【冲刺卷】七年级数学上期中模拟试卷(附答案) (2)
【冲刺卷】七年级数学上期中一模试题(含答案)

【冲刺卷】七年级数学上期中一模试题(含答案)一、选择题1.为庆祝“六·一”儿童节,綦江区某中学初一年级学生举行火柴棒摆“金鱼”比赛.如图所示:……按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( )A .+26nB .+86nC .44n +D .8n2.下面四个代数式中,不能表示图中阴影部分面积的是( )A .()()322x x x ++-B .25x x +C .()232x x ++D .()36x x ++3.如图,O 在直线AB 上,OC 平分∠DOA (大于90°),OE 平分∠DOB ,OF ⊥AB ,则图中互余的角有( )对.A .6B .7C .8D .94.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >0 5.下列计算正确的是( )A .a 2+a 3=a 5B .a 2•a 3=a 6C .(a 2)3=a 6D .(ab )2=ab 2 6.下面四个图形中,是三棱柱的平面展开图的是( )A .B .C .D .7.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示为( )A .84.610⨯B .84610⨯C .94.6D .94.610⨯8.有理数a 、b 在数轴上对应的位置如图所示:则下列关系成立的是( )A .a-b>0B .a+b>0C .a-b=0D .a+b<09.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是( )A .厉B .害C .了D .我10.已知x =2是关于x 的一元一次方程mx+2=0的解,则m 的值为( )A .﹣1B .0C .1D .211.下列等式变形错误的是( )A .若x =y ,则x -5=y -5B .若-3x =-3y ,则x =yC .若x a =y a ,则x =yD .若mx =my ,则x =y 12.如果||a a =-,下列成立的是( )A .0a >B .0a <C .0a ≥D .0a ≤二、填空题13.两根木条,一根长60cm ,另一根长80cm ,将它们的一端重合,放在同一直线上,此时两根木条的中点间的距离是 cm .14.商店运来120台洗衣机,每台售价是440元,每售出一台可以得到售价15%的利润,其中两台有些破损,按售价打八折出售。
【冲刺卷】七年级数学上期中模拟试题(带答案) (2)

【冲刺卷】七年级数学上期中模拟试题(带答案) (2)一、选择题1.为庆祝“六·一”儿童节,綦江区某中学初一年级学生举行火柴棒摆“金鱼”比赛.如图所示:……按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( )A .+26nB .+86nC .44n +D .8n 2.81x >0.8x ,所以在乙超市购买合算.故选B .【点睛】本题看起来很繁琐,但只要理清思路,分别计算降价后的价格是原价的百分之多少便可判断.渗透了转化思想.3.绝对值不大于4的整数的积是( )A .16B .0C .576D .﹣14.7-的绝对值是 ( )A .17-B .17C .7D .7-5.下列方程变形正确的是( )A .由25x +=,得52x =+B .由23x =,得32x =C .由104x =,得4x =D .由45x =-,得54x =--6.按如图所示的运算程序,能使输出结果为10的是( )A .x =7,y =2B .x =﹣4,y =﹣2C .x =﹣3,y =4D .x =12,y =3 7.23的相反数是 ( )A .32B .32-C .23D .23- 8.若关于x 的方程3x +2a =12和方程2x -4=12的解相同,则a 的值为( ) A .6 B .8 C .-6 D .49.下列等式变形正确的是( )A .由a =b ,得5+a =5﹣bB .如果3a =6b ﹣1,那么a =2b ﹣1C .由x =y ,得x y m m= D .如果2x =3y ,那么262955x y --= 10.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x 双,列出方程( )A .10%x =330B .(1﹣10%)x =330C .(1﹣10%)2x =330D .(1+10%)x =330 11.下列等式变形错误的是( )A .若x =y ,则x -5=y -5B .若-3x =-3y ,则x =yC .若x a =y a,则x =y D .若mx =my ,则x =y 12.我县人口约为530060人,用科学记数法可表示为( ) A .53006×10人 B .5.3006×105人 C .53×104人 D .0.53×106人 二、填空题13的相反数是_____________,绝对值是________________14.A ∠与B Ð的两边分别平行,且A ∠比B Ð的2倍少45°,则A ∠=__________.15.23-的相反数是______. 16.若计算(x ﹣2)(3x+m )的结果中不含关于字母x 的一次项,则m 的值为_____.17.某电台组织知识竞赛,共设置20道选择题,各题分值相同,每题必答,下表记录了3个参赛者的得分情况.若参赛者D 得82分,则他答对了__________道题.18.已知x=3是方程ax ﹣6=a+10的解,则a= .19.观察下列运算并填空.1×2×3×4+1=24+1=25=52;2×3×4×5+1=120+1=121=112;3×4×5×6+1=360+1=361=192;4×5×6×7+1=840+1=841=292;7×8×9×10+1=5040+1=5041=712;……试猜想:(n+1)(n+2)(n+3)(n+4)+1=________2.20.网购越来越多地成为人们的一种消费方式,在去年的“双11”网上促销活动中天猫和淘宝的支付交易额突破1682亿元,将数字1682亿用科学记数法表示为_________________.三、解答题21.请仔细阅读下列材料:计算:(-130)÷(23-110+16-25).解:先求原式的倒数,即(23-110+16-25)÷(-130)=(23-110+16-25)×(-30)=-20+3-5+12=-10,所以原式=-1 10.请根据以上材料计算:(-142)÷(16-314+23-27).22.用代数式表示:(1)a,b两数的平方和减去它们乘积的2倍;(2)a,b两数的和的平方减去它们的差的平方;(3)一个两位数,个位上的数字为a,十位上的数字为b,请表示这个两位数;(4)若a表示三位数,现把2放在它的右边,得到一个四位数,请表示这个四位数.23.如图,∠AOB=90°,∠BOC=2∠BOD,OD平分∠AOC,求∠BOD的度数.24.用四个长为m,宽为n的相同长方形按如图方式拼成一个正方形.(1).请用两种不同的方法表示图中阴影部分的面积.方法①: ;方法②: .(2).由 (1)可得出()m n +2,2()m n - ,4mn 这三个代数式之间的一个等量关系为: .(3)利用(2)中得到的公式解决问题:已知2a+b=6,ab =4,试求2(2)a b -的值.25.工厂某车间有48名工人,平均每人每天加工大齿轮10个或小齿轮15个,已知1个大齿轮与3个小齿轮配成一套,那么怎么安排工人,才能使每天加工的大小齿轮刚好配套?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】观察给出的3个例图,注意火柴棒根数的变化是图②的火柴棒比图①的多6根,图③的火柴棒比图②的多6根,而图①的火柴棒的根数为2+6.【详解】解:图①中有8根,即2+6=8图②中有14根,即2+62⨯图③中有20根,即263+⨯……∴第n 个图有:26n +;故选:A.【点睛】本题考查列代数式,本题的解答体现了由特殊到一般的数学方法(归纳法),先观察特例,找到火柴棒根数的变化规律,然后猜想第n 条小鱼所需要的火柴棒的根数.2.无3.B【解析】【分析】先找出绝对值不大于4的整数,再求它们的乘积.【详解】解:绝对值不大于4的整数有,0、1、2、3、4、﹣1、﹣2、﹣3、﹣4,所以它们的乘积为0.故选B .【点睛】绝对值的不大于4的整数,除正数外,还有负数.掌握0与任何数相乘的积都是0.4.C解析:C【解析】【分析】负数的绝对值为这个数的相反数.【详解】|-7|=7,即答案选C.【点睛】掌握负数的绝对值为这个数的相反数这个知识点是解题的关键.5.B解析:B【解析】【分析】根据等式的性质依次进行判断即可得到答案.【详解】A. 由25x +=,得x=5-2,故错误;B. 由23x =,得32x =,故正确; C. 由104x =,得x=0,故错误; D. 由45x =-,得x=4+5,故错误,故选:B.【点睛】此题考查等式的性质,熟记性质定理是解题的关键.6.D解析:D【解析】【分析】根据运算程序,结合输出结果确定的值即可.解:A、x=7、y=2时,输出结果为2×7+22=18,不符合题意;B、x=﹣4、y=﹣2时,输出结果为2×(﹣4)﹣(﹣2)2=﹣12,不符合题意;C、x=﹣3、y=4时,输出结果为2×(﹣3)﹣42=﹣22,不符合题意;D、x=12、y=3时,输出结果为2×12+32=10,符合题意;故选:D.【点睛】此题考查了代数式的求值与有理数的混合运算,熟练掌握运算法则是解本题的关键.7.D解析:D【解析】【分析】只有符号不同的两个数互为相反数.【详解】2 3的相反数是23-故选:D【点睛】考核知识点:相反数.理解定义是关键.8.C解析:C【解析】【分析】分别解出两方程的解,两解相等,就得到关于a的方程,从而可以求出a的值.【详解】解第一个方程得:x=1223a-,解第二个方程得:x=8,∴1223a-=8,解得:a=-6.故选C.【点睛】考查了同解方程,利用同解方程得出关于a的方程是解题关键.9.D解析:D【解析】【分析】根据等式性质1对A进行判断;根据等式性质2对B、C进行判断;根据等式性质1、2对D进行判断.【详解】解:A、由a=b得a+5=b+5,所以A选项错误;B、如果3a=6b﹣1,那么a=2b﹣13,所以B选项错误;C、由x=y得xm=ym(m≠0),所以C选项错误;D、由2x=3y得﹣6x=﹣9y,则2﹣6x=2﹣9y,所以262955x y--=,所以D选项正确.故选:D.【点睛】本题考查了等式的性质:性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.10.D解析:D【解析】解:设上个月卖出x双,根据题意得:(1+10%)x=330.故选D.11.D解析:D【解析】【分析】等式两边同时加上或减去同一个数,等式依然成立;等式两边同时乘以或除以同一个不为0的数,等式依然成立;据此对各选项进行分析判断即可.【详解】A:等式两边同时减去了5,等式依然成立;B:等式两边同时除以3-,等式依然成立;C:等式两边同时乘以a,等式依然成立;D:当0m=时,x不一定等于y,等式不成立;故选:D.【点睛】本题主要考查了等式的性质,熟练掌握相关概念是解题关键.12.B解析:B【解析】【分析】根据科学记数法的定义及表示方法进行解答即可.【详解】解:∵530060是6位数,∴10的指数应是5,故选B.【点睛】本题考查的是科学记数法的定义及表示方法,熟知以上知识是解答此题的关键.二、填空题13.2-2-【解析】【分析】一个数a的相反数是-a正数的绝对值就是这个数本身负数的绝对值是它的相反数据此即可求解【详解】解:-2的相反数是:-(-2)=2-;∵<2∴-2<0∴|-2|=-(-2)=2-解析:【解析】【分析】一个数a的相反数是-a,正数的绝对值就是这个数本身,负数的绝对值是它的相反数,据此即可求解.【详解】的相反数是:;2,<0,∴故答案为:【点睛】本题考查了实数的性质:相反数和绝对值,熟记相反数的概念和绝对值的性质是解决此题的关键.14.或【解析】【分析】由∠A与∠B的两边分别平行可得到∠A=∠B或者∠A 与∠B互补再结合已知条件即可求出∠A的度数【详解】∵∠A和∠B的两边分别平行∴∠A=∠B或∠A+∠B=180°当∠A=∠B时∠A=解析:45︒或105︒【解析】【分析】由∠A与∠B的两边分别平行,可得到∠A=∠B或者∠A与∠B互补,再结合已知条件即可求出∠A的度数.【详解】∵∠A和∠B的两边分别平行∴∠A=∠B或∠A+∠B=180°,当∠A=∠B时,∠A=45°当∠A+∠B=180°时∵ ∠A 比∠B 的两倍少45°,∴ ∠A=2∠B-45°,∵ ∠A=2∠B-45° ,∠A+∠B=180°∴ ∠A=105︒.综上可知∠A 的度数为45︒或105︒故答案为:45︒或105︒.【点睛】此题考查了平行线的性质与方程组的解法.此题难度不大,解题的关键是由∠A 和∠B 的两边分别平行,即可得∠A=∠B 或∠A+∠B=180°,注意分类讨论思想的应用. 15.【解析】试题解析:根据只有符号不同的两个数互为相反数可得的相反数是 解析:23【解析】 试题解析:根据只有符号不同的两个数互为相反数,可得23-的相反数是2316.6【解析】试题解析:原式由结果不含x 的一次项得到解得:故答案为6 解析:6【解析】试题解析:原式()2362.x m x m =+-- 由结果不含x 的一次项,得到60m -=,解得: 6.m =故答案为6.17.17【解析】【分析】由参赛者A 的得分就可以得出答对一题的得5分再由参赛者BC 可知答错一题扣1分;设答对的题有x 题则答错的有(20-x )题根据答对的得分-答错题的得分=82分建立方程求出其解即可;【详 解析:17【解析】【分析】由参赛者A 的得分就可以得出答对一题的得5分,再由参赛者B ,C 可知,答错一题扣1分;设答对的题有x 题,则答错的有(20-x )题,根据答对的得分-答错题的得分=82分,建立方程求出其解即可;【详解】由参赛者A 的得分就可以得出答对一题的得5分,再由参赛者B ,C 可知,答错一题扣1分;设答对的题有x 题,则答错的有(20-x )题,所以5x-(20-x )=82解得x=17故答案为:17.【点睛】考核知识点:一元一次方程的与比赛问题.理解题意,求出积分规则是关键.18.8【解析】【分析】将x=3代入方程ax ﹣6=a+10然后解关于a 的一元一次方程即可【详解】∵x=3是方程ax ﹣6=a+10的解∴x=3满足方程ax ﹣6=a+10∴3a ﹣6=a +10解得a=8故答案为解析:8【解析】【分析】将x=3代入方程ax ﹣6=a+10,然后解关于a 的一元一次方程即可.【详解】∵x=3是方程ax ﹣6=a+10的解,∴x=3满足方程ax ﹣6=a+10,∴3a ﹣6=a+10,解得a=8.故答案为8.19.n2+5n+5【解析】【分析】观察几个算式可知结果都是完全平方式且5=1×4+111=2×5+119=3×6+1…由此可知最后一个式子为完全平方式且底数=(n+1)(n+4)+1=n2+5n+5【详解析:n 2+5n+5【解析】【分析】观察几个算式可知,结果都是完全平方式,且5=1×4+1,11=2×5+1,19=3×6+1,…,由此可知,最后一个式子为完全平方式,且底数=(n+1)(n+4)+1=n 2+5n+5.【详解】根据算式的规律可得:(n+1)(n+2)(n+3)(n+4)+1=(n 2+5n+5)2.故答案为n 2+5n+5.【点睛】本题考查了整式的混合运算,解题的关键是熟练的掌握整式的混合运算法则.20.682【解析】【分析】科学记数法数学术语是指把一个大于10(或者小于1)的整数记为a×10n 的形式(其中|1|≤|a|<|10|)的记数法【详解】1682亿=1682故答案为:1682【点睛】考核知解析:6821110【解析】【分析】科学记数法,数学术语,是指把一个大于10(或者小于1)的整数记为a ×10n 的形式(其中|1|≤|a|<|10|)的记数法.【详解】1682亿=1.6821110⨯故答案为:1.6821110⨯【点睛】考核知识点:科学记数法.理解科学记数法的定义是关键.三、解答题21.-114【解析】【分析】 根据题目提供的方法计算即可.【详解】∵(16-314+23-27)÷(-142) =(16-314+23-27)×(-42) =16×(-42)-314×(-42)+23×(-42)-27×(-42) =-7+9-28+12=-7-28+9+12=-35+21=-14,∴(-142)÷(16-314+23-27)=-114. 【点睛】本题考查了有理数的混合运算,熟练掌握有理数的运算法则并读懂题目所提供的的运算方法是解答本题的关键.22.(1)222a b ab +-;(2)22(a b)(a b)+--;(3)10b a +;(4)10a +2【解析】【分析】(1)关系式为:a 、b 两数的平方和−a ,b 乘积的2倍,列出代数式即可;(2)分别表示出a 与b 两数和的平方、a 与b 差的平方,然后用前者减去后者即可;(3)两位数=十位数字×10+个位数字,根据此关系可列出代数式; (4)只需将原先的三位数扩大十倍再加上数字1即可得到四位数.【详解】解:(1)a ,b 两数的平方和减去它们乘积的2倍,代数式表示为:222a b ab +-;(2)a ,b 两数的和的平方减去它们的差的平方,代数式表示为:22(a b)(a b)+--;(3)这个两位数为:10b a +;(4)由题意得,这个四位数可表示为:10a +2.【点睛】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式. 列代数式时,要先认真审题,抓住关键词语,仔细辩析词义;分清数量关系;规范地书写.23.∠BOD=22.5°.【解析】【试题分析】根据两角的等量关系列方程求解即可.【试题解析】设∠BOD=x ,因为∠AOB=90°,则∠AOD=90°-x , 因为 OD 平分∠AOC ,所以∠D OC=∠AOD=90°-x , 所以∠BOC=∠DOC-∠BOD=90°-2x , 因为∠BOC=2∠BOD ,所以90°-2x=2x ,解得:x =22.5°.即∠BOD=22.5°.【方法点睛】本题目是一道考查角平分线的题目,在本题中,根据两角的数量关系借助方程解决更简单一些.24.(1) 2()m n -;2()4m n mn +-;(2)2()m n -=2()4m n mn +-;(3)4.【解析】【分析】(1)直接利用正方形的面积公式得到图中阴影部分的面积为(m-n )2;也可以用大正方形的面积减去4个长方形的面积得到图中阴影部分的面积为(m+n )2-4mn ;(2)根据图中阴影部分的面积是定值得到等量关系式;(3)利用(2)中的公式得到(2a-b )2=(2a+b )2-4×2ab . 【详解】方法①:()2m n -;方法②:()24m n mn +-(2)()2m n -=()24m n mn +-(3) (2a-b)2=(2a+b)2-8ab=36-32=4【点睛】考查了列代数式:根据题中的已知数量利用代数式表示其他相关的量.25.32名工人加工大齿轮,16人加工小齿轮【解析】【分析】设需安排x 名工人加工大齿轮,则(48﹣x )人加工小齿轮,由1个大齿轮与3个小齿轮配成一套可知小齿轮的个数是大齿轮个数的3倍,从而得出等量关系,就可以列出方程求出即可.【详解】解:设需安排x名工人加工大齿轮,则(48﹣x)人加工小齿轮,由题意得10x×3=15(48﹣x),解得:x=32.所以 48﹣x=16.答:需安排32名工人加工大齿轮,16人加工小齿轮.【点睛】本题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.。
2022-2023学年第一学期七年级数学期中复习冲刺卷(含答案解析)(2

2022-2023学年第一学期七年级数学期中复习冲刺卷(02)(考试范围:第1章~第3章考试时间:120分钟试卷满分:120分)学校:___________姓名:___________班级:___________考号:___________ 一、选择题(本大题共有8小题,每小题3分,共24分;在每小题给出的四个选项中,只有一项是符合题目要求的)1.实数,,,,,0.1010010001,其中是无理数的有()A.2个B.3个C.4个D.5个2.已知有理数a、b在数轴上的位置如图所示,下列结论正确的是()A.a>b B.ab<0 C.b—a>0 D.a+b>03.已知x的相反数是3,|y|=2,则x﹣y的值是()A.﹣5 B.﹣1 C.﹣5或1 D.﹣5或﹣14.计算所得的结果是()A.B.0 C.D.185.据国家统计局数据公报,去年虽受“新冠疫情”影响,但全年国内生产总值仍高达1015986亿元,比上年增长2.3%.这个数据“1015986亿”用科学记数法可表示为()A.B.C.D.6.“人间四月芳菲尽,山寺桃花始盛开”,证明温度随着海拔的升高而降低,已知某地面温度为,且每升高千米温度下降,则山上距离地面千米处的温度为()A.B.C.D.7.如图,将等边三角形按一定规律排列,第个图形中有1个小等边三角形,第个图形中有4个小等边三角形,按此规律,则第个图形中有个小等边三角形.A.36个B.49个C.35个D.48个8.将大小不一的正方形纸片①、②、③、④放置在如图所示的长方形ABCD内(纸片之间不重叠),那么阴影部分⑥与阴影部分⑤的周长之差与正方形()(填编号)的边长有关.A.① B.② C.③ D.④二、填空题(本大题共有10小题,每题3分,共30分)9.下列各数:,,,,,0,2.5中属于负分数的数有______.10.如果吨表示运入仓库的大米吨数,那么运出5吨大米表示为___________吨.11.比较大小:_______(填“>”、“<”或“=”)12.的倒数为_______,的相反数为_______.13.如图,在数轴上点B表示的数是5,那么点A表示的数是__________.14.若关于x、y的多项式化简后不含二次项.则________.15.在脱贫决战之际,2020年11月18日中宣部授予毛相林“时代楷模”称号.在毛相林的带领下,下庄村整村脱贫,村民人均收入达12600元,数据12600用科学记数法表示为__________.16.如图,将正整数按此规律排列成数表,则2022是表中第____行第___列.17.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是________.18.如图,A点的初始位置位于数轴上表示1的点,现对A点做如下移动:第1次向左移动3个单位长度至B点,第2次从B点向右移动6个单位长度至C点,第3次从C点向左移动9个单位长度至D点,第4次从D点向右移动12个单位长度至E点,…,依此类推,则点E在数轴上所表示的数为_____,这样第_____次移动到的点到原点的距离为2020.三、解答题(本大题共有10小题,共66分;第19-24每小题5分,第25-26每小题6分,第27小题10分,第28小题14分)19.把下列各数分别填在相应集合中:-0.2 ,513 ,325 ,-789 ,0 ,0.618,15%0.12314…负数集合:{...}整数集合:{...}分数集合:{...}20.计算:(1)-(-4)+(-1)-(+5)(2)(3)(4)(5)(6)21.先化简,再求值:(1),其中,.(2)其中,.22.观察数轴可得:到点﹣2和点2距离相等的点表示的数是0,有这样的关系0=(﹣2+2);根据上面的结论,解答下面的问题.(1)到点100和到点999距离相等的点表示的数是多少?(2)到点和到点距离相等的点表示的数是多少?(3)到点m和点﹣n距离相等的点表示的数是多少?23.甲、乙两商场上半年经营状况如下(“+”表示盈利,“-”表示亏本,以百万元为单位):(1)三月份乙商场比甲商场多亏损___________百万元;(2)六月份甲商场比乙商场多盈利___________百万元;(3)甲、乙两商场上半年平均每月分别盈利(亏损)多少百万元?24.某天下午,出租车司机小王在南北向的公路上接送乘客.如果规定向南为正,向北为负,小王从A地出发,出租车的行程如下(单位:千米):+4,﹣5,+3,﹣4,﹣3,+8.(1)最后一名乘客送到目的地时,小王在A地的什么方向?距A地的距离是多少千米?(2)出租车司机小王距离A地最远的是哪一次?距离A地多远?(3)若汽车耗油量为0.1升/千米,这天下午汽车共耗油多少升?25.已知:b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0,请回答问题:(1)请直接写出a、b、c的值,a=______,b=______,c=______.(2)数轴上a、b、c三个数所对应的分别为A、B、C,点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点A、B、C同时开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,点B和点C分别以每秒1个单位长度和3个单位长度的速度向右运动.①经过2秒后,求出点A与点C之间的距离AC.②经过t秒后,请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.26.回答以下问题(1)在数轴上分别画出表示下列3个数的点:,,(2)有理数、在数轴上对应点如图表示:①在数轴上表示,;②试把、、0、、这五个数从小到大用“<”号连接.27.某检修小组从A地出发,在东西方向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶记录如下(单位:千米):(1)求收工时距A地多远?(2)在第次记录时距A地最远.(3)若每千米耗油0.3升,每升汽油需7.2元,问检修小组工作一天需汽油费多少元?28.数轴上表示数的点与原点的距离叫做数的绝对值,记作.数轴上表示数的点与表示数的点距离记作,如表示数轴上表示数3的点与表示数5的点的距离,表示数轴上表示数3的点与表示数的点的距离,表示数轴上表示数的点与表示数3的点的距离.根据以上材料回答一列问题:(1)若,则______.若,则_____.(2)若,则能取到的最小值是______,最大值是______.(3)当,求的最大值和最小值.答案与解析一、选择题(本大题共有8小题,每小题3分,共24分;在每小题给出的四个选项中,只有一项是符合题目要求的)1.实数,,,,,0.1010010001,其中是无理数的有()A.2个B.3个C.4个D.5个【答案】C【分析】无理数就是无限不循环小数,理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】是无理数;是无理数;是分数,属于有理数;是无理数;是无理数;0.1010010001是有限小数,是有理数,∴,,,为无理数,共4个,故选:C.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.已知有理数a、b在数轴上的位置如图所示,下列结论正确的是()A.a>b B.ab<0 C.b—a>0 D.a+b>0【答案】A【分析】根据a、b在数轴上的位置和它们与原点的距离可得答案.【详解】解:由数轴可得b<a<0,|b|>|a|,∴a>b,ab>0,b-a<0,a+b<0,故A选项正确,B、C、D选项错误,故选:A.【点睛】题考查利用数轴比较有理数大小和判定式子的符号,掌握有理数的大小比较方法和有理数加减乘法法则是解题关键.3.已知x的相反数是3,|y|=2,则x﹣y的值是()A.﹣5 B.﹣1 C.﹣5或1 D.﹣5或﹣1【答案】D【分析】先根据绝对值、相反数,确定x,y的值,再根据有理数的减法,即可解答.【详解】解:∵x是3的相反数,|y|=2,∴x=-3,y=2或-2,∴x-y=-3-2=-5或x-y=-3-(-2)=-3+2=-1,故选:D.【点睛】本题考查了有理数的减法,解决本题的关键是熟记有理数的减法法则.4.计算所得的结果是()A.B.0 C.D.18【答案】B【分析】先算出,再算出,然后两数相加即可.【详解】解:原式.故选:B.【点睛】本题考查了有理数的乘方,解题的关键是掌握负数的奇数次幂是负数,负数的偶数次幂是正数;的奇数次幂是,的偶数次幂是1.5.据国家统计局数据公报,去年虽受“新冠疫情”影响,但全年国内生产总值仍高达1015986亿元,比上年增长2.3%.这个数据“1015986亿”用科学记数法可表示为()A.B.C.D.【答案】D【分析】根据科学记数法的表示方法:,进行表示即可.【详解】解:1015986亿=;故选D.【点睛】本题考查科学记数法.熟练掌握科学记数法的表示方法是解题的关键.6.“人间四月芳菲尽,山寺桃花始盛开”,证明温度随着海拔的升高而降低,已知某地面温度为,且每升高千米温度下降,则山上距离地面千米处的温度为()A.B.C.D.【答案】C【分析】根据气温地面温度降低的气温,把相关数值代入即可【详解】解:每升高千米温度下降,当高度为时,降低,气温与高度千米之间的关系式为故选:.【点睛】此题主要考查了列代数式;得到某一高度气温的表示方法是解决本题的关键.7.如图,将等边三角形按一定规律排列,第个图形中有1个小等边三角形,第个图形中有4个小等边三角形,按此规律,则第个图形中有个小等边三角形.A.36个B.49个C.35个D.48个【答案】A【分析】根据已知得出第n个图形有个三角形,据此代入计算可得.【详解】第个图有个三角形,第个图形有个三角形,第个图形有个三角形,第个图形有个三角形,故选A.【点睛】本题考查了规律型:图形的变化类:通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.8.将大小不一的正方形纸片①、②、③、④放置在如图所示的长方形ABCD内(纸片之间不重叠),那么阴影部分⑥与阴影部分⑤的周长之差与正方形()(填编号)的边长有关.A.① B.② C.③ D.④【答案】B【分析】设①的边长为a,②的边长是m.矩形⑤的长和宽之和等于正方形①的边长,矩形⑥(包含④时)的长和宽之和等于正方形①的边长与矩形②的边长之和,据此可以求出阴影部分⑤、⑥的周长,即可求解.【详解】设①的边长为a,②的边长是m.∵图形①、②、③、④是正方形,∴矩形⑤的长和宽之和等于正方形①的边长,矩形⑥(包含④时)的长和宽之和等于正方形①的边长与矩形②的边长之和,∴阴影部分⑤的周长是2a,阴影部分⑥的周长是2(a+m),∴阴影部分⑥﹣阴影部分⑤=2(a+m)﹣2a=2m.故选:B.【点睛】本题主要考查了根据图形列代数式的知识,根据图形的特点得出,矩形⑤的长和宽之和等于正方形①的边长,矩形⑥(包含④时)的长和宽之和等于正方形①的边长与矩形②的边长之和,是解答本题的关键.二、填空题(本大题共有10小题,每题3分,共30分)9.下列各数:,,,,,0,2.5中属于负分数的数有______.【答案】-0.6,,【分析】根据分数或小数的前面加上负号即为负分数即可得到答案.【详解】解:负分数是:-0.6,,;故答案为:-0.6,,.【点睛】本题考查了有理数的分类,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.10.如果吨表示运入仓库的大米吨数,那么运出5吨大米表示为___________吨.【答案】【分析】解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:“正”和“负”相对,所以如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为吨.故答案为:.【点睛】解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.11.比较大小:_______(填“>”、“<”或“=”)【答案】【分析】根据有理数的大小比较法则即可得.【详解】解:因为,且,所以,故答案为:.【点睛】本题考查了有理数的大小比较,解题的关键是熟练掌握有理数的大小比较法则:正数大于0,负数小于0,负数绝对值大的反而小.12.的倒数为_______,的相反数为_______.【答案】【分析】根据倒数的定义(乘积为1的两个数互为倒数)和相反数的定义(只有符号不同的两个数互为相反数)即可得.【详解】解:因为,所以的倒数为;的相反数为,故答案为:,.【点睛】本题考查了倒数和相反数,熟记定义是解题关键.13.如图,在数轴上点B表示的数是5,那么点A表示的数是__________.【答案】2【分析】根据图像判断出数轴正方向,数线段即可.【详解】解:由图可知,A与B距离为3,且A越往左数值越小,∴点A表示的数是5-3=2.故答案为:2.【点睛】本题考查的是数轴,数轴的三要素为原点,单位长度,正方向,根据三要素作答即可.14.若关于x、y的多项式化简后不含二次项.则________.【答案】【分析】首先合并同类项,不含二次项,说明xy项的系数是0,由此进一步计算得出结果即可.【详解】解:=,∵化简后不含二次项,∴,解得,故答案为:.【点睛】此题考查并同类项的方法,明确没有某一项的含义,就是这一项的系数为0.15.在脱贫决战之际,2020年11月18日中宣部授予毛相林“时代楷模”称号.在毛相林的带领下,下庄村整村脱贫,村民人均收入达12600元,数据12600用科学记数法表示为__________.【答案】【分析】科学记数法的表示形式为的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【详解】解:,故答案为:.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.16.如图,将正整数按此规律排列成数表,则2022是表中第____行第___列.【答案】64 6【分析】根据每一行最后一个数得到规律:第n行最后一个数是1+2+3++n=,计算第63行最后一个数,由此得到答案.【详解】解:第一行最后一个数是1,第二行最后一个数是3=1+2,第三行最后一个数是6=1+2+3,第四行最后一个数是10=1+2+3+4,∴第n行最后一个数是1+2+3++n=,=2080,∴第63行最后一个数是2016,∴2022是第64行第6个数,故答案为:64,6.【点睛】此题考查了数字的排列规律,正确理解各行数字的排列规律并总结规律运用是解题的关键.17.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是________.【答案】n(n+2)【分析】第1个图形是3×2-3=1×3,第2个图形是4×3-4=2×4,第3个图形是4×5-5=3×5,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是:边数×每条边的点数-边数=(n+2)(n+1)-(n+2)=n(n+2).【详解】解:第一个是1×3,第二个是2×4,第三个是3×5,…第n个是n(n+2),故答案为:n(n+2).【点睛】此题考查图形的变化规律,从简单入手,找出图形蕴含的规律,利用规律解决问题.18.如图,A点的初始位置位于数轴上表示1的点,现对A点做如下移动:第1次向左移动3个单位长度至B点,第2次从B点向右移动6个单位长度至C点,第3次从C点向左移动9个单位长度至D点,第4次从D点向右移动12个单位长度至E点,…,依此类推,则点E在数轴上所表示的数为_____,这样第_____次移动到的点到原点的距离为2020.【答案】7 1346【分析】根据前几次移动得出的数据,得到移动次数为奇数和偶数时的规律,即可求解.【详解】解:第1次点A向左移动3个单位长度至点B,则B表示的数,1﹣3=﹣2;第2次从点B向右移动6个单位长度至点C,则C表示的数为﹣2+6=4;第3次从点C向左移动9个单位长度至点D,则D表示的数为4﹣9=﹣5;第4次从点B向右移动12个单位长度至点E,则E表示的数为﹣5+12=7;…;由以上数据可知,当移动次数为奇数时,点在数轴上所表示的数满足:﹣(3n+1),当移动次数为偶数时,点在数轴上所表示的数满足:,当移动次数为奇数时,﹣(3n+1)=﹣2020,n=(舍去),当移动次数为偶数时,=2020,n=1346.故答案为:7,1346.【点睛】本题考查与数字相关的规律问题,根据前几次的数据得出规律的代数式是解题的关键.三、解答题(本大题共有10小题,共66分;第19-24每小题5分,第25-26每小题6分,第27小题10分,第28小题14分)19.把下列各数分别填在相应集合中:-0.2 ,513 ,325 ,-789 ,0 ,0.618,15%0.12314…负数集合:{...}整数集合:{...}分数集合:{...}【答案】负数集合:{-0.2,-789 ...},整数集合:{ 513,325,-789,0 ...},分数集合:{ -0.2,0.618,15%,0.12314 ... }【分析】根据整数、正数、分数的意义选出后,再填入即可.【详解】解:负数集合:{-0.2,-789 ...}整数集合:{ 513,325,-789,0 ...}分数集合:{-0.2,0.618,15%,0.12314...},故答案为:负数集合:{-0.2,-789 ...},整数集合:{ 513,325,-789,0 ...},分数集合:{-0.2,0.618,15%,0.12314... }.【点睛】本题考查了有理数的分类,解题的关键是掌握整数包括正整数、0、负整数,分数包括正分数和负分数.20.计算:(1)-(-4)+(-1)-(+5)(2)(3)(4)(5)(6)【答案】(1)-2(2)1(3)-1(4)-9(5)-1.6(6)-12【分析】(1)根据有理数加减运算法则进行计算即可;(2)根据有理数乘除运算法则进行计算即可;(3)先根据绝对值的意义进行化简,然后根据有理数混合运算法则进行计算即可;(4)根据乘法分配律运算法则进行计算即可;(5)根据有理数混合运算法则进行计算即可;(6)根据含乘方的混合运算法则进行计算即可.【详解】(1)解:原式=+4-1-5=-2;(2)解:原式=;(3)解:原式=-1+3+(-9)×=-1+3-3=-1;(4)解:原式=;(5)解:原式=;(6)解:原式.【点睛】本题主要考查了有理数混合运算,熟练掌握绝对值的意义,有理数混合运算法则,是解题的关键.21.先化简,再求值:(1),其中,.(2)其中,.【答案】(1)-8,详见解析(2)12,详见解析【分析】(1)去括号并合并同类项,化简为:,代入求值即可;(2)原式去括号,合并同类项,化简为:,代入求值即可.【详解】(1)解:原式===,当,时,原式=;(2)原式==,当,时,原式=.【点睛】本题主要考查的是整式的化简求值,计算过程中注意运算顺序,以及去括号时括号前为负号时,括号内每一项都需要变号.22.观察数轴可得:到点﹣2和点2距离相等的点表示的数是0,有这样的关系0=(﹣2+2);根据上面的结论,解答下面的问题.(1)到点100和到点999距离相等的点表示的数是多少?(2)到点和到点距离相等的点表示的数是多少?(3)到点m和点﹣n距离相等的点表示的数是多少?【答案】(1)(2)﹣(3)(m﹣n)【分析】(1)由数轴可知,到点100和到点999距离相等的点表示的数是;(2)由数轴可知,到点和到点距离相等的点表示的数是;(3)由(1)和(2)得出数轴到两个点距离相等的点表示的数是这两个点表示的数的和的一半,再进行计算即可求出答案.【详解】(1)解:到点100和到点999距离相等的点表示的数是:×(100+999)=;(2)到点和到点距离相等的点表示的数是;(3)到点m和点﹣n距离相等的点表示的数是(m﹣n).【点睛】此题考查了两点间的距离,根据观察得出规律是解题的关键.23.甲、乙两商场上半年经营状况如下(“+”表示盈利,“-”表示亏本,以百万元为单位):(1)三月份乙商场比甲商场多亏损___________百万元;(2)六月份甲商场比乙商场多盈利___________百万元;(3)甲、乙两商场上半年平均每月分别盈利(亏损)多少百万元?【答案】(1)0.2(2)0.3(3)甲商场上半年平均每月盈利0.2百万元,乙商场上半年平均每月盈利0.4百万元【分析】(1)用三月份乙商场的营业额减去甲商场的营业额即可;(2)用六月份甲商场的营业额减去乙商场的营业额即可;(3)应用求平均数的方法分别求出甲、乙商场的营业额,然后根据正数和负数的实际意义得出结论.【详解】(1)-0.6-(-0.4)=-0.2(百万元),∴三月份乙商场比甲商场多亏损0.2百万元.故答案为:0.2;(2)+0.2-(-0.1)=0.3(百万元),∴六月份甲商场比乙商场多盈利0.3百万元.故答案为:0.3;(3)甲:(+0.8+0.6-0.4-0.1+0.1+0.2)÷6=0.2(百万元),∴甲商场上半年平均每月盈利0.2百万元;乙:(+1.3+1.5-0.6-0.1+0.4-0.1)÷6=0.4(百万元),∴乙商场上半年平均每月盈利0.4百万元;答:甲商场上半年平均每月盈利0.2百万元,乙商场上半年平均每月盈利0.4百万元.【点睛】本题考查有理数的加减法的应用、正数和负数的实际应用以及平均数的求法,解题的关键是掌握正数和负数的实际意义.24.某天下午,出租车司机小王在南北向的公路上接送乘客.如果规定向南为正,向北为负,小王从A地出发,出租车的行程如下(单位:千米):+4,﹣5,+3,﹣4,﹣3,+8.(1)最后一名乘客送到目的地时,小王在A地的什么方向?距A地的距离是多少千米?(2)出租车司机小王距离A地最远的是哪一次?距离A地多远?(3)若汽车耗油量为0.1升/千米,这天下午汽车共耗油多少升?【答案】(1)小王在A地的南方,距A地的距离为3千米(2)小王距离A地最远的是第5次,距离A地5千米【分析】(1)将6次行程的数据相加,可得答案;(2)分别算出每一次行程后的结果,比较绝对值即可;(3)根据单位耗油量乘以路程,可得总耗油量.【详解】(1)解:+4-5+3-4-3+8=3(千米),∴最后一名乘客送到目的地时,小王在A地的南方,距A地的距离为3千米;(2)第1次:+4,第2次:+4-5=-1,第3次:+4-5+3=2,第4次:+4-5+3-4=-2,第5次:+4-5+3-4-3=-5,第6次:+4-5+3-4-3+8=3,,∴小王距离A地最远的是第5次,距离A地5千米;(3)=2.7升∴这天下午汽车共耗油2.7升.【点睛】本题考查了正数和负数,有理数的混合运算,记住无论向哪行驶都耗油,求路程时要加绝对值.25.已知:b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0,请回答问题:(1)请直接写出a、b、c的值,a=______,b=______,c=______.(2)数轴上a、b、c三个数所对应的分别为A、B、C,点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点A、B、C同时开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,点B和点C分别以每秒1个单位长度和3个单位长度的速度向右运动.①经过2秒后,求出点A与点C之间的距离AC.②经过t秒后,请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,【答案】(1)﹣1,1,5(2)①14;②BC﹣AB的值是不随着时间t的变化而改变,其值为2【分析】(1)根据b是最小的正整数求出b,再用绝对值和平方的非负性求出a、b的值.(2)①用点C表示的数减去点A表示的数即可表示出AC的长.②先表示出BC、AB,就可以得出BC-AB的值的情况.【详解】(1)∵b是最小的正整数,∴b=1.∵,∴,∴a=﹣1,b=1,c=5.故答案为:﹣1,1,5;(2)设点A、B、C运动的时间为t秒,由题意得:移动后点A表示的数为:﹣1﹣t,点B表示的数为:1+t,点C表示的数为:5+3t;①AC=5+3t﹣(﹣1﹣t)=4t+6,当t=2时,AC=8+6=14,故点A与点C之间的距离AC是14个单位;②由题意,得BC=(5+3t)﹣(1+t)=4+2t,AB=(1+t)﹣(﹣1﹣t)=2+2t,∴BC﹣AB=4+2t﹣(2+2t)=2.∴BC﹣AB的值是不随着时间t的变化而改变,其值为2.【点睛】本题考查了数轴的应用,数轴上任意两点的距离,代数式表示数的运用,非负数的性质,解题的关键是知道数轴上任意两点间的距离公式.26.回答以下问题(1)在数轴上分别画出表示下列3个数的点:,,(2)有理数、在数轴上对应点如图表示:①在数轴上表示,;②试把、、0、、这五个数从小到大用“<”号连接.【答案】(1)见解析(2)①见解析②【分析】(1)首先化简各个数,然后在数轴数表示即可;(2)①根据相反数的意义,在数轴上表示-x,|y|即可;②根据数轴上右边的点表示的数大于左边的点表示的数即可解决问题;③根据绝对值的性质即可即可;【详解】(1)∵,,.如图所示:(2)①如图所示:②根据数轴上右边的点表示的数⼤于左边的点表示的数可得:.【点睛】本题考查数轴、绝对值的性质、有理数的大小比较等知识,解题的关键是学会利用数轴比较有理数的大小.27.某检修小组从A地出发,在东西方向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶记录如下(单位:千米):(1)求收工时距A地多远?(2)在第次记录时距A地最远.(3)若每千米耗油0.3升,每升汽油需7.2元,问检修小组工作一天需汽油费多少元?【答案】(1)收工时距A地2千米(2)五(3)检修小组工作一天需汽油费88.2元【分析】(1)收工时距A地的距离等于所有记录数字和的绝对值;(2)分别计算每次距A地的距离,进行比较即可;(3)所有记录数的绝对值的和×0.3升,就是共耗油数,再根据总价=单价×数量计算即可求解.【详解】(1)解:-3+8-9+10+4-6-2=2(千米).答:收工时距A地2千米.(2)解:由题意得,第一次距A地3千米;第二次距A地-3+8=5千米;第三次距A地千米;第四次距A地千米;第五次距A地千米;第六次距A地千米;第七次距A地千米,所以在第五次记录时距A地最远.故答案为:五.(3)解:=42×0.3×7.2=90.72(元)答:检修小组工作一天需汽油费90.72元.【点睛】本题主查考查正负数在实际生活中的应用及有理数的混合运算,解题关键是掌握有理数的加减混合运算.28.数轴上表示数的点与原点的距离叫做数的绝对值,记作.数轴上表示数的点与表示数的点距离记作,如表示数轴上表示数3的点与表示数5的点的距离,表示数轴上表示数3的点与表示数的点的距离,表示数轴上表示数的点与表示数3的点的距离.根据以上材料回答一列问题:(1)若,则______.若,则_____.(2)若,则能取到的最小值是______,最大值是______.(3)当,求的最大值和最小值.【答案】(1)0;或0;(2);;(3)最大值是15;最小值是;【分析】(1)根据绝对值表示的意义和中点计算方法得出答案;(2)根据数轴的定义和绝对值的意义进行计算,即可得到答案;(3)由绝对值意义和数轴的定义,先求出,,,然后分解求出最大值和最小值即可【详解】(1)解:∵表示数轴上表示x的点到表示1和1的距离相等,∴到1和1距离相等的点表示的数为:;∵,表示数轴上表示x的点到表示和1的距离的和等于5,∴或;故答案为:0;或0;(2)解:∵,表示数轴上表示x的点到表示和1的距离的和等于4,又∵,∴能取到的数在和1之间,即,∴能取到的最小值是,最大值是;故答案为:;;。
七年级(上)期中数学模拟试卷(二)(附解析答案)

七年级(上)期中数学模拟试卷(二)一、选择题(每小题3分,共30分)1.某个地区,一天早晨的温度是﹣7℃,中午上升了12℃,则中午的温度是() A.﹣5℃ B.﹣18℃ C. 5℃ D. 18℃2.已知代数式x+2y的值是3,则代数式2x+4y+1的值是()A. 1 B. 4 C. 7 D. 93.如果a与b互为相反数,x与y互为倒数,则代数式|a+b|﹣2xy值为() A. 0 B.﹣2 C.﹣1 D.无法确定4.如果|a|=a,则()A. a是正数 B. a是负数 C. a是零 D. a是正数或零5.用四舍五入法,把数4.803精确到百分位,得到的近似数是() A. 4.8 B. 4.80 C. 4.803 D. 5.06.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23 A.④ B.①② C.①②③ D.①②④7.下列计算正确的是()A.﹣32=9 B. C.(﹣8)2=﹣16 D.﹣5﹣(﹣2)=﹣3 8.2012年伦敦奥运会火炬传递路线全长约为12800公里,数字12800用科学记数法表示为()A. 1.28×103 B. 12.8×103 C. 1.28×104 D. 0.128×105 9.在下列各组中,是同类项的是()A. 9a2x和9a2 B. a2和2a C. 2a2b和3ab2 D. 4x2y和﹣yx210.观察下列表格:31 32 33 34 35 36…3 9 27 81 243 729 …根据表格中个位数的规律可知,327的个位数是()A. 1 B. 3 C. 7 D. 9二、填空题(每小题10分,共30分)11.的相反数是,绝对值是,倒数是.12.单项式的系数是,次数是.13.是次项式.14.若﹣3a m b3与4a2b n是同类项,则m﹣n= .15.小明写作业时,不慎将墨水滴在数轴上,根据图中数值,请你确定墨迹盖住部分的整数共有个,分别是.16.按下面程序计算:输入x=﹣3,则输出的答案是.17.观察下列单项式:x,﹣3x2,5x3,﹣7x4,9x5,…按此规律,可以得到第2005个单项式是.第n个单项式怎样表示.18.若|a|=8,|b|=5,且a+b>0,那么a﹣b= .19.若(a﹣2)2+|b﹣3|=0,则(a﹣b)2013= .20.如图,正方形的边长为x,用整式表示图中阴影部分的面积为(保留π).三、解答题(共8小题,共60分)21.(每小题4分)①﹣40﹣28﹣(﹣19)+(﹣24)②(﹣81)÷2××(﹣16)③﹣14+(1﹣0.5)××|2﹣(﹣3)2|④(﹣﹣+)×(﹣36)22.(6分)已知A=2xy﹣2y2+8x2,B=9x2+3xy﹣5y2.求:(1)A﹣B;(2)﹣3A+2B.23.(每小题5分)①化简求值:(x3﹣2y3﹣3x2y)﹣[3(x3﹣y3)﹣4x2y],其中x=﹣2,y=﹣1.②先化简,再求值:3(x2y﹣2xy)﹣2(x2y﹣3xy)﹣5x2y,其中x=﹣1,y=.23.(4分)把下列各数在数轴上表示出来,再按照从小到大的顺序用“<”连接起来.﹣5,2,0.24.(4分)一天,小明和小红用温差测量山峰的高度,小明在山顶测得温度是﹣2℃,小红此时在山脚测得温度是5℃.已知该地区高度每增加100米,气温大约降低1℃.问这座山峰的高度大约是多少米?26.(5分)根据如图所示的程序计算,若输入的数为1,求输出的数.27.(6分)下面是用形状和大小都相同的黑色棋子摆成的图形,观察规律完成下列问题:(1)填写下表:图形序号(个) 1 2 3 4 …棋子的颗数 4 7 10 …(2)照这样方式下去,写出摆第n个图形的棋子数为.(3)你知道第153个图形需要几颗棋子吗?28.(9分)每家乐超市出售一种商品,其原价a元,现有三种调价方案:(1)先提价20%,再降价20%;(2)先降价20%,再提价20%;(3)先提价15%,再降价15%.问用这三种方案调价结果是否一样?最后是不是都恢复了原价?参考答案与试题解析一、选择题(每小题3分,共30分)1.某个地区,一天早晨的温度是﹣7℃,中午上升了12℃,则中午的温度是()A.﹣5℃ B.﹣18℃ C. 5℃ D. 18℃考点:有理数的加法.分析:一天早晨的温度是﹣7℃,中午上升了12℃,则中午的温度是:﹣7+12,即可求解.解答:解:﹣7+12=5℃.故选C.点评:本题考查了有理数的加法计算,关键是理解正负数的意义,正确列出代数式.2.已知代数式x+2y的值是3,则代数式2x+4y+1的值是()A. 1 B. 4 C. 7 D. 9考点:代数式求值.专题:整体思想.分析:观察题中的代数式2x+4y+1,可以发现2x+4y+1=2(x+2y)+1,因此可整体代入,即可求得结果.解答:解:由题意得:x+2y=3,∴2x+4y+1=2(x+2y)+1=2×3+1=7.故选:C.点评:代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式x+2y的值,然后利用“整体代入法”求代数式的值.3.如果a与b互为相反数,x与y互为倒数,则代数式|a+b|﹣2xy值为() A. 0 B.﹣2 C.﹣1 D.无法确定考点:有理数的减法;相反数;倒数.专题:计算题.分析:根据相反数的定义:a与b互为相反数,必有a+b=0,即|a+b|=0;x与y互为倒数,则xy=1;据此代入即可求得代数式的值.解答:解:∵a与b互为相反数,∴必有a+b=0,即|a+b|=0;又∵x与y互为倒数,∴xy=1;∴|a+b|﹣2xy=0﹣2=﹣2.故选:B.点评:主要考查相反数、倒数的定义.相反数的定义:只有符号相反的两个数互为相反数,0的相反数是0.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.本题所求代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式a+b和xy的值,然后利用“整体代入法”求代数式的值.4.如果|a|=a,则()A. a是正数 B. a是负数 C. a是零 D. a是正数或零考点:绝对值.分析:根据绝对值的性质进行分析:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.解答:解:根据绝对值的意义,若一个数的绝对值等于它本身,则这个数是非负数,即a是正数或零.故选D.点评:考查了绝对值的性质.5.用四舍五入法,把数4.803精确到百分位,得到的近似数是()A. 4.8 B. 4.80 C. 4.803 D. 5.0考点:近似数和有效数字.分析:用四舍五入法,把数4.803精确到百分位,得到的近似数是()解答:解:4.803可看到0在百分位上,后面的3小于5,舍去.所以有理数4.803精确到百分位的近似数为4.80.故选B.点评:本题考查精确度,精确到哪一位,即对下一位的数字进行四舍五入.6.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23A.④ B.①② C.①②③ D.①②④考点:有理数的乘方;相反数;绝对值.分析:根据a n表示n个a相乘,而﹣an表示an的相反数,而(﹣a)2n=a2n,(﹣a)2n+1=﹣a2n+1(n 是整数)即可对各个选项中的式子进行化简,然后根据相反数的定义即可作出判断.解答:解:①﹣(﹣2)=2,﹣|﹣2|=﹣2,故互为相反数;②(﹣1)2=1,﹣12=﹣1,故互为相反数;③23=8,32=9不互为相反数;④(﹣2)3=﹣8,﹣23=﹣8,相等,不是互为相反数.故选B.点评:本题主要考查了有理数的乘方的意义和性质,(﹣a)2n=a2n,(﹣a)2n+1=﹣a2n+1,注意﹣12和(﹣1)2的区别.7.下列计算正确的是()A.﹣32=9 B. C.(﹣8)2=﹣16 D.﹣5﹣(﹣2)=﹣3考点:有理数的混合运算.专题:计算题.分析:本题可按照有理数的混合运算法则进行运算,从而选出正确的答案.解答:解:A、﹣32=﹣9,故本选项错误;B、(﹣)÷(﹣4)=,故本选项错误;C、(﹣8)2=64,故本选项错误;D、正确.故选D.点评:本题主要考查了有理数的混合运算,应多加练习.注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.8.2012年伦敦奥运会火炬传递路线全长约为12800公里,数字12800用科学记数法表示为() A. 1.28×103 B. 12.8×103 C. 1.28×104 D. 0.128×105考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于12800有5位,所以可以确定n=5﹣1=4.解答:解:12 800=1.28×104.故选C.点评:此题考查科学记数法表示较大的数的方法,准确确定n值是关键.9.在下列各组中,是同类项的是()A. 9a2x和9a2 B. a2和2a C. 2a2b和3ab2 D. 4x2y和﹣yx2考点:同类项.分析:根据同类项的概念求解.解答:解:A、9a2x和9a2字母不同,不是同类项,故本选项错误;B、a2和2a字母相同,指数不同,故本选项错误;C、2a2b和3ab2字母相同,指数不同,故本选项错误;D、4x2y和﹣yx2字母相同,指数相同,故本选项正确.故选D.点评:本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.10.观察下列表格:31 32 33 34 35 36…3 9 27 81 243 729 …根据表格中个位数的规律可知,327的个位数是()A. 1 B. 3 C. 7 D. 9考点:有理数的乘方.专题:规律型.分析:先由图找出规律,个位数按照3、9、7、1的顺序循环,然后再计算27除以4,得到结果为6余3,从而判断出327的个位数.解答:解:由图表可知:个位数按照3、9、7、1的顺序循环,∴27÷4=6…3,∴327的个位数是7.故选C.点评:本题考查了有理数的乘方,解题的关键是结合图表找出规律,此题难度不大,只要找出规律就迎刃而解了.二、填空题(每小题4分,共32分)11.的相反数是,绝对值是,倒数是﹣.考点:相反数;绝对值;倒数.专题:常规题型.分析:根据相反数的定义,只有符号不同的两个数是互为相反数,的相反数是;根据绝对值的定义,一个数的绝对值等于表示这个数的点到原点的距离,的绝对值是根据倒数的定义,互为倒数的两数乘积为1,﹣×(﹣)=1.解答:解:根据相反数、绝对值和倒数的定义得:的相反数是;的绝对值是;的倒数是﹣.点评:本题考查了相反数的定义,绝对值的定义,倒数的定义.12.单项式的系数是,次数是 3 .考点:单项式.专题:应用题.分析:根据单项式系数、次数的定义来求解.单项式中的数字因数叫做这个单项式的系数,所有字母的指数和叫做这个单项式的次数.解答:解:单项式的数字因数是,所有字母的指数和为1+2=3,所以它的系数是,次数是3.故答案为,3.点评:确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.本题注意π不是字母,是一个数,应作为单项式的数字因数.13.是五次四项式.考点:多项式.分析:多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,根据这个定义即可判定.解答:解:多项式中,有4项,最高项次数为5,所以是五次四项式(几次几项式),故答案为五次四次式.点评:此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.14.若﹣3a m b3与4a2b n是同类项,则m﹣n= ﹣1 .考点:同类项.分析:根据同类项的概念求解.解答:解:∵﹣3a m b3与4a2b n是同类项,∴m=2,n=3,则m﹣n=2﹣3=﹣1.故答案为:﹣1.点评:本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.15.小明写作业时,不慎将墨水滴在数轴上,根据图中数值,请你确定墨迹盖住部分的整数共有 3 个,分别是0,1,2 .考点:数轴.分析:根据题意可以确定被污染部分的取值范围,继而求出答案.解答:解:设被污染的部分为a,由题意得:﹣1<a<3,在数轴上这一部分的整数有:0,1,2.∴被污染的部分中共有3个整数.故答案为:3;0,1,2.点评:考查了数轴,解决此题的关键是确定被污染部分的取值范围,理解整数的概念.16.按下面程序计算:输入x=﹣3,则输出的答案是﹣12 .考点:代数式求值.专题:图表型.分析:根据程序写出运算式,然后把x=﹣3代入进行计算即可得解.解答:解:根据程序可得,运算式为(x3﹣x)÷2,输入x=﹣3,则(x3﹣x)÷2=[(﹣3)3﹣(﹣3)]÷2=(﹣27+3)÷2=﹣12所以,输出的答案是﹣12.故答案为:﹣12.点评:本题考查了代数式求值,根据题目提供程序,准确写出运算式是解题的关键.17.观察下列单项式:x,﹣3x2,5x3,﹣7x4,9x5,…按此规律,可以得到第2005个单项式是4009x2005.第n个单项式怎样表示(﹣1)n+1×(2n﹣1)x n.考点:规律型:数字的变化类;单项式.专题:规律型.分析:第奇数个单项式的符号为正,偶数个单项式的符号为负,可用(﹣1)n+1表示;系数的绝对值均为奇数,可用2n﹣1表示;字母和字母的指数可用x n表示.解答:解:第2005个单项式是4009x2005.第n个单项式怎样表示(﹣1)n+1×(2n﹣1)x n.故答案为4009x2005;(﹣1)n+1×(2n﹣1)x n.点评:考查数字的变化规律;分别得到系数,系数的绝对值,字母及字母指数的变化规律是解决本题的关键.18.若|a|=8,|b|=5,且a+b>0,那么a﹣b= 3或13 .考点:有理数的减法;绝对值.分析:先根据绝对值的性质,判断出a、b的大致取值,然后根据a+b>0,进一步确定a、b的值,再代入求解即可.解答:解:∵|a|=8,|b|=5,∴a=±8,b=±5;∵a+b>0,∴a=8,b=±5.当a=8,b=5时,a﹣b=3;当a=8,b=﹣5时,a﹣b=13;故a﹣b的值为3或13.点评:此题主要考查了绝对值的性质,能够根据已知条件正确地判断出a、b的值是解答此题的关键.19.若(a﹣2)2+|b﹣3|=0,则(a﹣b)2013= ﹣1 .考点:非负数的性质:偶次方;非负数的性质:绝对值.分析:根据非负数的性质可求出a、b的值,再将它们代入(a﹣b)2013中求解即可.解答:解:∵(a﹣2)2+|b﹣3|=0,∴a﹣2=0,a=2;b﹣3=0,b=3;则(a﹣b)2013=(2﹣3)2013=﹣1.故答案为﹣1.点评:本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.20.如图,正方形的边长为x,用整式表示图中阴影部分的面积为x2﹣(保留π).考点:列代数式.分析:阴影部分的面积=正方形的面积﹣两个半圆的面积.解答:解:根据题意可知正方形的面积是x2.正方形里的两个半圆的半径是x,所以两个半圆的面积是2×=.∴阴影部分面积为:.点评:解题关键是把图形分解成正方形,半圆和阴影部分.再求出正方形,半圆的面积,从而得出阴影部分的面积.三、解答题(共22小题,共88分)21.考点:有理数的混合运算.专题:计算题.分析:①原式利用减法法则变形,计算即可得到结果;②原式从左到右依次计算即可得到结果;④原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;⑥原式利用乘法分配律计算即可得到结果.解答:解:①﹣40﹣28﹣(﹣19)+(﹣24)=﹣40﹣28+19﹣24=﹣92+19=﹣73;②(﹣81)÷2××(﹣16)=﹣81×××(﹣16)=256;③﹣14+(1﹣0.5)××|2﹣(﹣3)2|=﹣1+××7=﹣1+=;④(﹣﹣+)×(﹣36)=24+20﹣21=23.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.已知A=2xy﹣2y2+8x2,B=9x2+3xy﹣5y2.求:(1)A﹣B;(2)﹣3A+2B.考点:整式的加减.专题:计算题.分析:根据题意可得:A﹣B=(2xy﹣2y2+8x2)﹣(9x2+3xy﹣5y2),﹣3A+2B=﹣3(2xy﹣2y2+8x2)+2(9x2+3xy﹣5y2),先去括号,然后合并即可.解答:解:由题意得:(1)A﹣B=(2xy﹣2y2+8x2)﹣(9x2+3xy﹣5y2)=2xy﹣2y2+8x2﹣9x2﹣3xy+5y2=﹣x2﹣xy+3y2.(2)﹣3A+2B=﹣3(2xy﹣2y2+8x2)+2(9x2+3xy﹣5y2)=﹣6xy+6y2﹣24x2+18x2+6xy﹣10y2=﹣4y2﹣6x2.点评:本题考查了整式的加减,难度不大,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.23.化简求值:(x3﹣2y3﹣3x2y)﹣[3(x3﹣y3)﹣4x2y],其中x=﹣2,y=﹣1.考点:整式的加减—化简求值.专题:计算题.分析:原式去括号合并得到最简结果,将x与y的值代入计算即可求出值.解答:解:原式=x3﹣2y3﹣3x2y﹣3x3+3y3+4x2y=﹣2x3+y3+x2y,当x=﹣2,y=﹣1时,原式=16﹣1﹣4=11.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.②先化简,再求值:3(x2y﹣2xy)﹣2(x2y﹣3xy)﹣5x2y,其中x=﹣1,y=.考点:整式的加减—化简求值.专题:计算题.分析:先去括号,再合并同类项得到原式═﹣4x2y,然后把x、y的值代入计算即可.解答:解:原式=3x2y﹣6xy﹣2x2y+6xy﹣5x2y=﹣4x2y,当x=﹣1,y=时,原式=﹣4×(﹣1)2×=﹣.点评:本题考查了整式的加减﹣化简求值:先把整式去括号,合并,再把给定字母的值代入计算,得出整式的值.24.把下列各数在数轴上表示出来,再按照从小到大的顺序用“<”连接起来.﹣5,2,0.考点:有理数大小比较;数轴.分析:先在数轴上表示各个数,再根据数轴上表示的数,右边的数总比左边的数大比较即可.解答:解:﹣5<0<2.点评:本题考查了数轴和有理数的大小比较的应用,注意:在数轴上表示的数,右边的数总比左边的数大.25.一天,小明和小红用温差测量山峰的高度,小明在山顶测得温度是﹣2℃,小红此时在山脚测得温度是5℃.已知该地区高度每增加100米,气温大约降低1℃.问这座山峰的高度大约是多少米?考点:有理数的混合运算.分析:根据题意,找到等量关系式:山顶温度=山脚温度﹣山高÷100×1.解答:设这个山峰的高度大约是x米,根据题意得:5﹣x÷100×1=﹣2,解得:x=700.故这座山峰的高度大约是700米.点评:本题主要考查了有理数的混合运算,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.26.根据如图所示的程序计算,若输入的数为1,求输出的数.考点:代数式求值.专题:图表型.分析:根据运算程序进行计算.解答:解:12×2﹣4=2﹣4=﹣2<0,(﹣2)2×2﹣4=8﹣4=4>0.故输出的数为4.点评:本题考查了代数式的求值.解答本题的关键就是弄清楚题图给出的计算程序.27.下面是用形状和大小都相同的黑色棋子摆成的图形,观察规律完成下列问题:(1)填写下表:图形序号(个) 1 2 3 4 …棋子的颗数 4 7 10 …(2)照这样方式下去,写出摆第n个图形的棋子数为3n+1 .(3)你知道第153个图形需要几颗棋子吗?考点:规律型:图形的变化类.分析:解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.解答:解:第一个图需棋子3+1=4;第二个图需棋子3×2+1=7;第三个图需棋子3×3+1=10;…第n个图需棋子3n+1枚.(1)填表如下:图形序号(个) 1 2 3 4 …棋子的颗数 4 7 10 13 …(2)照这样方式下去,写出摆第n个图形的棋子数为 3n+1.(3)当n=153时,3×153+1=460;点评:此题考查了规律型中的图形变化问题,主要培养学生的观察能力和空间想象能力.28.每家乐超市出售一种商品,其原价a元,现有三种调价方案:(1)先提价20%,再降价20%;(2)先降价20%,再提价20%;(3)先提价15%,再降价15%.问用这三种方案调价结果是否一样?最后是不是都恢复了原价?考点:列代数式;代数式求值.专题:方案型.分析:(1)最后的价格为:原价×(1+20%)×(1﹣20%);(2)最后的价格为原价×(1﹣20%)(1+20%);(3)最后的价格为:原价×(1+15%)(1﹣15%),把相关数值代入求解后比较即可.解答:解:(1)(1+20%)(1﹣20%)a=0.96a(2)(1﹣20%)(1+20%)a=0.96a(3)(1+15%)(1﹣15%)a=0.9775a所以:三种方案调价结果与原价都不一样,且低于原价.(1)(2)一样且低于(3).点评:解决本题的关键是得到最后价格的等量关系;注意应把原价a当成单位1.。
【冲刺卷】七年级数学上期中第一次模拟试题(带答案) (2)

【冲刺卷】七年级数学上期中第一次模拟试题(带答案) (2)一、选择题1.用科学记数方法表示0.0000907,得( )A .49.0710-⨯B .59.0710-⨯C .690.710-⨯D .790.710-⨯2.生物学家发现一种病毒的长度约为0.000043mm ,用科学记数法表示这个数的结果为(单位:mm )( )A .4.3×10﹣5B .4.3×10﹣4C .4.3×10﹣6D .43×10﹣53.有理数 a ,b 在数轴上的点的位置如图所示,则正确的结论是( )A .a <﹣4B .a+ b >0C .|a|>|b|D .ab >04.7-的绝对值是 ( )A .17-B .17C .7D .7-5.下列方程变形正确的是( )A .由25x +=,得52x =+B .由23x =,得32x =C .由104x =,得4x =D .由45x =-,得54x =-- 6.7张如图1的长为a ,宽为b (a >b )的小长方形纸片,按图2的方式不重叠地放在矩形ABCD 内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 满足( )A .a=52bB .a=3bC .a=72bD .a=4b7.如图,O 是直线AB 上一点,OD 平分∠BOC ,OE 平分∠AOC ,则下列说法错误的是( )A .∠DOE 为直角B .∠DOC 和∠AOE 互余C .∠AOD 和∠DOC 互补D .∠AOE 和∠BOC 互补 8.已知∠1=18°18′,∠2=18.18°,∠3=18.3°,下列结论正确的是( ) A .∠1=∠3B .∠1=∠2C .∠2=∠3D .∠1=∠2=∠3 9.一个多项式加上3y 2-2y -5得到多项式5y 3-4y -6,则原来的多项式为( ). A .5y 3+3y 2+2y -1B .5y 3-3y 2-2y -6C .5y 3+3y 2-2y -1D .5y 3-3y 2-2y -1 10.下列数中,最小的负数是( ) A .-2B .-1C .0D .1 11.已知单项式2m 13a b -与n 7a b -互为同类项,则m n +为( ) A .1B .2C .3D .4 12.已知|m+3|与(n ﹣2)2互为相反数,那么m n 等于( )A .6B .﹣6C .9D .﹣9 二、填空题13.我国明代数学读书《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么设竿子长为x 尺,依据题意,可列出方程得____________.14.当a =________时,关于x 的方程+23=136x x a +-的解是x =-1. 15.若一个正整数能表示为两个正整数的平方差,则称这个正整数为“智慧数”(如3=2221-,5=2232-).已知“智慧数”按从小到大顺序构成如下数列:3,5,7,8,9,11,12,13,15,16,17,19,20,21,23,24,25,….则第2020个“智慧数”是____________.16.一个圆柱的底面半径为R cm ,高为8cm ,若它的高不变,将底面半径增加了2cm ,体积相应增加了192πcm.则R=________.17.若关于x 的方程2ax =(a+1)x+6的解为正整数,求整数a 的值_____.18.如图,90AOB ∠=︒,OD 平分BOC ∠,45DOE ∠=︒,则AOE ∠________COE ∠.(填“>”“<”或“=”)19.把六张形状大小完全相同的小长方形卡片(如图 1)不重叠地放在一个底面为长方形(长为 20cm ,宽为 16cm )的盒子底部(如图 2),盒子底面未被卡片覆盖的部分用阴影表示.则图 2 中两块阴影部分周长的和是_________ .20.观察以下一列数:3,54,79,916,1125,…则第20个数是_____. 三、解答题21.5+(2.5−1)=4;故答案为:4.(3)依题意可得AB =t +2t +3=3t +3,AC =t +4t +9=5t +9,BC =2t +6; 故答案为:3t +3;5t +9;2t +6.(4)不变.3BC−2AB =3(2t +6)−2(3t +3)=12.【点睛】本题主要考查了一元一次方程的应用、数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.22.化简,再求值.(2x+3)(2x ﹣3)﹣4x (x ﹣1)+(x ﹣2)2,其中x=-323.甲、乙两人要加工200个零件,甲先单独加工5小时,后与乙一起加工4小时完成了任务.已知甲每小时比乙多加工2个零件,分别求甲、乙两人每小时加工的零件个数.24.已知关于x 的方程23x m m x -=+与12x +=3x ﹣2的解互为倒数,求m 的值. 25.用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成。
【冲刺卷】初一数学上期中模拟试卷含答案 (2)

【冲刺卷】初一数学上期中模拟试卷含答案 (2)一、选择题1.下列各数中,比-4小的数是()-B.5-C.0D.2A. 2.52.方程去分母,得()A.B.C.D.3.000043的小数点向右移动5位得到4.3,所以0.000043用科学记数法表示为4.3×10﹣5,故选A.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(a2)3=a6D.(ab)2=ab25.观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;已知按一定规律排列的一组数:250、251、252、、299、2100,若250=a,用含a的式子表示这组数的和是()A.2a2-2a B.2a2-2a-2C.2a2-a D.2a2+a6.如图,线段AB=8cm,M为线段AB的中点,C为线段MB上一点,且MC=2cm,N为线段AC的中点,则线段MN的长为()A.1B.2C.3D.47.如图,O是直线AB上一点,OD平分∠BOC,OE平分∠AOC,则下列说法错误的是()A.∠DOE为直角B.∠DOC和∠AOE互余C.∠AOD和∠DOC互补D.∠AOE和∠BOC互补8.下列数中,最小的负数是()A.-2 B.-1 C.0 D.19.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b)20的展开式中第三项的系数为()A.2017B.2016C.191D.190 10.如图所示几何体的左视图是()A.B.C.D.11.下列等式变形正确的是()A.由a=b,得5+a=5﹣bB.如果3a=6b﹣1,那么a=2b﹣1C.由x=y,得x y m m =D.如果2x=3y,那么2629 55x y --=12.如下图,将直角三角形绕一条边所在直线旋转一周后形成的几何体不可能是()A.B.C.D.二、填空题13.一次新冠病毒防疫知识竞赛有25道题,评委会决定:答对一道题得4分,答错或不答一题扣1分,在这次知识竞赛中,小明被评为优秀(85分或85分以上),那么小明至少答对了__________道题.14.若代数式5x-5与2x-9的值互为相反数,则x=________.15.如图1所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按图2所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(图1)拼出来的图形的总长度是_______(结果用含a 、b 代数式表示).16.如图,观察所给算式,找出规律:1+2+1=4,1+2+3+2+1=9,1+2+3+4+3+2+1=16,1+2+3+4+5+4+3+2+1=25,……根据规律计算1+2+3+…+99+100+99+…+3+2+1=____________17.几个人共同种一批树苗,如果每人种15棵,则剩下4棵树苗未种;如果每人种16棵树苗,则缺4棵树苗,则这批树苗共有_____棵.18.如图,是小明用火柴搭的1条、2条、3条“金鱼”…,分别用去火柴棒8根、14根、 20根、…,则搭n 条“金鱼”需要火柴棒________根(含n 的代数式表示).19.若数轴上表示互为相反数的两点之间的距离是16,则这两个数是____.20.一副三角板按如下图方式摆放,若2136'α∠=︒,则β∠的度数为__________.只用度表示α∠的补角为__________.三、解答题21.有一批共享单车需要维修,维修后继续投放骑用,现有甲、乙两人做维修,甲每天维修16辆,乙每天维修的车辆比甲多8辆,甲单独维修完成这批共享单车比乙单独维修完多用20天,公司每天付甲80元维修费,付乙120元维修费.(1)问需要维修的这批共享单车共有多少辆?(2)在维修过程中,公司要派一名人员进行质量监督,公司负担他每天10元补助费,现有三种维修方案:①由甲单独维修;②由乙单独维修;③甲、乙合作同时维修,你认为哪种方案最省钱,为什么?22.有20筐白菜,以每筐25千克为标准,超过或不足的分别用正、负来表示,记录如下: 与标准质量的差(单位:千克) 3- 2- 1.5- 0 1 2.5 筐 数 1 4 2 3 28 (1)与标准质量比较,20筐白菜总计超过或不足多少千克?(2)若白菜每千克售价2.6元,则出售这20筐白菜可卖多少元?23.请仔细阅读下列材料:计算:(-130)÷(23-110+16-25). 解:先求原式的倒数,即(23-110+16-25)÷(-130) =(23-110+16-25)×(-30) =-20+3-5+12 =-10,所以原式=-110. 请根据以上材料计算:(-142)÷(16-314+23-27). 24.如图,A 岛在B 岛的北偏东30°方向,C 岛在B 岛的北偏东80°方向,A 岛在C 岛北偏西40°方向.从A 岛看B 、C 两岛的视角∠BAC 是多少?25.已知关于x 的方程23x m m x -=+与12x +=3x ﹣2的解互为倒数,求m 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据有理数的大小比较法则比较即可.【详解】∵0>−4,2>−4,−5<−4,−2.5>−4,∴比−4小的数是−5,故答案选B.【点睛】本题考查了有理数大小比较,解题的关键是熟练的掌握有理数的大小比较法则.2.B解析:B【解析】【分析】解一元一次方程中去分母的步骤:先确定几个分母的最简公分母,然后将方程两边同时乘以这个最简公分母约去分母即可.【详解】解:因为最简公分母是6,所以将方程两边同时乘以6可得: ,约去分母可得: ,故选B.【点睛】本题主要考查解一元一次方程中去分母的步骤,解决本题的关键是要熟练掌握去分母的步骤. 3.无4.C解析:C【解析】试题解析:A.a2与a3不是同类项,故A错误;B.原式=a5,故B错误;D.原式=a2b2,故D错误;故选C.考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.5.C解析:C【解析】【分析】由等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2,得出规律:2+22+23+…+2n=2n+1-2,那么250+251+252+…+299+2100=(2+22+23+…+2100)-(2+22+23+…+249),将规律代入计算即可.【详解】解:∵2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;…∴2+22+23+…+2n=2n+1-2,∴250+251+252+…+299+2100=(2+22+23+...+2100)-(2+22+23+ (249)=(2101-2)-(250-2)=2101-250,∵250=a,∴2101=(250)2•2=2a2,∴原式=2a2-a.故选:C.【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出规律:2+22+23+…+2n=2n+1-2.6.A解析:A【解析】∵线段AB=8cm,M为线段AB的中点,∴AM=MB=12AB=4cm;∵C为线段MB上的一点,且MC=2cm,∴AC=AM+MC=6cm;∵点N为线段AC的中点,∴AN=12AC=3cm,∴MN=AM-AN=4-3=1cm.故选A.7.D解析:D【解析】【分析】根据角平分线的性质,可得∠BOD=∠COD,∠COE=∠AOE,再根据余角和补角的定义求解即可.解:∵OD平分∠BOC,OE平分∠AOC,∴∠BOD=∠COD=12∠BOC,∠AOE=∠COE=12∠AOC,∵∠AOC+∠COB=180°,∴∠COE+∠COD=90°,A、∠DOE为直角,说法正确;B、∠DOC和∠AOE互余,说法正确;C、∠AOD和∠DOC互补,说法正确;D、∠AOE和∠BOC互补,说法错误;故选D.【点睛】本题考查了余角和补角的知识,解答本题的关键是理解余角和补角的定义,掌握角平分线的性质.8.A解析:A【解析】试题分析:根据数轴上的数,左边的地总比右边的小,两个负数相比较,绝对值大的反而小.解:∵最小的负数,∴ C、D不对,∵21->-,绝对值大的反而小,∴-2最小.故选A考点:正数和负数.9.D解析:D【解析】试题解析:找规律发现(a+b)3的第三项系数为3=1+2;(a+b)4的第三项系数为6=1+2+3;(a+b)5的第三项系数为10=1+2+3+4;不难发现(a+b)n的第三项系数为1+2+3+…+(n﹣2)+(n﹣1),∴(a+b)20第三项系数为1+2+3+…+20=190,故选 D.考点:完全平方公式.10.B解析:B【解析】根据左视图是从左边看得到的图形,可得答案.【详解】从左边看是:故选B.【点睛】本题考查了简单几何体的三视图,左视图是从物体的左面看得到的视图.11.D解析:D【解析】【分析】根据等式性质1对A进行判断;根据等式性质2对B、C进行判断;根据等式性质1、2对D进行判断.【详解】解:A、由a=b得a+5=b+5,所以A选项错误;B、如果3a=6b﹣1,那么a=2b﹣13,所以B选项错误;C、由x=y得xm=ym(m≠0),所以C选项错误;D、由2x=3y得﹣6x=﹣9y,则2﹣6x=2﹣9y,所以262955x y--=,所以D选项正确.故选:D.【点睛】本题考查了等式的性质:性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.12.C解析:C【解析】【分析】分三种情况讨论,即可得到直角三角形绕一条边所在直线旋转一周后形成的几何体.【详解】解:将直角三角形绕较长直角边所在直线旋转一周后形成的几何体为:将直角三角形绕较短直角边所在直线旋转一周后形成的几何体为:将直角三角形绕斜边所在直线旋转一周后形成的几何体为:故选C.【点睛】本题考查了面动成体,点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界.二、填空题13.22【解析】【分析】将答对题数所得的分数减去打错或不答所扣的分数在由题意知小明答题所得的分数大于等于85分列出不等式即可【详解】解:设小明答对了x道题则他答错或不答的共有(25-x)道题由题意得4x解析:22【解析】【分析】将答对题数所得的分数减去打错或不答所扣的分数,在由题意知小明答题所得的分数大于等于85分,列出不等式即可.【详解】解:设小明答对了x道题,则他答错或不答的共有(25-x)道题,由题意得4x-(25-x)×1≥85,解得x≥22,答:小明至少答对了22道题,故答案为:22.【点睛】本题考查了一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.本题尤其要注意所得的分数是答对题数所得的分数减去打错或不答所扣的分数.14.2【解析】【分析】由5x-5的值与2x-9的值互为相反数可知:5x-5+2x-9=0解此方程即可求得答案【详解】由题意可得:5x-5+2x-9=0移项得7x=14系数化为1得x=2【点睛】本题考查了解析:2【解析】【分析】由5x-5的值与2x-9的值互为相反数可知:5x-5+2x-9=0,解此方程即可求得答案.【详解】由题意可得:5x-5+2x-9=0,移项,得7x=14,系数化为1,得x=2.【点睛】本题考查了相反数的性质以及一元一次方程的解法.15.a+8b【解析】【分析】观察可知两个拼接时总长度为2a-(a-b)三个拼接时总长度为3a-2(a-b)由此可得用9个拼接时的总长度为9a-8(a-b)由此即可得【详解】观察图形可知两个拼接时总长度为解析:a+8b【解析】【分析】观察可知两个拼接时,总长度为2a-(a-b),三个拼接时,总长度为3a-2(a-b),由此可得用9个拼接时的总长度为9a-8(a-b),由此即可得.【详解】观察图形可知两个拼接时,总长度为2a-(a-b),三个拼接时,总长度为3a-2(a-b),四个拼接时,总长度为4a-3(a-b),…,所以9个拼接时,总长度为9a-8(a-b)=a+8b,故答案为:a+8b.【点睛】本题考查了规律题——图形的变化类,通过推导得出总长度与个数间的规律是解题的关键. 16.10000【解析】观察这几个式子可得每个式子的结果等于中间数的平方所以1+2+3+…+99+100+99+…+3+2+1=1002=10000点睛:本题考查了数字规律的计算解决本题的关键在于根据所给解析:10000【解析】观察这几个式子可得每个式子的结果等于中间数的平方,所以1+2+3+…+99+100+99+…+3+2+1=1002=10000.点睛:本题考查了数字规律的计算,解决本题的关键在于根据所给的算式,找到规律,并把规律应用到解题中.17.124【解析】【分析】由题意设这批树苗共有x棵根据题意利用种树人数相等建立方程并解出方程即可【详解】解:由题意设这批树苗共有x棵根据题意列出方程:解得故答案为:124【点睛】本题考查一元一次方程的应解析:124【解析】【分析】由题意设这批树苗共有x棵,根据题意利用种树人数相等建立方程并解出方程即可.【详解】解:由题意设这批树苗共有x 棵,根据题意列出方程:441516x x -+=,解得124x =. 故答案为:124.【点睛】本题考查一元一次方程的应用,读懂并理解题意以及根据题意等量关系列方程求解是解题的关键. 18.6n+2或8+6(n-1)【解析】【分析】关键是通过归纳与总结得到其中的规律【详解】解:观察图形发现:搭1条金鱼需要火柴8根搭2条金鱼需要14根即发现了每多搭1条金鱼需要多用6根火柴则搭n 条金鱼需要解析:6n+2或8+6(n-1)【解析】【分析】关键是通过归纳与总结,得到其中的规律.【详解】解:观察图形发现:搭1条金鱼需要火柴8根,搭2条金鱼需要14根,即发现了每多搭1条金鱼,需要多用6根火柴.则搭n 条“金鱼”需要火柴8+6(n ﹣1)=6n +2. 故答案为:6n +2.【点睛】本题考查了图形的变化类问题,此类题找规律的时候一定要注意结合图形进行发现规律.19.-88【解析】因为互为相反数的两个数表示在数轴上是关于原点对称的两个点到原点的距离相等所以互为相反数的两个数到原点的距离为8故这两个数分别为8和-8故答案为-88解析:-8、8【解析】因为互为相反数的两个数表示在数轴上是关于原点对称的,两个点到原点的距离相等,所以互为相反数的两个数到原点的距离为8,故这两个数分别为8和-8.故答案为-8、8.20.【解析】【分析】根据平角的定义可得++90°=180°然后进一步计算即可得出的度数然后再根据补角性质用180°减去度数即可得出其补角【详解】由题意得:++90°=180°∴=90°−=;的补角=18解析:6824'o 158.4o【解析】【分析】根据平角的定义可得α∠+β∠+90°=180°,然后进一步计算即可得出β∠的度数,然后再根据补角性质用180°减去α∠度数即可得出其补角.【详解】由题意得:α∠+β∠+90°=180°,2136'α∠=︒∴β∠=90°−α∠=6824'o ;α∠的补角=180°−α∠=158.4o ,故答案为:6824'o ,158.4o .【点睛】本题主要考查了角的性质,熟练掌握相关概念是解题关键.三、解答题21.(1)960辆;(2)方案三最省钱,理由见详解.【解析】【分析】(1)通过理解题意可知本题的等量关系,即甲乙单独修完共享单车的数量相同,列方程求解即可;(2)分别计算,通过比较选择最省钱的方案.【详解】解:(1)设乙单独做需要x 天完成,则甲单独做需要(x+20)天,由题意可得: 16(x+20)=(16+8)x ,解得:x=40,总数:(16+8)×40=960(辆),∴这批共享单车一共有960辆;(2)方案一:甲单独完成:60×80+60×10=5400(元),方案二:乙单独完成:40×120+40×10=5200(元),方案三:甲、乙合作完成:960÷(16+24)=24(天),则一共需要:24×(120+80)+24×10=5040(元),∵540052005040>>,∴方案三最省钱.【点睛】此题主要考查了一元一次方程的应用,正确得出等量关系是解题关键.22.(1)20筐白菜总计超出8千克;(2)出售这20筐白菜可卖1320.8元【解析】【分析】(1)根据有理数的运算,可得20筐白菜总计超过或不足多少千克;(2)根据单价×数量=总价的关系,可得总价.【详解】(1)由题意可得:-3×1+(-2)×4+(-1.5)×2+0×3+1×2+2.5×8=8(千克)答:20筐白菜总计超出8千克.(2)由(1)得:20×25+8=508(千克)508×2.6=1320.8(元)答:出售这20筐白菜可卖1320.8元.【点睛】本题考查了正数和负数,把超出与不足的加在一起是解(1)的关键,单价×数量是解(2)的关键.23.-1 14【解析】【分析】根据题目提供的方法计算即可.【详解】∵(16-314+23-27)÷(-142)=(16-314+23-27)×(-42)=16×(-42)-314×(-42)+23×(-42)-27×(-42)=-7+9-28+12 =-7-28+9+12 =-35+21=-14,∴(-142)÷(16-314+23-27)=-114.【点睛】本题考查了有理数的混合运算,熟练掌握有理数的运算法则并读懂题目所提供的的运算方法是解答本题的关键.24.70°【解析】【分析】先根据方向角的概念,得出∠DBA=30°,∠DBC=80°,∠ACE=40°,再由两直线平行,同旁内角互补,求出∠ACB=60°,然后根据三角形内角和定理即可求解.【详解】解:∵A岛在B岛的北偏东30°方向,即∠DBA=30°,∵C岛在B岛的北偏东80°方向,即∠DBC=80°;∵A岛在C岛北偏西40°方向,即∠ACE=40°,∴∠ACB=180°﹣∠DBC﹣∠ACE=180°﹣80°﹣40°=60°;在△ABC中,∠ABC=∠DBC﹣∠DBA=80°﹣30°=50°,∠ACB=60°,∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣50°﹣60°=70°.【点睛】本题考查了方向角的定义,平行线的性质和三角形内角和定理,比较简单.正确理解方向角的定义是解题的关键.25.35【解析】 解方程1322x x +=-,可得x=1,由于解互为倒数,把x=1代入23x m m x -=+可得23x m m x -=+,可得1123m m -=+,解得m=-35. 故答案为-35. 点睛:此题主要考查了一元一次方程的解,利用同解方程,可先求出一个方程的解,再代入第二个含有m 的方程,从而求出m 即可.。
【冲刺卷】七年级数学上期中试卷(及答案) (2)

【冲刺卷】七年级数学上期中试卷(及答案) (2)一、选择题1.我国古代名著《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四,问人数几何?原文意思是:现在有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?如果假设共有x 人,则可列方程为( ) A .8374x x +=+B .8374x x -=+C .8374x x +=-D .8374x x -=-2.观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;已知按一定规律排列的一组数:250、251、252、、299、2100,若250=a ,用含a 的式子表示这组数的和是( ) A .2a 2-2aB .2a 2-2a -2C .2a 2-aD .2a 2+a3.计算3x 2﹣x 2的结果是( ) A .2 B .2x 2 C .2x D .4x 24.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是( )A .81B .508C .928D .13245.-2的倒数是( ) A .-2B .12- C .12D .26.随着我国综合国力的提升,中华文化影响日益增强,学中文的外国人越来越多,中文已成为美国居民的第二外语,美国常讲中文的人口约有210万,请将“210万”用科学记数法表示为( ) A .70.2110⨯ B .62.110⨯ C .52110⨯ D .72.110⨯ 7.下列数中,最小的负数是( )A .-2B .-1C .0D .18.实数a ,b 在数轴上的位置如图所示,以下说法正确的是( )A .a+b=0B .b <aC .ab >0D .|b|<|a|9.按照一定规律排列的个数:-2,4,-8,16,-32,64,….若最后三个数的和为768,则为( ) A .9B .10C .11D .1210.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是( )A.厉B.害C.了D.我11.一家健身俱乐部收费标准为180元/次,若购买会员年卡,可享受如下优惠:会员年卡类型办卡费用(元)每次收费(元)A类1500100B类300060C类400040例如,购买A类会员年卡,一年内健身20次,消费1500100203500+⨯=元,若一年内在该健身俱乐部健身的次数介于50-60次之间,则最省钱的方式为()A.购买A类会员年卡B.购买B类会员年卡C.购买C类会员年卡D.不购买会员年卡12.下列等式变形正确的是()A.由a=b,得5+a=5﹣bB.如果3a=6b﹣1,那么a=2b﹣1C.由x=y,得x y m m =D.如果2x=3y,那么2629 55x y --=二、填空题13.如图,下列各图形中的三个数之间均具有相同的规律,依此规律,那么第4个图形中的x=_____,一般地,用含有m,n的代数式表示y,即y=_____.14.一次新冠病毒防疫知识竞赛有25道题,评委会决定:答对一道题得4分,答错或不答一题扣1分,在这次知识竞赛中,小明被评为优秀(85分或85分以上),那么小明至少答对了__________道题.15.如图,用代数式表示图中阴影部分的面积为___________________.16.一组数:2,1,3,x ,7,y ,23,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a b -”,例如这组数中的第三个数“3”是由“221⨯-”得到的,那么这组数中y 表示的数为______.17.若多项式2x 2+3x+7的值为10,则多项式6x 2+9x ﹣7的值为_____.18.在数轴上,若点A 表示2-,则到点A 距离等于2的点所表示的数为______. 19.某公园划船项目收费标准如下:船型 两人船 (限乘两人) 四人船 (限乘四人) 六人船 (限乘六人) 八人船 (限乘八人) 每船租金 (元/小时)90100130150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为________元.20.已知实数x ,y 150x y +-=,则y x 的值是____.三、解答题21.(1)填一填 21-20=2( ) 22-21=2( ) 23-22=2( ) ⋯(2)探索(1)中式子的规律,试写出第n 个等式,并说明第n 个等式成立; (3)计算20+21+22+⋯+22019.22.任何一个有理数都能写成分数的形式(整数可以看作是分母为1的分数).我们知道:0.12可以写成123,0.12310025=可以写成1231000,因此,有限小数是有理数.那么无限循环小数是有理数吗?下面以循环小数2.61545454 2.6154••=L 为例,进行探索: 设 2.6154x ••=,①两边同乘以100得: 100261.54x ••=,② ②-①得:99261.54 2.61258.93x =-=25893287799001100x ∴==因此,••261.54是有理数.(1)直接用分数表示循环小数1.5•=(2)试说明3.1415••是一个有理数,即能用一个分数表示.23.甲、乙两人要加工200个零件,甲先单独加工5小时,后与乙一起加工4小时完成了任务.已知甲每小时比乙多加工2个零件,分别求甲、乙两人每小时加工的零件个数.24.有一种“24点”游戏,其游戏规则是这样的,将4个1~13之间的数进行加减乘除运算(每个数只能用一次),使其结果为24.例如,1,2,3,4可做如下运算:(1+2+3)×4=24,1×2×3×4=24,等等.(1)现有四个有理数3,4,﹣6,+10,你能运用上述规则,写出两种运算方法不同的算式,使其结果等于24;(2)对于4个有理数﹣2,3,4,+8,再多给你一种乘方运算,请你写出一个含乘方的算式,使其结果为24.25.用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成。
【冲刺卷】初一数学上期中模拟试题附答案 (2)

【冲刺卷】初一数学上期中模拟试题附答案 (2)一、选择题1.绝对值不大于4的整数的积是( )A .16B .0C .576D .﹣12.如图,直线AB ,CD 相交于点O ,射线OM 平分∠AOC ,ON ⊥OM ,若∠AOM =35°,则∠CON 的度数为( )A .35°B .45°C .55°D .65°3.我国古代名著《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四,问人数几何?原文意思是:现在有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?如果假设共有x 人,则可列方程为( )A .8374x x +=+B .8374x x -=+C .8374x x +=-D .8374x x -=-4.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496亿km .用科学记数法表示1.496亿是( )A .71.49610⨯B .714.9610⨯C .80.149610⨯D .81.49610⨯ 5.7张如图1的长为a ,宽为b (a >b )的小长方形纸片,按图2的方式不重叠地放在矩形ABCD 内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 满足( )A .a=52bB .a=3bC .a=72bD .a=4b6.将如图所示的Rt △ACB 绕直角边AC 旋转一周,所得几何体的主视图(正视图)是( )A .B .C .D .7.如图,O 是直线AB 上一点,OD 平分∠BOC ,OE 平分∠AOC ,则下列说法错误的是( )A .∠DOE 为直角B .∠DOC 和∠AOE 互余 C .∠AOD 和∠DOC 互补D .∠AOE 和∠BOC 互补 8.已知,OA ⊥OC ,且∠AOB :∠AOC =2:3,则∠BOC 的度数为( )A .30°B .150°C .30°或150°D .90° 9.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把最后一项染黑了,得到正确的结果变为2412a ab -+( ),你觉得这一项应是( )A .23bB .26bC .29bD .236b10.如图所示几何体的左视图是( )A .B .C .D . 11.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为( )A .20B .27C .35D .4012.如下图,将直角三角形绕一条边所在直线旋转一周后形成的几何体不可能是( )A .B .C .D .二、填空题13.23-的相反数是______.14.填在下列各图形中的三个数之间都有相同的规律,根据此规律,a 的值是____.15.若一个正整数能表示为两个正整数的平方差,则称这个正整数为“智慧数”(如3=2221-,5=2232-).已知“智慧数”按从小到大顺序构成如下数列:3,5,7,8,9,11,12,13,15,16,17,19,20,21,23,24,25,….则第2020个“智慧数”是____________.16.若有理数a 、b 、c 在数轴上的位置如图所示,则化简:| a |+| a -b |-| c +b |=________.17.在下列方程中 ①x+2y=3,②139x x -=,③2133y y -=+,④2102x =,是一元一次方程的有_______(填序号). 18.整理一批数据,甲单独完成需要30小时,乙单独完成需要60小时,现在由甲乙两人合作5小时后,剩余的由乙单独做,还需要_______小时完成.19.比较大小:123-________ 2.3-.(“>”“<”或“=”)20.若a 与b 互为相反数,c 与d 互为倒数,则a+b+3cd=_____. 三、解答题21.某家电商场计划用9万元从生产厂家购进50台电视机,已知该厂家生产3种不同型号的电视机,出厂价分别为A 种每台1500元,B 种每台2100元,C 种每台2500元. (1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你计算一下商场有哪几种进货方案?(2)若商场销售一台A 种电视机可获利150元,销售一台B 种电视机可获利200元,销售一台C 种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,应选择哪种方案?22.先化简再求值:a 2﹣(5a 2﹣3b )﹣2(2b ﹣a 2),其中a =﹣1,b =12. 23.春天到了,为了试验某种杀菌剂的效果,实验室进行了实验,研究发现房间空气中每立方米含6310⨯个病菌,已知1毫升杀菌剂可以杀死5210⨯个这种病菌,问要将长5米、宽4米、高3米的房间内的病菌全部杀死,需多少毫升杀菌剂?24.已知:有理数a ,b ,c 在数轴上的位置如图,化简:|||||||3|a c b a b c a a +---+-+.25.我们规定,若关于x 的一元一次方程ax =b 的解为b ﹣a ,则称该方程为“差解方程”,例如:2x =4的解为2,且2=4﹣2,则该方程2x =4是差解方程.请根据上边规定解答下列问题:(1)判断3x =4.5是否是差解方程;(2)若关于x 的一元一次方程6x =m +2是差解方程,求m 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先找出绝对值不大于4的整数,再求它们的乘积.【详解】解:绝对值不大于4的整数有,0、1、2、3、4、﹣1、﹣2、﹣3、﹣4,所以它们的乘积为0.故选B .【点睛】绝对值的不大于4的整数,除正数外,还有负数.掌握0与任何数相乘的积都是0.2.C解析:C【解析】【分析】根据角平分线的定义,可得∠COM ,根据余角的定义,可得答案.【详解】解:∵射线OM 平分∠AOC ,∠AOM =35°,∴∠MOC =35°,∵ON⊥OM,∴∠MON=90°,∴∠CON=∠MON﹣∠MOC=90°﹣35°=55°.故选C.【点睛】本题考查角平分线,熟练掌握角平分线的定义是解题关键.3.B解析:B【解析】【分析】根据这个物品的价格不变,列出一元一次方程进行求解即可.【详解】解:设共有x人,可列方程为:8x-3=7x+4.故选:B【点睛】本题考查了一元一次方程的应用,解题的关键是明确题意,找出合适的等量关系,列出相应的方程.4.D解析:D【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是正数;当原数的绝对值<1时,n是负数.详解:数据1.496亿用科学记数法表示为1.496×108.故选D.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.B解析:B【解析】【分析】表示出左上角与右下角部分的面积,求出之差,根据差与BC无关即可求出a与b的关系式.【详解】如图,设左上角阴影部分的长为AE,宽为AF=3b,右下角阴影部分的长为PC,宽为CG=a,∵AD=BC,即AE+ED=AE+a,BC=BP+PC=4b+PC,∴AE+a=4b+PC,即AE﹣PC=4b﹣a,∴阴影部分面积之差()()2S AE AF PC CG PC4b a3b PC a3b a PC12b3ab=⋅-⋅=+-⋅+⋅=-+-.∵S始终保持不变,∴3b﹣a=0,即a=3b.故选B.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.6.D解析:D【解析】解:Rt△ACB绕直角边AC旋转一周,所得几何体是圆锥,主视图是等腰三角形.故选D.首先判断直角三角形ACB绕直角边AC旋转一周所得到的几何体是圆锥,再找出圆锥的主视图即可.7.D解析:D【解析】【分析】根据角平分线的性质,可得∠BOD=∠COD,∠COE=∠AOE,再根据余角和补角的定义求解即可.【详解】解:∵OD平分∠BOC,OE平分∠AOC,∴∠BOD=∠COD=12∠BOC,∠AOE=∠COE=12∠AOC,∵∠AOC+∠COB=180°,∴∠COE+∠COD=90°,A、∠DOE为直角,说法正确;B、∠DOC和∠AOE互余,说法正确;C、∠AOD和∠DOC互补,说法正确;D、∠AOE和∠BOC互补,说法错误;故选D.【点睛】本题考查了余角和补角的知识,解答本题的关键是理解余角和补角的定义,掌握角平分线的性质.8.C【解析】【分析】【详解】解:∵OA⊥OC,∴∠AOC=90°.∵∠AOB:∠AOC=2:3,∴∠AOB=60°.因为∠AOB的位置有两种:一种是在∠AOC内,一种是在∠AOC外.①当在∠AOC内时,∠BOC=90°﹣60°=30°;②当在∠AOC外时,∠BOC=90°+60°=150°.故选C.【点睛】本题主要考查了垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直.同时做这类题时一定要结合图形.9.C解析:C【解析】【分析】根据完全平方公式的形式(a±b)2=a2±2ab+b2可得出缺失平方项.【详解】根据完全平方的形式可得,缺失的平方项为9b2故选C.【点睛】本题考查了整式的加减及完全平方式的知识,掌握完全平方公式是解决本题的关键.10.B解析:B【解析】【分析】根据左视图是从左边看得到的图形,可得答案.【详解】从左边看是:故选B.【点睛】本题考查了简单几何体的三视图,左视图是从物体的左面看得到的视图.解析:B【解析】试题解析:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+(n+1)=(3)2n n个,则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.故选B.考点:规律型:图形变化类.12.C解析:C【解析】【分析】分三种情况讨论,即可得到直角三角形绕一条边所在直线旋转一周后形成的几何体.【详解】解:将直角三角形绕较长直角边所在直线旋转一周后形成的几何体为:将直角三角形绕较短直角边所在直线旋转一周后形成的几何体为:将直角三角形绕斜边所在直线旋转一周后形成的几何体为:故选C.【点睛】本题考查了面动成体,点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界.二、填空题13.【解析】【分析】直接根据相反数的定义进行解答即可【详解】解:由相反数的定义可知的相反数是即故答案为:【点睛】本题考查的是相反数的定义即只有符号不同的两个数叫互为相反数【解析】【分析】直接根据相反数的定义进行解答即可.【详解】-【点睛】本题考查的是相反数的定义,即只有符号不同的两个数叫互为相反数.14.【解析】寻找规律:上面是1234…;左下是14=229=3216=42…;右下是:从第二个图形开始左下数字减上面数字差的平方:(4-2)2(9-3)2(16-4)2…∴a=(36-6)2=900解析:【解析】寻找规律:上面是1,2 ,3,4,…,;左下是1,4=22,9=32,16=42,…,;右下是:从第二个图形开始,左下数字减上面数字差的平方:(4-2)2,(9-3)2,(16-4)2,…∴a=(36-6)2=900.15.【解析】【分析】根据题意观察探索规律知全部智慧数从小到大可按每三个数分一组从第2组开始每组的第一个数都是4的倍数归纳可得第n组的第一个数为4n(n≥2)又因为所以第2020个智慧数是第674组中的第解析:【解析】【分析】根据题意观察探索规律,知全部智慧数从小到大可按每三个数分一组,从第2组开始每组的第一个数都是4的倍数.归纳可得第n组的第一个数为4n(n≥2),又因为=?L,所以第2020个智慧数是第674组中的第1个数,从而得到4×674=2696 202036731【详解】解:观察探索规律,知全部智慧数从小到大可按每三个数分一组,从第2组开始每组的第一个数都是4的倍数,归纳可得第n组的第一个数为4n(n≥2).=?L,∵202036731∴第2020个智慧数是第674组中的第1个数,即为4×674=2696.故答案为:2696.【点睛】本题考查了探索规律的问题,解题的关键是根据题意找出规律,从而得出答案.16.2a+c【解析】【分析】【详解】解:根据数轴上点的位置得:c<b<0<a∴a-b>0c+b<0则原式=a+a-b+c+b=2a+c故答案为:2a+c【点睛】本题考查整式的加减;数轴;绝对值解析:2a+c.【解析】【分析】【详解】解:根据数轴上点的位置得:c<b<0<a,∴a-b>0,c+b<0,则原式=a+a-b+c+b=2a+c故答案为:2a+c.【点睛】本题考查整式的加减;数轴;绝对值.17.③【解析】【分析】一元一次方程指只含有一个未知数未知数的最高次数为1且两边都为整式的方程据此进一步逐一判断即可【详解】①中方程有两个未知数不符合题意错误;②中方程有分式不符合题意错误;③中方程符合题解析:③【解析】【分析】一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的方程,据此进一步逐一判断即可.【详解】①中方程有两个未知数,不符合题意,错误;②中方程有分式,不符合题意,错误;③中方程符合题意,是一元一次方程,正确;④中方程未知数最高次数为2,不符合题意,错误;故答案为:③.【点睛】本题主要考查了一元一次方程的判断,熟练掌握相关概念是解题关键.18.45【解析】【分析】由已知先得到甲乙的工作效率再根据合作的工作总量为1得到方程求解即可【详解】由题意得:甲一小时完成乙一小时完成设乙还需x小时完成解得x=45故答案为:45【点睛】此题考查一元一次方解析:45【解析】【分析】由已知先得到甲、乙的工作效率,再根据合作的工作总量为1得到方程求解即可.【详解】 由题意得:甲一小时完成130,乙一小时完成160, 设乙还需x 小时完成, 115()1306060x ⨯++=, 解得x=45,故答案为:45.【点睛】此题考查一元一次方程的实际应用,正确理解题意是解题的关键.19.<【解析】【分析】直接根据负数比较大小的法则进行比较即可【详解】∵||=≈233|−23|=23233>23∴−233<−23∴<−23故答案为:<【点睛】本题考查有理数的大小比较解题突破口是根据负解析:<【解析】【分析】直接根据负数比较大小的法则进行比较即可.【详解】∵|123-|=123≈2.33,|−2.3|=2.3,2.33>2.3,∴−2.33<−2.3, ∴123-<−2.3.故答案为:<.【点睛】本题考查有理数的大小比较,解题突破口是根据负数比较大小的法则进行比较. 20.【解析】【分析】【详解】解:∵ab 互为相反数∴a+b=0∵cd 互为倒数∴cd=1∴a+b+3cd=0+3×1=3故答案为3【点睛】本题考查代数式求值 解析:【解析】【分析】【详解】解:∵a ,b 互为相反数,∴a+b=0,∵c ,d 互为倒数,∴cd=1,∴a+b+3cd=0+3×1=3. 故答案为3.【点睛】本题考查代数式求值.三、解答题21.(1)有两种进货方案:购进A 种25台,B 种25台或购进A 种35台,C 种15台;(2)选择购A 、C 两种型号的电视机,理由见解析.【解析】【分析】(1)分三种情况讨论:①只购进A 、B 两种型号,②只购进B 、C 两种型号,③只购进A 、C 两种型号,分别列出方程求解;(2)分别计算(1)中进货方案获得的利润,选择利润最多的方案即可.【详解】解:(1)只购进A 、B 两种型号时,设购进A 型x 台,则B 型(50-x )台,1500x +2100(50-x )=90000,解得x =25,50-x =25台.只购进B 、C 两种型号时,设购进B 型y 台,则C 型(50-y )台,2100y +2500(50-y )=90000,解得y =87.5(舍去)只购进A 、C 两种型号时,设购进A 型z 台,则C 型(50-z)台,1500z +2500(50-z )=90000,解得z =35,50-z =15台所以有两种进货方案:购进A 种25台,B 种25台或购进A 种35台,C 种15台.(2)当只购A 、B 两种型号时,利润:25×150+25×200=8750元 当只购A 、C 两种型号时,利润:35×150+15×250=9000元 所以选择购A 、C 两种型号的电视机.【点睛】本题考查一元一次方程的应用,利用单价乘以数量等于总价建立方程是解题的关键.22.﹣2a 2﹣b ,原式=﹣2.5.【解析】【分析】先将多项式化简,再将a 、b 的值代入计算.【详解】原式=a 2﹣5a 2+3b ﹣4b +2a 2=﹣2a 2﹣b ,当a =﹣1,b =12时,原式=﹣2﹣12=﹣2.5. 【点睛】此题考查多项式的化简求值,正确化简多项式是代入计算的关键.23.需900毫升杀菌剂【解析】【分析】根据题意首先求出该房间的体积,由此即可得出该房间内的细菌数,最后进一步计算出需要多少杀菌剂即可.【详解】由题意可知该房间体积为:354360m ⨯⨯=,∴该房间中所含细菌数为:6860310 1.810⨯⨯=⨯(个),∴所需杀菌剂为:()851.810210900⨯÷⨯=(毫升), 答:需900毫升杀菌剂.【点睛】本题主要考查了有理数混合运算的实际应用,熟练掌握相关方法是解题关键.24.2b .【解析】【分析】先由a 、b 、c 在数轴上的位置可确定a >0,c <b <0,b a c <<,进而可确定,,,3a c b a b c a a +-+-的符号,再根据绝对值的性质去掉绝对值符号,然后根据整式的加减运算法则计算即可.【详解】解:由题意得:a >0,c <b <0,b a c <<,所以0,0,0,30a c b a b c a a +<-<+-<>,所以原式=()()()3a c b a b c a a -+-----+-+⎡⎤⎡⎤⎣⎦⎣⎦=3a c b a b c a a --+-++-+=2b .【点睛】本题主要考查了数轴、有理数的绝对值和整式的加减运算等知识,属于常考题型,根据点在数轴上的位置确定相关式子的符号、熟练进行绝对值的化简和整式的加减运算是解题的关键.25.(1)是;见解析;(2)265. 【解析】【分析】(1)求出方程的解,再根据差解方程的意义得出即可;(2)根据差解方程得出关于m 的方程,求出方程的解即可.【详解】解:(1)∵3x =4.5,∴x =1.5,∵4.5﹣3=1.5,∴3x =4.5是差解方程;(2)∵关于x 的一元一次方程6x =m +2是差解方程,∴m +2﹣6=26m +, 解得:m =265.【点睛】本题考查了一元一次方程的解的应用,能理解差解方程的意义是解此题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【冲刺卷】七年级数学上期中模拟试卷(附答案) (2)一、选择题1.计算:1252-50×125+252=( ) A .100B .150C .10000D .22500 2.用科学记数方法表示0.0000907,得( )A .49.0710-⨯B .59.0710-⨯C .690.710-⨯D .790.710-⨯ 3.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >04.计算3x 2﹣x 2的结果是( )A .2B .2x 2C .2xD .4x 25.下列方程变形正确的是( )A .由25x +=,得52x =+B .由23x =,得32x =C .由104x =,得4x = D .由45x =-,得54x =-- 6.-2的倒数是( ) A .-2 B .12- C .12 D .27.利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0.将第一行数字从左到右依次记为a ,b ,c ,d ,那么可以转换为该生所在班级序号,其序号为32102222a b c d ⨯+⨯+⨯+⨯.如图2第一行数字从左到右依次为0,1,0,1,序号为3210021202125⨯+⨯+⨯+⨯=,表示该生为5班学生.表示6班学生的识别图案是( )A .B .C .D . 8.下列数中,最小的负数是( )A .-2B .-1C .0D .19.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是( )A .厉B .害C .了D .我10.如图所示几何体的左视图是( )A .B .C .D .11.若代数式x +2的值为1,则x 等于( )A .1B .-1C .3D .-3 12.我县人口约为530060人,用科学记数法可表示为( )A .53006×10人B .5.3006×105人C .53×104人D .0.53×106人 二、填空题13.3-2的相反数是_____________,绝对值是________________14.数轴上点A 、B 的位置如下图所示,若点B 关于点A 的对称点为C ,则点C 表示的数为___15.有一列数,按一定规律排列成1,2,4,8,16,32,,---⋅⋅⋅其中某三个相邻数的积是124,则这三个数的和是_____.16.几个人共同种一批树苗,如果每人种15棵,则剩下4棵树苗未种;如果每人种16棵树苗,则缺4棵树苗,则这批树苗共有_____棵.17.近似数2.30万精确到________位,用科学记数法表示为__________.18.一组数:2,1,3,x ,7,y ,23,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a b -”,例如这组数中的第三个数“3”是由“221⨯-”得到的,那么这组数中y 表示的数为______.19.整理一批数据,甲单独完成需要30小时,乙单独完成需要60小时,现在由甲乙两人合作5小时后,剩余的由乙单独做,还需要_______小时完成.20.2018年2月3日崂山天气预报:多云,-1°C~-9°C ,西北风3级,则当天最高气温比最低气温高_______℃三、解答题21.已知直线AB 和CD 交于点O ,∠AOC 的度数为x ,∠BOE=90°,OF 平分∠AOD . (1)当x=19°48′,求∠EOC 与∠FOD 的度数.(2)当x=60°,射线OE 、OF 分别以10°/s ,4°/s 的速度同时绕点O 顺时针转动,求当射线OE 与射线OF 重合时至少需要多少时间?(3)当x=60°,射线OE以10°/s的速度绕点O顺时针转动,同时射线OF也以4°/s的速度绕点O逆时针转动,当射线OE转动一周时射线OF也停止转动.射线OE在转动一周的过程中当∠EOF=90°时,求射线OE转动的时间.22.已知:如图AB∥CD,EF交AB于G,交CD于F,FH平分∠EFD,交AB于H,∠AGE=50°,求:∠BHF的度数.23.如图,∠AOB=90°,∠BOC=2∠BOD,OD平分∠AOC,求∠BOD的度数.24.解下列方程:(1)x-7=10 - 4(x+0.5) ;(2)1321 23x x-+-=.25.如图,直线AB、CD相交于点O.已知∠BOD=75°,OE把∠AOC分成两个角,且∠AOE:∠EOC=2:3.(1)求∠AOE的度数;(2)若OF平分∠BOE,问:OB是∠DOF的平分线吗?试说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】试题分析:原式=1252﹣2×25×125+252=(125-25)2=1002=10000.故选C.点睛:本题考查了完全平方公式的应用,熟记完全平方公式的特点是解决此题的关键.2.B解析:B【解析】【分析】【详解】解:根据科学记数法的表示—较小的数为10na ,可知a=9.07,n=-5,即可求解.故选B【点睛】本题考查科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.3.B解析:B【解析】【分析】先弄清a,b,c在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=-ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则c+d>0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.4.B解析:B【解析】【分析】根据合并同类项的法则进行计算即可得.【详解】3x2﹣x2=(3-1)x2=2x2,故选B.【点睛】本题考查合并同类项,解题的关键是熟练掌握合并同类项法则.5.B解析:B【解析】【分析】根据等式的性质依次进行判断即可得到答案.【详解】A. 由25x +=,得x=5-2,故错误;B. 由23x =,得32x =,故正确; C. 由104x =,得x=0,故错误; D. 由45x =-,得x=4+5,故错误,故选:B.【点睛】此题考查等式的性质,熟记性质定理是解题的关键.6.B解析:B【解析】【分析】根据倒数的定义求解.【详解】-2的倒数是-12故选B【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握 7.B解析:B【解析】【分析】根据班级序号的计算方法一一进行计算即可.【详解】A. 第一行数字从左到右依次为1,0,1,0,序号为32101202120210⨯+⨯+⨯+⨯=,表示该生为10班学生.B. 第一行数字从左到右依次为0,1, 1,0,序号为3210021212026⨯+⨯+⨯+⨯=,表示该生为6班学生.C. 第一行数字从左到右依次为1,0,0,1,序号为3210120202129⨯+⨯+⨯+⨯=,表示该生为9班学生.D.第一行数字从左到右依次为0,1,1,1,序号为3210⨯+⨯+⨯+⨯=,表021212127示该生为7班学生.故选B.【点睛】属于新定义题目,读懂题目中班级序号的计算方法是解题的关键.8.A解析:A【解析】试题分析:根据数轴上的数,左边的地总比右边的小,两个负数相比较,绝对值大的反而小.解:∵最小的负数,∴ C、D不对,->-,∵21绝对值大的反而小,∴-2最小.故选A考点:正数和负数.9.D解析:D【解析】分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.详解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“的”与“害”是相对面,“了”与“厉”是相对面,“我”与“国”是相对面.故选:D.点睛:本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.10.B解析:B【解析】【分析】根据左视图是从左边看得到的图形,可得答案.【详解】从左边看是:故选B.【点睛】本题考查了简单几何体的三视图,左视图是从物体的左面看得到的视图.11.B解析:B【解析】【分析】列方程求解.【详解】解:由题意可知x+2=1,解得x=-1,故选B.【点睛】本题考查解一元一次方程,题目简单.12.B解析:B【解析】【分析】根据科学记数法的定义及表示方法进行解答即可.【详解】解:∵530060是6位数,∴10的指数应是5,故选B.【点睛】本题考查的是科学记数法的定义及表示方法,熟知以上知识是解答此题的关键.二、填空题13.2-2-【解析】【分析】一个数a的相反数是-a正数的绝对值就是这个数本身负数的绝对值是它的相反数据此即可求解【详解】解:-2的相反数是:-(-2)=2-;∵<2∴-2<0∴|-2|=-(-2)=2-解析:【解析】【分析】一个数a的相反数是-a,正数的绝对值就是这个数本身,负数的绝对值是它的相反数,据此即可求解.【详解】的相反数是:;2,<0,∴故答案为:【点睛】本题考查了实数的性质:相反数和绝对值,熟记相反数的概念和绝对值的性质是解决此题的关键.14.-5【解析】分析:点A 表示的数是-1点B 表示的数是3所以|AB|=4;点B 关于点A 的对称点为C 所以点C 到点A 的距离|AC|=4即设点C 表示的数为x 则-1-x=4解出即可解答;解答:解:如图点A 表示的解析:-5【解析】分析:点A 表示的数是-1,点B 表示的数是3,所以,|AB|=4;点B 关于点A 的对称点为C ,所以,点C 到点A 的距离|AC|=4,即,设点C 表示的数为x ,则,-1-x=4,解出即可解答;解答:解:如图,点A 表示的数是-1,点B 表示的数是3,所以,|AB|=4;又点B 关于点A 的对称点为C ,所以,点C 到点A 的距离|AC|=4,设点C 表示的数为x ,则,-1-x=4,x=-5;故答案为-5.15.-384【解析】【分析】根据题目中的数字可以发现它们的变化规律再根据其中某三个相邻数的积是可以求得这三个数从而可以求得这三个数的和【详解】一列数为这列数的第个数可以表示为其中某三个相邻数的积是设这三 解析:-384【解析】【分析】根据题目中的数字,可以发现它们的变化规律,再根据其中某三个相邻数的积是124,可以求得这三个数,从而可以求得这三个数的和.【详解】Q 一列数为1,24,816,32---⋯,,,,∴这列数的第n 个数可以表示为1(2)n --,Q 其中某三个相邻数的积是124,∴设这三个相邻的数为11222n n n +﹣(﹣)、(﹣)、(﹣),则11122)2)2)4(((n n n +••﹣--﹣=, 即32122)2)n (-=(,32424=((2)22)n ∴-=-,324n ∴=,解得,8n =,∴这三个数的和是: 7892)(2)(2)++(---=72)(124)128)3⨯-+⨯(-=(-384=-, 故答案为:384-.【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律. 16.124【解析】【分析】由题意设这批树苗共有x 棵根据题意利用种树人数相等建立方程并解出方程即可【详解】解:由题意设这批树苗共有x 棵根据题意列出方程:解得故答案为:124【点睛】本题考查一元一次方程的应 解析:124【解析】【分析】由题意设这批树苗共有x 棵,根据题意利用种树人数相等建立方程并解出方程即可.【详解】解:由题意设这批树苗共有x 棵,根据题意列出方程:441516x x -+=,解得124x =. 故答案为:124.【点睛】本题考查一元一次方程的应用,读懂并理解题意以及根据题意等量关系列方程求解是解题的关键. 17.百【解析】解析:百 42.3010⨯【解析】18.-9【解析】【分析】根据题中给出的运算法则按照顺序求解即可【详解】解:根据题意得:故答案为:-9【点睛】本题考查了有理数的运算理解题意弄清题目给出的运算法则是正确解题的关键解析:-9.【解析】【分析】根据题中给出的运算法则按照顺序求解即可.【详解】解:根据题意,得:2131x =?=-,2(1)79y =?-=-.故答案为:-9.【点睛】本题考查了有理数的运算,理解题意、弄清题目给出的运算法则是正确解题的关键. 19.45【解析】【分析】由已知先得到甲乙的工作效率再根据合作的工作总量为1得到方程求解即可【详解】由题意得:甲一小时完成乙一小时完成设乙还需x 小时完成解得x=45故答案为:45【点睛】此题考查一元一次方 解析:45【解析】【分析】由已知先得到甲、乙的工作效率,再根据合作的工作总量为1得到方程求解即可.【详解】 由题意得:甲一小时完成130,乙一小时完成160, 设乙还需x 小时完成, 115()1306060x ⨯++=, 解得x=45,故答案为:45.【点睛】此题考查一元一次方程的实际应用,正确理解题意是解题的关键.20.8【解析】【分析】根据有理数的减法解答即可【详解】-1-(-9)=8所以当天最高气温是比最低气温高8℃故答案为:8【点睛】此题考查有理数的减法关键是根据有理数的减法解答解析:8【解析】【分析】根据有理数的减法解答即可.【详解】-1-(-9)=8,所以当天最高气温是比最低气温高8℃,故答案为:8【点睛】此题考查有理数的减法,关键是根据有理数的减法解答.三、解答题21.(1)∠EOC=70°12′,∠FOD=80°6′;(2)射线OE 与射线OF 重合时至少需要35秒;(3)射线OE 转动的时间为t=607或1507或2407. 【解析】【分析】(1)利用互余和互补的定义可得:∠EOC 与∠FOD 的度数.(2)先根据x=60°,求∠EOF=150°,则射线OE 、OF 第一次重合时,则OE 运动的度数-OF 运动的度数=360-150,列式解出即可;(3)分三种情况:①OE 不经过OF 时,②OE 经过OF ,但OF 在OB 的下方时;③OF 在OB的上方时;根据其夹角列方程可得时间.【详解】(1)∵∠BOE=90°,∴∠AOE=90°,∵∠AOC=x=19°48′,∴∠EOC=90°-19°48′=89°60°-19°48′=70°12′,∠AOD=180°-19°48′=160°12′,∵OF平分∠AOD,∴∠FOD=12∠AOD=12×160°12′=80°6′;(2)当x=60°,∠EOF=90°+60°=150°设当射线OE与射线OF重合时至少需要t秒,10t-4t=360-150,t=35,答:当射线OE与射线OF重合时至少需要35秒;(3)设射线OE转动的时间为t秒,分三种情况:①OE不经过OF时,得10t+90+4t=360-150,解得,t=607;②OE经过OF,但OF在OB的下方时,得10t-(360-150)+4t=90解得,t=150 7;③OF在OB的上方时,得:360-10t=4t-120解得,t=2407.所以,射线OE转动的时间为t=607或1507或2407.【点睛】本题考查了对顶角相等,邻补角互补的定义,角平分线的定义,角的计算,第三问有难度,熟记性质是解题的关键,难点在于要分情况讨论.22.∠BHF=115° .【解析】【分析】由AB∥CD得到∠AGE=∠CFG,由此根据邻补角定义可得∠GFD的度数,又FH平分∠EFD,由此可以先后求出∠GFD,∠HFD,继而可求得∠BHF的度数.【详解】∵AB∥CD,∴∠CFG=∠AGE=50°,∴∠GFD=130°;又FH 平分∠EFD ,∴∠HFD=12∠EFD=65°; ∵AB ∥CD , ∴∠BHF=180°-∠HFD=115°.【点睛】本题考查了平行线的性质,角平分线的定义,邻补角等知识,两直线平行时,应该想到它们的性质;由两直线平行的关系可以得到角之间的数量关系,从而达到解决问题的目的.23.∠BOD=22.5°.【解析】【试题分析】根据两角的等量关系列方程求解即可.【试题解析】设∠BOD=x ,因为∠AOB=90°,则∠AOD=90°-x , 因为 OD 平分∠AOC ,所以∠D OC=∠AOD=90°-x , 所以∠BOC=∠DOC-∠BOD=90°-2x , 因为∠BOC=2∠BOD ,所以90°-2x=2x ,解得:x =22.5°.即∠BOD=22.5°.【方法点睛】本题目是一道考查角平分线的题目,在本题中,根据两角的数量关系借助方程解决更简单一些.24.(1)3;(2)15-【解析】【分析】(1)首先将原方程去掉括号,然后进一步移项化简,最后通过系数化1即可求出解; (2)首先将原方程去掉分母,再去掉括号,然后进一步移项化简,最后通过系数化1即可求出解.【详解】(1)去括号可得:71042x x -=--,移项可得:41072x x +=+-,化简可得:515x =,解得:3x =;(2)去分母可得:()()312326x x --+=,去括号可得:33646x x ---=,移项可得:34636x x -=++,化简可得:15x -=,解得:15x =-.【点睛】本题主要考查了解一元一次方程,熟练掌握相关方法是解题关键.25.(1) 30°;(2) OB 是∠DOF 的平分线,理由见解析【解析】【分析】(1)设∠AOE=2x,根据对顶角相等求出∠AOC的度数,根据题意列出方程,解方程即可;(2)根据角平分线的定义求出∠BOF的度数即可.【详解】(1)∵∠AOE:∠EOC=2:3.∴设∠AOE=2x,则∠EOC=3x,∴∠AOC=5x.∵∠AOC=∠BOD=75°,∴5x=75°,解得:x=15°,则2x=30°,∴∠AOE=30°;(2)OB是∠DOF的平分线.理由如下:∵∠AOE=30°,∴∠BOE=180°﹣∠AOE=150°.∵OF平分∠BOE,∴∠BOF=75°.∵∠BOD=75°,∴∠BOD=∠BOF,∴OB是∠DOF的角平分线.【点睛】本题考查了对顶角、邻补角的概念和性质、角平分线的定义,掌握对顶角相等、邻补角之和等于180°是解题的关键.。