最优化问题
小学奥数 最优化问题 知识点+例题+练习 (分类全面)

拓展.小强给客人沏茶,烧开水需要12分钟,洗茶杯要2分钟,买茶叶要8分钟,放茶叶泡茶要1分钟。为了让客人早点喝上茶,你认为最合理的安排,多少分钟就可以了?
拓展.在早晨起床后的1小时内,小欣要完成以下事情:叠被3分钟,洗脸刷牙8分钟,读外语30分钟,吃早餐10分钟,收碗擦桌5分钟,收听广播30分钟。最少需要多少分钟?
课后作业
1.用一只平底锅烙大饼,锅里只能同时放两个。烙熟大饼的一面需要3分钟,现在要烙3个大饼,最少要用几分钟?
2、小虎早晨要完成这样几件事:烧一壶开水需要10分钟,把开水灌进热水瓶需要2分钟,取奶需要5分钟,整理书包需要4分钟。他完成这几件事最少需要多少分钟?
3、甲、乙、丙三人分别拿着2个、3个、1个热水瓶同时到达开水供应点打热水。热水龙头只有一个,怎样安排他们打水的次序,可以使他们打热水所花的总时间最少?
例3、五(1)班赵明、孙勇、李佳三位同学同时到达学校卫生室,等候校医治病。赵明打针需要5分钟,孙勇包纱布需要3分钟,李佳点眼药水需要1分钟。卫生室只有一位校医,校医如何安排三位同学的治病次序,才能使三位同学留在卫生室的时间总和最短?
拓展.甲、乙、丙三人到商场批发部洽谈业务,甲、乙、丙三人需要的时间分别是10分钟、16分钟和8分钟。怎样安排,使3人所花的时间最少?最少时间是多少?
例1、 用一只平底锅煎饼,每次只能放两个,煎一个展.烤面包时,第一面需要2分钟,第二面只要烤1分钟,即烤一片面包需要3分钟。小丽用来烤面包的架子,一次只能放两片面包,她每天早上吃3片面包,至少要烤多少分钟?
拓展.小华用平底锅烙饼,这只锅同时能放4个大饼,烙一个要用4分钟(每面各需要2分钟)。可小华烙6个大饼只用了6分钟,他是怎样烙的?
数学中的优化问题

数学中的优化问题数学是一门研究数量、结构、变化以及空间等概念的学科,优化问题是数学中一个重要的研究领域。
优化问题涉及到如何在给定的约束条件下,找到使目标函数取得最大或最小值的最优解。
在本文中,我们将探讨数学中的优化问题及其应用。
一、最优化问题的定义最优化问题是指在有限资源和给定约束条件下,寻找某一目标函数的最优解。
最优化问题既可以是求最大值,也可以是求最小值。
目标函数即我们需要优化的量,而约束条件则规定了该问题的限制条件。
二、优化问题的分类优化问题可以分为数学规划问题和凸优化问题。
数学规划问题是指在给定约束条件下,寻找目标函数的最优解,其中约束条件可以是线性或非线性的。
凸优化问题是指在给定的凸约束条件下,寻找凸目标函数的最优解。
三、优化问题的应用优化问题在各个领域都有广泛的应用,例如:1. 经济学:优化问题在经济学中被广泛应用,用于求解最优的资源分配方案,最大化利润或最小化成本等。
2. 运筹学:运筹学是研究如何在给定约束条件下,进行最优决策的学科。
优化问题在运筹学中起到了重要的作用,例如在物流规划、生产调度、交通优化等方面的应用。
3. 机器学习:机器学习中的许多问题可以被看作是优化问题,例如参数的最优选择、模型的最优拟合等。
4. 工程学:在工程学中,优化问题可以用于设计最优的结构、最佳的控制策略等。
5. 生物学:在生物学研究中,优化问题被用于模拟和分析生物系统的行为,例如生态系统的最优稳定性等。
四、优化算法为了解决优化问题,人们开发了许多优化算法。
常用的优化算法包括:1. 梯度下降法:梯度下降法是一种迭代的优化算法,通过沿着目标函数的负梯度方向不断更新参数的值,逐步接近最优解。
2. 共轭梯度法:共轭梯度法是一种迭代的优化算法,常用于求解线性规划问题。
3. 遗传算法:遗传算法模拟自然界中的进化过程,通过遗传操作(交叉、变异等)来不断搜索最优解。
4. 粒子群算法:粒子群算法模拟鸟群中鸟的行为,通过模拟每个个体的位置和速度来搜索最优解。
《最优化问题举例》课件

目录
contents
最优化问题概述线性规划问题举例非线性规划问题举例整数规划问题举例多目标规划问题举例
01
最优化问题概述
总结词
最优化问题是指在一定条件下,选择一个最优方案,使得某个目标函数达到最优值的问题。
详细描述
最优化问题通常涉及到在多个可能的选择中找到最优解,使得目标函数达到最大或最小值。这个目标函数通常代表了问题的成本、效益或性能等方面。
02
线性规划问题举例
总结词
运输问题是最优化问题中的一种,旨在通过合理安排运输方式、路径和数量,使得运输成本最低,满足需求。
详细描述
运输问题通常涉及到多个供应点和需求点,需要考虑如何选择合适的运输方式、确定最佳的运输路径和运输量,以最小化总成本。这需要考虑各种因素,如运输距离、运输速度、运输费用、货物量、需求量等。
详细描述
数学模型
实例
资源分配问题主要涉及如何将有限的资源合理分配给不同的项目或部门,以实现整体效益最大化。
总结词
这类问题需要考虑不同项目或部门的优先级、资源需求、效益评估等多个因素,通过优化资源配置,提高整体效益。
详细描述
线性规划、整数规划等模型可以用来描述这类问题,通过设定目标函数和约束条件,求解最优解。
总结词
生产计划问题是指如何合理安排生产计划,使得生产成本最低且满足市场需求。
详细描述
生产计划问题需要考虑生产什么、生产多少、何时生产以及如何生产等问题。它需要考虑市场需求、产品特性、生产能力、资源限制等因素,以制定最优的生产计划,实现成本最小化、利润最大化。
资源分配问题是指如何将有限的资源分配给不同的任务或部门,以最大化整体效益。
背包问题有多种变种,如完全背包问题、多背包问题和分数背包问题等。这类问题在现实生活中应用广泛,如物流运输、资源分配和金融投资等领域。通过整数规划方法,可以找到最优的物品组合,以最大化总价值或最小化总成本。
最优化问题

最优化问题最优化问题(一)例1:一只平底锅上只能剪两只饼。
用它剪1只饼需要2分钟(正面、反面各1分钟)。
问剪3只饼需要几分钟?怎样剪?例2:6个人各拿一只水桶到水龙头接水。
水龙头注满6个人的水桶所需时间分别是5分钟、4分钟、3分钟、10分钟、7分钟、6分钟。
现在只有这一个水龙头可用,问怎样安排这6个人的打水次序,可使他们总的等候最短?这个最短时间是多少?例3:小红放学回家,想让爸爸、妈妈下班后就能吃上晚饭。
她准备做大米饭和炒鸡蛋。
小红家有两个炉灶。
估计一下,洗锅要用1分钟,淘米要用5分钟,做大米饭要用30分钟,打蛋要用1分钟,洗炒勺要用1分钟,烧油要1分钟,炒鸡蛋要3分钟。
你认为最合理的安排要几分钟能做好饭菜?例4:在公路上,每隔100千米有一个仓库,共有5个仓库。
1号仓库里有10吨货物,2号仓库里有20吨货物,5号仓库里有40吨货物,其余两个仓库都是空的。
现在想把所有的货物集中存放在一个仓库里,若每吨货物运输一千米要0.5元运输费,那么至少要花费多少元运费才行?例5:沿铁路有5个工厂,A,B,C,D,E(如图),各厂每天都有10吨货物要外运。
现在想建一座车站,使这5个工厂的货物运到车站的行程总和越小越好。
车站应建在何处?如果在E的右侧增加一个工厂,车站建在何处总行程最小呢?例6:在公路干线的附近,有5个工厂A,B,C,D,E(如图),各厂每天都有10吨货物要存库。
现在想在公路干线上建一座库房,使这5个工厂的货物运到库房的行程总和越小越好,库房应建在何处?例7:工地上有手推车20辆,其中10辆从A1到B1运垃圾,要60车次运完。
另外10辆从A2到B2运砖头,要40车次运完。
工地上的可行道路及路程如图(单位:米)所示。
有人说上面的安排不合理,因为跑空车的路程还可以更少些。
那么,怎样安排才算合理呢?【练习题】1、有7个满杯水、7个半杯水和7个空杯。
不许倒水,你能把这些东西平均分给3个人,使得每人有7只杯子和3杯半水吗?2、有8个人在交通事故中受伤,救援人员1人可以救护2人,而1辆救护车只可以坐4个人。
小学四年级奥数第7讲 最优化问题(含答案分析)

第7讲最优化问题一、知识要点在日常生活和生产中,我们经常会遇到下面的问题:完成一件事情,怎样合理安排才能做到用的时间最少,效果最佳。
这类问题在数学中称为统筹问题。
我们还会遇到“费用最省”、“面积最大”、“损耗最小”等等问题,这些问题往往可以从极端情况去探讨它的最大(小)值,这类问题在数学中称为极值问题。
以上的问题实际上都是“最优化问题”。
二、精讲精练【例题1】用一只平底锅煎饼,每次只能放两个,剪一个饼需要2分钟(规定正反面各需要1分钟)。
问煎3个饼至少需要多少分钟?练习1:1、烤面包时,第一面需要2分钟,第二面只要烤1分钟,即烤一片面包需要3分钟。
小丽用来烤面包的架子,一次只能放两片面包,她每天早上吃3片面包,至少要烤多少分钟?2、用一只平底锅烙大饼,锅里只能同时放两个。
烙熟大饼的一面需要3分钟,现在要烙3个大饼,最少要用几分钟?【例题2】妈妈让小明给客人烧水沏茶。
洗水壶需要1分钟,烧开水需要15分钟,洗茶壶需要1分钟,洗茶杯需要1分钟。
要让客人喝上茶,最少需要多少分钟?练习2:1、小虎早晨要完成这样几件事:烧一壶开水需要10分钟,把开水灌进热水瓶需要2分钟,取奶需要5分钟,整理书包需要4分钟。
他完成这几件事最少需要多少分钟?2、小强给客人沏茶,烧开水需要12分钟,洗茶杯要2分钟,买茶叶要8分钟,放茶叶泡茶要1分钟。
为了让客人早点喝上茶,你认为最合理的安排,多少分钟就可以了?【例题3】五(1)班赵明、孙勇、李佳三位同学同时到达学校卫生室,等候校医治病。
赵明打针需要5分钟,孙勇包纱布需要3分钟,李佳点眼药水需要1分钟。
卫生室只有一位校医,校医如何安排三位同学的治病次序,才能使三位同学留在卫生室的时间总和最短?练习3:1、甲、乙、丙三人分别拿着2个、3个、1个热水瓶同时到达开水供应点打热水。
热水龙头只有一个,怎样安排他们打水的次序,可以使他们打热水所花的总时间最少?2、甲、乙、丙三人到商场批发部洽谈业务,甲、乙、丙三人需要的时间分别是10分钟、16分钟和8分钟。
最优化方法第一章最优化问题与凸分析基础

4.2 凸函数
定义: 设集合 S Rn 为凸集,函数 f :SR, 若 x(1), x(2) S, ( 0 , 1 ) ,均有
f( x(1)+(1- ) x(2) ) ≤f(x(1))+(1- )f(x(2)) , 则称 f(x) 为凸集 S 上的凸函数。
hi x 0 等式约束
称满足所有约束条件的向量 x为可行解,或可行点,全体
可行点的集合称为可行集,记为D 。
D {x | hi x 0, i 1, 2, m, g j x 0,
j 1, 2, p, x Rn } 若 hi ( x), g j ( x) 是连续函数,则D 是闭集。
2.3 Hesse矩阵
Hesse 矩阵:多元函数 f (x) 关于 x 的二阶偏导
数矩阵
2
f
X
x12
2
f
X
f
X
2 f X
x1 x2
2
f
X
x1xn
2 f X
x2x1
2 f X
x22
2 f X
x2 xn
2
f
X
xnx1
2
f
X
xnx2
2
f
X
xn2
例:求目标函数 f (x) x12 x22 x32 2x1x2 2x2x3 3x3 的梯度和Hesse矩阵。
若进一步有上面不等式以严格不等式成立,则称
f(x) 为凸集 S 上的严格凸函数。 当- f(x) 为凸函数(严格凸函数)时,则称 f(x) 为
凹函数(严格凹函数)。
严格凸函数
最优化期末试题及答案

最优化期末试题及答案一、选择题1.什么是最优化问题?a) 通过最大化或最小化目标函数来寻找最优解的问题。
b) 通过列举所有可能解决方案来确定最佳解的问题。
c) 通过随机选择解决方案来找到次优解的问题。
d) 通过迭代算法来逼近最优解的问题。
答案:a) 通过最大化或最小化目标函数来寻找最优解的问题。
2.以下哪种算法可以用于求解最优化问题?a) 深度优先搜索算法。
b) 贪婪算法。
c) 动态规划算法。
d) 所有以上算法。
答案:d) 所有以上算法。
3.最优化问题的特点是什么?a) 可以有多个最优解。
b) 可以没有最优解。
c) 最优解通常唯一。
d) 最优解不一定存在。
答案:d) 最优解不一定存在。
4.以下哪种方法可以用于求解连续函数的最优化问题?a) 线性规划。
b) 整数规划。
c) 非线性规划。
d) 所有以上方法。
答案:c) 非线性规划。
5.最优化问题的求解过程中,目标函数可能存在的特点是什么?a) 凸函数。
b) 凹函数。
c) 非凸函数。
d) 所有以上情况都可能。
答案:d) 所有以上情况都可能。
二、填空题1.最优化问题的目标是_________目标函数。
答案:最大化或最小化。
2.在最优化问题中,决策变量的取值范围被称为_______。
答案:可行域。
3.最优化问题的求解可以归结为求解目标函数的__________。
答案:极值。
4.在最优化问题中,优化变量的取值范围为实数集,该问题被称为_________。
答案:连续优化问题。
5.最优化问题的求解可以分为_________方法和_________方法。
答案:确定性方法,随机方法。
三、解答题1.请解释什么是线性规划及其求解过程。
线性规划是一种常见的最优化方法,它用于求解目标函数和一组线性约束条件下的最优解。
线性规划的求解过程包含以下步骤:1) 制定线性规划模型:定义决策变量、目标函数和约束条件,并确保它们都是线性的。
2) 构造线性规划模型的标准形式:将目标函数转化为最小化问题并将约束条件进行标准化。
4.5(1)最优化问题极值与最值

解: C x 3x2 4x 12, 元 C10 272 元
每天多生产一件产品的成本为272元。
R x 3x2 6x 10 元 R10 250 元
每天多销售一件产品而获得的收入为250元。
例4 设某产品的需求函数为:x=1000 – 100P, 求需求量x=300时的总收入,平均收入和边际收入。 解:销售 x 件价格为 P 的产品收入为 R (x)= P x,
求最低平均成本和相应产量的边际成本。
解:平均成本 C(x) C(x) 1 x 8 4900
C(x) 4
x
令
C(x)
1 4
4900 x2
0
唯一驻点x=140
C(
x)
9800 x3
,
C(140)
9800 1403
0
C(x) 1 x2 8x 4900 4
C(x) C(x) 1 x 8 4900
所以当日产量为Q0 =200单位时可获最大利润. L(200) =3000(元)
例4 设某产品的总成本函数为 C(Q)=54+1Q82Q+6 ,
试求平均成本最小时的产量水平.
解 因C′(Q)=18+12Q
C (Q )
=54
Q
+18+6Q,
令C′(Q)= C(Q)
得Q=3 (Q=-3已舍),所以当产量Q=3时可使平均 成本最小.
上的最大值与最小值.
解
f ( x ) 6( x 2 )( x 1)
解方程 f ( x) 0,得 x1 2, x2 1.
计算 f (3) 23;
f (2) 34;
f (1) 7;
f (4) 142;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、用一只平底锅煎饼,每次只能放两个,剪一个饼需要2分钟(规定正反面各需要1分钟)。问煎3个饼至少需要多少分钟?
2、妈妈让小明给客人烧水沏茶。洗水壶需要1分钟,烧开水需要15分钟,洗茶壶需要1分钟,洗茶杯需要1分钟。要让客人喝上茶,最少需要多少分钟?
3、五(1)班赵明、孙勇、李佳三位同学同时到达学校卫生室,等候校医治病。赵明打针需要5分钟,孙勇包纱布需要3分钟,李佳点眼药水需要1分钟。卫生室只有一位校医,校医如何安排三位同学的治病次序,才能使三位同学留在卫生室的时间总和最短?
老师姓名
学生姓名
教材版本
__新北师大__版
学科名称
数学
年级
四
上课时间
6月5日8:30--10:00
课题名称
最优化问题
教学目标及重难点
1、时间最短
2、方方案最优教学源自过程复习检查
1、用一只平底锅烙大饼,锅里只能同时放两个。烙熟大饼的一面需要3分钟,现在要烙3个大饼,最少要用几分钟?
知识梳理
专题简析:在日常生活和生产中,我们经常会遇到下面的问题:完成一件事情,怎样合理安排才能做到用的时间最少,效果最佳。这类问题在数学中称为统筹问题。我们还会遇到“费用最省”、“面积最大”、“损耗最小”等等问题,这些问题往往可以从极端情况去探讨它的最大(小)值,这类问题在数学中称为极值问题。以上的问题实际上都是“最优化问题”。
同步练习
1、小华用平底锅烙饼,这只锅同时能放4个大饼,烙一个要用4分钟(每面各需要2分钟)。可小华烙6个大饼只用了6分钟,他是怎样烙的?
2、小虎早晨要完成这样几件事:烧一壶开水需要10分钟,把开水灌进热水瓶需要2分钟,取奶需要5分钟,整理书包需要4分钟。他完成这几件事最少需要多少分钟?
3、小强给客人沏茶,烧开水需要12分钟,洗茶杯要2分钟,买茶叶要8分钟,放茶叶泡茶要1分钟。为了让客人早点喝上茶,你认为最合理的安排,多少分钟就可以了?
7、一份盒饭一个荤菜和一个素菜。星期三菜单:荤菜:排骨、鱼汤、肉丸子;素菜:土豆、豆腐。星期三有几种配菜方法?
8、有上衣3件,裤子3条,有几种穿法?5.有百合、玫瑰、向日葵3种花,如果每两种搭配成一束送给妈妈,有多少种搭配方法?
9、有百合、玫瑰、向日葵3种花,如果每两种搭配成一束送给妈妈,有多少种搭配方法?
4、甲、乙、丙、丁四人同时到一水龙头处用水,甲洗托把需要3分钟,乙洗抹布需要2分钟,丙洗衣服需要10分钟,丁用桶注水需要1分钟。怎样安排四人用水的次序,使他们所花的总时间最少?最少时间是多少?
5、小亮有两件上衣,两条裤子,他有几种穿法?
6、奥运健儿们早餐主食有米饭、馒头,菜有鱼、鸡、牛羊肉,如果吃—种主食和—种菜,可以怎样搭配?
10、下面这些衣物中,一件上衣配一条裤子,则有几种不同的穿法?
课后小结
组长签字