据中位线的性质知ME∥AB,DF∥AB,进而推断出ME∥DF,利用ME=AB,DF=AB,推断出ME=DF,进而可证明出四边形EFDM是平行四边形,知EF∥MD,最后由线面的判定定理证明出EF∥平面PAD.(2)连结OQ,利用线面垂直性质推断出分别推断出PC⊥OQ,PO⊥OC,由正方形的边长得到OC,然后利用勾股定理求得PC,最后求得PQ.本题主要考查了线面平行和线面垂直的性质和判定定理的运用.考查了学生空间观察能力和基础的综合运用.17.在平面直角坐标系x O y中,已知椭圆+y2=1的左、右焦点分别为F′与F,圆F:+y2=5.(1)设M为圆F上一点,满足′•=1,求点M的坐标;(2)若P为椭圆上任意一点,以P为圆心,OP为半径的圆P与圆F的公共弦为QT,证明:点F到直线QT的距离FH为定值.【答案】解:(1)∵椭圆+y2=1的左、右焦点分别为F′与F,∴′,,,,设M(m,n),由′,得(m+)(m-)+n2=1,∴m2+n2=4,①又,②由①,②得m=,n=,∴M(,)或(,),(2)设P(x0,y0),M圆P的方程为(x-x0)2+(y-y0)2=,即,③又圆F的方程为,④由③④得直线QT的方程为,∴FH==,∵P(x0,y0)在椭圆上,∴,即,∴FH===2.【解析】(1)由椭圆性质求出′,,,,设M(m,n),由′,得m2+n2=4,再由,能求出点M的坐标.(2)设P(x0,y0),圆P的方程为,圆F的方程为,由此求出直线QT的方程为,由此能证明点F到直线QT的距离FH为定值.本题考查点的坐标的求法,考查点到直线的距离为定值的证明,解题时要认真审题,注意函数与方程思想的合理运用.18.如图,O为总信号源点,A,B,C是三个居民区,已知A,B都在O的正东方向上,OA=10km,OB=20km,C在O的北偏西45°方向上,CO=5km.(1)求居民区A与C的距离;(2)现要经过点O铺设一条总光缆直线EF(E在直线OA的上方),并从A,B,C分别铺设三条最短分光缆连接到总光缆EF.假设铺设每条分光缆的费用与其长度的平方成正比,比例系数为m(m为常数).设∠AOE=θ(0≤θ<π),铺设三条分光缆的总费用为w(元).①求w关于θ的函数表达式;②求w的最小值及此时tanθ的值.【答案】解:(1)以点O位坐标原点,OA为x轴建立直角坐标系,则A(10,0),B(20,0),C(-5,5),∴AC==5;(2)①当直线l的斜率存在时,设l:y=kx,k=tanθ,则w=m[++]=m•;直线l的斜率不存在时,w=m(100+400+25)=525m,<,综上,w=②直线l的斜率不存在时,w=m(100+400+25)=525m;当直线l的斜率存在时,w=m•令t=k-10,则t=0时,w=525m;t≠0时,w=525m+m•∵t+≤-2,或t+≥2,∴w的最小值为525m+m•=(275-25)m,此时,t=-,tanθ=k=10-.【解析】(1)以点O位坐标原点,OA为x轴建立直角坐标系,求出A,C的坐标,即可求居民区A与C的距离;(2)①分类讨论,求出铺设三条分光缆的总费用,即可求w关于θ的函数表达式;②换元,利用基本不等式,可求w的最小值及此时tanθ的值.本题考查利用数学知识解决实际问题,考查函数模型的建立,属于中档题.19.若存在实数x0与正数a,使x0+a,x0-a均在函数f(x)的定义域内,且f(x0+a)=f(x0-a)成立,则称“函数f(x)在x=x0处存在长度为a的对称点”.(1)设f(x)=x3-3x2+2x-1,问是否存在正数a,使“函数f(x)在x=1处存在长度为a的对称点”?试说明理由.(2)设g(x)=x+(x>0),若对于任意x0∈(3,4),总存在正数a,使得“函数g (x)在x=x0处存在长度为a的对称点”,求b的取值范围.【答案】解:(1)∵f(1+a)=f(1-a),∴(1+a)3-3(1+a)2+2(1+a)-1=(1-a)3-3(1-a)2+2(1-a)-1,∴a(a+1)(a-1)=0,∵a>0,∴a=1;(2)令g(x)=c,则x+=c,即x2-cx+b=0(*).由题意,方程(*)必须有两正根,且两根的算术平均数为x0,∴c>0,b>0,c2-4b>0,=x0,∴0<b<x02对一切意x0∈(3,4)均成立,∴b的取值范围为(0,9].【解析】(1)由f(1+a)=f(1-a)得(1+a)3-3(1+a)2+2(1+a)-1=(1-a)3-3(1-a)2+2(1-a)-1,化简即可求出正数a;(2)令g(x)=c,则x+=c,即x2-cx+b=0必须有两正根,且两根的算术平均数为x0,即可求b的取值范围.本题考查新定义,考查函数的性质,考查学生的计算能力,正确理解新定义是关键.20.已知常数λ≥0,设各项均为正数的数列{a n}的前n项和为S n,满足:a1=1,S n+1=S n+(λ•3n+1)a n+1(n∈N*).(1)若λ=0,求数列{a n}的通项公式;(2)若a n+1<a n对一切n∈N*恒成立,求实数λ的取值范围.【答案】解:(1)λ=0时,∴∵a n>0,S n>0∴a n+1=a n,∵a1=1,∴a n=1(2)∵S n+1=S n+(λ•3n+1)a n+1(n∈N*).∴,则,,∴.相加得.则,上式对n=1也成立.∴,,相减得即∵λ≥0,∴>,>∵a n+1<a n对一切n∈N*恒成立,∴<对一切n∈N*恒成立,即>对一切n∈N*恒成立,记则=当n=1时,b n-b n+1=0当n≥2时b n-b n+1>0∴当n=1时,有最大值∴>【解析】(1)λ=0时,由已知写出作差求出数列{a n}的通项公式;(2)由已知求出,利用累加法求出,仿写作差求出λ表达式,构造数列求出其最大值,得到λ的范围.本题考查数列求通项的方法;考查不等式恒成立转化为求最值,构造新数列的方法,属于一道综合题.21.如图,△ABC中,∠ACB=90°,以边AC上的点O为圆心,OA为半径作圆,与边AB,AC分别交于点E,F,EC与⊙O交于点D,连结AD并延长交BC于P,已知AE=EB=4,AD=5,求AP的长.【答案】解:连接EF,则∠AEF=90°,∵∠ACB=90°,∴B,C,F,E四点共圆,∴∠AFE=∠B,∵∠ADE=∠AFE,∴∠ADE=∠B,∴B,P,D,E四点共圆,∴AE•AB=AD•AP∵AE=EB=4,AD=5,∴AP=.【解析】证明B,C,F,E四点共圆、B,P,D,E四点共圆,可得AE•AB=AD•AP,即可求AP 的长.本题考查四点共圆,考查切割线定理的运用,证明B,P,D,E四点共圆是关键.三、填空题(本大题共3小题,共20.0分)22.已知点M(3,-1)绕原点按逆时针旋转90°后,且在矩阵A=对应的变换作用下,得到点N(3,5),求a,b的值.【答案】解:绕原点按逆时针旋转90°的变换矩阵为,所以=,由=,所以,所以a=3,b=1.【解析】求出绕原点按逆时针旋转90°的变换矩阵,再利用矩阵的乘法,即可得出结论.本题考查几种特殊的矩阵变换,考查矩阵的乘法,比较基础.23.如图,在极坐标系中,设极径为ρ(ρ>0),极角为θ(0≤θ<2π),⊙A的极坐标方程为ρ=2cosθ,点C在极轴的上方,∠AOC=.△OPQ是以OQ为斜边的等腰直角三角形,若C为OP的中点,求点Q的极坐标.【答案】解:根据题意,得:点C的极角为,将点C代入极坐标方程ρ=2cosθ中,得ρ=2×=,∴点C的极坐标为(,);∴点P的极坐标为(2,);∴点Q的极角为-+2π=,极径为ρ=×2=2;∴点Q的极坐标为(2,).【解析】由点C的极角为,求出点C的极坐标,即得点P的极坐标;再求出点Q的极角与极径,从而得点Q的极坐标.本题考查了极坐标的应用问题,解题时应结合图形,求出极坐标系中点的极角与极径,从而得极坐标,是基础题.24.已知不等式|a-2|≤x2+2y2+3z2对满足x+y+z=1的一切实数x,y,z都成立,求实数a的取值范围.【答案】解:因为已知x,y,z是实数,且x+y+z=1,根据柯西不等式(a2+b2+c2)(x2+y2+z2)≥(ax+by+cz)2故有(x2+2y2+3z2)(1++)≥(x+y+z)2故x2+2y2+3z2≥,当且仅当x=,y=,z=时取等号,∵不等式|a-2|≤x2+2y2+3z2对满足x+y+z=1的一切实数x,y,z都成立,∴|a-2|≤,∴≤a≤.【解析】不等式|a-2|≤x2+2y2+3z2恒成立,只要|a-2||≤(x2+2y2+3z2)min,利用柯西不等式求出x2+2y2+3z2的最小值,再解关于a的绝对值不等式即可.本题主要考查了柯西不等式求解最值的应用及函数的恒成立与最值的相互转化关系的应用.四、解答题(本大题共2小题,共20.0分)25.如图,在空间直角坐标系A-xyz中,已知斜四棱柱ABCD-A1B1C1D1的底面是边长为3的正方形,点B,D,B1分别在x,y,z轴上,B1A=3,P是侧棱B1B上的一点,BP=2PB1.(1)写出点C1,P,D1的坐标;(2)设直线C1E⊥平面D1PC,E在平面ABCD内,求点E的坐标.【答案】解:(1)由题意,点C1,P,D1的坐标分别为(0,3,3),(1,0,2),(-3,3,3);(2)∵C(3,3,0),∴=(-2,-3,2),=(-6,0,3).设E(m,n,0),则=(m,n-3,-3),∵C1E⊥平面D1PC,∴,∴m=-,n=2,∴E(-,2,0).【解析】(1)利用建立的坐标系,可以写出点C1,P,D1的坐标;(2)设E(m,n,0),则=(m,n-3,-3),利用直线C1E⊥平面D1PC,即可求点E的坐标.本题考查线面垂直,考查空间中的点的坐标,比较基础.26.如图,圆周上有n个固定点,分别为A1,A2,…,A n(n∈N*,n≥2),在每一个点上分别标上1,2,3中的某一个数字,但相邻的两个数字不相同,记所有的标法总数为a n.(1)写出a2,a3,a4的值;(2)写出a n的表达式,并用数学归纳法证明.【答案】解:(1)计算得:a2=6,a3=6,a4=18.(2)猜想a n=2n+2(-1)n.证明:①当n=2时,a2=6,猜想成立.②假设当n=k时,猜想成立,即a k=2k+2(-1)k.则当n=k+1时,因为A1有3种标法,A2有2种标法,A3有2种标法,…A k有2种标法,若A k+1仅与A k不同则有2标法一种与A1数不相同,符合要求,有A k+1种;一种与A1数相同,不符合要求,但是相当于k个点的标法总数,有A k种,则有:3×2k=a k+1+a k.∴a k+1=-a k+3×2k=-2k-2(-1)k+3×2k=2k+1+2(-1)k+1.即n=k+1时,猜想也成立.由①②可知,猜想成立.【解析】(1)由题意可得,又a1=2,可求得a2,再由a2的值求a3,再由a3的值求出a4的值.(2)猜想,检验n=1时等式成立,假设n=k时命题成立,证明当n=k+1时命题也成立.本题考查数列的递推公式,用数学归纳法证明等式成立.证明当n=k+1时命题也成立,是解题的难点.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省苏锡常镇四市2014届高三5月教学情况调研(二)数学Ⅰ试题命题单位:苏州市教育科学研究院 2014.5一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1. 函数1y x =-的定义域为A ,函数()lg 2y x =-的定义域为B ,则A B = ▲ .2. 设2i z =-(i 是虚数单位),则||z = ▲ .3. 在平面直角坐标系xOy 中,已知双曲线2219x y m-=的一个焦点为(5,0),则实数m = ▲ .4. 样本容量为100的频率分布直方图如右图所示,由此估计样本数据落在[6,10]内的频数为 ▲ . 5. “π2ϕ=”是“函数()sin y x ϕ=+的图象关于y 轴对称”的 ▲ 条件.(在“充分必要”、“充分不必要”、“必要不充分”、 “既不充分也不必要”中选一个合适的填空)6. 已知S n 为等差数列{a n }的前n 项和,a 1 = -1,S 3 = 6,则S 6 = ▲ .7. 函数()1e ln y x x=≥的值域是 ▲ .8. 执行右面的程序图,那么输出n 的值为 ▲ .注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求 1.本试卷共4页,包含填空题(第1题~第14题)、解答题(第15题——第20题).本卷满分160分,考试时间为120分钟.考试结束后请将答题卡交回.2.答题前请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请在答题卡上按照顺序在对应的答题区域内作答在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整笔迹清楚.4.如需作图须用2B 铅笔绘、写清楚线条、符号等须加黑、加粗.5.请保持答题卡卡面清洁不要折叠、破损.一律不准使用胶带纸、修正液、可擦洗的圆珠笔.结束开始n ← 1 S ← 0 n ← n + 1 输出n Y YS > 20S ← 2S + 1N (第8题)(第4题)9. 在1,2,3,4四个数中随机地抽取一个数记为a ,再在剩余的三个数中随机地抽取一个数记为b ,则“ab是整数”的概率为 ▲ . 10.已知△ABC 为等腰直角三角形,斜边BC 上的中线AD = 2,将△ABC 沿AD 折成60°的二面角,连结BC ,则三棱锥C - ABD 的体积为 ▲ .11.直线y = kx 与曲线2e x y =相切,则实数k = ▲ .12.已知平面内的四点O ,A ,B ,C 满足2OA BC ⋅=,3OB CA ⋅=,则OC AB ⋅ = ▲ . 13.已知奇函数()f x 是R 上的单调函数,若函数2()()y f x f k x =+-只有一个零点,则实数k 的值是▲ .14.已知x ,y ∈R ,满足24y x -≤≤,x ≥1,则222221x y x y xy x y ++-+-+-的最大值为 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在△ABC 中,设角A ,B ,C 的对边分别为a ,b ,c ,满足A = B + 30°. (1)若c = 1,sin b B =,求B .(2)若22212a c ac b +-=,求sin A 的值.16.(本小题满分14分)如图,正四棱锥P - ABCD 的高为PO ,PO = AB = 2.E ,F 分别是棱PB ,CD 的中点,Q 是棱PC 上的点.(1)求证:EF ∥平面P AD ; (2)若PC ⊥平面QDB ,求PQ .PAB CDOEFQ(第16题)在平面直角坐标系xOy 中,已知椭圆2214x y +=的左、右焦点分别为F '与F ,圆F :()2235x y -+=.(1)设M 为圆F 上一点,满足1MF'MF ⋅=,求点M 的坐标;(2)若P 为椭圆上任意一点,以P 为圆心,OP 为半径的圆P 与圆F 的公共弦为QT ,证明:点F 到直线QT 的距离FH 为定值.18.(本小题满分16分)如图,O 为总信号源点,A ,B ,C 是三个居民区,已知A ,B 都在O 的正东方向上, OA = 10 km ,OB = 20 km ,C 在O 的北偏西45° 方向上,CO =52km . (1)求居民区A 与C 的距离;(2)现要经过点O 铺设一条总光缆直线EF (E 在直线OA 的上方),并从A ,B ,C 分别铺设三条最短分光缆连接到总光缆EF .假设铺设每条分光缆的费用与其长度的平方成正比,比例系数为m (m 为常数).设∠AOE = θ(0≤θ <π),铺设三条分光缆的总费用为w (元). ① 求w 关于θ的函数表达式;② 求w 的最小值及此时tan θ的值.(第17题)TQPF 'HO yxF(第18题)θF E北OABC若存在实数x 0与正数a ,使0x a +,0x a -均在函数()f x 的定义域内,且()()00f x a f x a +=-成立,则称“函数f (x )在x = x 0处存在长度为a 的对称点”.(1)设32()321f x x x x =-+-,问是否存在正数a ,使“函数f (x )在x = 1处存在长度为a 的对称点”?试说明理由. (2)设()bg x x x=+(x > 0),若对于任意x 0∈(3,4),总存在正数a ,使得“函数()g x 在x = x 0处存在长度为a 的对称点”,求b 的取值范围.20.(本小题满分16分)已知常数λ≥0,设各项均为正数的数列{a n }的前n 项和为S n ,满足:a 1 = 1, ()11131n n n n n na S S a a λ+++=+⋅+(*n ∈N ). (1)若λ = 0,求数列{a n }的通项公式;(2)若112n n a a +<对一切*n ∈N 恒成立,求实数λ的取值范围.江苏省苏锡常镇四市2014届高三5月教学情况调研(二)数学Ⅱ(附加题)命题单位:苏州市教育科学研究院 2014.521.【选做题】在A 、B 、C 、D 四小题中只能选做两题......,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. A .选修4—1:几何证明选讲如图,△ABC 中,∠ACB = 90°,以边AC 上的点O 为圆心,OA 为半径作圆,与边AB ,AC 分别交于点E ,F ,EC 与⊙O 交于点D ,连结AD 并延长交BC 于P ,已知AE = EB = 4,AD = 5,求AP 的长.B .选修4—2:矩阵与变换已知点M (3,-1)绕原点按逆时针旋转90°后,且在 矩阵02a b ⎡⎤=⎢⎥⎣⎦A 对应的变换作用下,得到点N (3,5), 求a ,b 的值.注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求1. 本试卷只有解答题,供理工方向考生使用.本试卷第21题有A 、B 、C 、D 4个小题供选做,每位考生在4个选做题中选答2题.若考生选做了3题或4题,则按选做题中的前2题计分.第22、23题为必答题.每小题10分,共40分.考试时间30分钟.考试结束后,请将答题卡交回.2. 答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3. 请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.4. 如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.5. 请保持答题卡卡面清洁,不要折叠、破损.一律不准使用胶带纸、修正液、可擦洗的圆珠笔.O PF ED CBAC .选修4—4:坐标系与参数方程如图,在极坐标系中,设极径为ρ(0ρ>),极角为θ(02πθ<≤).⊙A 的极坐标方程为2cos ρθ=,点C 在极轴的上方,∠AOC =π6.△OPQ 是以OQ 为斜边的等腰直角三角形,若C 为OP 的中点,求点Q 的极坐标.D .选修4—5:不等式选讲已知不等式222|2|23a x y z -++≤对满足1x y z ++= 的一切实数x ,y ,z 都成立,求实数a 的取值范围.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,在空间直角坐标系A - xyz 中,已知斜四棱柱ABCD - A 1B 1C 1D 1的底面是边长为3的正方形,点B ,D ,B 1分别在x ,y ,z 轴上,B 1A = 3,P 是侧棱B 1B 上的一点,BP = 2PB 1 . (1)写出点C 1,P ,D 1的坐标;(2)设直线C 1E ⊥平面D 1PC ,E 在平面ABCD 内, 求点E 的坐标.23.(本小题满分10分)如图,圆周上有n 个固定点,分别为A 1,A 2,…,A n (n *∈N ,n ≥2),在每一个点上分别标上1,2,3中的某一个数字,但相邻的两个数字不相同,记所有的标法总数为a n . (1)写出a 2,a 3,a 4的值;(2)写出a n 的表达式,并用数学归纳法证明.z yx1111PAB C D DCBA nA A 3A 21A QPxCBAO。