最优控制理论课程总结
离散控制系统的最优控制理论

离散控制系统的最优控制理论离散控制系统的最优控制理论是控制工程领域中的一个重要研究方向。
离散控制系统是指在时间上只能在特定时间点进行操作的系统,相比连续控制系统,离散控制系统需要使用离散时间模型进行建模和控制设计。
最优控制理论是研究如何设计控制策略以使系统能够在某种指标下达到最优性能的一门学科。
离散控制系统的最优控制理论旨在寻找最优的控制策略,使得系统的性能指标如稳定性、响应速度、能耗等在给定约束条件下达到最优。
1. 离散控制系统的建模离散控制系统的建模是进行最优控制设计的基础。
在离散控制系统中,系统的状态在一系列离散时间点上进行更新。
离散控制系统的建模通常使用差分方程或状态空间模型。
差分方程描述了系统的状态在每个时间点的更新关系,而状态空间模型则将系统的状态和输入表示为向量,并使用矩阵形式描述系统的动态特性。
根据具体问题的需要,选择合适的建模方法可以更好地描述系统的动态行为。
2. 离散控制系统的性能指标离散控制系统的性能指标是评价系统控制性能的定量指标。
常见的性能指标包括稳定性、响应速度、能耗等。
稳定性是系统重要的性能指标之一,用于评估系统是否能够在有限时间内达到稳定状态。
响应速度是指系统对输入变化的快速响应能力。
能耗则是指系统在完成特定任务时所消耗的能源。
通过选取合适的性能指标,可以更好地评估和改进离散控制系统的性能。
3. 最优控制理论的基本原理最优控制理论的基本原理是寻找一组最优控制策略,使得系统的性能指标达到最优。
最优控制问题通常可以通过数学方法建立为一个优化问题。
其中,最常见的方法是最小化或最大化一个性能指标的数学表达式。
为了求解这些优化问题,可以使用动态规划、最优化理论等数学工具。
最优控制理论提供了一种系统优化设计的方法,可以帮助工程师设计更优秀的控制策略。
4. 最优控制策略的设计方法最优控制策略的设计方法取决于具体的离散控制系统和性能指标。
常见的设计方法包括经典控制方法和现代控制方法。
最优控制理论课程总结

《最优控制理论》课程总结姓名:肖凯文班级:自动化1002班学号:0909100902任课老师:彭辉摘要:最优控制理论是现代控制理论的核心,控制理论的发展来源于控制对象的要求。
尽50年来,科学技术的迅速发展,对许多被控对象,如宇宙飞船、导弹、卫星、和现代工业设备的生产过程等的性能提出了更高的要求,在许多情况下要求系统的某种性能指标为最优。
这就要求人们对控制问题都必须从最优控制的角度去进行研究分析和设计。
最优控制理论研究的主要问题是:根据已建立的被控对象的时域数学模型或频域数学模型,选择一个容许的控制律,使得被控对象按预定要求运行,并使某一性能指标达到最优值[1]。
关键字:最优控制理论,现代控制理论,时域数学模型,频域数学模型,控制率Abstract: The Optimal Control Theory is the core of the Modern Control Theory,the development of control theory comes from the requires of the controlled objects.During the 50 years, the rapid development of the scientific technology puts more stricter requires forward to mang controlled objects,such as the spacecraft,the guide missile,the satellite,the productive process of modern industrial facilities,and so on,and requests some performance indexes that will be best in mang cases.To the control problem,it requests people to research ,analyse,and devise from the point of view of the Optimal Control Theory. There are mang major problems of the Optimal Control Theory studying,such as the building the time domain’s model or the frenquency domain’s model according to the controlled objects,controlling a control law with admitting, making the controlled objects to work according to the scheduled requires, and making the performance index to reseach to a best optimal value.Keywords: The Optimal Control Theroy, The Modern Control Theroy, The Time Domaint’s Model, The Frequency domain’s Model,The Control Law一、引言最优控制理论的形成和发展和整个现代自动控制理论的形成和发展十分不开的。
最优控制实验报告

实验报告课程名称:现代控制工程与理论实验课题:最优控制学号:12014001070姓名:陈龙授课老师:施心陵最优控制一、最优控制理论中心问题:给定一个控制系统(已建立的被控对象的数学模型),选择一个容许的控制律,使被控对象按预定要求运行,并使给定的某一性能指标达到极小值(或极大值)二、最优控制动态规划法对离散型控制系统更为有效,而且得出的是综合控制函数。
这种方法来源于多决策过程,并由贝尔曼首先提出,故称贝尔曼动态规划。
最优性原理:在一个多级决策问题中的最优决策具有这样的性质,不管初始级、初始状态和初始决策是什么,当把其中任何一级和状态做为初始级和初始状态时,余下的决策对此仍是最优决策三、线性二次型性能指标的最优控制用最大值原理求最优控制,求出的最优控制通常是时间的函数,这样的控制为开环控制当用开环控制时,在控制过程中不允许有任何干扰,这样才能使系统以最优状态运行。
在实际问题中,干扰不可能没有,因此工程上总希望应用闭环控制,即控制函数表示成时间和状态的函数。
求解这样的问题一般来说是很困难的。
但对一类线性的且指标是二次型的动态系统,却得了完全的解决。
不但理论比较完善,数学处理简单,而且在工际中又容易实现,因而在工程中有着广泛的应用。
一.实验目的1.熟悉Matlab的仿真及运行环境;2.掌握系统最优控制的设计方法;3.验证最优控制的效果。
二.实验原理对于一个给定的系统,实现系统的稳定有很多途径,所以我们需要一个评价的指标,使系统在该指标下达到最优。
如果给定指标为线性二次型,那么我们就可以利用MATLAB快速的计算卡尔曼增益。
三.实验器材PC机一台,Matlab仿真平台。
四.实验步骤例题1 (P269)考虑液压激振系统简化后的传递函数方框图如下,其中K a为系统前馈增益,K f为系统反馈增益,w h为阻尼固有频率。
(如图5-5所示)将系统传递函数变为状态方程的形式如下:,确定二次型指标为: . 求最优控制使性能指标J最小。
先进控制技术课程心得5篇

先进控制技术课程心得5篇先进控制技术课程心得1一、实-目的生产实-是教学与生产实际相结合的重要实践性教学环节。
在生产实-过程中,学校也以培养学生观察问题、解决问题和向生产实际学-的能力和方法为目标。
培养我们的团结合作精神,牢固树立我们的群体意识,即个人智慧只有在融入集体之中才能最大限度地发挥作用。
通过这次生产实-,使我在生产实际中学-到了电气设备运行的技术管理知识、电气设备的制造过程知识及在学校无法学到的实践知识。
在向工人学-时,培养了我们艰苦朴素的优良作风。
在生产实践中体会到了严格地遵守纪律、统一组织及协调一致是现代化大生产的需要,也是我们当代大学生所必须的,从而近一步的提高了我们的组织观念。
我们在实-中了解到了工厂供配电系统,尤其是了解到了工厂变电所的组成及运行过程,为小区电力网设计、建筑供配电系统课程设计奠定基础。
通过参观第一化工集团自动化系统,使我开阔了眼界、拓宽了知识面,为学好专业课积累必要的感性知识,为我们以后在质的变化上奠定了有力的基础。
通过生产实-,对我们巩固和加深所学理论知识,培养我们的独立工作能力和加强劳动观点起了重要作用。
(三)、学-和了解变电所的主要结构型式,结构种类和特点。
(四)、学-和了解变电所的主要部件的生产技术资料,包括:各种技术标准,图纸,专用设备说明书等。
(五)、了解变电所的主要技术要求以及有关标准。
(六)、了解工厂的生产组织管理情况,劳动定额和成本核算的方法。
(七)、了解工厂开展的新材料、新工艺、新技术的研究情况。
(八)、实-期间进行了社会主义、爱国主义教育、进行爱劳动、守纪律教育,进行安全、保密教育。
三、常规型变电所设备选型(a)、设备的选择配置应力求小型化,要保证技术先进、工作性能稳定可靠,质量有保证且售后服务跟得上。
(b)、所内应采用两台主变,要求节能且有载调压型,一般采用s10或sz10型变压器,s11型也在发展之列,变压器容量要根据电力负荷情况而定,但两台主变容量比不应超过1∶3,阻抗电压、变比、接线组别应相同,误差不超过5%,为以后变压器并列运行提供条件。
最优控制结课心得体会5篇范文

最优控制结课心得体会5篇范文第一篇:最优控制结课心得体会最优控制结课心得体会最优控制理论的形成和发展和整个现代自动控制理论的形成和发展十分不开的。
在20世纪50年代初期,就有人开始发表从工程观点研究最短时间控制问题的文章,尽管其最优性的证明多半借助于几何图形,仅带有启发性质,但毕竟为发展现代控制理论提供了第一批实际模型。
由于最优控制问题引人注目的严格表述形式,特别是空间技术的迫切需求,从而吸引了大批科学家的密切注意。
非常荣幸今年能够在刘老师班中学习最优控制这门课程,在这门课上,我们了解了最优控制是系统设计的一种方法,研究的中心问题是如何选择控制信号(控制策略),才能保证控制系统的性能在某种意义下最优。
而最优控制是现代控制理论的核心,它研究的主要问题是:在满足一定约束条件下,寻求最优控制策略,使得性能指标取极大值或极小值。
使控制系统的性能指标实现最优化的基本条件和综合方法,可概括为:对一个受控的动力学系统或运动过程,从一类允许的控制方案中找出一个最优的控制方案,使系统的运动在由某个初始状态转移到指定的目标状态的同时,其性能指标值为最优。
这类问题广泛存在于技术领域或社会问题中。
例如,确定一个最优控制方式使空间飞行器由一个轨道转换到另一轨道过程中燃料消耗最少。
最优控制理论是50年代中期在空间技术的推动下开始形成和发展起来的。
美国学者R.贝尔曼1957年提出的动态规划和前苏联学者L.S.庞特里亚金1958年提出的极大值原理,两者的创立仅相差一年左右。
对最优控制理论的形成和发展起了重要的作用。
线性系统在二次型性能指标下的最优控制问题则是R.E.卡尔曼在60年代初提出和解决的。
从数学上看,确定最优控制问题可以表述为:在运动方程和允许控制范围的约束下,对以控制函数和运动状态为变量的性能指标函数(称为泛函)求取极值(极大值或极小值)。
解决最优控制问题的主要方法有古典变分法(对泛函求极值的一种数学方法)、极小值原理和动态规划。
自动控制原理最优控制知识点总结

自动控制原理最优控制知识点总结自动控制原理是现代工程领域中一个非常重要的学科,广泛应用于工业生产、交通运输、航空航天等各个领域。
在自动控制原理中,最优控制是一个关键的概念和方法,它旨在通过优化系统的性能指标,实现系统的最佳控制效果。
本文将对自动控制原理中的最优控制知识点进行总结。
一、最优控制的基本概念最优控制是在给定约束条件下,通过设计最优控制器使系统的性能指标达到最佳的控制方法。
其中,性能指标主要包括系统的稳定性、响应速度、误差稳态和鲁棒性等方面。
最优控制的目标是通过优化控制器参数和系统的状态变量,使系统的性能指标最小化或最大化。
二、最优控制的数学模型最优控制的数学模型主要包括动态模型和性能指标两个方面。
动态模型描述了系统的演化过程,可以是线性模型或非线性模型;性能指标则是对系统性能的衡量,可以是能量消耗、误差平方和、状态变量变化率等。
最常用的数学工具是拉格朗日乘子法、泛函分析、动态规划等。
三、最优控制的方法最优控制的方法包括最优化理论、动态规划、变分法等。
其中,最优化理论是最常用的方法之一,主要通过求解极值问题来设计最优控制器。
动态规划则是一种递推算法,通过将大问题分解成小问题,并利用最优性原理逐步求解最优控制器。
变分法则是通过对系统状态和控制器函数进行变分,并通过求解欧拉-拉格朗日方程来得到最优系统。
四、最优控制的应用最优控制在各个领域都有广泛的应用。
在工业生产中,最优控制可以提高生产过程的效率和质量;在交通运输中,最优控制可以优化交通流量和减少交通拥堵;在航空航天中,最优控制可以提高飞行器的性能和安全性。
此外,最优控制还应用于经济学、生物学、环境科学等其他领域。
五、最优控制的发展趋势随着科技的发展和应用领域的不断扩展,最优控制领域也在不断发展和创新。
未来的研究方向主要包括多目标最优控制、非线性最优控制、鲁棒最优控制等。
同时,随着计算机技术的进步,最优控制算法也将得到进一步改进和优化。
总结:自动控制原理中的最优控制是一个重要的概念和方法,通过优化系统的性能指标,实现系统的最佳控制效果。
最优控制总结

最优控制理论总结宫庆义2010.6.301. 最优控制问题可用下列泛函表示:[][]0()00min (),(),(),..(1)()(),(),,()(2)(),0ft f f t u t f f J x t t L x t u t t dt s t xt f x t u t t x t x x t t ϕψ∈Ω⎡⎤=+⎣⎦==⎡⎤=⎣⎦⎰2. 最优控制的应用类型:(一) 积分型性能指标: []0(),(),ft t J L x t u t t dt =⎰(1) 最小时间控制: 00ft f t J dt t t ==-⎰(2) 最少燃耗控制: 01()fmt jt j J u t dt ==∑⎰(3) 最少能量控制: 0()()ft T t J u t u t dt =⎰(二) 末值型性能指标: (),f f J x t t ϕ⎡⎤=⎣⎦ (三) 复合性能指标:(1) 状态调节器:011()()()()()()22f t T T Tf f t J x t Fx t x t Qx t u t Ru t dt ⎡⎤=++⎣⎦⎰ (2) 输出跟踪系统:011()()()()()()()()()22f t T T Tf f t J e t Fe t e t Qe t u t Ru t dt e t z t y t ⎡⎤=++=-⎣⎦⎰3. 欧拉-拉格朗日方程:0L d L x d t x ∂∂⎛⎫-= ⎪∂∂⎝⎭注: 若()min (,,)..(,,)0ft x t J g x xt dt s t f x xt ==⎰ (,,,)(,,)()(,,)TL x xt g x x t t f x x t λλ=+例题:(1)求通过点(0,0)及(1,1)且使120()J x xdt =+⎰取极值的轨迹*()x t 解: 欧拉-拉格朗日方程: 2(2)0dx x dt-= 即 0x x -= ()c o s h s i n hx t a t b t =+ 由初始条件:(0)00x a =⇒= 末端条件: 1(1)1sinh1x b =⇒= 因而极值轨迹为:*1()sinh sinh1x t t = (2)求使指标1230()J xx dt =+⎰取极值的轨迹*()x t , *(0)0x = 解:这是终端自由的情况, 欧拉-拉格朗日方程为:()2230dx x dt+= 即 223x x C += 令()xt at b =+ 由(0)00x b =⇒= 又末端自由, 横截条件为:2310ft t Lx x x=∂⎡⎤=+=⎣⎦∂ 即 2230a a +=得:0a =或23a =-, *()0,0x t J ==对应局部极小, *24(),327x t t J =-=对应局部极大(3)设系统状态方程: x u = 边界条件为: (0)1,()0,f f x x t t ==自由性能指标为: 2012f t f J t u dt =+⎰ 要求确定最优控制*u , 使J 最小解: 这是f t 自由问题, 末端状态固定, ()0f x t =是满足约束集的特殊情况, 即 (),()0f f f x t t x t ψ⎡⎤==⎣⎦(),f f f x t t t ϕ⎡⎤=⎣⎦哈密顿函数: 212H u u λ=+ 正则方程: 0HHxu xλλ∂∂===-=∂∂ 控制方程: 0Hu u uλλ∂=+=⇒=-∂()1f fH t t ϕ∂=-=-∂ 即 : 221()()10()2f f f t t t λλλ-+=⇒=由正则方程: ()0t λ= 所以 ()t λ=于是 *()u t =再由正则方程: xu λ==- 可得()x t c =+ 由初始条件 (0)1x = 得 1c =故最优轨迹为: *()1x t =+ *()02f f x t t =⇒=(4) 设系统的状态方程为: ()()()xt x t u t =-+ 边界条件为: (0)1,()0f x x t ==, 求()u t , 使221()2f t J x u dt =+⎰为最小解: 221()()2H x u x u λ=++-+协态方程和控制方程为: H x x λλ∂=-=-+∂ Hu uλ∂=+=0∂ 即 u λ=- 故可得正则方程: ()()()xt x t t λ=-- ()()()t x t t λλ=-+ 拉氏变换: ()(0)()()sX s x X s s λ-=-- ()(0)())s s X s s λλλ-=-+( 解代数方程得:()(0)(0)()(0)(0)s x X s x λ==拉氏反变换:()()()()()(0)1)1)(0)()(0)1)1)(0)t e x e x t ee x λλλ⎤=-++⎦⎡⎤=-++⎣⎦由: (0)1,()0f x x t ==得:(0)f fλ=*()()1)1)u t t eeλ⎧⎫⎪⎤=-=-+⎬⎦⎪⎭注: 拉氏变换表(5)设系统状态方程为: 122()()()()x t x t xt u t == 初始条件为: 12(0)(0)1x x ==, 末端条件为: 12(1)0(1)x x =自由要求确定最优控制*()u t , 使泛函1201()2J u t dt =⎰取极小值 解: 边界条件222()(1)0(1)f t x ϕλλ∂===∂ 哈密顿函数: (,,)(,,)T H L x u t f x u t λ=+ 212212u x u λλ=++ 正则方程: 12112()0()()H Ht t t x x λλλ∂∂=-==-=-∂∂ 状态方程: 1222()()()()xt x t xt t λ==- 极值条件:0Hu∂=∂ ⇒ 20u λ+= 即 : *2()()u t t λ=- 边界条件: 12(0)1(0)1x x ==1222(1)0()(1)0(1)f x t x ϕλλ∂====∂ 对正则方程和状态方程进行拉氏变换:11222211221()(0)()()(0)()()(0)0()(0)()sX s x X s sX s x s s s s s s λλλλλλ-=-=--=-=-解以上代数方程得:11221222112123234111()(0)()(0)(0)1111111()(0)(0)()(0)(0)s s ss s X s X s s s ss s s sλλλλλλλλλ==-=--=+-+拉氏反变换:2312122111()1(0)(0)26()(0)(0)x t t t t t tλλλλλ=+-+=- 利用末端条件: 1212(1)0,(1)0(0)(0)6x λλλ==⇒== 最优状态轨迹:*231()13x t t t t =+-+ 最优协态:*2()6(1)t t λ=- 最优控制: **2()()6(1)u t t t λ=-=-(6) 设系统的状态方程为:10()()()001xt x t u t ⎡⎤⎡⎤=+⎢⎥⎢⎥⎣⎦⎣⎦指标泛函: 2201()2J u t dt =⎰ 边界条件: 10(0)(2)10x x ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦求使指标泛函取极值的极值轨线*()x t 和极值控制*()u t 解: []121212221,,2T f x x g u f f u xλλλ-⎡⎤⎡⎤====⎢⎥⎢⎥-⎣⎦⎣⎦ 拉格朗日标量函数: 2121221()()2TL g f u x xu x λλλ=+=+-+- 欧拉方程:1111122222000L d L a x dt x L d L at b x dt xL d L u u at bu dt uλλλλλλ∂∂-===∂∂∂∂-=+==-+∂∂∂∂-=+==-∂∂由于状态约束方程:22223212112111262xu at b x at bt c xx at bt c x at bt ct d==-=-+==-+=-++代入边界条件: 10(0)(2)10x x ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦得: 73,,12a b c d ====于是极值轨线: *321**22()0.5 1.751()3 3.5() 1.5 3.51x t t t t u t t x t t t ⎡⎤⎡⎤-++==-⎢⎥⎢⎥-+⎢⎥⎣⎦⎣⎦*x =(7)设性能指标泛函: 0ft J =⎰(0)1,()()2f f f x x t c t t ===-求使泛函为极值的最优轨线*()x t 及相应的**,ft J 解: L = 欧拉-拉格朗日方程:22220,()1L d L d C C x a x t at b x dt x dt C⎡⎤∂∂-=-=⇒===⇒=+∂∂- 由(0)1x =得: 1b =由横截条件:()(10()11ffTf t t L L cx x xt a x ⎤∂⎡⎤+-=--=⇒=⇒=⎢⎥∂⎣⎦最优轨线为: *()1x t t =+当f t t =时, ()()f f x t c t = 即: 12f f t t +=-, 求得末端时刻 *12f t = 将**(),f x t t 代入指标泛函,可得最优性能指标*J =(8) 设系统方程为: 122()()()()x t x t xt u t == 初态:12(0)(0)0x x == 末端时刻: 1f t = 末端约束: 12(1)(1)1x x += 性能指标: 121()2J u t dt =⎰ 求使J 最小的最优控制*()u t 和相应的最优轨线*()t x 解: 2121()0,()()(1)(1)12f f t L u t x x ϕψ⎡⎤⎡⎤===+-⎣⎦⎣⎦ x x212212H u x u λλ=++ 由协态方程: 1110()H t a x λλ∂=-==∂2122()H t at b x λλλ∂=-=-=-+∂由极值条件:220Hu u at b uλλ∂=+=⇒=-=-∂由状态方程:2222321211()2111()262xu at b x t at bt c xx at bt c x t at bt ct d==-=-+==-+=-++由初态: 12(0)(0)00x x c d ==⇒== 由目标集: 12(1)(1)10496x x a b +-=⇒-=根据横截条件:1212(1)(1)(1)(1)x x ψψλγγλγγ∂∂====∂∂即: 121(1)(1)2a b λλ=⇒=于是解得: 36,77a b =-=-最优解为: *3()(2)7u t t =-- 最优轨线: *211()(6)14x t t t =-- *23()(4)14x t t t =--例题:(1) 最短时间控制问题:状态方程: 122,x x xu == 初始条件: 101220(0)(0)(0)x x x x ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦x = 末端条件: 12()()0f f x t x t ==约束控制: ()10f u t t t ≤≤≤求使性能指标0ft f J dt t ==⎰取极小的最优控制.解: 1221T H L f x u λλ=+=++λ协态方程: 110H x λ∂=-=∂ 212H x λλ∂=-=-∂12()()t at at b λλ==-+选择u 使H 取极小 []2221()0()sgn ()1()0t u t t t λλλ<⎧==⎨->⎩2()t λ为t 的线性函数, u 最多改变一次符号当()1u t =时, 状态方程的解为:220212010()1()2x t t x x t t x t x =+=++ 消去t 得相轨迹方程: 2121()()2x t x t C =+ 当()1u t =-时, 状态方程的解为:220212010()1()2x t t x x t t x t x =-+=-++ 消去t 得相轨迹方程: 2121()()2x t x t C '=-+ 相轨迹的方向总是逆时针两簇曲线中, 每一簇中有一条曲线的半支进入末端状态点(原点) ()1u t =的曲线簇中, 通过原点的曲线方程为: 21221()()()02x t x t x t =≤ 记: γ+()1u t =-的曲线簇中, 通过原点的曲线方程为:21221()()()02x t x t x t =-≥ 记: γ-,γγ+-称为开关线, 其方程为: 1221()()()2x t x t x t =-开关线左侧区域用R +表示, 开关线右侧区域用R -表示 于是最优控制律, 可以表示为状态[]12,Tx x x =的函数, 即*121,(,)1,x R u x x x R γγ++--∈⎧=⎨-∈⎩(2)最少燃料控制问题状态方程: 122,xx x u == 初始条件: 101002020()()()x t x t x t x ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦x = 末端条件: 12()()0f f x t x t == 约束控制: 0()1f u t t t t ≤≤≤ 求使性能指标0()ft t J u t dt =⎰取极小的最优控制. 解: 122()T H L f u t x u λλ=+=++λ协态方程: 110H x λ∂=-=∂ 212H x λλ∂=-=-∂ 12()()t a t at b λλ==-+使H 取得极小值, 等价于求下式的极小值2()min ()()()u t u t t u t λ∈⎡+⎤⎣⎦Ω 使H 取得极小值的最优控制律为:[]222220()1()sgn ()()10()1()11()0()1t u t t t u t t u t t λλλλλ⎧<⎪=⎨->⎪⎩≤≤=--≤≤= 当()1u t =时, 2121()()2x t x t C =+ (开口向右--抛物线) 当()1u t =-时, 2121()()2x t x t C =-+ (开口向左--抛物线) 当()0u t =时, 220110200(),()()x t x x t x x t t ==+- (水平线)由状态方程得: 21120211120110222112112121222121222221:()1()20:()()()()()()1:0()()10()()()()2f f u x t t x x t t x t x u x t x t Cx t x t x t t t u x t t t x t x t t t t t =-=-+=-++====+-==+-=+-+-由以上6个方程, 来解6个未知数:(3)设系统状态方程为: 122()(),()()xt x t x t u t == 边界条件: 12121(0)(0)0,()()4f f x x x t x t ==== 控制约束: ()1u t ≤, 末端时刻f t 自由求: 最优控制*()u t 使性能指标20()f t J u t dt =⎰最小 解: 22212221221124H u x u u x λλλλλ⎛⎫=++=++- ⎪⎝⎭ 由极小值条件知:2*2221()21()()()221()2t u t t t t λλλλ<-⎧⎪⎪=-≤⎨⎪->⎪⎩ 由协态方程: 1112122()0()()()()H t t a x H t t t at b x λλλλλ∂=-==∂∂=-=-=-+∂ *211()()()22u t t at b λ=-=- 代入状态方程: 22232121111()()()24211()()()124x t u at b x t at bt c x t x t x t at bt ct d ⎧==-⇒=-+⎪⎪⎨⎪=⇒=-++⎪⎩ 由初始条件: 12(0)(0)00x x c d ==⇒==根据末端条件: 321221()12441()424f f f f f f a b x t t t a b x t t t =-==-= 根据H 沿最优轨线变化律: 2122()()()()()()0f f f f f f H t u t t x t t u t λλ=++=解得: 323(2)31,0,39f f f ff t t a b t t t --===== 最优控制: *1()()218t u t at b =-= 验证: 在0,f t ⎡⎤⎣⎦区间上, 2()1,()2u t t λ≤≤满足要求 最优轨线: *3*21211(),()10836x t t x t t == 最优性能指标: 23*01()36J u t dt ⎡⎤==⎣⎦⎰7. 对于线性连续系统, 提出二次型目标函数:00011()()()()()()()22()()()()(),(),(),(),()f t T T T f f J x t Px t x t Qx t u t R t u t dt x t A t x t B t u t x t x R t P t Q t ⎡⎤=++⎣⎦=+=⎰ 正定半正定 0,f t t 固定求: 最优反馈控制, 并论述如何选择二次型目标函数中的加权矩阵.解: []1()()()()()()()()()()2T T T H x t Qx t u t R t u t t A t x t B t u t λ⎡⎤=+++⎣⎦ 协态方程: ()()()()T H Q t x t A t t xλλ∂⎡⎤=-=-+⎣⎦∂ 控制方程: 1()()()()0()()()()T T H R t u t B t t u t R t B t t u λλ-∂=+=⇒=-∂ 横截条件: 1()()()()()()2T f f f f f f t x t Px t Px t x t x t ϕλ∂∂⎡⎤===⎢⎥∂∂⎣⎦由此可见, 协态()t λ状态()x t 在末端时刻f t 成线性关系.设: ()()()t K t x t λ= 代入状态方程:1()()()()()()()()T x t A t x t B t R t B t K t x t -=- 由协态方程: ()()()()()()()()()()T t K t x t K t x t Q t x t A t K t x t λ⎡⎤=+=-+⎣⎦ 将()xt 代入: 1()()()()()()()()()()()()0T T K t K t A t K t B t R t B t K t A t K t Q t x t -⎡⎤+-++=⎣⎦ ()K t 由下面的黎卡提矩阵微分方程确定:1()()()()()()()()()()()T T K t K t A t A t K t K t B t R t B t K t Q t -=--+- 边界条件: ()f K t P =由此可得最优反馈控制: 1()()()()()()()T u t R t B t K t X t G t x t -=-=- 加权阵的选择: 若已知各加权变量允许的最大值为:1max 2max max ,,,n x x x 和1max 2max max ,,,n u u u1m a x 2m a x m a x 111,,,,n Q d i a gx x x ⎡⎤=⎢⎥⎣⎦ , 1max 2max max 111,,,,n R diag u u u ⎡⎤=⎢⎥⎣⎦8. 最优性原理: 一个多级决策问题的最优决策具有这样的性质: 当把其中任何一级及其及其状态作为初始级和初始状态时, 则不管初始状态是什么, 达到这个初始状态的决策是什么, 余下的决策对此初始状态必定构成最优策略.例题:(1) 系统方程为: (1)()()x k x k u k +=+, (0)x 给定 (1)122011(2)()22k J cx u k ==+∑ (2) 要求: 用动态规划寻找最优控制序列(0),(1)u u 使J 最小解: 先考虑最后一步, 即从(1)(2)x x → 这时由(1),(2)得:(2)(1)(1)x x u =+[]222211111(2)(1)(1)(1)(1)2222J cx u c x u u =+=++ 求(1)u 使1J 最小, 得:[]1(1)(1)(1)(1)0(1)(1)1J cx c x u u u u c∂=++=⇒=-∂+ 将(1)u 代入1J 和(2)x 得: 2*1(1)(1)(2)211c x x J x c c==++ 再考虑倒数第二步, 即从(0)(1)x x → 这时: (1)(0)(0)x x u =+[]22*22011(1)1(0)(0)(0)(0)22122(1)c x c J J J u u x u c c =+=+=++++ 求(0)u 使J 最小得:[](0)(0)(0)0(0)1J c u x u u c∂=++=∂+ (0)(0)12cx u c=-+ 于是最优性能指标与最优状态转移为: 2*(0)2(12)cx J c =+ 1(1)(0)(0)(0)12c x x u x c +=+=+ 9. (1)直接法: 在每一步迭代中, ()u t 不一定要满足H 取极小值的必要条件, 而是逐步改善它, 在迭代终了使它满足这个必要条件, 而且, 积分状态方程是从0f t t →, 积分协态方程是从0f t t →, 这样就避免了去寻找缺少的协态初值0()t λ的困难. 常用的有: 梯度法, 二阶梯度法, 共轭梯度法(2)间接法: 在每一步迭代中, ()u t 都要满足H 取极小值的必要条件, 而且要同时积分状态方程和协态方程,两种方程的积分都是从0f t t →或从0f t t →. 常用的有边界迭代法, 拟线性化法.10. 分离定理: 按照此定理, 可以把最优控制问题和状态变量的最优估计问题分开讨论.在研究最优控制问题时, 假定所有状态变量都可以直接得到, 而在研究状态变量的最优估计时, 则假定控制信号是已知的确定性函数.最后把控制器中的状态变量用其估计值代替, 就得到了随机线性系统的最优控制.11. 分离定理应用: 在随机线性系统最优控制中, 目前理论上和应用上比较成熟的是所谓LQG 问题, 即线性系统, 二次型指标, 高斯分布噪声情况下的最优调节器问题. 这时分离定理可以成立.根据分离定理: 可将LQG 分成两部分, 即根据确定性系统来求出最优反馈控制律, 再由卡尔曼滤波器来测定最优状态估计值, 将这个状态估计值代替状态变量本身, 就得到了最优反馈控制.。
最优控制总结

/系统的数学模型,物理约束条件及性能指标。
数学描述:设被控对象的状态方程及初始条件为()[(),(),],(0)0x t f x t u t t x t x ==;其中,()x t X Rn ∈⊂为状态向量,X 为状态向量的可容许集;()u t Rm ∈Ω⊂为控制向量,Ω为控制向量的可容许集。
试确定容许的最优控制*()u t 和最优状态轨迹*()x t ,使得系统实现从初始状态(0)x t 到目标集[(),]0x tf tf ψ=的转移,同时使得性能指标0[(),][(),(),]tft J x tf tf L x t u t t dt ϕ=+⎰达到极值。
系统状态方程形式(连续,离散)(2)最优控制形式(开环,闭环) (3)实际应用(时间,燃料,能量,终端) (4)终端条件(固定,自由) (5)被控对象形目标函数及约束条件组成的静态优化问题可以描述为:在满足一系列约束条件的可行域中,确定一组优化变量,(极大值或极小值)。
数学描述:min (),,:n nf x x R f R R ∈→,..()0,:;()0,:n m n l s tg x g R R h x h R R =→≥→静态最优化问题,也称为参数最优化问题,它的三个基本要素是优化变量、目标函数和约束条件,其本质是解决函数,也称为最优控制问题,它的三个基本要素是被控对象数学模型、物理约束条件和性能指标,其本质是解 多变量目标函数沿着初始搜索点的负梯度方向搜索,函数值下降最快,又称最速下降法;(2)多变量无约束。
根据具体的最优换问题构造合适的惩罚函数,将多变量有约束最优化问题转换为一系列多变量无约束最优化问题,从而采用合适;(2)多变量有约束(外点法:等式约,不等式约束;内点法:不等式约束)。
通过构造拉格朗日函数,将原多变量有约束最优化问题转化为一个多变量无约束最优化问题,从而采用合适的无约束方法继(等式约束,不等式约束)。
梯度定义12()()()()f x x f x f x f x xx ∂⎡⎤⎢⎥∂∂⎢⎥=∇=⎢⎥∂∂⎢⎥∂⎣⎦,Hessian 矩阵22221212222212()()f f x x x f x H x x f f x x x ⎡⎤∂∂⎢⎥∂∂∂∂⎢⎥==⎢⎥∂∂∂⎢⎥∂∂∂⎢⎥⎣⎦,最优梯度法(无约束):迭代(1)()()()()k k k k x x f x α+=-∇,()()()()()()()()()()()k T k k k T k k f x f x f x H x f x α∇∇=∇∇,终止误差()()()k p k f x ε=-∇≤ 例:(),(0),()f x f x H x ∇∇;(0)[(0)(0)]f x T f x α=∇•∇/[(0)(0)]T f x H f x ∇••∇;(1)(0)(0)(0)x x f x α=-•∇;()f xk ε∇<,()x k 是极()0,()0x x =≥g h (1) 等式约束:(,)()()T H x f x x λ=+λg ,利用1210,0,0,0,0n mH H H H Hx x xλλ∂∂∂∂∂=====∂∂∂∂∂解出极大值点或极小值点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最优控制理论课程总结姓名:肖凯文班级:自动化1002班学号:0909100902 任课老师:彭辉摘要:最优控制理论是现代控制理论的核心,控制理论的发展来源于控制对象的要求。
尽50年来,科学技术的迅速发展,对许多被控对象,如宇宙飞船、导弹、卫星、和现代工业设备的生产过程等的性能提出了更高的要求,在许多情况下要求系统的某种性能指标为最优。
这就要求人们对控制问题都必须从最优控制的角度去进行研究分析和设计。
最优控制理论研究的主要问题是:根据已建立的被控对象的时域数学模型或频域数学模型,选择一个容许的控制律,使得被控对象按预定要求运行,并使某一性能指标达到最优值[1]。
关键字:最优控制理论,现代控制理论,时域数学模型,频域数学模型,控制率Abstract:The Optimal Control Theory is the core of the Modern Control Theory,the development of control theory comes from the requires of the controlled objects、During the50 years, the rapid development of the scientific technology puts more stricter requires forward to mangcontrolled objects,such as the spacecraft,the guide missile,the satellite,the productive process of modern industrial facilities,and so on,and requests some performance indexes that will be best in mang cases、To the control problem,it requests people toresearch ,analyse,and devise from the point of view of the Optimal Control Theory、 There are mang major problems of the Optimal Control Theory studying,such as the building the time domain’s model or the frenquency domain’s model according to the controlledobjects,controlling a control law with admitting, making the controlled objects to work according to the scheduled requires, and making the performance index to reseach to a best optimal value、 Keywords: The Optimal Control Theroy, The Modern Control Theroy,The Time Domaint’s Model,The Frequency domain’s Model,The Control Law一、引言最优控制理论的形成和发展和整个现代自动控制理论的形成和发展分不开的。
在20世纪50年代初期,就有人开始发表从工程观点研究最短时间控制问题的文章,尽管其最优性的证明多半借助于几何图形,仅带有启发性质,但毕竟为发展现代控制理论提供了第一批实际模型。
由于最优控制问题引人注目的严格表述形式,特别是空间技术的迫切需求,从而吸引了大批科学家的密切注意。
经典变分理论只能解决一类简单的最优控制问题,因为它只对无约束或开集性约束是有效的。
而实际上碰到的更多的是容许控制属于闭集的一类最优控制问题,这就要求人们去探索、求解最优控制问题的新途径。
在种种新方法中,有俩种方法最富成效:一种是苏联学者庞特里亚金(Л、С、Понтрягин)的“极大值原理”;另一类是美国学者贝尔曼(R、E、Bellman)的“动态规划”[2]。
受力学中哈密顿(Hamilton)原理的启发,庞特里亚金等人把“极大值原理”作为一种推测首先推测出来,随后不久又提供了一种严格的证明,并于1958年在爱丁堡召开的国际数学会议上首先宣读。
“动态规划”是贝尔曼在1953-1957年逐步创立的,他依旧最优性原理发展了变分学中的哈密顿—雅可比理论,构成了“动态规划”。
它是一种适用于计算机计算,处理问题范围更广的方法。
在现代控制理论的形成和发展中,极大值原理、动态规划和卡尔曼(R、E、Kalman)的最优估计理论都起过重要的推动作用[3]。
现代控制理论的形成和发展和数字计算机的飞速发展和广约应用密不可分。
由于计算机的“在线”参与控制,这样,既不要求把控制器归结为简单的校正网络,也不一定要求有封闭形式的解析解,因此,使得最优控制的工程实现了可能。
反过来又提出了许多新的理论问题,导致最优控制的直接和间接计算方法的大批研究成果的出现,进一步推动了控制理论的发展。
二、最优控制的含义最优控制,就是将通常的最优控制问题抽象成一个数学问题,并且用数学语言严格的表示出来,最优控制可分为静态最有和动态最有两类。
静态最优是指在稳定情况下实现最优,它反映系统达到稳态后的静态关系。
系统中的各变量不随时间变化,而只表示对象在稳定情况下各参数之间的关系,其特性用代数方程来描述。
大多数的生产过程受控对象可以用静态最优控制来处理,并且具有足够的精度。
静态最有一般可用一个目标函数J=f(x)和若干个等式约束条件或不等式约束条件来描述。
要求在满足约束条件下,使目标函数J为最大或最小[4]。
动态最优是指系统从一个工况变化到另一个工况的变化过程中,应满足最有要求。
在动态系统中,所有的参数都是时间的函数,其特性可用微分方程或差分方程来描述。
动态最优控制要求寻找出控制作用的一个或一组数值,是特性指标在满足约束条件下为最优值。
这样,目标函数不再是一般函数,而是函数的函数。
因此,在数学上这是属于泛函数求极值的问题。
受控系统的模型受控系统的数学模型即系统的微分方程,它反映了动态系统在运动过程中所应遵循的物理或化学规律。
在集中参数情况下,动态系统的运动规律可以用一组一阶常微分方程即状态方程来描述,即(2-1)式(2-1)中:x(t)表示n维状态变量;u(t)表示为r 维控制向量;f()是x(t)、u(t)和t的n维函数向量;t是实数变量,可以概括一切具有集中参数的受控数学模型。
三、边界条件与目标集动态系统的运动过程是系统从状态空间的一个状态到另一个状态的转移,其运动轨迹在状态空间中形成曲线x(t)。
为了确定要求的曲线x(t),需要确定曲线的两点边界值。
因此,要求确定初始状态和中端状态,这是求解状态方程式必需的边界条件。
最优控制问题中,初始时刻和初始状态x ()通常已知的,但是中端时刻和终端状态x()可以固定,也可以自由。
一般的说,对终端的要求可以用如下的终端等式或不等式约束条件来表示,即(3-1)(3-2)它们概括了对终端的一般要求。
实际上,终端约束规定了状态空间的一个时变或非时变的集合,此满足终端约束的状态集合称为目标集M,并可表示为:M={:∈,,} (3-3)为简单起见,有时终端约束式(3-3)称为目标集[5]。
四、容许控制控制向量u(t)的各个分向量往往是具有不同物理属性的控制量。
在实际控制问题中,大多数控制量受客观条件限制只能取值于一定范围。
这种限制范围,通常可用约束条件0≤u(t)≤ (4-1)或,i=1,2,… ,r (4-2)来表示。
式(4-2)表示一个控制空间中包括原点在内的超方体,式(4-1)和(4-2)式都规定了空间中的一个闭集[6]。
由控制约束条件所规定的点集为控制域,并记为。
凡在闭区间[,]上有定义,且在控制域内取值的每一控制函数u(t)均称为容许控制,并记为u (t)∈。
通常假定容许控制u(t)∈是一种有界连续函数或分段连续函数[7]。
五、性能指标从给定初始状态x()到目标集M的转移可通过不同的控制规律u(t)来实现,为了在各种可行的控制规律中找出一种效果最好的控制,这就需要首先建立一种评价控制效果好坏或控制品质优劣的性能指标函数。
性能指标的内容和函数,取决于最优控制问题所完成的任务。
不同的最优控制问题,就有不同的性能指标,即使是同一问题其性能指标也可能不同。
尽管不能为各式各样的最优控制问题规定了一个性能指标的统一格式,但是通常情况下,对连续系统时间函数性能指标已可以归纳为以下三种类型。
1)综合型和波尔扎(Bola)型性能指标设综合性或波尔扎型性能指标为(5-1)式中:L为标量函数,它是向量x(t)和u(t)的函数,称为动态性能指标;为标量函数,与终端时间及终端状态有关,称为终端性能指标;J为标量,对每个控制函数都有一个对应值;u()表示控制函数整体,而u(t)表示t时刻的控制向量[8]。
式(5-1)类型的性能指标成为综合型和波尔扎问题,它可以用来描述具有终端约束下的最小积分控制,或在积分约束下的终端最小时间控制。
2)积分型或拉格朗日(lagrange)型性能指标若不计终端性能指标,则式(5-1)称为(5-2)这时的性能指标称为积分型或拉格朗日问题,它更强调系统的过程要求。
在自动控制中,要求调解过程的某种积分评价为最小(或最大)就属于这一类问题[9]。
3)终端型或麦耶尔(Mager)型性能指标(5-3)这时的性能指标称为终端或麦耶尔问题。
这要求找出使终端的某一函数为最小(或最大)值的u(t),终端处某些变量的最终值不是预先规定的。
综上所述,性能指标与系统所收的控制作用和系统的状态有关,但是它不仅取决于某个固定时刻的控制变量和状态变量,而且与状态转移过程中的控制向量u(t)和状态曲线x(t)有关,因此性能指标是一个泛函[10]。
六、最优控制的求解方法最优控制研究的主要问题是根据建立的被控对象的数学模型,选择一个容许的控制规律,使得被控对象按预定要求运行,并使给定的某一性能指标达到极小值或极大值。
静态最优问题的目标函数是一个多元普通函数,求解静态最优控制问题常用的方法有经典微分法、线性规划、分割法(优选法)和插值法等。
动态最优问题的目标函数是一个泛函,求解最优控制问题常用的方法有经典变分法、极大(极小)值原理、动态规划和线性二次型最优控制法等。
对于动态系统,当控制无约束时,采用经典微分法或经典变分法;当控制有约束时,采用极大值原理或动态规划;如果系统是线性的,性能指标是性能指标是二次型形式的,则可采用线性二次型最优控制问题求解。