随机过程的基本概念和基本类型

合集下载

随机过程第二章

随机过程第二章

4、有限维分布族
定义:设
X t ; t T 为一个 S .P. ,其有限
维分布函数的全体(一维分布函数,二维分布函
数,n维分布函数)。
F Ft1 ,t2 ,,tn x1, x2 ,, xn ; xi R,ti T,n N, i 1,2,, n
称之为 S.P. X t 的有限维分布函数。
2、特点:
独立增量过程在零均值且二阶矩存在时,是正交增量过程。 注:独立增量过程在现实环境中大量存在(例2.10)
3、平稳独立增量过程(定义 2.8)
增量 X(t)-X(s) 的分布律仅依赖于区间长度t-s。(第三章) (三)马尔可夫过程(第四、五章) (四)正态过程 1、定义 2.10: X(t)的有限维分布律是n维正态随机向量的分布律. 2、特点: ①二阶矩过程 ②数字特征成为其参数。
状态空间:S .P. X t 的状态所有可能取值的 集合,称之为状态空间。
小结:
X e, t 是状态与参数的二元函数
若 若
e
t
确定 确定
X e, t 是时间函数
X e, t 是随机变量
是一个确定值 是随机过程 S .P.
r.v.
若 e, t 确定 若 e, t 不定
随机过程的分类
一维正态过程分布律:
X (t ) ~ N u(t ),
2 2
2
(t )

二维正态过程分布律:
X (t1 ), X (t2 ) ~ N u(t1 ),u(t2 ),
这里有5个参数。 其中 1
(t1 ), (t2 ), (t1 , t2 )

(t1 , t2 ) 1 为相关系数或归一化协方差函数

信息论与随机过程

信息论与随机过程
其中 Y , Z 是相互独立旳随机变量,且 EY EZ 0 ,
DY DZ 2 ,求 {X (t),t 0} 旳均值函数 mX (t) 和协
方差函数 BX (s,t) 。
解:由数学期望旳性质,有
EX (t) E[Y cos(t) Z sin(t)] cos(t)EY sin(t)EZ 0
2.按过程旳概率构造分类
概率 构造 分类
独立随机过程 独立增量随机过程 马尔可夫过程 平稳随机过程
首页
第二节 随机过程旳分布及其数字特征
一、随机过程旳分布函数
一维 设{ X (t) ,t T }是一个随机过程,
分布 对于固定的t1 T , X (t1) 是一个随机变量,
函数 其分布函数为
首页
F (t1;x1 ) P{X (t1 ) x1} ,t1 T
称为随机过程 X (t) 的均值函数
或称为数学期望
阐明 m(t) 是 X (t) 的所有样本函数在时刻 t 的函数值的平均
它表示随机过程 X (t) 在时刻 t 的摆动中心
首页
2.方差函数
随机过程{ X (t) ,t T }的二阶中心矩
D(t) D[ X (t)] E[(X (t) m(t))2 ]
X (t1) 和 X (t2 ) 的二阶原点混合矩
R(t1,t2 ) E[X (t1)X (t2 )]
称为随机过程 X (t) 的自相关函数,
简称有关函数
注 当 m(t) 0 时,有
R(t1,t2 ) = B(t1, t2 )
首页
6.相互关函数
设 X (t) 和Y (t) 是两个随机过程 对任意t1, t2 T 则
称 F (t1;x1 ) 为随机过程 X (t) 的一维分布函数。

随机过程知识点汇总

随机过程知识点汇总

随机过程知识点汇总随机过程是指一组随机变量{X(t)},其中t属于某个集合T,每个随机变量X(t)都与一个时刻t相关联。

2.随机过程的分类随机过程可以分为离散时间随机过程和连续时间随机过程。

离散时间随机过程是指在离散的时间点上取值的随机过程,例如随机游走。

连续时间随机过程是指在连续的时间区间上取值的随机过程,例如XXX运动。

3.随机过程的数字特征随机过程的数字特征包括均值函数和自相关函数。

均值函数E[X(t)]描述了随机过程在不同时刻的平均取值。

自相关函数R(t1,t2)描述了随机过程在不同时刻的相关程度。

4.平稳随机过程平稳随机过程是指其均值函数和自相关函数都不随时间变化而变化的随机过程。

弱平稳随机过程的自相关函数只与时间差有关,而不依赖于具体的时间点。

强平稳随机过程的概率分布在时间上是不变的。

5.高斯随机过程高斯随机过程是指其任意有限个随机变量的线性组合都服从正态分布的随机过程。

高斯随机过程的均值函数和自相关函数可以唯一确定该过程。

6.马尔可夫随机过程马尔可夫随机过程是指其在给定当前状态下,未来状态的条件概率分布只依赖于当前状态,而与过去状态无关的随机过程。

马尔可夫性质可以用转移概率矩阵描述,并且可以用马尔可夫链来建模。

7.泊松过程泊松过程是指在一个时间段内随机事件发生的次数服从泊松分布的随机过程。

泊松过程的重要性质是独立增量和平稳增量。

8.随机过程的应用随机过程在金融学、信号处理、通信工程、控制理论等领域有广泛的应用。

例如,布朗运动被广泛应用于金融学中的期权定价,马尔可夫链被应用于自然语言处理中的语言模型。

t)|^2]协方差函数BZs,t)E[(ZsmZs))(ZtmZt))],其中Zs和Zt是Z在时刻s和t的取值。

复随机过程是由实部和虚部构成的随机过程,其均值和方差函数分别由实部和虚部的均值和方差函数计算得到。

协方差函数和相关函数也可以类似地计算得到。

复随机过程在通信系统中有广泛的应用,例如调制解调、信道编解码等。

1.随机过程概论

1.随机过程概论

{ X (t ) , t (,) } 是一随机过程 . 状态空间 I (,) . 样本函数空间 X { cos πt , t } .
H 发生
x( t )
x( t ) t
x( t ,T ) x( t )
1 1 1
T 发生
o

t t x( t , H )
1
2
x( t , T ) x( t ) x( t , H )
Ft
1 , t 2 ,, t n
( x1 , x2 ,, xn ) Ft ( xk ) , t1 , t 2 ,, t n T , n 1 ,
k 1
k
n
则称 X (t ) 具有独立性 , 或称 X (t ) 是独立过程 .
随机过程的独立性是指其在不同的时刻互不影响 , 一维分布
t1 , t 2 T .
当 A~N (0,1), B~U (0,2) 且 A, B 相互独立时 ,
EA 0,
EA2 DA ( EA)2 1,
EB 1,
EB 2 DB ( EB)2 4 3 ,
E ( AB ) EA EB 0,
所以可得
m X ( t ) t EA EB 1 , RX (t1 , t 2 ) t1t 2 EA2 ( t1 t 2 ) E ( AB) EB 2 t1t 2 4 3 , t1 , t 2 T .
o

称为统计平均或集平均 . 均值函数 m X ( t ) 表示了随机过程 X ( t ) 在各个时刻的摆动中心 .
X ( t ) 的二阶原点矩和二阶中 心矩分别记为
2 ΨX ( t ) EX 2 ( t ) 2 2 2 X ( t ) E[ X ( t ) m X ( t )]2 Ψ X (t ) m X (t )

高等数学中的随机过程相关知识点详解

高等数学中的随机过程相关知识点详解

高等数学中的随机过程相关知识点详解近年来,随机过程被越来越多的人所关注和使用。

作为高等数学的一个分支,随机过程具有广泛的应用领域,包括金融、医学、生物学等等。

在本文中,将详细解析高等数学中的随机过程相关知识点,帮助读者更好地理解和应用这一领域的知识。

一、概率论基础在进行随机过程的学习之前,我们需要了解一些概率论的基础知识。

概率论是确定不确定性的一种科学方法,它研究的是随机事件的发生规律和概率计算方法。

在概率论中,有一些基本概念和公式,包括概率、条件概率、概率分布、随机变量等等。

1.1 概率概率是指一个事件发生的可能性大小。

通常用P来表示,它的取值范围是0到1。

当P=0时,表示这个事件不可能发生;当P=1时,表示这个事件一定会发生。

例如,掷一枚硬币正面朝上的概率为1/2,或者说P=0.5。

1.2 条件概率条件概率是指在已知某些条件下,某个事件发生的概率。

通常用P(A|B)来表示,表示在B发生的情况下,A发生的概率。

例如,从一副牌中摸两张牌,第一张是红桃,第二张是黑桃的概率为P(第二张是黑桃|第一张是红桃)=26/51。

1.3 概率分布概率分布是指所有可能事件发生的概率分布,它是概率论的基础。

在不同的情况下,概率分布也是不同的。

例如,在离散型随机变量中,概率分布通常以概率质量函数的形式给出;而在连续性随机变量中,概率分布通常以概率密度函数的形式给出。

1.4 随机变量随机变量是一种随机事件的数学描述。

它通常用大写字母表示,如X、Y、Z等等。

根据其取值的类型,随机变量可以分为离散型和连续型。

离散型随机变量只能取到有限或可数个值,如掷硬币、扔骰子等等;而连续型随机变量可以取到任意实数值,如身高、体重等等。

二、随机过程的基本概念2.1 随机过程的定义随机过程是一种描述随机事件随时间变化的方法。

它可以看作是有限维随机变量序列的无限集合,其中每个随机变量代表系统在某个时刻的状态。

随机过程的定义包括两个方面:空间(状态集合)和时间(时刻集合)。

随机过程的基本概念及类型

随机过程的基本概念及类型
应用数理统计与随机过程
第七章 随机过程的基本概念及类型
第一章 概率论基础
目录 Contents
7.1
随机过程的基本概念
7.2
随机过程的分布率和数字特征
7.3
复随机过程
7.4
几种重要的随机过程
7.1 随机过程的基本概念
通俗地讲, 用于研究随机现象变化过程的随机变量 族称为随机过程.
7.1.1 随机过程的实例
当 t1 t2 t 时,
DX (t )
2 X
(t)
BX
(t,t)
RX
(t,t
)
m
2 X
(t)
最主要的数字特征
mX (t) E[X (t)]
均值函数
RX(t1, t2 ) E[X (t1 )X (t2 )] 自相关函数
7.2 随机过程的分布律和数字特征
例7.2 设随机过程 X (t ) Y cos( t) Z sin( t), t 0, 其中 Y , Z 是相互独立的随机变量, 且 EY EZ 0, DY DZ 2 , 求 {X (t ) t 0}的均值函数 mX (t) 和 协方差函数 BX (s, t).
RW (s, t) E[W (s)W (t)] E[( X (s) Y (s))( X (t ) Y (t ))]
E[ X (s)X (t) X (s)Y (t) Y (s)X (t ) Y (s)Y (t)]
7.2 随机过程的分布律和数字特征
E[ X (s)X (t)] E[ X (s)Y (t)] E[Y (s)X (t)] E[Y (s)Y (t)]
◎ 显然有关系式 BX (s, t) RX (s, t) mX (s)mX (t) , s, t T .

随机过程的基本概念和分类

随机过程的基本概念和分类

随机过程的基本概念和分类随机过程是一种随时间和其他随机变量而变化的数学对象,是概率论和统计学中的重要概念。

它被广泛应用于自然科学、工程学、经济学、金融学和社会科学等领域。

本文将介绍随机过程的基本概念和分类,帮助读者更好地理解随机过程的本质和应用。

1. 随机过程的基本概念随机过程是由一组随机变量组成的序列或函数,它表示在一定随机环境下某个系统或现象的发展过程。

在随机过程中,时间通常是一个自变量,而随机变量则是随时间变化的函数或序列。

根据定义域的不同,随机过程可以分为离散时间和连续时间两种类型。

离散时间的随机过程是在离散时间点上的序列,例如投骰子的过程。

连续时间的随机过程是在连续时间上的函数,例如天气的变化。

在通常情况下,连续时间的随机过程被认为是一个时间的连续函数,而离散时间的随机过程则表示为时间的离散序列。

随机过程可以用概率分布函数来表达。

对于连续时间的随机过程,它的概率分布函数是一个满足概率公理的函数。

对于离散时间的随机过程,概率分布可以用概率质量函数来描述。

概率分布函数可以通过研究随机过程的瞬时状态来推导。

随机过程的瞬时状态指位置和方向的一切资料,包括当前位置、速度和加速度等。

2. 随机过程的分类随机过程可以按照多种方式进行分类。

以下是一些常见的分类方式。

2.1 马尔可夫过程马尔可夫过程是一种随机过程,它的状态转移只与它的当前状态有关,而与过去状态和未来状态无关。

马尔可夫过程被广泛应用于物理、经济、金融和信号处理等领域。

根据定义域的不同,马尔可夫过程可以分为离散时间和连续时间两种类型。

离散时间的马尔可夫过程可以用转移矩阵来描述,而连续时间的马尔可夫过程则可以用转移概率密度函数来描述。

2.2 平稳过程平稳过程是指在不同时间段内,随机过程的统计分布不随时间而改变的随机过程。

这意味着它的瞬时状态空间必须一致,并且在不同的时间点上具有相同的概率分布。

平稳过程的例子包括白噪声、布朗运动和马尔可夫过程等。

第二章随机过程的概念与基本讲解

第二章随机过程的概念与基本讲解

例 6、设 { X i , i 1,2,} 是一独立随机变量序列,且有 相同的两点分布
X i -1 1
pi 1/2 1/2
n
令Y (0) 0,Y (n) X i 。 i 1
试求:随机过程 {Y (n),n 0,1,2,} 的均值函数和相关 函数。
§ 2.3 复随机过程
定义 2.5 设 { X t , t T } ,{Yt , t T } 是取实数值的两
例 2 设随机过程
X (t) Y Zt, t 0
其中,Y,Z 是相互独立的 N(0,1)随机变量,求此随机过 程的一、二维概率密度族。
注:二维正态分布的密度函数:
f (x, y)
1
2σ1σ2 1 ρ2

1
exp
2(1

ρ2
)
(
x
μ1 )2 σ12

2ρ(
第二章 随机过程的概念与基本类型
随机过程---随机信号 随机过程是与确定性过程相对立的一个概念.从信 息论的观点 ,对接收者来讲只有信号表现出某种不可预 测性才可能蕴涵信息.因为如果在信号收到以前接收者 已准确地预测它的一切,则这种信号是毫无用处的.类似 地,若接收者能从信号的过去正确地预测它的将来,将来 的部分信号即成多余。
x

μ1 )( y σ1 σ2

μ2
)

(
y
μ2 σ22
)2

例 3 设 X(t)是实随机过程,x 为任意实数,令
Y
(t)

1, 0,
X (t) X (t)

x, x,
证明随机过程 Y(t)的均值函数和相关函数分别为 X(t)的 一维和二维分布函数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
序列. 随机序列写为 { X ( n),n 0} 或{ X n , n 0,1,}.
(2) T {0,1,2,}
(3) T [a , b] 其中a可以取0或 , b可以取 .
当参数取可列集时, 一般称随机过程为随机序列。 随机过程 { X ( t ); t T }可能取值的全体所构成的集合 称为此随机过程的状态空间,记作S. S中的元素 称为状态。状态空间可以由复数、实数或更一般的 抽象空间构成。
— —称为二维随机向量 ( X ( t1 ), X ( t2 )) 的分布函数。 若 f ( t1 , t 2 , x1 , x2 ) 0,
Ft1 ,t2 ( x1 , x2 ) F ( t1 , t2 , x1 , x2 )
1 x2 f ( t , t , y , y )dy dy -x 1 2 1 2 1 2
cos t , 当出现 H 时 t ( , ) X (t ) 当出现 T 时 2t ,
其中 P{ H } P{T } 1 / 2, 则 { X ( t ) , t ( , )}是一
随机过程。
例2.3
Brown运动: 英国植物学家Brown注意到 漂浮在液面上的微小粒 子不断进行无规 则的运动,这种运动后 来称为Brown运 动。同时分子大量随机 碰撞的结果。记 ( X ( t ),Y ( t ))为粒子在平面坐标上的 位置, 则它是平面上的 Brown运动。
2.2 有限维分布与Kolmogvrov定理 一、随机过程的分布函数 1. 一维分布函数
设X ( t )是一随机过程,称
Ft ( x )F ( t , x ) P{ X ( t ) x }
称为{ X ( t )}的一维分布函数. 若 f ( t , x ) 0,
使得
Ft ( x ) F ( t , x )
根据T和S的不同过程可以分成不 同的类:
参数空间分类:
离散参数 连续参数
状态空间分类:
如 T {0,1,2} 如T {t | t 0}
离散状态 连续状态
S取值是离散的 S取值是连续的
随机过程分为以下四类: (1)离散参数离散型随机过程; (2)连续参数离散型随机过程; (3)连续参数连续型随机过程; (4)离散参数连续型随机过程。
— —则称 f ( t1 , t 2 , x1 , x2 )为二维概率密度 .
3. n维分布函数
n维随机向量( X ( t1 ), X ( t2 ),, X ( tn ))的联合分布函数为
Ft1 ,, t n ( x1 ,, xn )F ( t1 ,, t n ; x1 ,, xn )
第2章 随机过程的基本 概念和基本类型
2.1 基本概念,我们研究了无穷多个随机变量,但局限
在它们相互独立的情形。 将上述情形加以推广, 即研究 定义2.1:设 (, , P )是一概率空间,对每一个参数
t T ,X (t , ) 是一定义在概率空间 ( , , P ) 上的随机
称为n维随机向量( X ( t1 ), X ( t2 ),, X ( tn )) 的n维分布函数.
— —则称 f ( t1 ,, tn ; x1 ,, xn )为n维概率密度.
4. 有限维分布族
一维、二维, ,n维分布函数的全体 :
{ Ft1 ,, t n ( x1 ,, xn ),t1 ,, t n T , n 1}
这就是随机过程。 一族无穷多个、相互有关的随机变量,
变量, 则称随机变量族 XT { X ( t , ); t T } 为该概率
T 称为参数集。 空间上的一随机过程。
随机过程的两种描述方法:
X (t , ) : T R 用映射表示 X T , 即 X (, ) 是一定义在 T 上的二元单值函数, 固定 t T , X ( t , ) 是一定义在样本空间 上的函数,
以随机过程的统计特征或概率特征的分类,一般有:
独立增量过程; 二阶矩过程; 平稳过程; Poission过程;
更新过程;
Markov过程; 鞅; 维纳过程。
随机过程举例 例2.1 随机游动: 一醉汉在路上行走,以 概率p前进一步,
以概率1 p后退一步(假设其步长 相同) ,以X ( t )记 他在t时刻在路上的位置,则 X ( t )就是直线上的随 机游动. 例2.2 抛掷一枚硬币,样本空间为 S { H , T } 定义:
P{ X ( t1 ) x1 ,, X ( tn ) xn } 若 f ( t1 ,, tn ; x1 ,, xn ) 0,
Ft1 ,,t n ( x1 ,, xn ) F ( t1 ,, t n ; x1 ,, xn )
1 x n f ( t ,, t ; y ,, y )dy dy -x 1 n 1 n 1 n
即为一随机变量; 对于固定的 0 , X ( t , 0 ) 是一个 关于参数 t T 记号 X ( t , ) 有时记为 X t ( ) 或简记为 X ( t ).
的函数, 或称随机过程的一次实现。 通常称为样本函数,
参数 T 一般表示时间或空间。
参数常用的一般有:
(1) T N 0 {0,1,2,}, 此时称之为随机序列或 时间
x -
f ( t , y )dy
则称 f ( t , x ) 为{ X ( t )}的一维概率密度 .
2. 二维分布函数
设二维随机向量 {( X ( t1 ), X ( t 2 )) ( t1 , t 2 ) T }
Ft1 ,t2 ( x1 , x2 )F ( t1 , t2 , x1 , x2 ) P{ X ( t1 ) x1 , X ( t2 ) x2 }
相关文档
最新文档