2019年中考数学模拟试题(一)

合集下载

2019年山东省临沂市兰山区中考数学一模试卷(解析版)

2019年山东省临沂市兰山区中考数学一模试卷(解析版)

2019年山东省临沂市兰山区中考数学一模试卷一、选择题(本题共14小题,每小题3分,共42分)在每小题所给的四个选项中,只有一项是符合题目要求的.1.的值是()A.9B.3C.﹣3D.±32.斑叶兰被列为国家二级保护植物,它的一粒种子重约0.0000005克.将0.0000005用科学记数法表示为()A.5×107B.5×10﹣7C.0.5×10﹣6D.5×10﹣63.下列运算正确的是()A.a8÷a4=a2B.(a2)2=a4C.a2•a3=a6D.a2+a2=2a44.不等式组的解集在数轴上表示为()A.B.C.D.5.如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于点E、F,再分别以E、F为圆心,大于EF的同样长为半径作圆弧,两弧交于点P,作射线AP,交CD于点M,若∠ACD=110°,则∠CMA的度数为()A.30°B.35°C.70°D.45°6.一个几何体的三视图如图所示,则该几何体的表面积是()A.24+2πB.16+4πC.16+8πD.16+12π7.有2名男生和2名女生,王老师要随机地、两两一对地为他们排座位,一男一女排在一起的概率是()A.B.C.D.8.某校举行汉字听写大赛,参赛学生的成绩如下表:成绩(分)8990929495人数46857对于这组数据,下列说法错误的是()A.平均数是92B.中位数是92C.众数是92D.极差是69.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.B.C.D.10.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD11.如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是()A.B.C.D.12.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A.B.2C.2D.813.如图,在直角坐标系中,有菱形OABC,A点的坐标是(10,0),双曲线经过点C,且OB•AC=160,则k的值为()A.40B.48C.64D.8014.如图,矩形ABCD中,AB=8cm,BC=6cm,点P从点A出发,以1cm/s的速度沿A→D→C方向匀速运动,同时点Q从点A出发,以2cm/s的速度沿A→B→C方向匀速运动,当一个点到达点C时,另一个点也随之停止.设运动时间为t(s),△APQ的面积为S(cm2),下列能大致反映S与t之间函数关系的图象是()A.B.C.D.二、填空题(本大题共5小题,每小题3分,共15分)把答案填在题中横线上.15.分解因式:4x﹣x3=.16.化简:(1+)÷=.17.如图,平行四边形ABCD中,BE⊥AD于E,BF⊥CD于F,BE=2,BF=3,平行四边形ABCD 的周长为20,则平行四边形ABCD的面积为.18.如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,测得AB =2米,BP=3米,PD=12米,那么该古城墙的高度CD是米.19.根据下列材料,解答问题.等比数列求和:概念:对于一列数a1,a2,a3,a4,…a n(n为正整数),若从第二个数开始,每一个数与前一个数的比为一定值,即(q为常数),那么这一列数a1,a2,a3,a4,…a n…成等比数列,这一常数q叫做该数列的公比.例:求等比数列1,3,32,33,…,3100的和,解:令S=1+3+32+33+…+3100则3S=3+32+33+…+3100+3101因此,3S﹣S=3101﹣1,∴,即1+3+32+33 (3100)仿照例题,等比数列1,5,52,53,…,52019的和为.三、解答题(本大题共7小题,共63分)20.(7分)计算:|﹣1|﹣﹣(1﹣)0+4sin30°.21.(7分)为了解某市初中学生课外阅读情况,调查小组对该市这学期初中学生阅读课外书籍的册数进行了抽样调查,并根据调查结果绘制成如下统计图.根据统计图提供的信息,解答下列问题:(1)本次抽样调查的样本容量是;(2)补全条形统计图;(3)该市共有10万名初中生,估计该市初中学生这学期课外阅读超过2册的人数.22.(7分)如图,两座建筑物的水平距离BC为600m.从C点测得A点的仰角α为53°,从A 点测得D点的俯角β为37°,求两座建筑物的高度.(参考数据sin37°≈)23.(9分)如图,CD是⊙O的切线,点C在直径AB的延长线上.(1)求证:∠CAD=∠BDC;(2)若BD=AD,AC=3,求CD的长.24.(9分)学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示.(1)根据图象信息,当t=分钟时甲乙两人相遇,甲的速度为米/分钟;(2)求出线段AB所表示的函数表达式.25.(11分)【问题解决】一节数学课上,老师提出了这样一个问题:如图1,点P是正方形ABCD内一点,PA=1,PB=2,PC=3.你能求出∠APB的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,求出∠APB的度数;思路二:将△APB绕点B顺时针旋转90°,得到△CP'B,连接PP′,求出∠APB的度数.请参考小明的思路,任选一种写出完整的解答过程.【类比探究】如图2,若点P是正方形ABCD外一点,PA=3,PB=1,PC=,求∠APB的度数.26.(13分)如图,已知二次函数y=ax2+的图象与y轴交于点A(0,4),与x轴交于点B.C,点C坐标为(8,0),连接AB、AC.(1)求二次函数的解析式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请直接写出此时点N的坐标.2019年山东省临沂市兰山区中考数学一模试卷参考答案与试题解析一、选择题(本题共14小题,每小题3分,共42分)在每小题所给的四个选项中,只有一项是符合题目要求的.1.【分析】直接利用二次根式的性质化简求出答案.【解答】解:=3.故选:B.【点评】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.2.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.0000005用科学记数法表示为5×10﹣7.故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【分析】直接利用同底数幂的乘除运算法则以及幂的乘方运算法则和合并同类项法则分别计算得出答案.【解答】解:A、a8÷a6=a4,故此选项错误;B、(a2)2=a4,故原题计算正确;C、a2•a3=a5,故此选项错误;D、a2+a2=2a2,故此选项错误;故选:B.【点评】此题主要考查了同底数幂的乘除运算以及幂的乘方运算和合并同类项,正确掌握相关运算法则是解题关键.4.【分析】根据一元一次不等式组即可求出答案.【解答】解:由①得:x>1由②得:x≥2∴不等式组的解集为:x≥2故选:A.【点评】本题考查一元一次不等式组的解法,解题的关键是熟练运用一元一次不等式组的解法,本题属于基础题型.5.【分析】直接利用平行线的性质结合角平分线的作法得出∠CAM=∠BAM=35°,即可得出答案.【解答】解:∵AB∥CD,∠ACD=110°,∴∠CAB=70°,∵以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于点E、F,再分别以E、F为圆心,大于EF的同样长为半径作圆弧,两弧交于点P,作射线AP,交CD于点M,∴AP平分∠CAB,∴∠CAM=∠BAM=35°,∵AB∥CD,∴∠CMA=∠MAB=35°.故选:B.【点评】此题主要考查了基本作图以及平行线的性质,正确得出∠CAM=∠BAM是解题关键.6.【分析】根据三视图知该几何体是一个半径为2、高为4的圆柱体的纵向一半,据此求解可得.【解答】解:该几何体的表面积为2וπ•22+4×4+×2π•2×4=12π+16,故选:D.【点评】本题主要考查由三视图判断几何体,解题的关键是根据三视图得出几何体的形状及圆柱体的有关计算.7.【分析】列举出所有情况,看一男一女排在一起的情况占总情况的多少即可.【解答】解:排列为男1男2,男1女1,男1女2,男2女1,男2女2,女1女2,一共有6种可能,一男一女排在一起的有4种,所以概率是.故选:D.【点评】本题考查了概率公式,情况较少可用列举法求概率,采用列举法解题的关键是找到所有存在的情况.用到的知识点为:概率=所求情况数与总情况数之比.8.【分析】根据平均数、中位数、众数及极差的定义逐一计算即可判断.【解答】解:A、平均数为=,符合题意;B、中位数是=92,不符合题意;C、众数为92,不符合题意;D、极差为95﹣89=6,不符合题意;故选:A.【点评】本题考查了极差、众数、平均数、中位数的知识,解答本题的关键是掌握各知识点的概念.9.【分析】设实际工作时每天绿化的面积为x万平方米,根据工作时间=工作总量÷工作效率结合提前30 天完成任务,即可得出关于x的分式方程.【解答】解:设实际工作时每天绿化的面积为x万平方米,则原来每天绿化的面积为万平方米,依题意得:﹣=30,即.故选:C.【点评】考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.10.【分析】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.【解答】解:∵AB=AC,∠A为公共角,A、如添加∠B=∠C,利用ASA即可证明△ABE≌△ACD;B、如添AD=AE,利用SAS即可证明△ABE≌△ACD;C、如添BD=CE,等量关系可得AD=AE,利用SAS即可证明△ABE≌△ACD;D、如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件.故选:D.【点评】此题主要考查学生对全等三角形判定定理的理解和掌握,此类添加条件题,要求学生应熟练掌握全等三角形的判定定理.11.【分析】证明△BEF∽△DAF,得出EF=AF,EF=AE,由矩形的对称性得:AE=DE,得出EF=DE,设EF=x,则DE=3x,由勾股定理求出DF==2x,再由三角函数定义即可得出答案.【解答】解:∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∵点E是边BC的中点,∴BE=BC=AD,∴△BEF∽△DAF,∴=,∴EF=AF,∴EF=AE,∵点E是边BC的中点,∴由矩形的对称性得:AE=DE,∴EF=DE,设EF=x,则DE=3x,∴DF==2x,∴tan∠BDE===;故选:A.【点评】本题考查了相似三角形的判定和性质,矩形的性质,三角函数等知识;熟练掌握矩形的性质,证明三角形相似是解决问题的关键.12.【分析】作OH⊥CD于H,连结OC,如图,根据垂径定理由OH⊥CD得到HC=HD,再利用AP=2,BP=6可计算出半径OA=4,则OP=OA﹣AP=2,接着在Rt△OPH中根据含30度的直角三角形的性质计算出OH=OP=1,然后在Rt△OHC中利用勾股定理计算出CH=,所以CD=2CH=2.【解答】解:作OH⊥CD于H,连结OC,如图,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=60°,∴OH=OP=1,在Rt△OHC中,∵OC=4,OH=1,∴CH==,∴CD=2CH=2.故选:C.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理以及含30度的直角三角形的性质.13.【分析】过C作CD垂直于x轴,交x轴于点D,由菱形的面积等于对角线乘积的一半,根据已知OB与AC的乘积求出菱形OABC的面积,而菱形的面积可以由OA乘以CD来求,根据OA 的长求出CD的长,在直角三角形OCD中,利用勾股定理求出OD的长,确定出C的坐标,代入反比例解析式中即可求出k的值.【解答】解:∵四边形OABC是菱形,OB与AC为两条对角线,且OB•AC=160,∴菱形OABC的面积为80,即OA•CD=80,∵OA=OC=10,∴CD=8,在Rt△OCD中,OC=10,CD=8,根据勾股定理得:OD=6,即C(6,8),则k的值为48.故选:B.【点评】此题属于反比例函数综合题,涉及的知识有:菱形的性质,勾股定理,以及坐标与图形性质,求出C的坐标是解本题的关键.14.【分析】先根据动点P和Q的运动时间和速度表示:AP=t,AQ=2t,①当0≤t≤4时,Q在边AB上,P在边AD上,如图1,计算S与t的关系式,发现是开口向上的抛物线,可知:选项C、D不正确;②当4<t≤6时,Q在边BC上,P在边AD上,如图2,计算S与t的关系式,发现是一次函数,是一条直线,可知:选项B不正确,从而得结论.【解答】解:由题意得:AP=t,AQ=2t,①当0≤t≤4时,Q在边AB上,P在边AD上,如图1,S=AP•AQ==t2,△APQ故选项C、D不正确;②当4<t≤6时,Q在边BC上,P在边AD上,如图2,S=AP•AB==4t,△APQ故选项B不正确;故选:A.【点评】本题考查了动点问题的函数图象,根据动点P和Q的位置的不同确定三角形面积的不同,解决本题的关键是利用分类讨论的思想求出S与t的函数关系式.二、填空题(本大题共5小题,每小题3分,共15分)把答案填在题中横线上.15.【分析】原式提取x,再利用平方差公式分解即可.【解答】解:原式=x(4﹣x2)=x(2+x)(2﹣x),故答案为:x(2+x)(2﹣x)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16.【分析】根据分式的加法和除法可以解答本题.【解答】解:(1+)÷===,故答案为:.【点评】本题考查分式的混合运算,解答本题的关键是明确分式的混合运算的计算方法.17.【分析】根据平行四边形的周长求出AD+CD,再利用面积列式求出AD、CD的关系,然后求出AD的长,再利用平行四边形的面积公式列式计算即可得解.【解答】解:∵▱ABCD的周长为20,∴2(AD+CD)=20,∴AD+CD=10①,∵S▱ABCD=AD•BE=CD•BF,∴2AD=3CD②,联立①、②解得AD=6,∴▱ABCD的面积=AD•BE=6×2=12.故答案为:12.【点评】本题考查了平行四边形的性质,根据面积的两种表示求出2AD=3CD是解题的关键,也是本题的难点.18.【分析】首先证明△ABP∽△CDP,可得=,再代入相应数据可得答案.【解答】解:由题意可得:∠APE=∠CPE,∴∠APB=∠CPD,∵AB⊥BD,CD⊥BD,∴∠ABP=∠CDP=90°,∴△ABP∽△CDP,∴=,∵AB=2米,BP=3米,PD=12米,∴=,CD=8米,故答案为:8.【点评】此题主要考查了相似三角形的应用,关键是掌握相似三角形对应边成比例.19.【分析】仿照例子,找到要求的1+5+52+53+…+52019式子中,公比q=5,即在式子两侧乘以5,再做差即可求解.【解答】解:令S=1+5+52+53+ (52019)则5S=5+52+53+…+52019+52020,因此5S﹣S=52020﹣1,∴S=,即1+5+52+53+…+52019=.故答案为.【点评】考查知识点:阅读理解能力;根据已知的例子,通过观察数的特点,找到规律.观察规律,审题要清楚,计算要准确是解决本类问题的关键.三、解答题(本大题共7小题,共63分)20.【分析】直接利用特殊角的三角函数值以及绝对值的性质、零指数幂的性质分别化简得出答案.【解答】解:原式=1﹣2﹣1+4×=1﹣2﹣1+2=0.【点评】此题主要考查了实数运算,正确化简各数是解题关键.21.【分析】(1)根据阅读2册的人数和所占的百分比可以求得本次抽样调查的样本容量;(2)根据(1)中的结果和条形统计图、扇形统计图中的信息可以求得阅读1册和4册的人数,从而可以将条形统计图补充完整;(3)根据统计图中的数据可以求得该市初中学生这学期课外阅读超过2册的人数.【解答】解:(1)40÷40%=100,即本次抽样调查的样本容量是100,故答案为:100;(2)阅读1册的学生有:100×30%=30(人),阅读4册的学生有:100﹣30﹣40﹣20=10(人),补全的条形统计图如右图所示;(3)10×(1﹣30%﹣40%)=3(万人),即该市初中学生这学期课外阅读超过2册的有3万人.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.22.【分析】过点D作DE⊥AB于E,则DE=BC=60m,在Rt△ABC中,求出AB,在Rt△ADE 中求出AE即可解决问题.【解答】解:过点D作DE⊥AB于E,则DE=BC=60m,在Rt△ABC中,tan53°=,∴=,∴AB=800(m),在Rt△ADE中,tan37°=,∴=,∴AE=450(m),∴BE=CD=AB﹣AE=350(m),答:两座建筑物的高度分别为800m和350m.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.23.【分析】(1)连接OD,由OB=OD可得出∠OBD=∠ODB,根据切线的性质及直径所对的圆周角等于180°,利用等角的余角相等,即可证出∠CAD=∠BDC;(2)由∠C=∠C、∠CAD=∠CDB可得出△CDB∽△CAD,根据相似三角形的性质结合BD=AD、AC=3,即可求出CD的长.【解答】(1)证明:连接OD,如图所示.∵OB=OD,∴∠OBD=∠ODB.∵CD是⊙O的切线,OD是⊙O的半径,∴∠ODB+∠BDC=90°.∵AB是⊙O的直径,∴∠ADB=90°,∴∠OBD+∠CAD=90°,∴∠CAD=∠BDC.(2)解:∵∠C=∠C,∠CAD=∠CDB,∴△CDB∽△CAD,∴=.∵BD=AD,∴=,∴=,又∵AC=3,∴CD=2.【点评】本题考查了相似三角形的判定与性质、圆周角定义以及切线的性质,解题的关键是:(1)利用等角的余角相等证出∠CAD=∠BDC;(2)利用相似三角形的性质找出.24.【分析】(1)根据图象信息,当t=24分钟时甲乙两人相遇,甲60分钟行驶2400米,根据速度=路程÷时间可得甲的速度;(2)由t=24分钟时甲乙两人相遇,可得甲、乙两人的速度和为2400÷24=100米/分钟,减去甲的速度得出乙的速度,再求出乙从图书馆回学校的时间即A点的横坐标,用A点的横坐标乘以甲的速度得出A点的纵坐标,再将A、B两点的坐标代入,利用待定系数法即可求出线段AB所表示的函数表达式.【解答】解:(1)根据图象信息,当t=24分钟时甲乙两人相遇,甲的速度为2400÷60=40米/分钟.故答案为24,40;(2)∵甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,t=24分钟时甲乙两人相遇,∴甲、乙两人的速度和为2400÷24=100米/分钟,∴乙的速度为100﹣40=60米/分钟.乙从图书馆回学校的时间为2400÷60=40分钟,40×40=1600,∴A点的坐标为(40,1600).设线段AB所表示的函数表达式为y=kt+b,∵A(40,1600),B(60,2400),∴,解得.∴线段AB所表示的函数表达式为y=40t(40≤t≤60).【点评】本题考查了一次函数的应用,路程、速度、时间的关系,用待定系数法确定函数的解析式,属于中考常考题型.读懂题目信息,从图象中获取有关信息是解题的关键.25.【分析】(1)思路一、先利用旋转求出∠PBP'=90°,BP'=BP=2,AP'=CP=3,利用勾股定理求出PP',进而判断出△APP'是直角三角形,得出∠APP'=90°,即可得出结论;思路二、同思路一的方法即可得出结论;(2)同(1)的思路一的方法即可得出结论.【解答】解:(1)思路一、如图1,将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,∴△ABP'≌△CBP,∴∠PBP'=90°,BP'=BP=2,AP'=CP=3,在Rt△PBP'中,BP=BP'=2,∴∠BPP'=45°,根据勾股定理得,PP'=BP=2,∵AP=1,∴AP2+PP'2=1+8=9,∵AP'2=32=9,∴AP2+PP'2=AP'2,∴△APP'是直角三角形,且∠APP'=90°,∴∠APB=∠APP'+∠BPP'=90°+45°=135°;(2)如图2,将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,∴△ABP'≌△CBP,∴∠PBP'=90°,BP'=BP=1,AP'=CP=,在Rt△PBP'中,BP=BP'=1,∴∠BPP'=45°,根据勾股定理得,PP'=BP=,∵AP=3,∴AP2+PP'2=9+2=11,∵AP'2=()2=11,∴AP2+PP'2=AP'2,∴△APP'是直角三角形,且∠APP'=90°,∴∠APB=∠APP'﹣∠BPP'=90°﹣45°=45°.【点评】此题是四边形综合题,主要考查了正方形的性质,旋转的性质,直角三角形的性质和判定,勾股定理,正确作出辅助线是解本题的关键.26.【分析】(1)根据点A,C的坐标,利用待定系数法可求出二次函数的解析式;(2)利用二次函数图象上点的坐标特征可求出点B的坐标,结合点A,C的坐标可求出BC,AB,AC的长,由BC2=AB2+AC2可得出△ABC是直角三角形;(3)分AN=AC,CN=CA,NA=NC三种情况考虑:①当AN=AC时,由等腰三角形的性质可得出ON的长度,进而可得出点N1的坐标;②当CN=CA时,由等腰三角形的性质可得出CN 的长,再结合点C的坐标可得出点N2,N3的坐标;③当NA=NC时,设ON=m,则NC=8﹣m,利用勾股定理可得出关于m的方程,解之即可得出点N4的坐标.综上,此题得解.【解答】解:(1)将A(0,4),C(8,0)代入y=ax2+x+c,得:,解得:,∴二次函数的解析式为y=﹣x2+x+4.(2)△ABC是直角三角形,理由如下:当y=0时,﹣x2+x+4=0,解得:x1=﹣2,x2=8,∴点B的坐标为(﹣2,0).∵点A的坐标为(0,4),点C的坐标为(8,0),∴BC=10,AB==2,AC==4,∴BC2=100=AB2+AC2,∴△ABC是直角三角形.(3)分三种情况考虑(如图):①当AN=AC时,ON=OC=8,∴点N1的坐标为(﹣8,0);②当CN=CA时,CN=4,∴点N2的坐标为(8﹣4,0),点N3的坐标为(8+4,0);③当NA=NC时,设ON=m,则NC=8﹣m,∴(8﹣m)2=42+m2,∴m=3,∴点N4的坐标为(3,0).综上所述:点N的坐标为(﹣8,0),(8﹣4,0),(3,0)或(8+4,0).【点评】本题考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、勾股定理、勾股定理的逆定理以及等腰三角形的性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用BC2=AB2+AC2,证出△ABC是直角三角形;(3)分AN=AC,CN=CA,NA=NC三种情况,利用等腰三角形的性质求出点N的坐标.。

山东省临沂市郯城县2019年中考第一次模拟考试 数学试题(含答案)

山东省临沂市郯城县2019年中考第一次模拟考试 数学试题(含答案)

山东省临沂市九年级中考第一次模拟考试试卷数学一、选择题)A. B. -3 C. 3 D.2.如图,用平行四边形纸条沿对边AB、CD上的点E、F所在的直线折成V字形图案,已知图中∠1=56∘,则∠2的度数为()A. 56°B. 66°C. 68°D. 112°3.下列计算正确的是()4. 将一个长方体内部挖去一个圆柱(如图所示),它的主视图是()5.如图,点A(x<0)的图象上的一点,过点A作平行四边形ABCD,使B、C在x 轴上,点D在y轴上,则平行四边形ABCD的面积为()A. 1B. 3C. 6D. 126.如图,在矩形ABCD中,AB=5,BC=4,以BC为直径在矩形内作半圆,自点A作半圆的切线AE,则tan∠CBE=().7.如图,将△ABC绕点B逆时针旋转α,得到△EBD,若点A恰好在ED的延长线上,则∠CAD的度数为()A. 90°﹣αB. αC. 180°﹣αD. 2α8.某中学九年级二班的8名女同学在一次仰卧起坐测试中的成绩如下(单位:个),135138142144140 147145145;则这组数据的中位数、平均数分别是()A. 142,142B. 143,142C. 143,143D. 144,1439.3的取值范围是()B.10.A、B两点,当A、B两点关于原点)A. 0B. -3C. 3D. 411.由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数y=ax2+bx+c的图象过点(1,0)…求证:这个二次函数的图象关于直线x=2对称,根据现有信息,题中的二次函数具有的性质:(1)过点(3,0);(2)顶点是(1,﹣2);(3)在x轴上截得的线段的长度是2;(4)c=3a;正确的个数()A. 4个B. 3个C. 2个D. 1个12.如图,D是等边△ABC边AB上的一点,且AD=1,BD=2,现将△ABC折叠,使点C与D重合,折痕EF,点E、F分别在AC和BC上,若BF=1.25,则CE=()13.尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:①将半径为r的⊙O六等分,依次得到A,B,C,D,E,F六个分点;②分别以点A,D为圆心,AC长为半径画弧,G是两弧的一个交点;③连结OG.问:OG的长是多少?大臣给出的正确答案应是()A. B. (r C. (r D.14.已知:如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB,AC相交于D点,双曲线x>0)经过D点,交BC的延长线于E点,且OB•AC=160,有下列四个结论:①菱形OABC的面积为80;②E点的坐标是(4,8);③双曲线的解析式为x>0);④sin∠其中正确的结论有()个.A. 1B. 2C. 3D. 4二、填空题15.16.如图,正六边形卡片被分成六个全等的正三角形.若向该六边形内投掷飞镖,则飞镖落在阴影区域的概率为.17.18.一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设快车离乙地的距离为y1(km),慢车离乙地的距离为y2(km),慢车行驶时间为x(h),两车之间的距离为s(km).y1,y2与x的函数关系图象如图1所示,s与x的函数关系图象如图2所示.则下列判断:①图1中a=3;②当x时,两车相遇;③当x两车相距60km;④图2中C点坐标为(3,180);⑤当x时,两车相距200km.其中正确的有_____(请写出所有正确判断的序号)19.如图,△ABD是边长为3的等边三角形,E,F分别是边AD,AB上的动点,若∠ADC=∠ABC=90°,则△CEF 周长的最小值为______.三、解答题21.为积极创建全国文明城市,某市对某路口的行人交通违章情况进行了天的调查,将所得数据绘制成如下统计图(图2不完整):请根据所给信息,解答下列问题:(1)第天,这一路口的行人交通违章次数是多少次?这天中,行人交通违章次的有多少天?(2)请把图2中的频数直方图补充完整;(温馨提示:请画在答题卷相对应的图上)(3)通过宣传教育后,行人的交通违章次数明显减少.经对这一路口的再次调查发现,平均每天的行人交通违章次数比第一次调查时减少了次,求通过宣传教育后,这一路口平均每天还出现多少次行人的交通违章?22.如图,一次函数A,B 两点,且与x 轴交于点C,点B 的坐标为(-1,-2).(1)(2)连接OA ,OB ,求△OAB 的面积; (3).23.如图,四边形ABCD 内接于⊙O ,∠BAD=90°,点E 在BC 的延长线上,且∠DEC=∠BAC . (1)求证:DE 是⊙O 的切线;(2)若AC ∥DE ,当AB=8,CE=2时,求AC 的长.24.下图是一个桌面会议话筒示意图,中间BC部分是一段可弯曲的软管,在弯曲时可形成一段圆弧,设圆弧所在圆的圆心为O,线段AB,CD均与圆弧相切,点B,C分别为切点,已知AB的长10cm,CD的长为25.2cm. CD水平时,距离桌面14cm.(1)求弧BC的长度;(2)当∠D=60∘时.求D点距桌面AM的高度(如图)25.己知:在菱形ABCD中,∠ABC=60°,对角线AC,BD相交于点O,点E是线段BD上一动点(不与点B,D重合),连接AE,以AE为边在AE的右侧作等边△AEF.(1)如图①,若点F落在线段BD上,线段AE、FD的数量关系是AE=FD;(2)如图②,若点F不在线段BD上,(1)中的结论是否成立?若成立,请证明:若不成立,请说明理由;(3)BE与BD满足BE= BD时,AE∥FD.26.如图,直线y=2x-4与x轴交于点A,与y轴交于点B,以x轴上点M为圆心,过A、B两点作⊙M与x 轴交于另一点C.(1)求⊙M的半径及圆心M的坐标;(2)①求经过A、B、C三点的抛物线的顶点D的坐标;②求证:DB是⊙M的切线;(3)若半径为1的⊙P与x轴和直线BD都相切,请直接写出点P的坐标.答案解析一、选择题)A. B. -3 C. 3 D.【答案】A【解析】【分析】.故选:A【点睛】考核知识点:绝对值,相反数,倒数.2.如图,用平行四边形纸条沿对边AB、CD上的点E、F所在的直线折成V字形图案,已知图中∠1=56∘,则∠2的度数为()A. 56°B. 66°C. 68°D. 112°【答案】C【解析】【分析】首先延长DF,由折叠的性质可得∠1=∠3,继而求得答案.【详解】如图,延长DF,根据题意得:∠1=∠3=56°,且∠3+∠EFD=180°,∴∠2=180°-∠1-∠3=68°.故选:C.【点睛】此题考查了平行四边形的性质以及折叠的性质.注意准确作出辅助线是解此题的关键.3.下列计算正确的是()A.B.D.【答案】D【解析】【分析】根据0指数幂,负指数幂即单项式除法进行分析即可.【详解】只有a不等于0才成立,故错误;,故错误;C .,故错误;. 故选:D 【点睛】考核知识点:0指数幂,负指数幂即单项式除法. 4. 将一个长方体内部挖去一个圆柱(如图所示),它的主视图是()【答案】A 【解析】试题解析:从正面看易得主视图为长方形,中间有两条垂直地面的虚线.故选A.【此处有视频,请去附件查看】5.如图,点A(x<0)的图象上的一点,过点A作平行四边形ABCD,使B、C在x 轴上,点D在y轴上,则平行四边形ABCD的面积为()A. 1B. 3C. 6D. 12【答案】C【解析】如图,过点A作AE⊥x轴,垂足为点E,则□ABCD的面积=矩形ADOE的面积=AD×AE k=-6,根据k的几何意义可得AD×AE=|-6|=6,∴平行四边形ABCD的面积为6,故答案为C.6.如图,在矩形ABCD中,AB=5,BC=4,以BC为直径在矩形内作半圆,自点A作半圆的切线AE,则tan∠CBE=().A. B. D.【答案】A【解析】【分析】设BC的中点为O,连接AO,交BE于F.根据切线长定理得AB=AE,且∠BAF=∠EAF,得△ABF≌△AEF,在Rt△ABO中,BF⊥AO,则∠FBO=∠BAO,由tan∠BAO=tan∠CBE可得结论.【详解】设BC的中点为O,连接AO,交BE于F.由于AB、AE分别切⊙O于B、E,则AB=AE,且∠BAF=∠EAF.又∵AF=AF,∴△ABF≌△AEF.∴AO垂直平分BE.在Rt△ABO中,BF⊥AO,则∠FBO=∠BAO,易知BO=1,AB=3,∴tan∠BAO=tan∠故选:A【点睛】考核知识点:切线长性质定理,正切.添好辅助线构造直角三角形是关键.7.如图,将△ABC绕点B逆时针旋转α,得到△EBD,若点A恰好在ED的延长线上,则∠CAD的度数为()A. 90°﹣αB. αC. 180°﹣αD. 2α【解析】分析:根据旋转的性质和四边形的内角和是360°,可以求得∠CAD的度数,本题得以解决.详解:由题意可得,∠CBD=α,∠ACB=∠EDB,∵∠EDB+∠ADB=180°,∴∠ADB+∠ACB=180°,∵∠ADB+∠DBC+∠BCA+∠CAD=360°,∠CBD=α,∴∠CAD=180°−α,故选:C.点睛:本题考查旋转的性质,解答本题的关键是明确题意,利用数形结合的思想解答.8.某中学九年级二班的8名女同学在一次仰卧起坐测试中的成绩如下(单位:个),135138142144140 147145145;则这组数据的中位数、平均数分别是()A. 142,142B. 143,142C. 143,143D. 144,143【答案】B【解析】【分析】把数据从小到大排序,第4,5个数的平均数是中位数;根据平均数的公式求值.故选:A【点睛】考核知识点:中位数,算术平均数.理解定义是关键.9.3)A. B. D.【答案】A【分析】先解不等式组得4<x≤2-a,由整数解是5,6,7,得7≤2-a<8,可求a的取值范围.4<x≤2-a,因为不等式组有3个整数解,所以整数解是5,6,7所以,7≤2-a<8故选:A【点睛】考核知识点:求不等式组的整数解.解不等式是关键.10.A、B两点,当A、B两点关于原点)A. 0B. -3C. 3D. 4【答案】C【解析】试题分析:设A(t,﹣),根据关于原点对称的点的坐标特征得B(﹣t,),然后把A(t,﹣),B(﹣t,)分别代入y=﹣x+a﹣3得﹣=﹣t+a﹣3,=t+a﹣3,两式相加消去t得2a﹣6=0,再解关于a的一次方程即可.解:设A(t,﹣),∵A、B两点关于原点对称,∴B(﹣t,),把A(t,﹣),B(﹣t,)分别代入y=﹣x+a﹣3得﹣=﹣t+a﹣3,=t+a﹣3,两式相加得2a﹣6=0,∴a=3.故选C.考点:反比例函数与一次函数交点问题;关于原点对称的点的坐标.11.由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数y=ax2+bx+c的图象过点(1,0)…求证:这个二次函数的图象关于直线x=2对称,根据现有信息,题中的二次函数具有的性质:(1)过点(3,0);(2)顶点是(1,﹣2);(3)在x轴上截得的线段的长度是2;(4)c=3a;正确的个数()A. 4个B. 3个C. 2个D. 1个【答案】B【解析】(1)因为图象过点(1,0),且对称轴是直线x=2,由对称性可知图象还过点(3,0),正确;(2)由对称轴可知顶点的横坐标是2,而给的顶点的横坐标是1,故错误;(3)由抛物线与x轴两交点为(1,0),(3,0),可得在x轴上截得的线段长为2,正确;(4)由对称轴x=-=2,可得b=-4a,又图象过点(1,0),则有a-4c+c=0,所以c=3a,正确;故选B.点睛:本题主要考查了二次函数的性质,解答本题的关键是掌握二次函数图象的对称性.12.如图,D是等边△ABC边AB上的一点,且AD=1,BD=2,现将△ABC折叠,使点C与D重合,折痕EF,点E、F分别在AC和BC上,若BF=1.25,则CE=()A. B. D.【答案】A【解析】【分析】先求得AC=AB=3,由翻折的性质可知:EC=ED,然后证明△AED∽△BDF,利用相似三角形的性质可求得CE的长.【详解】∵△AB C为等边三角形,∴AC=AB=3,∠A=∠B=∠C=60°.由翻折的性质可知:∠EDF=60°.∴∠FDB+∠EDA=120°.∵∠EDA+∠AED=120°,∴∠AED=∠FDB.∴△AED∽△BDF.解得:AE=故选:A.【点睛】本题主要考查的是等边三角形的性质、翻折的性质、相似三角形的性质和判定,利用相似三角形的性质求得AE的长是解题的关键.13.尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:①将半径为r的⊙O六等分,依次得到A,B,C,D,E,F六个分点;②分别以点A,D为圆心,AC长为半径画弧,G是两弧的一个交点;③连结OG.问:OG的长是多少?大臣给出的正确答案应是()A. B. (r C. (r D.【答案】D【解析】分析:如图连接CD,AC,DG,AG.在直角三角形即可解决问题;详解:如图连接CD,AC,DG,AG.∵AD是⊙O直径,∴∠ACD=90°,在Rt△ACD中,AD=2r,∠DAC=30°,∴,∵DG=AG=CA,OD=OA,∴OG⊥AD,∴∠GOA=90°,∴,故选:D.点睛:本题考查作图-复杂作图,正多边形与圆的关系,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.14.已知:如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB,AC相交于D点,双曲线x>0)经过D点,交BC的延长线于E点,且OB•AC=160,有下列四个结论:①菱形OABC的面积为80;②E点的坐标是(4,8);③双曲线的解析式为x>0);④sin∠其中正确的结论有()个.A. 1B. 2C. 3D. 4【答案】C【解析】【分析】 作DH ⊥x 轴于H ,BG ⊥x 轴于G ,根据菱形的面积等于对角线乘积的一半得到菱形OABC 的面积=12OB•AC=12×160=80;则△ODA 的面积为20,根据三角形面积公式可计算出DA=4,再根据菱形的性质易得DH 为△OBG 的中位线,则BG=8,所以E 点的纵坐标为8;接着证明Rt △DOH ∽Rt △ADH ,得到DH2=OH•AH ,由于DH=4,AH=10-OH ,则OH (10-OH )=16,解得OH=8或OH=2(舍去),可确定D 点坐标为(8,4),利用待定系数法得到反比例函数解析式为y=32x ;同时可确定E 点坐标为(4,8);CM ⊥x 轴于M ,则CM=8,根据菱形性质得OC=OA=10,根据勾股定理可计算出OM=6,然后利用正弦的定义即可得到sin ∠COM=CMOC=45,于是有sin ∠COA=45.【详解】作DH ⊥x 轴于H ,BG ⊥x 轴于G ,如图,∵四边形OABC 为菱形,∴菱形OABC 的面积=,所以①正确; ∴DH•OA=菱形OABC80, 而A 点的坐标为(10,0),80, ∴DH=4,∵OB 与AC 互相垂直平分,∴∠ADO=90°,DH 为△OBG 的中位线,∴BG=2DH=8,∴E 点的纵坐标为8,∵∠DOH+∠ODH=∠ODH+∠ADH=90°,∴∠DOH=∠ADH ,∴Rt △DOH ∽Rt △ADH ,∴DH :AH=OH :DH ,即DH 2=OH•AH , ∵DH=4,AH=OA-OH=10-OH ,∴OH(10-OH)=16,解得OH=8或OH=2(舍去),∴D点坐标为(8,4),把D(8,4)代入得k=4×8=32,∴反比例函数解析式为把y=8,解得x=4,∴E点坐标为(4,8),所以②正确;CM⊥x轴于M,如图,∴CM=BG=8,∵四边形OABC为菱形,∴OC=OA=10,在Rt△OCM中,CM=8,OC=10,∴,∴sin∠即sin∠COA=,所以④正确.故选:C.【点睛】本题考查了反比例函数的综合题:反比例函数图象的点的坐标满足其函数解析式;熟练运用菱形的性质、相似三角形的相似比和勾股定理进行计算.二、填空题15.【解析】【分析】先提公因式x,再运用平方差公式.故答案为:【点睛】考核知识点:综合运用提公因式法和公式法因式分解.16.如图,正六边形卡片被分成六个全等的正三角形.若向该六边形内投掷飞镖,则飞镖落在阴影区域的概率为.【答案】.【解析】试题分析:阴影区域面积为总体面积的=,所以飞镖落在阴影区域的概率为.考点:求随机事件的概率.17.【解析】【分析】小括号内先通分,再根据分式除法法则进行计算.【详解】解:原式故答案为:【点睛】考核知识点:分式的加减乘除运算.掌握运算法则是关键.18.一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设快车离乙地的距离为y1(km),慢车离乙地的距离为y2(km),慢车行驶时间为x(h),两车之间的距离为s(km).y1,y2与x的函数关系图象如图1所示,s与x的函数关系图象如图2所示.则下列判断:①图1中a=3;②当x时,两车相遇;③当x两车相距60km;④图2中C点坐标为(3,180);⑤当x时,两车相距200km.其中正确的有_____(请写出所有正确判断的序号)【答案】①②④.【解析】【分析】根据S与x之间的函数关系式可以得到当位于C点时,两人之间的距离增加变缓,此时快车到站,此时a=3,故①正确;根据相遇可知y1=y2,列方程求解可得x后两车相距60km,x是相遇前的时间,故③正确;先确定b的值,根据函数的图象可以得到C的点的坐标,故④正确;分两车相遇前和两车相遇后两种情况讨论,即可求得x的值,当时不合题意,故⑤不正确.【详解】解:∵由S与x之间的函数的图象可知:当位于C点时,两车之间的距离增加变缓,∴由此可以得到a=3,故①正确;设y1=kx+b,将(0,300)、(3,0)代入,∴y1=﹣100x+300,设y2=mx,将点(5,300)代入,得:5m=300,解得:m=60,∴慢车离乙地的距离y2解析式为:y2=60x;∴当y1=y2时,两车相遇,可得:﹣100x+300=60x,解得:x,故②正确;分两种情况考虑,相遇前两车相距60km,﹣100x+300﹣60x=60,解得,h,相遇后两车相距60km,60x﹣(﹣100x+300)=60,解得,h,∴当x时,两车相距60km,故③不正确;快车每小时行驶100千米,慢车每小时行驶60千米,两地之间的距离为300千米,∴b=300÷(100+60由函数的图象可以得到C的点的横坐标为3,即快车到达乙地,此时慢车所走的路程为3×60=180千米,∴C点坐标为(3,180),故④正确;分两种情况考虑,相遇前两车相距200km,﹣100x+300﹣60x=200,解得,h,相遇后两车相距60km,60x﹣(﹣100x+300)=200,解得,h,,∴当不合题意,舍去.∴当x=h时,两车相距200km,故⑤不正确.故答案为:①②④.【点睛】本题考查了一次函数的应用、二元一次方程组的解法、一次函数解析式的求法;主要根据待定系数法求一次函数解析式,根据图象准确获取信息是解题的关键,要注意要分情况讨论.19.如图,△ABD是边长为3的等边三角形,E,F分别是边AD,AB上的动点,若∠ADC=∠ABC=90°,则△CEF 周长的最小值为______.【解析】【分析】分别作点C关于AD、AB的对称点M、N,连接MN,MN与AD交于点E,与AB交于点F,连接CE、CF,则此时△CEF的周长最小.分别证△ADC≌△ABC,△ACD≌△MCP,得MP=AD=3,∠MPC=∠ADC=90°,MN=2MP=6.C关于AD、AB的对称点M、N,连接MN,MN 与AD交于点E,与AB交于点F,连接CE、CF,则此时△CEF的周长最小,连接AC,交MN于点P,由作图可知CE=ME、CF=FN,∴△CEF的周长:CE+CF+EF=MN,∵△ABD是等边三角形,∴AB=AD=3,∠DAB=∠ADB=∠ABD=60°,∵∠ADC=∠ABC=90°,∴∠CDB=∠CBD=30°,∴CD=CB,∵DM=CD,BN=CB,∴CM=2CD=2BC=CN,MN//BD,∴∠M=∠N=∠CDB=30°,又∵AC=AC,∴△ADC≌△ABC,∴CD=CB,∠DAC=∠DAB=30°,∴AC=2CD,∠M=∠DAC,∴AC=CM,又∵∠ACD=∠MCP,∴△ACD≌△MCP,∴MP=AD=3,∠MPC=∠ADC=90°,∴MN=2MP=6,即△CEF周长的最小值是6,故答案为:6.【点睛】本题考查了最短路径问题,涉及到等边三角形的性质,全等三角形的判定与性质,轴对称的性质等,正确根据轴对称的性质作出符合条件的图形是解题的关键.三、解答题【答案】2【解析】【分析】先求锐角三角函数值,绝对值,负指数幂,0指数幂,再算加减.【详解】解:原式【点睛】考核知识点:锐角三角函数值,绝对值,负指数幂,0指数幂.21.为积极创建全国文明城市,某市对某路口的行人交通违章情况进行了天的调查,将所得数据绘制成如下统计图(图2不完整):请根据所给信息,解答下列问题:(1)第天,这一路口的行人交通违章次数是多少次?这天中,行人交通违章次的有多少天?(2)请把图2中的频数直方图补充完整;(温馨提示:请画在答题卷相对应的图上)(3)通过宣传教育后,行人的交通违章次数明显减少.经对这一路口的再次调查发现,平均每天的行人交通违章次数比第一次调查时减少了次,求通过宣传教育后,这一路口平均每天还出现多少次行人的交通违章?【答案】(1)8,5(2)图像见解析(3)3次【解析】试题分析:(1)直接根据折线统计图可读出数据;(2)求出8次的天数,补全图形即可;(3)求出这20天的平均数,然后再算出交通违章次数即可.试题解析:(1)第7天,这一路口的行人交通违章次数是8次.这20天中,行人交通违章6次的有5天.(2)补全的频数直方图如图所示:(3)第一次调查,平均每天行人的交通违章次数为:=7(次)∵7-4=3(次)∴通过宣传教育后,这一路口平均每天还出现3次行人的交通违章. 考点:1、折线统计图,2、频数分布直方图22.如图,一次函数的A,B两点,且与x轴交于点C,点B的坐标为(-1,-2).(1)(2)连接OA,OB,求△OAB的面积;(3).【解析】【分析】(1)把B的坐标分别代入解析式,可求得结果;(2)通过解方程组求出交点坐标,再求面积;(3)根据函数图象比较函数值大小.【详解】(1)由题意可得:点B(-1,-2)在函数y=x+m的图象上,∴-1+m=-2即m=-1;∵B(-1,-2)在反比例函数,∴k=2;(2)∵一次函数y=x+m的图象与反比例函数A,B两点,解得,∴A(2,1),令y=x-1中y=0,得x=1,∴C(1,0)∴S△OAB=S△OAC+S△OCB,∴△OAB的面积=1.5;(3)由图象可知不等式组1<x≤2.【点睛】考核知识点:反比例函数与一次函数的综合.熟记函数的基本性质是关键.23.如图,四边形ABCD内接于⊙O,∠BAD=90°,点E在BC的延长线上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)若AC∥DE,当AB=8,CE=2时,求AC的长.【答案】(1)证明见解析;(2)AC【解析】分析:(1)先判断出BD是圆O的直径,再判断出BD⊥DE,即可得出结论;(2)先判断出AC⊥BD,进而求出BC=AB=8,进而判断出△BCD∽△DCE,求出CD,再用勾股定理求出BD,最后判断出△CFD∽△BCD,即可得出结论.详解:(1)如图,连接BD,∵∠BAD=90°,∴点O必在BD上,即:BD是直径,∴∠BCD=90°,∴∠DEC+∠CDE=90°.∵∠DEC=∠BAC,∴∠BAC+∠CDE=90°.∵∠BAC=∠BDC,∴∠BDC+∠CDE=90°,∴∠BDE=90°,即:BD⊥DE.∵点D在⊙O上,∴DE是⊙O的切线;(2)∵DE∥AC.∵∠BDE=90°,∴∠BFC=90°,∴CB=AB=8,,∵∠CDE+∠BDC=90°,∠BDC+∠CBD=90°,∴∠CDE=∠CBD.∵∠DCE=∠BCD=90°,∴△BCD∽△DCE,,∴CD=4.在Rt△BCD中,同理:△CFD∽△BCD,∴CF=,∴AC=2AF=点睛:此题主要考查了圆周角定理,垂径定理,相似三角形的判定和性质,切线的判定和性质,勾股定理,求出BC=8是解本题的关键.24.下图是一个桌面会议话筒示意图,中间BC部分是一段可弯曲的软管,在弯曲时可形成一段圆弧,设圆弧所在圆的圆心为O,线段AB,CD均与圆弧相切,点B,C分别为切点,已知AB的长10cm,CD的长为25.2cm. CD水平时,距离桌面14cm.(1)求弧BC的长度;(2)当∠D=60∘时.求D点距桌面AM的高度(如图)【答案】(1)2π;(2)27.8【解析】【分析】(1)先求得∠BOC=90°,圆弧的半径OC=4,根据弧长公式求得即可;(2)作CN⊥AM,则CN∥OB,进而求得∠NCD=30°,根据正弦函数求得DN,作CG⊥OB,根据正弦函数求得CG,从而求得话筒顶端D到桌面AM的距离.【详解】解:(1)如图1,∵线段AB,CD均与圆弧相切,∴OB⊥AB,OC⊥CD,∴CD∥OB∥AM,∴∠BOC=∠OCD=90°,∵CD距离桌面14cm,AB的长10cm,∴半径OC为4cm,(2)如图2,作CN⊥AM,则CN∥OB,∴∠OCN=60°,∵∠OCD=90°,∴∠NCD=30°,∴,作CG⊥OB,2π;∴∴OB=OC=6,∴∴DM=DN+CG+AB=12.6+5.2+10=27.8.【点睛】本题考查了解直角三角形的应用以及弧长的计算,主要是三角函数及运算,关键把实际问题转化为数学问题加以计算.25.己知:在菱形ABCD中,∠ABC=60°,对角线AC,BD相交于点O,点E是线段BD上一动点(不与点B,D重合),连接AE,以AE为边在AE的右侧作等边△AEF.(1)如图①,若点F落在线段BD上,线段AE、FD的数量关系是AE=FD;(2)如图②,若点F不在线段BD上,(1)中的结论是否成立?若成立,请证明:若不成立,请说明理由;(3)BE与BD满足BE= BD时,AE∥FD.【答案】(1)AE=FD;(2)成立;(3【解析】【分析】(1)先利用菱形的性质得出∠ABO=∠ADO=30°,AC⊥BD,即可求出∠FAD=30°即可得出结论;(2)先判断出△ACD是等边三角形,再用△AEF是等边三角形,进而得出∠CAE=∠DAF,即可判断出△ACE≌△ADF,即可得出结论;(3)先判断出四边形AEDF是菱形,进而求出∠EAD=30°,即可求出∠BAE=90°,即可得出BE=2DE,即可得出结论.【详解】解:(1)∵四边形ABCD是菱形,∴AC⊥BD,∠ABO=1212∠ABC=30°,∠ADO=30°,∴∠OAD=60°,∵△AEF是等边三角形,边EF在BD上,∴AE=AF,∠OAE=∠OAF=30°,∴∠DAF=30°=∠ADO,∴AF=FD,∵AE=AF,∴AE=FD;故答案为AE=FD;(2)成立,如图1,连接CE,∵四边形ABCD是菱形,∴AD=CD,BD垂直平分AC,∠ABC=∠ADC=60°,∴∠ADC=60°,∴△ACD是等边三角形,∴AC=AD,∠CAD=60°,∵△AEF是等边三角形,∴AE=AF=EF,∠EAF=60°=∠CAD∴∠CAE=∠DAF,在△ACE和△ADF中,△ACE≌△ADF,∴EC=DF,∵BD垂直平分AC,∴EC=AE,∴DF=AE,(3)如图2,由(2)知,AE=FD,∵AE∥FD,∴四边形AEDF是平行四边形,∵△AEF是等边三角形,∴AE=AF,∴四边形AEDF是菱形,∴AE=ED,∴∠EAD=∠ADE=30°,∵∠BAD=180°-∠ABC=120°,∴∠BAE=∠BAD-∠EAD=90°,在Rt△ABE中,∠ABE=30°,∴BE=2AE,∴BE=2DE,∴BD=BE+DE=3DE,∴,【点睛】此题是四边形综合题,主要考查了菱形的性质,等边三角形的性质,等腰三角形的判定和性质,解(1)的关键是判断出AF=FD,解(2)的关键是判断出△ACE≌△ADF,解(3)的关键是判断出BE=2AE,是一道中等难度的中考常考题.26.如图,直线y=2x-4与x轴交于点A,与y轴交于点B,以x轴上点M为圆心,过A、B两点作⊙M与x 轴交于另一点C.(1)求⊙M的半径及圆心M的坐标;(2)①求经过A、B、C三点的抛物线的顶点D的坐标;②求证:DB是⊙M的切线;(3)若半径为1的⊙P与x轴和直线BD都相切,请直接写出点P的坐标.【答案】(1)(-3,0);(2)①(-3,;②详见解析;(3)P11)、P2-1)、P3-1)、P4(5,1)【解析】【分析】(1)根据题意,连接BC 可得AC 是⊙O 直径,进而可得OB 2=OA•OC ,进而可得圆心的坐标与半径的大小;(2)设出其解析式,并用三点式求抛物线解析可得答案;(3)根据题意,半径为1的⊙P 与x 轴相切,故P 的纵坐标的绝对值为1,即为±1,将其值代入抛物线解析式,即可得到其横坐标,综合可以写出P 的坐标.【详解】解:(1)y=2x-4与x 轴交于点A (2,0),与y 轴交于点B (0,-4).连接BC ,∵AC 是⊙O 直径,∴∠ABC=90°,OB ⊥AC .∴OB 2=OA•OC .即42=2OC .∴OC=8.∴直径AC=8+2=10.∴半径R=5,圆心M 坐标(-3,0).(2)①设过A (2,0),B (0,-4),C (-8,0)的解析式为y=a (x-2)(x+8),∴-4=a (0-2)(0+8).∴. ∴x-2)(x+8)2(x+3)2∴顶点D 的坐标为(-3,. ②连MD 、MB,∴MD 2=MB 2+BD 2 ∴∠MBD=90°.∴BD 是⊙M 的切线.(3)因为半径为1的⊙P 与x 轴相切,故P 的纵坐标的绝对值为1,即为±1,将其值代入抛物线解析式,即可得到其横坐标,即:当y=1时(x+3)2解得x=5; 当y=-1时(x+3)2解得或所以:P11)、P2-1)、P3-1)、P4(5,1)【点睛】本题考查学生将二次函数的图象与解析式相结合处理问题、解决问题的能力.。

黑龙江省哈尔滨市2019年中考数学模拟试卷(含答案)

黑龙江省哈尔滨市2019年中考数学模拟试卷(含答案)

黑龙江省哈尔滨市2019年中考数学模拟试卷(含答案)一.选择题(满分30分,每小题3分)1.我市有一天的最高气温为5℃,最低气温为﹣4℃,则这天的最高气温比最低气温高()A.9℃B.4℃C.﹣4℃D.﹣9℃2.下列运算中,计算正确的是()A.(3a2)3=27a6B.(a2b)3=a5b3C.x6+x2=x3D.(a+b)2=a2+b23.下列图形中,可以看作是中心对称图形的是()A.B.C.D.4.把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是()A.y=﹣2(x+1)2+1 B.y=﹣2(x﹣1)2+1C.y=﹣2(x﹣1)2﹣1 D.y=﹣2(x+1)2﹣15.一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是()A.B.C.D.6.若双曲线y=在每一个象限内,y随x的增大而减小,则k的取值范围是()A.k≠3 B.k<3 C.k≥3 D.k>37.如图,△ABC中,BC=4,⊙P与△ABC的边或边的延长线相切.若⊙P半径为2,△ABC的面积为5,则△ABC的周长为()A.8 B.10 C.13 D.148.一个圆柱形容器的容积为Vm3,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水,向容器中注满水的全过程共用时间t 分钟.设小水管的注水速度为x立方米/分钟,则下列方程正确的是()A. +=t B. +=tC.•+•=t D. +=t9.如图,▱ABCD的对角线AC与BD相交于点O,AC⊥BC,且AB=10,AD=6,则OB的长度为()A.2B.4 C.8 D.410.一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:会员年卡类型办卡费用(元)每次游泳收费(元)A类50 25B类200 20C类400 15例如,购买A类会员年卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于40~50次之间,则最省钱的方式为()A.购买A类会员卡B.购买B类会员年卡C.购买C类会员年卡D.不购买会员年卡二.填空题(满分30分,每小题3分)11.港珠澳大桥被英国《卫报》誉为“新世界七大奇迹”之一,它是世界总体跨度最长的跨海大桥,全长55000米,数字55000用科学记数法表示为.12.函数y=中,自变量x的取值范围是.13.因式分解:4x2y﹣9y3=.14.若关于x的不等式组有且只有两个整数解,则m的取值范围是.15.计算结果为.16.如图,点A、B、C在⊙O上,BC=6,∠BAC=30°,则⊙O的半径为.17.扇形的弧长为10πcm,面积为120πcm2,则扇形的半径为cm.18.已知盒子里有4个黄色球和n个红色球,每个球除颜色不同外均相同,则从中任取一个球,取出红色球的概率是,则n的值是.19.如图,P是边长为3的等边△ABC边AB上一动点,沿过点P的直线折叠∠B,使点B落在AC上,对应点为D,折痕交BC于E,点D是AC的一个三等分点,PB的长为.20.如图,边长为4正方形ABCD中,E为边AD的中点,连接线段EC交BD于点F,点M是线段CE延长线上的一点,且∠MAF为直角,则DM的长为.三.解答题(共7小题,满分60分)21.(7分)先化简,再求代数式÷(﹣2)的值,其中x=2sin60°+tan45°.22.(7分)在如图所示的方格纸中,将等腰△ABC绕底边BC的中点O旋转180°.(1)画出旋转后的图形;(2)观察:旋转后得到的三角形与原三角形拼成什么图形?(3)若要使拼成的图形为正方形,那么△ABC应满足什么条件?23.(8分)随着科技的进步和网络资源的丰富,在线学习已经成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对在线阅读最感兴趣的学生人数.24.(8分)已知矩形ABCD,其中AD>AB,依题意先画出图形,然后解答问题.(1)F为DC边上一点,把△ADF沿AF折叠,使点D恰好落在BC上的点E处.在图1中先画出点E,再画出点F,若AB=8,AD=10,直接写出EF的长为;(2)把△ADC沿对角线AC折叠,点D落在点E处,在图2先画出点E,AE交CB于点F,连接BE.求证:△BEF是等腰三角形.25.(10分)某电器超市销售每台进价分别为2000元、1700元的A、B两种型号的空调,如表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台18000元第二周4台10台31000元(进价、售价均保持不变,利润=销售总收入﹣进货成本)(1)求A、B两种型号的空调的销售单价;(2)若超市准备用不多于54000元的金额再采购这两种型号的空调共30台,求A种型号的空调最多能采购多少台?26.(10分)△ABC内接于⊙O,AC为⊙O的直径,∠A=60°,点D在AC上,连接BD作等边三角形BDE,连接OE.(1)如图1,求证:OE=AD;(2)如图2,连接CE,求证:∠OCE=∠ABD;(3)如图3,在(2)的条件下,延长EO交⊙O于点G,在OG上取点F,使OF=2OE,延长BD到点M使BD=DM,连接MF,若tan∠BMF=,OD=3,求线段CE的长.27.(10分)已知抛物线y=ax2+bx+c(a≠0)过点A(1,0),B(3,0)两点,与y轴交于点C,OC=3.(1)求抛物线的解析式及顶点D的坐标;(2)过点A作AM⊥BC,垂足为M,求证:四边形ADBM为正方形;(3)点P为抛物线在直线BC下方图形上的一动点,当△PBC面积最大时,求点P的坐标;(4)若点Q为线段OC上的一动点,问:AQ+QC是否存在最小值?若存在,求岀这个最小值;若不存在,请说明理由.参考答案一.选择题1.解:5﹣(﹣4)=5+4=9℃.故选:A.2.解:A、(3a2)3=27a6,故A正确;B、(a2b)3=a6b3,故B错误;C、x6与x2不是同类项,不能合并,故C错误;D、(a+b)2=a2+2ab+b2,故D错误;故选:A.3.解:A、不是中心对称图形,故本选项不合题意;B、不是中心对称图形,故本选项不合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不合题意;故选:C.4.解:∵函数y=﹣2x2的顶点为(0,0),∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),∴将函数y=﹣2x2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=﹣2(x﹣1)2+1,故选:B.5.解:几何体的俯视图是:故选:C.6.解:∵双曲线y=在每一个象限内,y随x的增大而减小,∴k﹣3>0∴k>3故选:D.7.解:连接PE 、PF 、PG ,AP ,由题意可知:∠PEC =∠PFA =PGA =90°, ∴S △PBC =BC •PE =×4×2=4,∴由切线长定理可知:S △PFC +S △PBG =S △PBC =4, ∴S 四边形AFPG =S △ABC +S △PFC +S △PBG +S △PBC =5+4+4=13, ∴由切线长定理可知:S △APG =S 四边形AFPG =,∴=×AG •PG ,∴AG =,由切线长定理可知:CE =CF ,BE =BG , ∴△ABC 的周长为AC +AB +CE +BE =AC +AB +CF +BG =AF +AG =2AG =13, 故选:C .8.解:设小水管的注水速度为x 立方米/分钟,可得:,故选:C .9.解:∵四边形ABCD 是平行四边形, ∴BC =AD =6,OA =OC , ∵AC ⊥BC ,AB =10, ∴==8,∴AO =CO =AC =4, ∴OB ===2;故选:A.10.解:设一年内在该游泳馆游泳的次数为x次,消费的钱数为y元,根据题意得:y A=50+25x,y B=200+20x,y C=400+15x,当40≤x≤50时,1050≤y A≤1300;1000≤y B≤1200;1000≤y C≤1150;由此可见,C类会员年卡消费最低,所以最省钱的方式为购买C类会员年卡.故选:C.二.填空题11.解:数字55000用科学记数法表示为5.5×104.故答案为:5.5×104.12.解:依题意,得x﹣2≥0,解得:x≥2,故答案为:x≥2.13.解:原式=y(4x2﹣9y2)=y(2x+3y)(2x﹣3y),故答案为:y(2x+3y)(2x﹣3y)14.解:解不等式①得:x>﹣2,解不等式②得:x≤,∴不等式组的解集为﹣2<x≤,∵不等式组只有两个整数解,∴0≤<1,解得:﹣2≤m<1,故答案为﹣2≤m<1.15.解:原式===x.故答案为:x.16.解:∵∠BOC=2∠BAC=60°,又OB=OC,∴△BOC是等边三角形∴OB=BC=6,故答案为6.=lr17.解:∵S扇形∴120π=•10π•r∴r=24;故答案为24.18.解:由题意得:=解得:n=16;故答案为:16.19.解:两种情形:①如图1中,当AD=AC=1时,设PB=x,∵△ABC是等边三角形,∴AB=BC=AC=3,∠A=∠B=∠C=60°,∵∠PDE=∠B=60°,∠PDC=∠PDE+∠EDC=∠A+∠APD,∴60°+∠EDC=60°+∠APD,∴∠EDC=∠APD,∴△APD∽△CDE,∴==,∴==,∴BE=DE=,EC=,∵BE+EC=3,∴+=3,∴x=.②如图2中,当AD=AC=2时,由△APD∽△CDE,可得==,∴==,∴DE=,EC=,∵BE+EC=3,∴=3,∴x=,综上所述,PB的长为或.20.解:作MN⊥AD垂足为N.∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠ABF=∠CBF,BC∥AD,∠BAD=∠CDA=90°,∵BF=BF,∴△BFA≌△BFC,∴∠BAF=∠BCF=∠CED=∠AEM,∵∠MAF=∠BAD=90°,∴∠BAF=∠MAE,∴∠MAE=∠AEM,∴MA=ME∵AE=ED=AD=2,∴AN=NE==1,∵∠MNE=∠CDE=90°,∴MN∥CD,∴=,∵CD=4,∴MN=2,在RT△MND中,∵MN=2,DN=3,∴DM===,故答案为.三.解答题21.解:原式=÷=÷=•=,当x=2sin60°+tan45°=2×+1=+1时,原式==.22.解:(1)旋转后的图形如图所示.(2)旋转后得到的三角形与原三角形拼成菱形.理由:设△ABC绕0旋转180°后得到△A′B′C′,则△ABC≌△A′B′C′,∵O是BC的中点,∴B点的对应点B′与C重合,C点的对应点C′与B重合,∴A′B=AC,A′C=AB,∵AB=AC,∴A′B=AB=AC=A′C,∴四边形ABA’C是菱形.(3)当△ABC是等腰直角三角形时,拼成的图形是正方形.理由:由(2)知,四边形ABA,C是菱形,又因为∠BAC=90°,所以四边形ABA’C是正方形.23.解:(1)本次调查的学生总人数为:18÷20%=90,在线听课的人数为:90﹣24﹣18﹣12=36,补全的条形统计图如右图所示;(2)扇形统计图中“在线讨论”对应的扇形圆心角的度数是:360°×=48°,即扇形统计图中“在线讨论”对应的扇形圆心角的度数是48°;(3)2100×=560(人),答:该校对在线阅读最感兴趣的学生有560人.24.解:(1)如图1,在BC上截取AE=AD得点E,作AF垂直DE交CD于点F(或作∠AED 的平分线AF交CD于点F,或作EF垂直AE交CD于点F等等),∵四边形ABCD是矩形,∴AB=CD=8,AD=BC=10,∠B=∠C=90°,在Rt△ABE中,BE==6,∴EC=10﹣6=4,设EF=DF=x,在Rt△EFC中,则有x2=(8﹣x)2+42,解得x=5,∴EF=5.故答案为:5;(2)证明:如图2,作DH垂直AC于点H,延长DH至点E,使HE=DH.方法1:∵△ADC≌△AEC,∴AD=AE=BC,AB=DC=EC,在△ABE与△CEB中,,∴△ABE≌△CEB(SSS),∴∠AEB=∠CBE,∴BF=EF,∴△BEF是等腰三角形.方法2:∵△ADC≌△AEC,∴AD=AE=BC,∠DAC=∠EAC,又∴AD∥BC,∴∠DAC=∠ACB,∴∠EAC=∠ACB,∴FA=FC,∴FE=FB,∴△BEF是等腰三角形.25.解:(1)设A、B两种型号的空调的销售单价分别为x元,y元,根据题意,得:,解得:,答:A、B两种型号的空调的销售单价分别为2500元,2100元;(2)设采购A种型号的空调a台,则采购B型号空调(30﹣a)元,根据题意,得:2000a+1700(30﹣a)≤54000,解得:a≤10,答:A种型号的空调最多能采购10台.26.解:(1)如图1所示,连接OB,∵∠A=60°,OA=OB,∴△AOB为等边三角形,∴OA=OB=AB,∠A=∠ABO=∠AOB=60°,∵△DBE为等边三角形,∴DB=DE=BE,∠DBE=∠BDE=∠DEB=60°,∴∠ABD=∠OBE,∴△ADB≌△OBE(SAS),∴OE=AD.(2)如图2所示,由(1)可知△ADB≌△OBE,∴∠BOE=∠A=60°,∵∠BOA=60°,∴∠EOC=60°,∴△BOE≌△COE(SAS),∴∠OCE=∠OBE,∴∠OCE=∠ABD.(3)如图3所示,过点M作AB的平行线交AC于点Q,过点D作DN垂直EG于点N,∵BD=DM,∠ADB=∠QDM,∠QMD=∠ABD,∴△ADB≌△MQD(ASA),∴AB=MQ,∵∠A=60°,∠ABC=90°,∴∠ACB=30°,∴AB==AO=CO=OG,∴MQ=OG,∵AB∥GO,∴MQ∥GO,∴四边形MQOG为平行四边形,设AD为x,则OE=x,OF=2x,∵OD=3,∴OA=OG=3+x,GF=3﹣x,∵DQ=AD=x,∴OQ=MG=3﹣x,∴MG=GF,∵∠DOG=60°,∴∠MGF=120°,∴∠GMF=∠GFM=30°,∵∠QMD=∠ABD=∠ODE,∠ODN=30°,∴∠DMF=∠EDN,∵OD=3,∴ON=,DN=,∵tan∠BMF=,∴tan∠NDE=,∴,解得x=1,∴NE=,∴DE=,∴CE=.27.解:(1)函数的表达式为:y=a(x﹣1)(x﹣3)=a(x2﹣4x+3),即:3a=3,解得:a=1,故抛物线的表达式为:y=x2﹣4x+3,则顶点D(2,﹣1);(2)∵OB=OC=3,∴∠OBC=∠OCB=45°,AM=MB=AB sin45°==AD=BD,则四边形ADBM为菱形,而∠AMB=90°,∴四边形ADBM为正方形;(3)将点B、C的坐标代入一次函数表达式:y=mx+n并解得:直线BC的表达式为:y=﹣x+3,过点P作y轴的平行线交BC于点H,设点P(x,x2﹣4x+3),则点H(x,﹣x+3),则S=PH×OB=(﹣x+3﹣x2+4x﹣3)=(﹣x2+3x),△PBC∵﹣<0,故S有最大值,此时x=,△PBC故点P(,﹣);(4)存在,理由:如上图,过点C作与y轴夹角为30°的直线CH,过点A作AH⊥CH,垂足为H,则HQ=CQ,AQ+Q C最小值=AQ+HQ=AH,直线HC所在表达式中的k值为,直线HC的表达式为:y=x+3…①则直线AH所在表达式中的k值为﹣,则直线AH的表达式为:y=﹣x+s,将点A的坐标代入上式并解得:则直线AH的表达式为:y=﹣x+…②,联立①②并解得:x=,故点H(,),而点A(1,0),则AH=,即:AQ+QC的最小值为.。

2019年最新广东省中考数学模拟试卷及答案解析

2019年最新广东省中考数学模拟试卷及答案解析

2019年最新广东省中考数学模拟试卷及答案解析广东省中考数学模拟试卷一、选择题(共10小题,每小题3分,共30分)1.数字1的倒数是()。

A。

-2.B。

2.C。

1.D。

-12.下列图案中既是中心对称图形,又是轴对称图形的是()。

A。

B。

C。

D。

3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为xxxxxxxx00人,这个数用科学记数法表示为()。

A。

44×10^8.B。

4.4×10^9.C。

4.4×10^8.D。

4.4×10^104.2010年3月份,某市市区一周空气质量报告中某项污染指数的数据是:31,35,31,34,30,32,31,这组数据的中位数、众数分别是()。

A。

32,31.B。

31,32.C。

31,31.D。

32,355.如图,直线a∥b,若∠2=55°,∠3=100°,则∠1的度数为()。

A。

35°。

B。

45°。

C。

50°。

D。

55°6.下列运算正确的是()。

A。

2a+3b=5ab。

B。

a^2·a^3=a^5.C。

(2a)^3=6a^3.D。

a^6+a^3=a^97.一元二次方程x^2-4x+2=0的根的情况是()。

A。

有两个不相等的实数根。

B。

有两个相等的实数根C。

只有一个实数根。

D。

没有实数根8.若等腰三角形的两边长为3和7,则该等腰三角形的周长为()。

A。

10.B。

13.C。

17.D。

13或179.不等式组的解集在数轴上表示正确的是()。

A。

B。

C。

D。

10.如图,正方形ABCD的边长为3cm,动点M从点B出发以3cm/s的速度沿着边BC-CD-DA运动,到达点A停止运动,另一动点N同时从点B出发,以1cm/s的速度沿着边BA向点A运动,到达点A停止运动,设点M运动时间为x(s),△AMN的面积为y(cm^2),则y关于x的函数图象是()。

2019年江苏省无锡市中考数学模拟试卷(一)解析版

2019年江苏省无锡市中考数学模拟试卷(一)解析版

2019年江苏省无锡市中考数学模拟试卷(一)一、选择题(本大题共10小题,共30.0分) 1. 下列运算正确的是( )A. (x 3)4=x 7B. (−x)2⋅x 3=x 5C. (−x)4÷x =−x 3D. x +x 2=x 32. 若式子√a −3在实数范围内有意义,则a 的取值范围是( )A. a >3B. a ≥3C. a <3D. a ≤3 3. 下列不等式变形正确的是( )A. 由 a >b ,得 a −2<b −2B. 由 a >b ,得|a|>|b|C. 由 a >b ,得−2a <−2bD. 由 a >b ,得 a 2>b 2 4. 已知点A (m 2-2,5m +4)在第一象限角平分线上,则m 的值为 ( )A. 6B. −1C. 2或3D. −1或65. 如图,在平面直角坐标系中,△ABC 与△A 1B 1C 1是以点P 为位似中心的位似图形,且顶点都在格点上,则点P 的坐标为( )A. (−4,−3)B. (−3,−4)C. (−3,−3)D. (−4,−4)6. 使得关于x 的不等式组{−2x +1≥4m −1x>m−2有解,且使分式方程1x−2−m−x 2−x=2有非负整数解的所有的m的和是( )A. −1B. 2C. −7D. 07. 若α,β是一元二次方程3x 2+2x -9=0的两根,则βα+αβ的值是( )A. 427B. −427C. −5827D. 58278. 如图,正方形ABCD 的顶点B 、C 在x 轴的正半轴上,反比例函数y =kx(k ≠0)在第一象限的图象经过点A (m ,2)和CD 边上的点E (n ,23),过点E 作直线l ∥BD 交y 轴于点F ,则点F 的坐标是( )A. (0,−73) B. (0,−83) C. (0,−3)D. (0,−103)9. 如图,半径为R 的⊙O 的弦AC =BD ,AC 、BD 交于E ,F 为BC⏜上一点,连AF 、BF 、AB 、AD ,下列结论:①AE =BE ;②若AC ⊥BD ,则AD =√2R ;③在②的条件下,若CF⏜=CD ⏜,AB =√2,则BF +CE =1.其中正确的是( ) A. ①② B. ①③ C. ②③ D. ①②③10. 已知△ABC 中,∠ABC =45°,AB =7√2,BC =17,以AC 为斜边在△ABC外作等腰Rt △ACD ,连接BD ,则BD 的长为( ) A. 25 √2B. 17√74C. 25√22D. 17√72二、填空题(本大题共8小题,共16.0分)11. 用四舍五入法对437540取近似数,精确到千位为______(用科学记数法表示)12. 已知线段a =4cm ,线段b =7cm ,线段c 是线段a ,b 的比例中项,则线段c =______. 13. 如图,点P 在△ABC 的边AC 上,要使△ABP ∽△ACB ,添加一个条件______.14. 将半径为3cm 的圆形纸片沿AB 折叠后,圆弧恰好能经过圆心O ,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为______.15. 有这样一道题:如图,在正方形ABCD 中,有一个小正方形EFGH ,其中E ,F ,G 分别在AB ,BC ,FD 上,连接DH ,如果BC =12,BF =3.则tan ∠HDG 的值为______. 16. 已知二次函数y =ax 2+2ax +3a 2+3(其中x 是自变量),当x ≥2时,y 随x 的增大而减小,且-4≤x ≤1时,y的最大值为7,则a 的值为______.17. 如图,等腰直角三角形ABC 中,∠C =90°,D 为BC 的中点.将△ABC 折叠,使A 点与点D 重合.若EF 为折痕,则sin ∠BED 的值为______,DEDF 的值为______.18. 图1为一锐角是30°的直角三角尺,其边框为透明塑料制成(内、外直角三角形对应边互相平行且三处所示宽度相等).将三角尺移向直径为4cm 的⊙O ,它的内Rt △ABC 的斜边AB 恰好等于⊙O 的直径,它的外Rt △A ′B ′C ′的直角边A ′C ′恰好与⊙O 相切(如图2).则边B ′C ′的长______.三、计算题(本大题共2小题,共16.0分) 19. 计算:(1)tan30°-(-2)2-|2-√3|. (2)(2x -1)2+(x -2)(x +2). 20. (1)解方程:1x−3=2+x3−x(2)解不等式组:{x −3(x −2)≤41+2x 3>x −1.四、解答题(本大题共8小题,共68.0分)21. 已知:如图,在平行四边形ABCD 和矩形ABEF 中,AC 与DF 相交于点G .(1)试说明DF =CE ;(2)若AC =BF =DF ,求∠ACE 的度数.22. 母亲节到了,小明准备为妈妈煮四个大汤圆作早点:一个芝麻馅,一个牛肉馅,两个花生馅,四个汤圆除内部馅料不同外,其它一切均相同.(1)分别用A ,B ,C 表示芝麻馅、牛肉馅、花生馅的大汤圆,求妈妈吃前两个汤圆刚好都是花生馅的概率(请用“画树状图”或“列表”等方法,写出分析过程,并给出结果);(2)若花生馅的大汤圆的个数为n 个(n ≥2),则妈妈吃前两个汤圆都是花生馅的概率是______(请用含n 的式子直接写出结果)23. 如图,在由边长为1的小正方形组成的网格图中,有一个格点三角形ABC .(注:顶点均在网格线交点处的三角形称为格点三角形.) (1)△ABC 是______三角形(填“锐角”、“直角”或“钝角”); (2)若P 、Q 分别为线段AB 、BC 上的动点,当PC +PQ 取得最小值时, ①在网格中用无刻度的直尺,画出线段PC 、PQ .(请保留作图痕迹.) ②直接写出PC +PQ 的最小值:______.24. 如图1,△ABC 内接于⊙O ,AC 是直径,点D 是AC 延长线上一点,且∠DBC =∠BAC ,tan ∠BAC =12.(1)求证:BD 是⊙O 的切线; (2)求DCAC 的值;(3)如图2,过点B作BG⊥AC交AC于点F,交⊙O于点G,BC、AG的延长线交于点E,⊙O的半径为6,求BE的长.25.某调查公司对本区域的共享单车数量及使用次数进行了调查发现,今年3月份第1周共有各类单车1000辆,第2周比第1周增加了10%,第3周比第2周增加了100辆,调查还发现某款单车深受群众喜爱,第1周该单车的每辆平均使用次数是这一周所有单车平均使用次数的2.5倍,第2、第3周该单车的每辆平均使用次数都比前一周增长一个相同的百分数m,第3周所有单车的每辆平均使用次数比第1周增加的百分数也是m,而且第3周该款单车(共100辆)的总使用次数占到所有单车总使用次数的四分之一.(注:总使用次数=每辆平均使用次数×车辆数)(1)求第3周该区域内各类共享单车的数量;(2)求m的值.26.已知:如图,一次函数y=-2x与二次函数y=ax2+2ax+c的图象交于A、B两点(点A在点B的右侧),与其对称轴交于点C.(1)求点C的坐标;(2)设二次函数图象的顶点为D,点C与点D关于x轴对称,且△ACD的面积等于2.①求二次函数的解析式;②在该二次函数图象的对称轴上求一点P(写出其坐标),使△PBC与△ACD相似.27.如图1,等边△ABC的边长为3,分别以顶点B、A、C为圆心,BA长为半径作AC⏜、CB⏜、BA⏜,我们把这三条弧所组成的图形称作莱洛三角形,显然莱洛三角形仍然是轴对称图形,设点I为对称轴的交点.(1)如图2,将这个图形的顶点A与线段MN作无滑动的滚动,当它滚动一周后点A与端点N重合,则线段MN的长为______;(2)如图3,将这个图形的顶点A与等边△DEF的顶点D重合,且AB⊥DE,DE=2π,将它沿等边△DEF 的边作无滑动的滚动当它第一次回到起始位置时,求这个图形在运动过程中所扫过的区域的面积;(3)如图4,将这个图形的顶点B与⊙O的圆心O重合,⊙O的半径为3,将它沿⊙O的圆周作无滑动的滚动,当它第n次回到起始位置时,点I所经过的路径长为______(请用含n的式子表示)28.如图(1),在△ABC中,∠C=90°,AB=5cm,BC=3cm,动点P在线段AC上以5cm/s的速度从点A运动到点C,过点P作PD⊥AB于点D,将△APD绕PD的中点旋转180°得到△A′DP,设点P的运动时间为x(s).(1)当点A′落在边BC上时,求x的值;(2)在动点P从点A运动到点C过程中,当x为何值时,△A′BC是以A′B为腰的等腰三角形;(3)如图(2),另有一动点Q与点P同时出发,在线段BC上以5cm/s的速度从点B运动到点C,过点Q作QE⊥AB于点E,将△BQE绕QE的中点旋转180°得到△B′EQ,连结A′B′,当直线A′B′与△ABC的一边垂直时,求线段A′B′的长.答案和解析1.【答案】B【解析】解:A、(x3)4=x12,故本选项错误;B、(-x)2•x3=x2•x3=x5,故本选项正确;C、(-x)4÷x=x4÷x=x3,故本选项正确;D、x+x2不能合并,故本选项错误.故选:B.利用幂的乘方、同底数幂的除法以及合并同类项的知识求解即可求得答案.此题考查了幂的乘方、同底数幂的除法以及合并同类项.注意掌握符号与指数的变化是解此题的关键.2.【答案】B【解析】解:由题意得,a-3≥0,解得a≥3.故选:B.根据被开方数大于等于0列式计算即可得解.本题考查的知识点为:二次根式的被开方数是非负数.3.【答案】C【解析】解:A、在不等式a>b的两边同时减去2,不等式仍成立,即a-2>b-2,故本选项错误;B、当a>b>0时,不等式|a|>|b|成立,故本选项错误;C、在不等式a>b的两边同时乘以-2,不等式的符号方向改变,即-2a<-2b成立,故本选项正确;D、当a>b>0时,不等式a2>b2成立,故本选项错误;故选:C.根据不等式的性质进行分析判断.考查了不等式的性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.4.【答案】A【解析】解:∵点A(m2-2,5m+4)在第一象限角平分线上,∴m2-2=5m+4,∴m2-5m-6=0,解得m1=-1,m2=6,当m=-1时,m2-2=-1,点A(-1,-1)在第三象限,不符合题意,所以,m的值为6.故选:A.根据第一象限角平分线上点的横坐标与纵坐标相等列方程求解,再根据第一象限点的横坐标与纵坐标都是正数作出判断.本题考查了点的坐标,熟记第一象限平分线上的点的横坐标与纵坐标相等是解题的关键,易错点在于要注意对求出的解进行判断.5.【答案】A【解析】解:如图,点P的坐标为(-4,-3).故选:A.延长A1A、B1B和C1C,从而得到P点位置,从而可得到P点坐标.本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.6.【答案】C【解析】解:∵关于x的不等式组有解,∴1-2m>m-2,解得m<1,由得x=,∵分式方程有非负整数解,∴x=是非负整数,∵m<1,∴m=-5,-2,∴-5-2=-7,故选:C.根据不等式组的解集的情况得出关于m的不等式,求得m的解集,再解分式方程得出x,根据x是非负整数得出m所有的m的和.本题考查了分式方程的解以及不等式的解集,求得m的取值范围以及解分式方程是解题的关键.7.【答案】C【解析】解:∵α、β是一元二次方程3x2+2x-9=0的两根,∴α+β=-,αβ=-3,∴+====-.故选:C.根据根与系数的关系可得出α+β=-、αβ=-3,将其代入+=中即可求出结论.本题考查了根与系数的关系,牢记两根之和等于-、两根之积等于是解题的关键.8.【答案】A【解析】解:∵正方形的顶点A(m,2),∴正方形的边长为2,∴BC=2,而点E(n ,),∴n=2+m,即E点坐标为(2+m ,),∴k=2•m=(2+m),解得m=1,∴A(1,2),E(3,),∴B(1,0),D(3,2),设直线BD的解析式为y=ax+b,把B(1,0),D(3,2)代入得,解得,∵过点E作直线l∥BD交y轴于点F,∴设直线l的解析式为y=x+q,把E(3,)代入得3+q=,解得q=-,∴直线l的解析式为y=x-当x=0时,y=-,∴点F的坐标为(0,-),故选:A.由A(m,2)得到正方形的边长为2,则BC=2,所以n=2+m,根据反比例函数图象上点的坐标特征得到k=2•m=(2+m),解得m=1,则A(1,2),B(1,0),D(3,2),E(3,),然后利用待定系数法确定直线BD的解析式,再根据平行线的性质和E的坐标求得直线l的解析式,求x=0时对应函数的值,从而得到点F的坐标.本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式.9.【答案】D【解析】解:①∵弦AC=BD,∴=,∴=,∴∠ABD=∠BAC,∴AE=BE;②连接OA,OD,∵AC⊥BD,AE=BE,∴∠ABE=∠BAE=45°,∴∠AOD=2∠ABE=90°,∵OA=OD,∴AD=R;③设AF与BD相交于点G,连接CG,∵=,∴∠FAC=∠DAC,∵AC⊥BD,∵在△AGE和△ADE中,,∴△AGE≌△ADE(ASA),∴AG=AD,EG=DE,∴∠AGD=∠ADG,∵∠BGF=∠AGD,∠F=∠ADG,∴∠BGF=∠F,∴BG=BF,∵AC=BD,AE=BE,∴DE=CE,∴EG=CE,∴BE=BG+EG=BF+CE,∵AB=,∴BE=AB•cos45°=1,∴BF+CE=1.故其中正确的是:①②③.故选:D.①由弦AC=BD ,可得=,继而可得=,然后由圆周角定理,证得∠ABD=∠BAC,即可判定AE=BE;②连接OA,OD,由AE=BE,AC⊥BD,可求得∠ABD=45°,继而可得△AOD是等腰直角三角形,则可求得AD=R;③设AF与BD相交于点G,连接CG,易证得△BGF是等腰三角形,CE=DE=EG,继而求得答案.此题考查了圆周角定理、弧与弦的关系、等腰直角三角形的性质与判定以及全等三角形的判定与性质等知识.此题难度较大,注意掌握辅助线的作法,注意数形结合思想的应用.10.【答案】C【解析】解:以AB为腰作等腰Rt△ABE,连接CE.∵△ADC是等腰Rt△,∴,∠EAB=∠DAC=45°,∴∠EAB+∠BAC=∠DAC+∠BAC,即∠EAC=∠DAB.∴△EAC∽△BAD.∴.作EF⊥BC,交BC延长线于F点,∴△EFB为等腰Rt△,EF=BF==7.∴EC==25.∴BD=EC=.故选:C.以AB为腰作等腰Rt△ABE,连接CE,证明△EAC∽△BAD,得到BD与EC数量关系,作EF⊥BC,交BC延长线于F点,在Rt△EFC中利用勾股定理求出EC长,则可求BC长.本题主要考查了等腰直角三角形的性质、勾股定理、相似三角形的判断和性质,正确作出辅助线是解题的关键.11.【答案】4.38×105【解析】解:用四舍五入法对437540取近似数,精确到千位为4.38×105.故答案为:4.38×105.一个近似数精确到十位或十位以前的数位时,要先用科学记数法表示出这个数,再进行四舍五入.本题主要考查了科学记数法与精确度,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数;一个近似数,四舍五入到哪一位,就叫精确到哪一位.12.【答案】2√7【解析】解:∵线段c是线段a,b的比例中项,∴c2=ab,∵a=4cm,b=7cm,c>0,∴c=2(cm),故答案为2.根据比例中项的定义,构建方程即可解决问题.∵本题考查比例中项的定义,解题的关键是熟练掌握基本知识,属于中考常考题型.13.【答案】∠ABP=∠C或∠APB=∠ABC或AB2=AP•AC【解析】解:在△ABP和△ACB中,∵∠A=∠A,∴当∠ABP=∠C或∠APB=∠ABC或=即AB2=AP•AC时,△ABP∽△ACB,故答案为∠ABP=∠C或∠APB=∠ABC或AB2=AP•AC.根据相似三角形的判定方法,即可解决问题.本题考查相似三角形的判定,解题的关键是记住相似三角形的判定方法,属于基础题中考常考题型.14.【答案】2√2cm【解析】解:作OC⊥AB于C,如图,∵将半径为3cm的圆形纸片沿AB折叠后,圆弧恰好能经过圆心O,∴OC等于半径的一半,即OA=2OC,∴∠OAC=30°,∴∠AOC=60°,∴∠AOB=120°,弧AB的长==2π,设圆锥的底面圆的半径为r,∴2πr=2π,解得r=1,∴这个圆锥的高==2(cm).故答案为:2cm.作OC⊥AB于C,如图,根据折叠的性质得OC等于半径的一半,即OA=2OC,再根据含30度的直角三角形三边的关系得∠OAC=30°,则∠AOC=60°,所以∠AOB=120°,则利用弧长公式可计算出弧AB的长=2π,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到圆锥的底面圆的半径为1,然后根据勾股定理计算这个圆锥的高.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.15.【答案】13【解析】解:∵在正方形ABCD,正方形EFGH中,∠B=∠C=90°,∠EFG=90°,∴BC=CD,GH=EF=FG.又∵点F在BC上,点G在FD上,∴∠DFC+∠EFB=90°,∠DFC+∠FDC=90°,∴∠EFB=∠FDC,又∵∠B=∠C=90°,∴△EBF∽△FCD;∵BF=3,BC=CD=12,∴CF=9,DF===15,∵△EBF∽△FCD,∴=,∴BE===,∴GH=FG=EF==,∴DG=DF-FG=15-=,∴tan∠HDG===.故答案为:.根据正方形的性质可得∠B=∠C=90°,∠EFG=90°,BC=CD,GH=EF=FG,然后求出∠EFB=∠FDC,再根据有两组角对应相等的两个三角形相似证明,求出CF,再利用勾股定理列式求出DF,然后根据相似三角形对应边成比例求出BE,再根据锐角的正切等于对边比邻边列式计算即可得解.本题考查了相似三角形的判定与性质,正方形的性质,勾股定理,熟记各性质以及相似三角形的判定方法是解题的关键.16.【答案】-1【解析】解:∵二次函数y=ax2+2ax+3a2+3=a(x+1)2+3a2-a+3,∴该函数的对称轴为直线x=-1,∵当x≥2时,y随x的增大而减小,且-4≤x≤1时,y的最大值为7,∴a<0,当x=-1时,y=7,∴7=a(x+1)2+3a2-a+3,解得,a1=-1,a2=(舍去),故答案为:-1.根据题目中的函数解析式可以求得该函数的对称轴,然后根据当x≥2时,y随x的增大而减小,且-4≤x≤1时,y的最大值为7,可以判断a的正负,得到关于a的方程,从而可以求得a的值.本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.17.【答案】352√23【解析】解:设Rt△ABC的直角边AC=a,∵△ABC是等腰直角三角形,∴∠A=∠B=45°,∵△DEF是△AEF沿EF 折叠而成,∴∠A=∠FDE=∠B=45°,∵∠2+∠B=∠1+∠FDE,∠FDE=∠B=45°∴∠1=∠2,∵D是BC的中点,∴CD=,设CF=x,则AF=DF=a-x,在Rt △CDF 中,由勾股定理得,DF2=CF2+CD2,即(a-x)2=x2+()2,解得x=,∴DF=a-x=a-=,∴sin ∠1===,∴sin∠2=,即sin∠BED的值为;过D作DG⊥AB,∵BD=,∠B=45°,∴DG=BD•sin∠B=×=,∵∠2=∠1,∠C=∠DGE,∴△EDG∽△DFC,∴===.故答案为:,.先设Rt△ABC的直角边AC=a,根据△ABC是等腰直角三角形可知∠A=∠B=45°,再根据图形折叠的性质可知∠A=∠EDF=45°,由三角形外角的性质可知∠1+∠EDF=∠B+∠2,可求出∠1=∠2,在直角三角形CDF中设CF=x,利用勾股定理即可求解;过D作DG⊥AB,在Rt△BDG中利用勾股定理可求出DG的长,再用相似三角形的判定定理可求出△EDG∽△DFC,由相似三角形的对应边成比例即可求解.本题考查的是图形翻折变换的性质、锐角三角函数的定义、全等三角形的判定与性质及勾股定理,涉及面较广,难度适中.18.【答案】(3+√3)cm【解析】解:过O作OD⊥A′C′于D,交AC于E,∵AC∥A′C′,∴AC⊥OD,∵A′C′与⊙O相切,AB为圆O的直径,且AB=4cm,∴OD=OA=OB=AB=×4cm=2cm,在Rt△AOE中,∠A=30°,∴OE=OA=×2cm=1cm,∴DE=OD-OE=2cm-1cm=1cm,则三角尺的宽为1cm,∵在Rt△ACB中,AB=4cm,∠BAC=30°,∴BC=AB=2cm,AC=BC=2cm,设直线AC交A′B′于M,交B′C′于N,过A点作AH⊥A′B′于H,则有∠AMH=30°,AH=1cm,得到AM=2AH=2cm,∴MN=AM+AC+CN=(3+2)cm,在Rt△MB′N中,∵∠B′MN=30°,∴B′N=MN×tan30°=(3+2)×=(+2)cm,则B′C′=B′N+NC′=(3+)cm,故答案为:(3+)cm.过O作OD⊥A′C′于D,交AC于E,由AC与A′C′,根据与平行线中的一条直线垂直,与另一条也垂直,得到OD与AC垂直,可得DE为三角尺的宽,由A′C′与圆O相切,根据切线的性质得到OD为圆的半径,根据直径AB的长,求出半径OA,OB及OD的长,在直角三角形AOE中,根据∠A=30°,利用直角三角形中,30°角所对的直角边等于斜边的一半可得出OE等于OA的一半,由OA的长求出OE的长,再由OD-OE求出DE的长,即三角尺的宽为1,设直线AC交A′B′于M,交B′C′于N,过A点作AH⊥A′B′于H,则有∠AMH=30°,AH=1,得到AM=2AH=2,可计算出MN,在Rt△MB′N中利用含30°的直角三角形三边的关系得到B′N长,即可得出答案.本题考查了切线的性质,含30°直角三角形的性质,以及平行线的性质,当直线与圆相切时,圆心到切线的距离等于圆的半径,熟练掌握切线的性质是解本题的关键.19.【答案】解:(1)原式=√33-4-2+√3=4√33-6;(2)原式=4x2-4x+1+(x2-4)=4x2-4x+1+x2-4=5x2-4x-3.【解析】(1)原式利用特殊角的三角函数值,乘方的意义,以及绝对值的代数意义计算即可得到结果;(2)原式利用完全平方公式,以及平方差公式计算即可得到结果.此题考查了平方差公式,以及实数的运算,熟练掌握公式及法则是解本题的关键.20.【答案】解:(1)去分母得:1=2x-6-x,解得:x=7,经检验x=7是分式方程的解;(2){x−3(x−2)≤4①1+2x3>x−1②,由①得:x≥1,由②得:x<4,则不等式组的解集为1≤x<4.【解析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可确定出不等式组的解集.此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.21.【答案】解:(1)证明:∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC,又∵四边形ABEF是矩形,∴AB=EF,AB∥EF,∴DC=EF,DC∥EF,∴四边形DCEF是平行四边形,∴DF=CE;(2)解:如图,连接AE,∵四边形ABEF是矩形,∴BF=AE,又∵AC=BF=DF,∴AC=AE=CE,∴△AEC是等边三角形,∴∠ACE=60°.【解析】(1)根据平行四边形对边平行且相等可得AB=DC,AB∥DC,矩形的对边平行且相等可得AB=EF,AB∥EF,从而得到DC=EF,DC∥EF,再根据一组对边平行且相等的四边形是平行四边形可得四边形DCEF是平行四边形,然后根据平行四边形对边相等证明即可;(2)连接AE,根据矩形的对角线相等可得BF=AE,然后求出AC=AE=CE,从而得到△AEC是等边三角形,再根据等边三角形的每一个角都是60°解答.本题考查了矩形的性质,平行四边形判定与性质,等边三角形的判定与性质,熟记平行四边形的判定方法并准确识图是解题的关键.22.【答案】n(n−1)(n+2)(n+1)【解析】解:(1)画树状图为:,共有12种等可能的结果数,其中妈妈吃前两个汤圆刚好都是花生馅的结果数为2,所以妈妈吃前两个汤圆刚好都是花生馅的概率==;(2)若花生馅的大汤圆的个数为n 个(n≥2),则妈妈吃前两个汤圆都是花生馅的概率=.故答案为.(1)画树状图展示所有12种等可能的结果数,再找出妈妈吃前两个汤圆刚好都是花生馅的结果数,然后根据概率公式求解;(2)若花生馅的大汤圆的个数为n个(n≥2),则共有(n+2)(n+1)种可能的结果数,其中妈妈吃前两个汤圆都是花生馅的结果数为n(n-1),然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B 的结果数目m,然后利用概率公式计算事件A或事件B的概率.23.【答案】直角85√5【解析】解:(1)结论:直角三角形;理由:∵AC=,BC=2,AB=5,∴AB2=AC2+BC2,∴∠ACB=90°,故答案为直角.(2)①线段PC、PQ如图所示;②设AB交CC′于O.由△AOC∽△CQC′,可得=,∴C′Q=.∴PC+PQ的最小值=C′Q=.故答案为.(1)利用勾股定理的逆定理判断即可;(2)①作点C关于AB的对称点C′,作C′Q⊥BC于Q,交AB于P,此时PC+PQ的值最小;②利用相似三角形的性质,构建方程即可解决问题;本题考查作图与应用与设计,轴对称的性质,相似三角形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.24.【答案】(1)证明:如图1中,连接OB.∵AB是直径,∴∠ABC=90°,∵OB=OA=OC,∴∠A=∠OBA,∠OBC=∠OCB,∵∠A=∠DBC,∠A+∠BCA=90°,∴∠DBC+∠OBC=90°,∴∠OBD=90°,即OB⊥BD,∴DB是⊙O的切线.(2)解:∵∠D=∠D,∠DBC=∠A,∴△DBC∽△DAB,∴DB AD =DCBD=BCAB,在Rt△ABC中,∵tan∠BAC=BCAB =1 2,∴BD AD =DCBD=12,设CD=a,则BD=2a,AD=4a,AC=3a,∴CD AC =1 3.(3)解:如图2中,连接CG.在Rt△ABC中,∵AC=12,BC:AB=1:2,∴BC=125√5,AB=245√5,∵AC⊥BG,∴BF=FG,∴AB=AG=245√5,BC=CG,∵∠E=∠E,∠ECG=∠EAB,∴△ECG∽△EAB,∴EC AE =EGEB=CGAB=12,设EC=y,则AE=2y,EG=2y-245√5,EB=y+125√5,∵BE=2EG,∴y+125√5=2(2y-245√5),∴y=4√5,∴EB=4√5+125√5=325√5.【解析】(1)连接OB.欲证明BD是切线,只要证明DB⊥OB即可;(2)由△DBC∽△DAB,推出==,在Rt△ABC中,由tan∠BAC==,推出= =,设CD=a,则BD=2a,AD=4a,AC=3a,由此即可解决问题;(3)如图2中,连接CG.由△ECG∽△EAB,推出===,设EC=y,则AE=2y,EG=2y-,EB=y+,由此想办法列出方程即可解决问题;本题考查相似三角形综合题、切线的判定和性质、相似三角形的判定和性质、锐角三角函数、勾股定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.25.【答案】解:(1)依题意得:1000(1+10%)+100=1200(辆);答:第3周该区域内各类共享单车的数量是1200辆;(2)设第一周所有单车平均使用次数是a,由题意得:2.5a×(1+m)2×100=a×(1+m)×1200×14,解得m=0.2,即m的值为20%.【解析】(1)第2周共享单车的数量:1000(1+10%),第3周=第2周+100;(2)设第一周所有单车平均使用次数是a,根据“第3周该款单车(共100辆)的总使用次数占到所有单车总使用次数的四分之一”列出方程并解答.本题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.26.【答案】解:(1)∵y=ax2+2ax+c=a(x+1)2+c-a,∴它的对称轴为x=-1.又∵一次函数y=-2x与对称轴交于点C,∴y=2.∴C点的坐标为(-1,2).(2)①∵点C与点D关于x轴对称,∴点D的坐标为(-1,-2).∴CD=4,∵△ACD的面积等于2.∴点A到CD的距离为1,C点与原点重合,点A的坐标为(0,0).设二次函数为y=a(x+1)2-2过点A,则a=2,∴y=2x2+4x.②设P(-1,t).交点B的坐标为(-3,6),D(-1,-2),C(-1,2),A(0,0),则BC=2√5,PC=t-2,CD=4,AD=√5,①当△PBC∽△CAD时,BCAD =PCCD,即2√5√5=t−24,解得t=10,故点P的坐标为(-1,10),②当△PBC∽△ACD时,BCCD =PCAD,即2√54=t−2√5,解得t=92,故点P的坐标为(-1,92),综上所述,点P的坐标为(-1,10),(-1,92).【解析】(1)把抛物线对称轴方程x=-1代入直线方程,求得相应的纵坐标,易得点C的坐标;(2)①根据点的坐标的对称性易得抛物线顶点坐标D(-1,-2),故CD=4,结合三角形的面积公式可以求得点A的坐标,将点A的坐标分别代入抛物线解析式为y=a(x+1)2-2,利用待定系数法求得抛物线的解析式即可;②需要分类讨论:△PBD∽△CAD、△PBD∽△ACD.本题考查了二次函数综合题,涉及到的知识点有待定系数法求二次函数解析式,一次函数图象上点的坐标特征,相似三角形的性质,有关于动点问题,需要分类讨论,以防漏解.27.【答案】3π 2√3nπ【解析】解:(1)∵等边△ABC的边长为3,∴∠ABC=∠ACB=∠BAC=60°,,∴===π,∴线段MN的长为=3π,故答案为:3π;(2)如图1,∵等边△DEF的边长为2π,等边△ABC的边长为3,∴S矩形AGHF=2π×3=6π,由题意知,AB⊥DE,AG⊥AF,∴∠BAG=120°,∴S扇形BAG==3π,∴图形在运动过程中所扫过的区域的面积为3(S矩形AGHF+S扇形BAG)=3(6π+3π)=27π;(3)如图2,连接BI并延长交AC于D,∵I是△ABC的重心也是内心,∴∠DAI=30°,AD=AC=,∴OI=AI==,∴当它第1次回到起始位置时,点I所经过的路径相当于以A为圆心,AI为半径的圆周,∴当它第n次回到起始位置时,点I所经过的路径长为n•2π•=2nπ,故答案为2nπ.(1)先求出的弧长,继而得出莱洛三角形的周长为3π,即可得出结论;(2)先判断出莱洛三角形等边△DEF绕一周扫过的面积如图所示,利用矩形的面积和扇形的面积之和即可;(3)先判断出莱洛三角形的一个顶点和O重合旋转一周点I的路径,再用圆的周长公式即可得出.此题是圆的综合题,主要考查了弧长公式,莱洛三角形的周长,矩形,扇形面积公式,解(1)的关键是求出的弧长,解(2)的关键是判断出莱洛三角形绕等边△DEF扫过的图形,解(3)的关键是得出点I第一次回到起点时,I的路径,是一道中等难度的题目.28.【答案】解:(1)如图1,∵在△ABC中,∠C=90°,AB=5cm,BC=3cm,∴AC =√AB 2−BC 2=4cm,当点A′落在边BC上时,由题意得,四边形APA′D为平行四边形,∵PD⊥AB,∴∠ADP=∠C=90°,∵∠A=∠A,∴△APD∽△ABC,∵AP=5x,∴A′P=AD=4x,PC=4-5x,∵∠A′PD=∠ADP,∴A′P∥AB,∴△A′PC∽△ABC,∴PC AC =A′PAB,即4−5x4=4x5,解得:x=2041,∴当点A′落在边BC上时,x=2041;(2)当A′B=BC时,(5-8x)2+(3x)2=32,解得:x=40±12√373.∵x≤45,∴x=40−12√373;当A′B=A′C时,x=58.(3)Ⅰ、当A′B′⊥AB时,如图6,∴DH=PA'=AD,HE=B′Q=EB,∵AB=2AD+2EB=2×4x+2×3x=5,∴x=514,∴A′B′=QE-PD=x=514;Ⅱ、当A′B′⊥BC时,如图7,∴B′E=5x,DE=5-7x,∴cos B=5x5−7x =35,∴x=1546,∴A′B′=B′D-A′D=2546;Ⅲ、当A′B′⊥AC时,如图8,由(1)有,x=2041,∴A′B′=PA′sin A=1241;当A′B′⊥AB时,x=514,A′B′=514;当A′B′⊥BC时,x=1546,A′B′=2546;当A′B′⊥AC时,x=2053,A′B′=2553.【解析】(1)根据勾股定理求出AC,证明△APD∽△ABC,△A′PC∽△ABC,根据相似三角形的性质计算;(2)分A′B=BC、A′B=A′C两种情况,根据等腰三角形的性质解答;(3)根据题意画出图形,根据锐角三角函数的概念计算.此题是几何变换综合题,主要考查了锐角三角函数的意义,分类讨论,解本题的关键是要分类要分准,难点是分类.。

2019届九年级数学 中考模拟试卷含解析

2019届九年级数学 中考模拟试卷含解析

2019届浙教版九年级中考数学模拟试卷含解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)a、b、c为非零有理数,它们的积必为正数的是()A.a>0,b、c同号B.b>0,a、c异号C.c>0,a、b异号D.a、b、c同号2.(3分)如图,某居民楼由相同户型的若干个楼房组成,该楼的三视图如图所示,试问该楼最多能建楼房个数是()A.8 B.9C.10 D.113.(3分)已知5+的整数部分为a,5﹣的小数部分为b,则a+b的值为()A.10 B.2C.﹣12 D.12﹣4.(3分)若7名同学的体重(单位:kg)分别是:40,42,43,45,47,47,58,则这组数据的中位数是()A.43 B.44 C.45D.475.(3分)如图,PA,PB分别与⊙O相切于点A,B,连接OP,则下列判断错误的是()A.∠PAO=∠PBO=90° B.OP平分∠APBC.PA=PB D.∠AOB=6.(3分)已知|b﹣4|+(a﹣1)2=0,则的平方根是()A.B.C.D.7.(3分)已知△ABC(如图1),按图2所示的尺规作图痕迹不需借助三角形全等就能推出四边形ABCD是平行四边形的依据是()A.两组对边分别平行的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.对角线互相平分的四边形是平行四边形8.(3分)如图,半径为1的⊙A的圆心A在抛物线y=(x﹣3)2﹣1上,AB∥x轴交⊙A 于点B(点B在点A的右侧),当点A在抛物线上运动时,点B随之运动得到的图象的函数表达式为()A.y=(x﹣4)2﹣1 B.y=(x﹣3)2C.y=(x﹣2)2﹣1 D.y=(x﹣3)2﹣29.(3分)如图,E、F是正方形ABCD边AD上的两个动点且AE=DF,连接CF交BD于点G,连接BE交AG于点H.若正方形ABCD的边长为2,则线段DH长度的最小值为()A.﹣1 B.C.D.10.(3分)如图,在平面直角坐标系中,过点O的直线AB交反比例函数y=的图象于点A,B,点C在反比例函数y=(x>0)的图象上,连结CA,CB,当CA=CB且cos∠CAB=时,k1k2应满足的数量关系是()A.k2=2k1B.k2=﹣2k1C.k2=4k1D.k2=﹣4k1二.填空题(共6小题,满分24分,每小题4分)11.(4分)分解因式:16m2﹣4=.12.(4分)要使分式有意义,则字母x的取值X围是.13.(4分)某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是.14.(4分)反比例函数y=(2m﹣1)x|m|﹣2,当x>0时,y随x的增大而增大,则m=.15.(4分)在平面直角坐标系中,O为坐标原点,点A(﹣a,a)(a>0),点B(﹣a ﹣4,a+3),C为该直角坐标系内的一点,连结AB,OC,若AB∥OC且AB=OC,则点C 的坐标为.16.(4分)折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD=.三.解答题(共8小题,满分66分)17.(6分)(1)解不等式组:并在数轴上表示其解集.(2)计算:++.18.(6分)先化简,再求值:(x+y)(x﹣y)﹣(x﹣y)2﹣y(x﹣2y),其中x=2018,y=19.(6分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以AB为一边的等腰△ABC,点C在小正方形的顶点上,且满足tan∠ACB=;(2)在图中画出平行四边形ABDE,使点D和点E均在小正方形的顶点上,且面积为8,连接CE,请直接写出线段CE的长.20.(8分)如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC.(1)求证:四边形DBEC是菱形;(2)若AD=3,DF=1,求四边形DBEC面积.21.(8分)截止2016年第一季度末,微信每月活跃用户已达到5.49亿,用户覆盖200多个国家,超过20种语言,个品牌的微信公众号总数已经超过800万个,微信已成为中国电子革命的代表,并成为人们生活中不可或缺的日常使用工具,某评测中心进行了抽样调查,统计出如下两个统计图表:(1)在条形统计图中,“转发内容”的人数占到样本容量的15%,则样本容量是;(2)补全条形统计图;(3)扇形统计图中“学生”所占比例是,所对应的圆心角是度;(4)某市约有20万微信用户,请你估计其中喜欢“给别人点赞”的学生有多少人?22.(10分)如图,河流的两岸PQ、MN互相平行,河岸MN上有一排间隔为50米的电线杆C、D、E、…,某人在河岸PQ的A处测得∠DBQ=45°,求河流的宽度(结果精确到0.1米).参考值:;.23.(10分)如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.(1)求证:AH是⊙O的切线;(2)若OB=4,AC=6,求sin∠ACB的值;(3)若=,求证:CD=DH.24.(12分)甲骑自行车从M地出发沿一条公路匀速前往N地,乙骑自行车从N地出发沿同一条公路匀速前往M地,已知乙比甲晚出发0.5小时且先到达目的地.设甲行驶的时间为t(h),甲乙两人之间的路程为y(km),y与t的函数关系如图1所示,请解决以下问题:(1)写出图1中点C表示的实际意义并求线段BC所在直线的函数表达式.(2)①求点D的纵坐标.②求M,N两地之间的距离.(3)设乙离M地的路程为s乙(km),请直接写出s乙与时间t(h)的函数表达式,并在图2所给的直角坐标系中画出它的图象.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)a、b、c为非零有理数,它们的积必为正数的是()A.a>0,b、c同号B.b>0,a、c异号C.c>0,a、b异号D.a、b、c同号【分析】根据题意,利用有理数的乘法法则判断即可.【解答】解:a,b,c为非零有理数,它们的积必为正数的是a>0,b与c同号.故选:A.【点评】此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.2.(3分)如图,某居民楼由相同户型的若干个楼房组成,该楼的三视图如图所示,试问该楼最多能建楼房个数是()A.8 B.9 C.10 D.11【分析】根据已知中三视图,由正视图和侧视图可判断该楼的层数,进而解答即可.【解答】解:由主视图和左视图发现该楼一共有三层,房子的最多间数见俯视图:2+2+2+3+1=10,故选:C.【点评】此题考查了由三视图判断几何体的知识,解题的关键是根据主视图和左视图中小长方形的层数确定楼的层数.3.(3分)已知5+的整数部分为a,5﹣的小数部分为b,则a+b的值为()A.10 B.2C.﹣12 D.12﹣【分析】首先得出的取值X围,进而分别得出a,b的值进而得出答案.【解答】解:∵3<<4,∴8<5+<9,1<5﹣<2,∴5+的整数部分为a=8,5﹣的小数部分为b:5﹣﹣1=4﹣,∴a+b=12﹣.故选:D.【点评】此题主要考查了估算无理数的大小,正确得出无理数接近的整数是解题关键.4.(3分)若7名同学的体重(单位:kg)分别是:40,42,43,45,47,47,58,则这组数据的中位数是()A.43 B.44 C.45 D.47【分析】先将题中的数据按照从小到大的顺序排列,然后根据中位数的概念求解即可.【解答】解:把这些数从小到大排列为:40,42,43,45,47,47,58,最中间的数是45,故这组数据的中位数是45.故选:C.【点评】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.(3分)如图,PA,PB分别与⊙O相切于点A,B,连接OP,则下列判断错误的是()A.∠PAO=∠PBO=90° B.OP平分∠APBC.PA=PB D.∠AOB=【分析】根据切线的性质、切线长定理判断即可.【解答】解:∵PA,PB分别与⊙O相切于点A,B,∴∠PAO=∠PBO=90°,OP平分∠APB,PA=PB,则A、B、C正确,不符合题意;∠AOB的度数与的度数相等,D错误,符合题意;故选:D.【点评】本题考查的是切线的性质,掌握切线长定理是解题的关键.6.(3分)已知|b﹣4|+(a﹣1)2=0,则的平方根是()A.B.C. D.【分析】根据非负数的性质列式求出a、b的值,再代入代数式求出,然后根据平方根的定义解答即可.【解答】解:根据题意得,b﹣4=0,a﹣1=0,解得a=1,b=4,所以,=,∵(±)2=,∴的平方根是±.故选:A.【点评】本题考查了平方根的定义,非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.7.(3分)已知△ABC(如图1),按图2所示的尺规作图痕迹不需借助三角形全等就能推出四边形ABCD是平行四边形的依据是()A.两组对边分别平行的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.对角线互相平分的四边形是平行四边形【分析】根据平行四边形的判定和作图依据进行判断即可.【解答】解:由图可知先作AC的垂直平分线,再连接AC的中点O与B点,并延长使BO=OD,可得:AO=OC,BO=OD,进而得出四边形ABCD是平行四边形,故选:D.【点评】本题考查了复杂的尺规作图,解题的关键是根据平行四边形的判定解答.8.(3分)如图,半径为1的⊙A的圆心A在抛物线y=(x﹣3)2﹣1上,AB∥x轴交⊙A 于点B(点B在点A的右侧),当点A在抛物线上运动时,点B随之运动得到的图象的函数表达式为()A.y=(x﹣4)2﹣1 B.y=(x﹣3)2C.y=(x﹣2)2﹣1 D.y=(x﹣3)2﹣2【分析】根据题意和平移的特点,可以求得点BB随之运动得到的图象的函数表达式,从而可以解答本题.【解答】解:∵半径为1的⊙A的圆心A在抛物线y=(x﹣3)2﹣1上,AB∥x轴,∴当点A在抛物线上运动时,点B随之运动得到的图象的函数表达式为:y=(x﹣3﹣1)2﹣1=(x﹣4)2﹣1,故选:A.【点评】本题考查二次函数图象上点的坐标特征、平移的性质,解答本题的关键是明确点B 是点A向右平移一个单位长度的对应点.9.(3分)如图,E、F是正方形ABCD边AD上的两个动点且AE=DF,连接CF交BD于点G,连接BE交AG于点H.若正方形ABCD的边长为2,则线段DH长度的最小值为()A.﹣1 B.C.D.【分析】延长AG交CD于M,如图1,可证△ADG≌△DGC可得∠GCD=∠DAM,再证△ADM ≌△DFC可得DF=DM=AE,可证△ABE≌△ADM,可得H是以AB为直径的圆上一点,取AB 中点O,连接OD,OH,根据三角形的三边关系可得不等式,可解得DH长度的最小值.【解答】解:延长AG交CD于M,如图1∵ABCD是正方形∴AD=CD=AB,∠BAD=∠ADC=90°,∠ADB=∠BDC∵AD=CD,∠ADB=∠BDC,DG=DG∴△ADG≌△DGC∴∠DAM=∠DCF且AD=CD,∠ADC=∠ADC∴△ADM≌△CDF∴FD=DM且AE=DF∴AE=DM且AB=AD,∠ADM=∠BAD=90°∴△ABE≌△ADM∴∠DAM=∠ABE∵∠DAM+∠BAM=90°∴∠BAM+∠ABE=90°,即∠AHB=90°∴点H是以AB为直径的圆上一点.如图2,取AB中点O,连接OD,OH∵AB=AD=2,O是AB中点,∴AO=1=OH,在Rt△AOD中,OD==∵DH≥OD﹣OH∴DH≥﹣1∴DH的最小值为﹣1故选:A.【点评】本题考查正方形的性质,全等三角形的判定和性质,勾股定理,关键是证点H是以AB为直径的圆上一点.10.(3分)如图,在平面直角坐标系中,过点O的直线AB交反比例函数y=的图象于点A,B,点C在反比例函数y=(x>0)的图象上,连结CA,CB,当CA=CB且cos∠CAB=时,k1k2应满足的数量关系是()A.k2=2k1B.k2=﹣2k1C.k2=4k1D.k2=﹣4k1【分析】如图连接OC,作AH⊥x轴于H,CJ⊥x轴于J.只要证明△AOH∽△OCJ,可得=()2,推出=,由此即可解决问题;【解答】解:如图连接OC,作AH⊥x轴于H,CJ⊥x轴于J.∵CA=CB,OA=OB,∴CO⊥AB,∵cos∠CAB==,设AO=k,AC=5k,则OC=2k,∴OC=2OA,∵∠AHO=∠CJO=∠AOC=90°,∴∠AOH+∠COJ=90°,∠COJ+∠OCJ=90°,∴∠AOH=∠OCJ,∴△AOH∽△OCJ,∴=()2,∴=,∴k2=﹣4k1,故选:D.【点评】本题考查反比例函数图象上的点的特征,解直角三角形、相似三角形的判定和性质、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题.二.填空题(共6小题,满分24分,每小题4分)11.(4分)分解因式:16m2﹣4= 4(2m+1)(2m﹣1).【分析】原式提取4,再利用平方差公式分解即可.【解答】解:原式=4(4m2﹣1)=4(2m+1)(2m﹣1),故答案为:4(2m+1)(2m﹣1)【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.12.(4分)要使分式有意义,则字母x的取值X围是x≠﹣3 .【分析】根据分母不能为零,可得答案.【解答】解:由题意,得x+3≠0,解得x≠=﹣3,故答案为:x≠﹣3.【点评】本题考查了分是有意义的条件,利用分母不能为零得出不等式是解题关键.13.(4分)某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵红灯亮30秒,黄灯亮3秒,绿灯亮42秒,∴P(红灯亮)==,故答案为:.【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14.(4分)反比例函数y=(2m﹣1)x|m|﹣2,当x>0时,y随x的增大而增大,则m= ﹣1 .【分析】根据反比例函数的一般形式,可以得到x的次数是﹣1;根据当x>0时,y随x的增大而增大,可以得到比例系数是负数,即可求得.【解答】解:根据题意得:,解得:m=﹣1.故答案为﹣1【点评】本题考查了反比例函数的一般形式以及反比例函数的性质,正确理解函数的性质是关键.15.(4分)在平面直角坐标系中,O为坐标原点,点A(﹣a,a)(a>0),点B(﹣a ﹣4,a+3),C为该直角坐标系内的一点,连结AB,OC,若AB∥OC且AB=OC,则点C 的坐标为(﹣4,3)或(4,﹣3).【分析】设点C的坐标为(x,y),由AB∥OC、AB=OC以及点A、B的坐标,即可求出点C的坐标.【解答】解:依照题意画出图形,如图所示.设点C的坐标为(x,y),∵AB∥OC且AB=OC,∴或,解得:或,∴点C的坐标为(﹣4,3)或(4,﹣3).故答案为:(﹣4,3)或(4,﹣3).【点评】本题考查了平行线的性质以及两点间的距离公式,依照题意画出图形,利用数形结合解决问题是解题的关键.16.(4分)折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD= 3+2.【分析】设AD=x,则AB=x+2,利用折叠的性质得DF=AD,EA=EF,∠DFE=∠A=90°,则可判断四边形AEFD为正方形,所以AE=AD=x,再根据折叠的性质得DH=DC=x+2,则AH=AE﹣HE=x﹣1,然后根据勾股定理得到x2+(x﹣1)2=(x+2)2,再解方程求出x即可.【解答】解:设AD=x,则AB=x+2,∵把△ADE翻折,点A落在DC边上的点F处,∴DF=AD,EA=EF,∠DFE=∠A=90°,∴四边形AEFD为正方形,∴AE=AD=x,∵把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,∴DH=DC=x+2,∵HE=1,∴AH=AE﹣HE=x﹣1,在Rt△ADH中,∵AD2+AH2=DH2,∴x2+(x﹣1)2=(x+2)2,整理得x 2﹣6x﹣3=0,解得x1=3+2,x2=3﹣2(舍去),即AD的长为3+2.故答案为3+2.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质和勾股定理.三.解答题(共8小题,满分66分)17.(6分)(1)解不等式组:并在数轴上表示其解集.(2)计算:++.【分析】(1)分别求出每一个不等式的解集,根据口诀:大小小大中间找,确定不等式组的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来;(2)根据分式的加减法的法则计算即可.【解答】解:(1)解不等式2x<5,得:x<,解不等式3(x+2)≥x+4,得:x≥﹣1,∴不等式组的解集为:﹣1≤x<,将不等式解集表示在数轴上如图:,(2)++=﹣+==.【点评】本题考查的是分式的加减法,解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.(6分)先化简,再求值:(x+y)(x﹣y)﹣(x﹣y)2﹣y(x﹣2y),其中x=2018,y=【分析】根据平方差公式、完全平方公式和单项式乘多项式可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.【解答】解:原式=x2﹣y2﹣(x2﹣2xy+y2)﹣xy+2y2=x2﹣y2﹣x2+2xy﹣y2﹣xy+2y2=xy,当x=2018,y=时,原式=2018×=1.【点评】本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式的化简求值的方法.19.(6分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以AB为一边的等腰△ABC,点C在小正方形的顶点上,且满足tan∠ACB=;(2)在图中画出平行四边形ABDE,使点D和点E均在小正方形的顶点上,且面积为8,连接CE,请直接写出线段CE的长.【分析】(1)根据等腰三角形的定义和正切函数的定义确定点C位置,据此连接三顶点即可得;(2)根据平行四边形的定义作图可得.【解答】解:(1)如图所示,△ABC即为所求;(2)如图所示,▱ABCD即为所求,CE==.【点评】本题主要考查作图﹣应用与设计作图,解题的关键是掌握等腰三角形、平行四边形及正切函数的定义、勾股定理.20.(8分)如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC.(1)求证:四边形DBEC是菱形;(2)若AD=3,DF=1,求四边形DBEC面积.【分析】(1)根据平行四边形的判定定理首先推知四边形DBEC为平行四边形,然后由直角三角形斜边上的中线等于斜边的一半得到其邻边相等:CD=BD,得证;(2)由三角形中位线定理和勾股定理求得AB边的长度,然后根据菱形的性质和三角形的面积公式进行解答.【解答】(1)证明:∵CE∥DB,BE∥DC,∴四边形DBEC为平行四边形.又∵Rt△ABC中,∠ABC=90°,点D是AC的中点,∴CD=BD=AC,∴平行四边形DBEC是菱形;(2)∵点D,F分别是AC,AB的中点,AD=3,DF=1,∴DF是△ABC的中位线,AC=2AD=6,S△BCD=S△ABC∴BC=2DF=2.又∵∠ABC=90°,∴AB===4.∵平行四边形DBEC是菱形,∴S 四边形DBEC=2S△BCD=S△ABC=AB•BC=×4×2=4.【点评】考查了菱形的判定与性质,三角形中位线定理,直角三角形斜边上的中线以及勾股定理,熟练掌握相关的定理与性质即可解题,难度中等.21.(8分)截止2016年第一季度末,微信每月活跃用户已达到5.49亿,用户覆盖200多个国家,超过20种语言,个品牌的微信公众号总数已经超过800万个,微信已成为中国电子革命的代表,并成为人们生活中不可或缺的日常使用工具,某评测中心进行了抽样调查,统计出如下两个统计图表:(1)在条形统计图中,“转发内容”的人数占到样本容量的15%,则样本容量是200 ;(2)补全条形统计图;(3)扇形统计图中“学生”所占比例是15% ,所对应的圆心角是54 度;(4)某市约有20万微信用户,请你估计其中喜欢“给别人点赞”的学生有多少人?【分析】(1)由30除以其所占的比例,即可求出样本容量;(2)用样本容量减去A、C、D、E的数据,即可求出喜欢给别人评论的人数,再补全条形统计图即可;(3)观察扇形统计图,用1减去其它各部分所占比例,即可求出“学生”所占比例,再用其乘360°即可得出结论;(4)利用总体×学生所占比例×喜欢给别人评论的人数÷样本容量,即可求出结论.【解答】解:(1)由题意可得:30÷15%=200.故答案为:200;(2)200﹣70﹣40﹣10=50(人),补全条形统计图,如图所示.(3)1﹣40%﹣32%﹣13%=15%,15%×360°=54°.故答案为:15%;54.(4)200000×15%×=10500(人).答:其中喜欢“给别人点赞”的学生大约有10500人.【点评】本题考查了条形统计图、全面调查和抽样调查、总体、个体、样本、样本容量、用样本估计总体以及扇形统计图,解题的关键是:(1)用喜欢“转发内容”的人数÷其所占样本容量的比例求出样本容量;(2)用样本容量减去A、C、D、E的数据,求出喜欢给别人评论的人数;(3)根据扇形统计图,列式计算;(4)根据数量关系,列式计算.22.(10分)如图,河流的两岸PQ、MN互相平行,河岸MN上有一排间隔为50米的电线杆C、D、E、…,某人在河岸PQ的A处测得∠DBQ=45°,求河流的宽度(结果精确到0.1米).参考值:;.【分析】应合理应用∠CAQ的度数,CD的长度,所以过点D作CA的平行线得到平行四边形.过点D向对边引垂线,得到直角三角形,进而利用三角函数值求得河宽.【解答】解:过D作DH∥CA交PQ于H,过D作DG⊥PQ,垂足为G,(4分)∵PQ∥MN,DH∥CA∴四边形CAHD是平行四边形.∴AH=CD=50,∠DHQ=∠CAQ=30°(5分)在Rt△DBG中,∵∠DBG=∠BDG=45°,∴BG=DG,设BG=DG=x,在Rt△DHG中,得HG=x,(6分)又BH=AB﹣AH=110﹣50=60,∴60+x=x,∴x=30+30≈82.0(米).答:河流的宽为82.0米.(7分)【点评】本题考查解直角三角形的应用.难点是作出辅助线,利用三角函数求解.23.(10分)如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.(1)求证:AH是⊙O的切线;(2)若OB=4,AC=6,求sin∠ACB的值;(3)若=,求证:CD=DH.【分析】(1)连接OA,证明△DAB≌△DAE,得到AB=AE,得到OA是△BDE的中位线,根据三角形中位线定理、切线的判定定理证明;(2)利用正弦的定义计算;(3)证明△CDF∽△AOF,根据相似三角形的性质得到CD=CE,根据等腰三角形的性质证明.【解答】(1)证明:连接OA,由圆周角定理得,∠ACB=∠ADB,∵∠ADE=∠ACB,∴∠ADE=∠ADB,∵BD是直径,∴∠DAB=∠DAE=90°,在△DAB和△DAE中,,∴△DAB≌△DAE,∴AB=AE,又∵OB=OD,∴OA∥DE,又∵AH⊥DE,∴OA⊥AH,∴AH是⊙O的切线;(2)解:由(1)知,∠E=∠DBE,∠DBE=∠ACD,∴∠E=∠ACD,∴AE=AC=AB=6.在Rt△ABD中,AB=6,BD=8,∠ADE=∠ACB,∴sin∠ADB==,即sin∠ACB=;(3)证明:由(2)知,OA是△BDE的中位线,∴OA∥DE,OA=DE.∴△CDF∽△AOF,∴==,∴CD=OA=DE,即CD=CE,∵AC=AE,AH⊥CE,∴CH=HE=CE,∴CD=CH,∴CD=DH.【点评】本题考查的是圆的知识的综合应用,掌握圆周角定理、相似三角形的判定定理和性质定理、三角形中位线定理是解题的关键.24.(12分)甲骑自行车从M地出发沿一条公路匀速前往N地,乙骑自行车从N地出发沿同一条公路匀速前往M地,已知乙比甲晚出发0.5小时且先到达目的地.设甲行驶的时间为t(h),甲乙两人之间的路程为y(km),y与t的函数关系如图1所示,请解决以下问题:(1)写出图1中点C表示的实际意义并求线段BC所在直线的函数表达式.(2)①求点D的纵坐标.②求M,N两地之间的距离.(3)设乙离M地的路程为s乙(km),请直接写出s乙与时间t(h)的函数表达式,并在图2所给的直角坐标系中画出它的图象.【分析】(1)根据图象坐标求出BC解析式;(2)①根据(1)中函数关系式,求点D坐标;②根据图象求出甲乙两车速度,计算MN距离;(3)由②中乙的速度列出s乙与时间t(h)的函数表达式,并画图象.【解答】解:(1)根据图象,点C表示甲行驶1.5小时时,甲乙两车相遇.设直线BC的函数解析式为:y=kt+b把B(0.5,60),D(1.5,0)解得∴BC解析式为:y=﹣60t+90(2)①把t=2.25代入y=﹣60t+90y=﹣60×2.25+90=45∴点D坐标为(2.25,45)②设甲的速度为akm/h,乙的速度为bkm/h由题意得∴∴MN之间距离为:3.5×20=70km(3)乙离M地的路程为s乙=70﹣40t【点评】本题为一次函数实际应用问题,考查一次函数图象的实际意义,待定系数法求函数关系式和二元一次方程组.。

2019年上海市徐汇区中考数学一模试卷(解析版)

2019年上海市徐汇区中考数学一模试卷(解析版)

2019年上海市徐汇区中考数学一模试卷一、选择题(本大题共6题,每题4分)1.某零件长40厘米,若该零件在设计图上的长是2毫米,则这幅设计图的比例尺是()A.1:2000B.1:200C.200:1D.2000:12.将抛物线y=x2向右平移1个单位长度,再向上平移2个单位长度所得的抛物线解析式为()A.y=(x﹣1)2+2B.y=(x+1)2+2C.y=(x﹣1)2﹣2D.y=(x+1)2﹣23.若斜坡的坡比为1:,则斜坡的坡角等于()A.30°B.45°C.50°D.60°4.如图,下列条件中不能判定△ACD∽△ABC的是()A.∠ADC=∠ACB B.C.∠ACD=∠B D.AC2=AD•AB5.若=2,向量和向量方向相反,且||=2||,则下列结论中不正确的是()A.||=2B.||=4C.=4D.=6.已知抛物线y=ax2+bx+c上部分点的横坐标x与纵坐标y的对应值如下表:x…﹣10123…y…30﹣1m3…①抛物线开口向下②抛物线的对称轴为直线x=﹣1③m的值为0④图象不经过第三象限上述结论中正确的是()A.①④B.②④C.③④D.②③二、填空题(本大题共12题,每题4分)7.已知,则的值是.8.已知点P是线段AB的黄金分割点,且AP>BP,AB=4,那么AP=.9.计算:(﹣2)﹣4=.10.已知A(﹣2,y1)、B(﹣3,y2)是抛物线y=(x﹣1)2+c上两点,则y1y2.(填“>”、“=”或“<”)11.如图,在▱ABCD中,AB=3,AD=5,AF分别交BC于点E、交DC的延长线于点F,且CF=1,则CE的长为.12.如图,在Rt△ABC中,∠C=90°,AB=5,BC=3,则sin A=.13.如图,正方形DEFG的边EF在ABC的边BC上,顶点D、G分别在边AB、AC上.已知BC 长为40厘米,若正方形DEFG的边长为25厘米,则ABC的高AH为厘米.14.如图,在梯形ABCD中,AD∥BC,EF是梯形ABCD的中位线,AH∥CD分别交EF、BC于点G、H,若=,=,则用、表示=.15.如图,在Rt△ABC中,∠ACB=90°,点G是△ABC的重心,CG=2,sin∠ACG=,则BC 长为.16.如图,某兴趣小组用无人机进行航拍测高,无人机从1号楼和2号楼的地面正中间B点垂直起飞到高度为50米的A处,测得1号楼顶部E的俯角为60°,测得2号楼顶部F的俯角为45°.已知1号楼的高度为20米,则2号楼的高度为米(结果保留根号).17.如图,在△ABC中,AB=AC,BD=CD,CE⊥AB于点E,cos B=,则=.18.在梯形ABCD中,AB∥DC,∠B=90°,BC=6,CD=2,tan A=.点E为BC上一点,过点E作EF∥AD交边AB于点F.将△BEF沿直线EF翻折得到△GEF,当EG过点D时,BE的长为.三、解答题(本大题共7题,满分78分)19.(10分)计算:.20.(10分)如图,已知△ABC,点D在边AC上,且AD=2CD,AB∥EC,设=,=.(1)试用、表示;(2)在图中作出在、上的分向量,并直接用、表示.21.(10分)如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴交于点A(﹣3,0)和点B,与y轴交于点C(0,2).(1)求抛物线的表达式,并用配方法求出顶点D的坐标;(2)若点E是点C关于抛物线对称轴的对称点,求tan∠CEB的值.22.(10分)如图是某品牌自行车的最新车型实物图和简化图,它在轻量化设计、刹车、车篮和座位上都做了升级.A为后胎中心,经测量车轮半径AD为30cm,中轴轴心C到地面的距离CF为30cm,座位高度最低刻度为155cm,此时车架中立管BC长为54cm,且∠BCA=71°.(参考数据:sin71°≈0.95,cos71°≈0.33,tan71°≈2.88)(1)求车座B到地面的高度(结果精确到1cm);(2)根据经验,当车座B'到地面的距离B'E'为90cm时,身高175cm的人骑车比较舒适,此时车架中立管BC拉长的长度BB'应是多少?(结果精确到1cm)23.(12分)如图,已知菱形ABCD,点E是AB的中点,AF⊥BC于点F,联结EF、ED、DF,DE交AF于点G,且AE2=EG•ED.(1)求证:DE⊥EF;(2)求证:BC2=2DF•BF.24.(12分)如图,在平面直角坐标系中,顶点为M的抛物线C1:y=ax2+bx(a<0)经过点A和x轴上的点B,AO=OB=2,∠AOB=120°.(1)求该抛物线的表达式;;(2)联结AM,求S△AOM(3)将抛物线C1向上平移得到抛物线C2,抛物线C2与x轴分别交于点E、F(点E在点F的左侧),如果△MBF与△AOM相似,求所有符合条件的抛物线C2的表达式.25.(14分)已知在梯形ABCD中,AD∥BC,AC=BC=10,cos∠ACB=,点E在对角线AC上(不与点A、C重合),∠EDC=∠ACB,DE的延长线与射线CB交于点F,设AD的长为x.(1)如图1,当DF⊥BC时,求AD的长;(2)设EC=y,求y关于x的函数解析式,并直接写出定义域;(3)当△DFC是等腰三角形时,求AD的长.2019年上海市徐汇区中考数学一模试卷参考答案与试题解析一、选择题(本大题共6题,每题4分)1.某零件长40厘米,若该零件在设计图上的长是2毫米,则这幅设计图的比例尺是()A.1:2000B.1:200C.200:1D.2000:1【分析】图上距离和实际距离已知,依据“比例尺=”即可求得这幅设计图的比例尺.【解答】解:因为2毫米=0.2厘米,则0.2厘米:40厘米=1:200;所以这幅设计图的比例尺是1:200.故选:B.【点评】此题主要考查比例尺的计算方法,解答时要注意单位的换算.2.将抛物线y=x2向右平移1个单位长度,再向上平移2个单位长度所得的抛物线解析式为()A.y=(x﹣1)2+2B.y=(x+1)2+2C.y=(x﹣1)2﹣2D.y=(x+1)2﹣2【分析】根据“左加右减,上加下减”的法则进行解答即可.【解答】解:将抛物线y=x2向右平移1个单位长度,再向上平移+2个单位长度所得的抛物线解析式为y=(x﹣1)2+2.故选:A.【点评】本题考查的是二次函数的图象与几何变换,熟知二次函数图象平移的法则是解答此题的关键.3.若斜坡的坡比为1:,则斜坡的坡角等于()A.30°B.45°C.50°D.60°【分析】直接利用坡角的定义以及坡比的定义即可得出答案.【解答】解:∵斜坡的坡比为1:,设坡角为α,∴tanα==,∴α=60°.故选:D.【点评】此题考查了坡度坡角问题,借助解直角三角形的知识求解是关键.4.如图,下列条件中不能判定△ACD∽△ABC的是()A.∠ADC=∠ACB B.C.∠ACD=∠B D.AC2=AD•AB【分析】根据相似三角形的判定逐一判断可得.【解答】解:A、由∠ADC=∠ACB,∠A=∠A可得△ACD∽△ABC,此选项不符合题意;B、由不能判定△ACD∽△ABC,此选项符合题意;C、由∠ACD=∠B,∠A=∠A可得△ACD∽△ABC,此选项不符合题意;D、由AC2=AD•AB,即=,且∠A=∠A可得△ACD∽△ABC,此选项不符合题意;故选:B.【点评】本题主要考查相似三角形的判定,解题的关键是熟练掌握相似三角形的判定定理.5.若=2,向量和向量方向相反,且||=2||,则下列结论中不正确的是()A.||=2B.||=4C.=4D.=【分析】根据已知条件可以得到:=﹣4,由此对选项进行判断.【解答】解:A、由=2推知||=2,故本选项不符合题意.B、由=﹣4推知||=4,故本选项不符合题意.C、依题意得:=﹣4,故本选项符合题意.D、依题意得:=,故本选项不符合题意.故选:C.【点评】考查了平面向量,注意:平面向量既有大小,又有方向.6.已知抛物线y=ax2+bx+c上部分点的横坐标x与纵坐标y的对应值如下表:x…﹣10123…y…30﹣1m3…①抛物线开口向下②抛物线的对称轴为直线x=﹣1③m的值为0④图象不经过第三象限上述结论中正确的是()A.①④B.②④C.③④D.②③【分析】根据二次函数的性质和表格中的数据,可以判断各个小题中的结论是否成立,本题得以解决.【解答】解:由表格可知,抛物线的对称轴是直线x==1,故②错误,抛物线的顶点坐标是(1,﹣1),有最小值,故抛物线y=ax2+bx+c的开口向上,故①错误,当y=0时,x=0或x=2,故m的值为0,故③正确,当y≤0时,x的取值范围是0≤x≤2,故④正确,故选:C.【点评】本题考查抛物线与x轴的交点、二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.二、填空题(本大题共12题,每题4分)7.已知,则的值是.【分析】已知,可设a=2k,则b=3k,代入所求的式子即可求解.【解答】解:∵∴设a=2k,则b=3k.∴==.【点评】在解决本题时,根据已知中的比值,把几个未知数用一个未知数表示出来,是解决本题的关键.8.已知点P是线段AB的黄金分割点,且AP>BP,AB=4,那么AP=2﹣2.【分析】根据黄金分割点的定义,知AP是较长线段;则AP=AB,代入数据即可得出AP的长.【解答】解:由于P为线段AB=4的黄金分割点,且AP是较长线段;则AP=AB=×4=2﹣2.故答案为2﹣2.【点评】本题考查了黄金分割的概念.应该识记黄金分割的公式:较短的线段=原线段的,较长的线段=原线段的.9.计算:(﹣2)﹣4=﹣7.【分析】实数的运算法则同样适用于平面向量的计算.【解答】解::(﹣2)﹣4=﹣×2﹣4=﹣7.故答案是:﹣7.【点评】本题考查了平面向量的有关概念,是基础题.10.已知A(﹣2,y1)、B(﹣3,y2)是抛物线y=(x﹣1)2+c上两点,则y1<y2.(填“>”、“=”或“<”)【分析】根据二次函数的性质得到x<1时,y随y的增大而减小,然后根据自变量的大小得到对应函数值的大小.【解答】解:抛物线的对称轴为直线x=1,而x<1时,y随y的增大而减小,所以y1<y2.故答案为<.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.11.如图,在▱ABCD中,AB=3,AD=5,AF分别交BC于点E、交DC的延长线于点F,且CF=1,则CE的长为.【分析】根据平行四边形的性质和相似三角形的性质可得==3,可得BE=3CE,即可求CE的长.【解答】解:∵四边形ABCD是平行四边形∴AB∥CD,AD=BC=5,∴△ABE∽△FCE∴==3∴BE=3CE∵BC=BE+CE=5∴CE=故答案为:【点评】本题考查了相似三角形的判定和性质,平行四边形的性质,熟练运用相似三角形的性质求线段的长度是本题的关键.12.如图,在Rt△ABC中,∠C=90°,AB=5,BC=3,则sin A=.【分析】根据正弦定义:把锐角A的对边a与斜边c的比叫做∠A的正弦,记作sin A,可代入数计算出答案.【解答】解:∵∠C=90°,AB=5,BC=3,∴sin A==,故答案为:.【点评】此题主要考查了锐角三角函数定义,关键是掌握正弦定义.13.如图,正方形DEFG的边EF在ABC的边BC上,顶点D、G分别在边AB、AC上.已知BC 长为40厘米,若正方形DEFG的边长为25厘米,则ABC的高AH为厘米.【分析】由DG∥BC得△ADG∽△ABC,利用相似三角形对应边上高的比等于相似比,列方程求解.【解答】解:设三角形ABC的高AH为x厘米.由正方形DEFG得,DG∥EF,即DG∥BC,∵AH⊥BC,∴AP⊥DG.由DG∥BC得△ADG∽△ABC∴=.∵PH⊥BC,DE⊥BC,∴PH=ED,AP=AH﹣PH,∵BC长为40厘米,若正方形DEFG的边长为25厘米,∴=,解得x=.即AH为厘米.故答案为.【点评】本题考查了相似三角形的判定与性质.关键是由平行线得到相似三角形,利用相似三角形的性质列方程.14.如图,在梯形ABCD中,AD∥BC,EF是梯形ABCD的中位线,AH∥CD分别交EF、BC于点G、H,若=,=,则用、表示=.【分析】由梯形中位线定理得到EF=,结合梯形的性质,平行四边形的判定与性质求得GF 的长度,利用平面向量表示即可.【解答】解:∵在梯形ABCD中,AD∥BC,则AD∥HC,AH∥CD,∴四边形AHCD是平行四边形.∴AD=HC.又EF是梯形ABCD的中位线,∴EF=,且GF=AD.∴EG=EF﹣GF=﹣AD=.∵=,=,∴=.故答案是:.【点评】考查了平面向量和梯形中位线定理,注意:向量既有大小又有方向.15.如图,在Rt△ABC中,∠ACB=90°,点G是△ABC的重心,CG=2,sin∠ACG=,则BC 长为4.【分析】延长CG交AB于D,作DE⊥BC于E,由点G是△ABC的重心,得到CG=2,求得CD =3,点D为AB的中点,根据等腰三角形的性质得到DC=DB,又DE⊥BC,求得CE=BE=BC,解直角三角形即可得到结论.【解答】解:延长CG交AB于D,作DE⊥BC于E,∵点G是△ABC的重心,∵CG=2,∴CD=3,点D为AB的中点,∴DC=DB,又DE⊥BC,∴CE=BE=BC,∵∠ACG+∠DCE=∠DCE+∠CDE=90°,∴∠ACG=∠CDE,∵sin∠ACG=sin∠CDE=,∴CE=2,∴BC=4故答案为:4.【点评】本题考查的是三角形的重心的概念和性质以及锐角三角函数的定义,掌握三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍是解题的关键.16.如图,某兴趣小组用无人机进行航拍测高,无人机从1号楼和2号楼的地面正中间B点垂直起飞到高度为50米的A处,测得1号楼顶部E的俯角为60°,测得2号楼顶部F的俯角为45°.已知1号楼的高度为20米,则2号楼的高度为(50﹣10)米(结果保留根号).【分析】过点E作EG⊥AB于G,过点F作FH⊥AB于H,可得四边形ECBG,HBDF是矩形,在Rt△AEG中,根据三角函数求得EG,在Rt△AHP中,根据三角函数求得AH,再根据线段的和差关系即可求解.【解答】解:过点E作EG⊥AB于G,过点F作FH⊥AB于H,则四边形ECBG,HBDF是矩形,∴EC=GB=20,HB=FD,∵B为CD的中点,∴EG=CB=BD=HF,由已知得:∠EAG=90°﹣60°=30°,∠AFH=45°.在Rt△AEG中,AG=AB﹣GB=50﹣20=30米,∴EG=AG•tan30°=30×=10米,在Rt△AHP中,AH=HF•tan45°=10米,∴FD=HB=AB﹣AH=50﹣10(米).答:2号楼的高度为(50﹣10)米.故答案为:(50﹣10).【点评】此题考查了解直角三角形的应用﹣仰角俯角问题的知识.此题难度适中,注意能借助仰角或俯角构造直角三角形并解直角三角形是解此题的关键.17.如图,在△ABC中,AB=AC,BD=CD,CE⊥AB于点E,cos B=,则=.【分析】根据等腰三角形的性质得到AD⊥BC,设BD=5x,AB=13x,根据勾股定理得到AD==12x,求得BC=2BD=10x,根据相似三角形的性质得到BE=x,CE=x,于是得到结论.【解答】解:∵AB=AC,BD=CD,∴AD⊥BC,∴∠ADB=90°,∵cos B==,设BD=5x,AB=13x,∴AD==12x,∴BC=2BD=10x,∵CE⊥AB,∴∠BEC=90°,∵∠B=∠B,∴△ABD∽△CBE,∴,∴=,∴BE=x,CE=x,∴===,故答案为:.【点评】本题考查了解直角三角形,等腰三角形的性质,相似三角形的判定和性质,正确的识别图形是解题的关键.18.在梯形ABCD中,AB∥DC,∠B=90°,BC=6,CD=2,tan A=.点E为BC上一点,过点E作EF∥AD交边AB于点F.将△BEF沿直线EF翻折得到△GEF,当EG过点D时,BE的长为.【分析】根据平行线的性质得到∠A=∠EFB,∠GFE=∠AMF,根据轴对称的性质得到∠GFE=∠BFE,求得∠A=∠AMF,得到AF=FM,作DQ⊥AB于点Q,求得∠AQD=∠DQB=90°.根据矩形的性质得到CD=QB=2,QD=CB=6,求得AQ=10﹣2=8,根据勾股定理得到AD==10,设EB=3x,求得FB=4x,CE=6﹣3x,求得AF=MF=10﹣4x,GM=8x﹣10,根据相似三角形的性质得到GD=6x﹣,求得DE=﹣3x,根据勾股定理列方程即可得到结论.【解答】解:如图,∵EF∥AD,∴∠A=∠EFB,∠GFE=∠AMF,∵△GFE与△BFE关于EF对称,∴△GFE≌△BFE,∴∠GFE=∠BFE,∴∠A=∠AMF,∴△AMF是等腰三角形,∴AF=FM,作DQ⊥AB于点Q,∴∠AQD=∠DQB=90°.∵AB∥DC,∴∠CDQ=90°.∵∠B=90°,∴四边形CDQB是矩形,∴CD=QB=2,QD=CB=6,∴AQ=10﹣2=8,在Rt△ADQ中,由勾股定理得AD==10,∵tan A=,∴tan∠EFB==,设EB=3x,∴FB=4x,CE=6﹣3x,∴AF=MF=10﹣4x,∴GM=8x﹣10,∵∠G=∠B=∠DQA=90°,∠GMD=∠A,∴△DGM∽△DQA,∴=,∴GD=6x﹣,∴DE=﹣3x,在Rt△CED中,由勾股定理得(﹣3x)2﹣(6﹣3x)2=4,解得:3x=,∴当EG过点D时BE=.故答案为:.【点评】本题考查了相似三角形的判定和性质,等腰三角形的判定及性质的运用,矩形的性质的运用,勾股定理的性质的运用,轴对称的性质的运用,正确的作出辅助线是解题的关键.三、解答题(本大题共7题,满分78分)19.(10分)计算:.【分析】直接利用特殊角的三角函数值分别代入求出答案.【解答】解:原式====2+.【点评】此题主要考查了实数运算,正确记忆特殊角的三角函数值是解题关键.20.(10分)如图,已知△ABC,点D在边AC上,且AD=2CD,AB∥EC,设=,=.(1)试用、表示;(2)在图中作出在、上的分向量,并直接用、表示.【分析】(1)利用三角形法则求出,再根据CD=CA求出即可解决问题.(2)利用平行四边形法则,画出分向量,根据=+计算即可.【解答】解:(1)∵=,=,∴=+=﹣+,∵AD=2CD,∴CD=CA,∵与同向,∴==(﹣+)=﹣;(2)如图在、上的分向量分别为,.∵=+=+﹣=+.【点评】本题考查作图﹣复杂作图,平面向量等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(10分)如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴交于点A(﹣3,0)和点B,与y轴交于点C(0,2).(1)求抛物线的表达式,并用配方法求出顶点D的坐标;(2)若点E是点C关于抛物线对称轴的对称点,求tan∠CEB的值.【分析】(1)根据抛物线y=﹣x2+bx+c与x轴交于点A(﹣3,0)和点B,与y轴交于点C(0,2),可以得到抛物线的解析式,然后将解析式化为顶点式,即可得到顶点D的坐标;(2)根据题意,可以求得点E的坐标,从而可以求得直线EB的函数解析式,进而求得与y轴的交点,从而可以求得tan∠CEB的值.【解答】解:(1)∵抛物线y=﹣x2+bx+c与x轴交于点A(﹣3,0)和点B,与y轴交于点C(0,2),∴,得,∴y=﹣x2﹣+2=,∴抛物线顶点D的坐标为(﹣1,),即该抛物线的解析式为y=﹣x2﹣+2,顶点D的坐标为(﹣1,);(2)∵y=,∴该抛物线的对称轴为直线x=﹣1,∵点E是点C关于抛物线对称轴的对称点,点C(0,2),∴点E的坐标为(﹣2,2),当y=0时,0=,得x1=﹣3,x2=1,∴点B的坐标为(1,0),设直线BE的函数解析式为y=kx+n,,得,∴直线BE的函数解析式为y=﹣,当x=0时,y=,设直线BE与y轴交于点F,则点F的坐标为(0,),∴OF=,∵点C(0,2),点E(﹣2,2),∴OC=2,CE=2,∴CF=2﹣=,∴tan∠CEF=,即tan∠CEB的值是.【点评】本题考查抛物线与x轴的交点、二次函数的性质、待定系数法求二次函数解析式和一次函数解析式、锐角三角函数,解答本题的关键是明确题意,利用数形结合的思想解答.22.(10分)如图是某品牌自行车的最新车型实物图和简化图,它在轻量化设计、刹车、车篮和座位上都做了升级.A为后胎中心,经测量车轮半径AD为30cm,中轴轴心C到地面的距离CF为30cm,座位高度最低刻度为155cm,此时车架中立管BC长为54cm,且∠BCA=71°.(参考数据:sin71°≈0.95,cos71°≈0.33,tan71°≈2.88)(1)求车座B到地面的高度(结果精确到1cm);(2)根据经验,当车座B'到地面的距离B'E'为90cm时,身高175cm的人骑车比较舒适,此时车架中立管BC拉长的长度BB'应是多少?(结果精确到1cm)【分析】(1)根据上题证得的结论分别求得BH的长,利用正弦函数的定义即可得到结论;(2)设B'E'与AC交于点H',则有B'H'∥BH,得到△B'H'C∽△BHC,利用相似三角形的性质求得BB'的长即可.【解答】解:(1)设AC于BE交于H,∵AD⊥l,CF⊥l,HE⊥l,∴AD∥CF∥HE,∵AD=30cm,CF=30cm,∴AD=CF,∴四边形ADFC是平行四边形,∵∠ADF=90°,∴四边形ADFC是矩形,∴HE=AD=30cm,∵BC长为54cm,且∠BCA=71°,∴BH=BC•sin71°=51.3cm,∴BE=BH+EH=BH+AD=51.3+30≈81cm;答:车座B到地面的高度是81cm;(2)如图所示,B'E'=96.8cm,设B'E'与AC交于点H',则有B'H'∥BH,∴△B'H'C∽△BHC,得=.即=,∴B'C=cm.故BB'=B'C﹣BC=60﹣54=6(cm).∴车架中立管BC拉长的长度BB'应是6cm.【点评】本题考查了相似三角形的应用、切线的性质解解直角三角形的应用,解题的难点在于从实际问题中抽象出数学问题,难度较大.23.(12分)如图,已知菱形ABCD,点E是AB的中点,AF⊥BC于点F,联结EF、ED、DF,DE交AF于点G,且AE2=EG•ED.(1)求证:DE⊥EF;(2)求证:BC2=2DF•BF.【分析】(1)根据直角三角形的性质得到AE=FE,根据相似三角形的性质得到∠EAG=∠ADG,求得∠DAG=∠FEG,根据菱形的性质得到AD∥BC,求得∠DAG=∠AFB=90°,于是得到结论;(2)由AE=EF,AE2=EG•ED,得到FE2=EG•ED,推出△FEG∽△DEF,根据相似三角形的性质得到∠EFG=∠EDF,根据相似三角形的判定和性质即可得到结论.【解答】(1)证明:∵AF⊥BC于点F,∴∠AFB=90°,∵点E是AB的中点,∴AE=FE,∴∠EAF=∠AFE,∵AE2=EG•ED,∴=,∵∠AEG=∠DEA,∴△AEG∽△DEA,∴∠EAG=∠ADG,∵∠AGD=∠FGE,∴∠DAG=∠FEG,∵四边形ABCD是菱形,∴AD∥BC,∴∠DAG=∠AFB=90°,∴∠FEG=90°,∴DE⊥EF;(2)解:∵AE=EF,AE2=EG•ED,∴FE2=EG•ED,∴=,∵∠FEG=∠DEF,∴△FEG∽△DEF,∴∠EFG=∠EDF,∴∠BAF=∠EDF,∵∠DEF=∠AFB=90°,∴△ABF∽△DFE,∴=,∵四边形ACBD是菱形,∴AB=BC,∵∠AFB=90°,∵点E是AB的中点,∴FE=AB=BC,∴=,∴BC2=2DF•BF.【点评】本题考查了相似三角形的判定和性质,菱形的性质,直角三角形的性质,正确的识别图形是解题的关键.24.(12分)如图,在平面直角坐标系中,顶点为M的抛物线C1:y=ax2+bx(a<0)经过点A和x轴上的点B,AO=OB=2,∠AOB=120°.(1)求该抛物线的表达式;;(2)联结AM,求S△AOM(3)将抛物线C1向上平移得到抛物线C2,抛物线C2与x轴分别交于点E、F(点E在点F的左侧),如果△MBF与△AOM相似,求所有符合条件的抛物线C2的表达式.【分析】(1)根据题意,可以写出点B和点A的坐标,从而可以得到该抛物线的表达式;(2)根据(1)中的函数解析式,可以求得点M的坐标,从而可以求得直线AM的函数解析式,从;而可以求得S△AOM(3)根据题意,利用分类讨论的方法和三角形相似的知识可以求得点F的坐标,从而可以求得抛物线C2的表达式.【解答】解:(1)∵抛物线C1:y=ax2+bx(a<0)经过点A和x轴上的点B,AO=OB=2,∠AOB =120°,∴点B(2,0),点A(﹣1,﹣),∴,得,∴该抛物线的解析式为y=;(2)连接MO,AM,AM与y轴交于点D,∵y==,∴点M的坐标为(1,),设过点A(﹣1,﹣),M(1,)的直线解析式为y=mx+n,,得,∴直线AM的函数解析式为y=x﹣,当x=0时,y=﹣,∴点D的坐标为(0,﹣),∴OD =,∴S △AOM =S △AOD +S △MOD ==; (3)当△AOM ∽△FBM 时,,∵OA =2,点O (0,0),点M (1,),点B (2,0),∴OM =,BM =, ∴,解得,BF =2,∴点F 的坐标为(4,0),设抛物线C 2的函数解析式为:y =+c , ∵点F (4,0)在抛物线C 2上,∴0=+c ,得c =,∴抛物线C 2的函数解析式为:y =+3; 当△AOM ∽△MBF 时,,∵OA =2,点O (0,0),点M (1,),点B (2,0),∴OM =,BM =, ∴,解得,BF =,∴点F 的坐标为(,0),设抛物线C 2的函数解析式为:y =+d ,∵点F(,0)在抛物线C2上,∴0=,得d=,∴抛物线C2的函数解析式为:y=+.【点评】本题是一道二次函数综合题,解答本题的关键是明确题意,求出相应的函数解析式,作出合适的辅助线,找出所求问题需要的条件,利用分类讨论和数形结合的思想解答.25.(14分)已知在梯形ABCD中,AD∥BC,AC=BC=10,cos∠ACB=,点E在对角线AC上(不与点A、C重合),∠EDC=∠ACB,DE的延长线与射线CB交于点F,设AD的长为x.(1)如图1,当DF⊥BC时,求AD的长;(2)设EC=y,求y关于x的函数解析式,并直接写出定义域;(3)当△DFC是等腰三角形时,求AD的长.【分析】(1)证明△ADC∽△DCE,利用AC•CE=CD2=DF2+FC2=36+16a2=10•5a,即可求解;(2)过点C作CH⊥AD交AD的延长线于点H,CD2=CH2+DH2=(AC sinα)2+(AC cosα﹣x)2,即可求解;(3)分DF=DC、FC=DC、FC=FD三种情况,求解即可.【解答】解:(1)设:∠ACB=∠EDC=∠α=∠CAD,∵cosα=,∴sinα=,过点A作AH⊥BC交于点H,AH=AC•sinα=6=DF,BH=2,如图1,设:FC=4a,∴cos∠ACB=,则EF=3a,EC=5a,∵∠EDC=∠α=∠CAD,∠ACD=∠ACD,∴△ADC∽△DCE,∴AC•CE=CD2=DF2+FC2=36+16a2=10•5a,解得:a=2或(舍去a=2),AD=HF=10﹣2﹣4a=;(2)过点C作CH⊥AD交AD的延长线于点H,CD2=CH2+DH2=(AC sinα)2+(AC cosα﹣x)2,即:CD2=36+(8﹣x)2,由(1)得:AC•CE=CD2,即:y=x2﹣x+10(0<x≤10)…①,(3)①当DF=DC时,∵∠ECF=∠FDC=α,∠DFC=∠DFC,∴△DFC∽△CFE,∵DF=DC,∴FC=EC=y,∴x+y=10,即:10=x2﹣x+10+x,解得:x=6;②当FC=DC,则∠DFC=∠FDC=α,则:EF=EC=y,DE=AE=10﹣y,在等腰△ADE中,cos∠DAE=cosα===,即:5x+8y=80,将上式代入①式并解得:x=;③当FC=FD,则∠FCD=∠FDC=α,而∠ECF=α≠∠FCD,不成立,故:该情况不存在;故:AD的长为6和.【点评】本题为四边形的综合题,涉及到解直角三角形、一元二次方程,三角形相似等诸多知识点,其中三角形相似是本题的突破点,难度较大.。

北京市海淀区2019年中考数学模拟试卷(含答案)

北京市海淀区2019年中考数学模拟试卷(含答案)

北京市海淀区2019年中考数学模拟试卷一.选择题(满分30分,每小题3分)1.点C在线段AB上,下列条件中不能确定点C是线段AB中点的是()A.AC=BC B.AC+BC=AB C.AB=2AC D.BC=AB2.如图是一个正方体被截去一角后得到的几何体,从上面看得到的平面图形是()A.B.C.D.3.下列计算正确的是()A.2a+3b=5ab B.=±6C.a6÷a2=a4D.(2ab2)3=6a3b54.在平行四边形ABCD中,∠A:∠B:∠C:∠D的可能情况是()A.2:7:2:7 B.2:2:7:7 C.2:7:7:2 D.2:3:4:5 5.如图所示是一个围棋棋盘(局部),把这个围棋棋盘放置在一个平面直角坐标系中,白棋①的坐标是(﹣2,﹣1),白棋③的坐标是(﹣1,﹣3),则黑棋②的坐标是()A.(0,﹣2)B.(1,﹣2)C.(2,﹣1)D.(1,2)6.一个公园有A,B,C三个入口和D,E二个出口小明进入公园游玩,从“A口进D口出”的概率为()A.B.C.D.7.如图,已知圆O的半径为10,AB⊥CD,垂足为P,且AB=CD=16,则OP的长为()A.6 B.C.8 D.8.下列y关于x的函数中,当x>0时,函数值y随x的值增大而减小的是()A.y=x2B.y=C.y=D.y=9.若关于x、y的二元一次方程组的解满足x+y=9,则k的值是(()A.1 B.2 C.3 D.410.(3分)某数学研究性学习小组制作了如下的三角函数计算图尺:在半径为1的半圆形量角器中,画一个直径为1的圆,把刻度尺CA的0刻度固定在半圆的圆心O处,刻度尺可以绕点O旋转.从图中所示的图尺可读出sin∠AOB的值是()A.B.C.D.二.填空题(满分18分,每小题3分)11.若使代数式有意义,则x的取值范围是.12.点A(0,3),点B(4,0),则点O(0,0)在以AB为直径的圆(填内、上或外)13.若m+n=1,mn=2,则的值为.14.潜水艇上浮记为正,下潜记为负,若潜水艇原来在距水面50米深处,后来两次活动记录的情况分别是﹣20米,+10米,那么现在潜水艇在距水面米深处.15.为测量学校旗杆的高度,小明的测量方法如下:如图,将直角三角形硬纸板DEF的斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上.测得DE=0.5米,EF =0.25米,目测点D到地面的距离DG=1.5米,到旗杆的水平距离DC=20米.按此方法,请计算旗杆的高度为米.16.样本数据2,4,3,5,6的极差是.三.解答题(共13小题,满分72分)17.(5分)计算:﹣|1﹣|﹣sin30°+2﹣1.18.(5分)解不等式组19.(5分)已知:如图,BC∥EF,点C,点F在AD上,AF=DC,BC=EF.求证:△ABC ≌△DEF.20.(5分)关于x的分式方程﹣=总无解,求a的值.21.(5分)如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.22.(5分)某市“每天锻炼一小时,幸福生活一辈子”活动已开展了一年,为了解该市此项活动的开展情况,某调查统计公司准备采用以下调查方式中的一种进行调查:A、从一个社区随机选取200名居民;B、从一个城镇的不同住宅楼中随机选取200名居民;C、从该市公安局户籍管理处随机抽取200名城乡居民作为调查对象,然后进行调查.(1)在上述调查方式中,你认为比较合理的一个是(填番号).(2)由一种比较合理的调查方式所得到的数据制成了如图所示的频数分布直方图,在这个调查中,这200名居民每天锻炼2小时的人数是多少?(3)若该市有100万人,请你利用(2)中的调查结果,估计该市每天锻炼2小时及以上的人数是多少?(4)你认为这个调查活动的设计有没有不合理的地方?谈谈你的理由.23.(5分)如图,BD是△ABC的角平分线,它的垂直平分线分别交AB、BC于点E、F、G,连接ED、DG.(1)请判断四边形EBGD的形状,并说明理由;(2)若∠ABC=30°,∠C=45°,ED=2,求GC的长.24.(5分)老王的鱼塘里年初养了某种鱼2000条,到年底捕捞出售,为了估计鱼的总产量,从鱼塘里捕捞了三次,得到如下表的数据:若老王放养这种鱼的成活率是95%,则:(1)鱼塘里这种鱼平均每条重约多少千克;(2)鱼塘里这种鱼的总产量多少千克?25.(5分)如图,AB是⊙O的直径,PA切⊙O于A,OP交⊙O于C,连BC.若∠P=30°,求∠B的度数.26.(5分)已知y是x的函数,自变量x的取值范围是x≠0的全体实数,如表是y与x的几组对应值.小华根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小华的探究过程,请补充完整:(1)从表格中读出,当自变量是﹣2时,函数值是;(2)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(3)在画出的函数图象上标出x=2时所对应的点,并写出m=.(4)结合函数的图象,写出该函数的一条性质:.27.(7分)二次函数y=(m+2)x2﹣2(m+2)x﹣m+5,其中m+2>0.(1)求该二次函数的对称轴方程;(2)过动点C(0,n)作直线l⊥y轴.①当直线l与抛物线只有一个公共点时,求n与m的函数关系;②若抛物线与x轴有两个交点,将抛物线在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.当n=7时,直线l与新的图象恰好有三个公共点,求此时m的值;(3)若对于每一个给定的x的值,它所对应的函数值都不小于1,求m的取值范围.28.(7分)【发现】如图①,已知等边△ABC,将直角三角板的60°角顶点D任意放在BC 边上(点D不与点B、C重合),使两边分别交线段AB、AC于点E、F.(1)若AB=6,AE=4,BD=2,则CF=;(2)求证:△EBD∽△DCF.【思考】若将图①中的三角板的顶点D在BC边上移动,保持三角板与边AB、AC的两个交点E、F都存在,连接EF,如图②所示,问:点D是否存在某一位置,使ED平分∠BEF且FD平分∠CFE?若存在,求出的值;若不存在,请说明理由.【探索】如图③,在等腰△ABC中,AB=AC,点O为BC边的中点,将三角形透明纸板的一个顶点放在点O处(其中∠MON=∠B),使两条边分别交边AB、AC于点E、F (点E、F均不与△ABC的顶点重合),连接EF.设∠B=α,则△AEF与△ABC的周长之比为(用含α的表达式表示).29.(8分)如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.(1)线段AB,BC,AC的长分别为AB=,BC=,AC=;(2)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC于点E,连接CD,如图2.请从下列A、B两题中任选一题作答,我选择题.A:①求线段AD的长;②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.B:①求线段DE的长;②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.参考答案一.选择题1.解:A、AC=BC,则点C是线段AB中点;B、AC+BC=AB,则C可以是线段AB上任意一点;C、AB=2AC,则点C是线段AB中点;D、BC=AB,则点C是线段AB中点.故选:B.2.解:从上面看,是正方形右边有一条斜线,如图:故选:B.3.解:A、2a+3b,无法计算,故此选项错误;B、=6,故此选项错误;C、a6÷a2=a4,正确;D、(2ab2)3=8a3b6,故此选项错误;故选:C.4.解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,∴∠A:∠B:∠C:∠D的可能情况是2:7:2:7.故选:A.5.解:如图,黑棋②的坐标为(0,﹣2).故选:A.6.解:根据题意画树形图:共有6种等情况数,其中“A口进D口出”有一种情况,从“A口进D口出”的概率为;故选:D.7.解:作OE⊥AB交AB与点E,作OF⊥CD交CD于点F,如右图所示,则AE=BE,CF=DF,∠OFP=∠OEP=90°,又∵圆O的半径为10,AB⊥CD,垂足为P,且AB=CD=16,∴∠FPE=90°,OB=10,BE=8,∴四边形OEPF是矩形,OE=6,同理可得,OF=6,∴EP=6,∴OP=,故选:B.8.解:A、二次函数y=x2的图象,开口向上,并向上无限延伸,在y轴右侧(x>0时),y 随x的增大而增大;故本选项错误;B、一次函数y=x+1的图象,y随x的增大而增大;故本选项错误;C、正比例函数y=x的图象在一、三象限内,y随x的增大而增大;故本选项错误;D、反比例函数y=中k=1>0,所以当x>0时,y随x的增大而减小;故本选项正确;故选:D.9.解:①﹣②,得3y=k+7,∴y=;①+2×②,得3x=13k﹣8,∴x=∵x+y=9,∴=9即14k=28,∴k=2故选:B.10.解:如图,连接AD.∵OD是直径,∴∠OAD=90°,∵∠AOB+∠AOD=90°,∠AOD+∠ADO=90°,∴∠AOB=∠ADO,∴sin∠AOB=sin∠ADO==,故选:D.二.填空题(共6小题,满分18分,每小题3分)11.解:∵分式有意义,∴x的取值范围是:x+2≠0,解得:x≠﹣2.故答案是:x≠﹣2.12.解:如图,∵点A(0,3),点B(4,0),∴AB=,点C(2,1.5),∴OC==CA,∴点O(0,0)在以AB为直径的圆上,故答案为:上13.解:∵m+n=1,mn=2,∴原式==.故答案为:14.解:﹣20+10=﹣10,所以,现在潜水艇在原来的位置下面10米,∵潜水艇原来在距水面50米深处,∴现在潜水艇在距水面60米深处.故答案为:60.15.解:由题意得:∠DEF=∠DCA=90°,∠EDF=∠CDA,∴△DEF∽△DCA,则=,即=,解得:AC=10,故AB=AC+BC=10+1.5=11.5(米),即旗杆的高度为11.5米;故答案为:11.5.16.解:样本数据2,4,3,5,6的极差是=6﹣2=4,故答案为:4.三.解答题(共13小题,满分72分)17.解:原式=3﹣+1﹣+=2+1.18.解:解不等式2x+1≥﹣1,得:x≥﹣1,解不等式x+1>4(x﹣2),得:x<3,则不等式组的解集为﹣1≤x<3.19.证明:∵AF=DC,∴AF+FC=DC+FC,即AC=DF,∵BC∥EF,∴∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).20.解:去分母得:3﹣x﹣a(x﹣2)=﹣2,即(a+1)x=2a+5,当a=﹣1时,显然方程无解;当a≠﹣1时,x=,当x=2时,a不存在;当x=3时,a=2,综上,a的值为﹣1,2.21.解:(1)把A点(1,4)分别代入反比例函数y=,一次函数y=x+b,得k=1×4,1+b=4,解得k=4,b=3,∵点B(﹣4,n)也在反比例函数y=的图象上,∴n==﹣1;(2)如图,设直线y=x+3与y轴的交点为C,∵当x=0时,y=3,∴C(0,3),∴S△AOB=S△AOC+S△BOC=×3×1+×3×4=7.5;(3)∵B(﹣4,﹣1),A(1,4),∴根据图象可知:当x>1或﹣4<x<0时,一次函数值大于反比例函数值.22.解:(1)A、B两种调查方式具有片面性,故C比较合理;(2)由条形图可得,每天锻炼2小时的人数是52人;(3)设100万人中有x万人锻炼时间在2小时及以上,则有=,解之,得x=53(万);(4)这个调查有不合理的地方.比如:在100万人的总体中,随机抽取的200人作为样本,样本容量偏小,会导致调查的结果不够准确,建议增大样本容量.(只要说法正确即可)23.解:(1)四边形EBGD是菱形.理由:∵EG垂直平分BD,∴EB=ED,GB=GD,∴∠EBD=∠EDB,∵∠EBD=∠DBC,∴∠EDF=∠GBF,在△EFD和△GFB中,,∴△EFD≌△GFB,∴ED=BG,∴BE=ED=DG=GB,∴四边形EBGD是菱形.(2)作DH⊥BC于H,∵四边形EBGD为菱形ED=DG=2,∴∠ABC=30°,∠DGH=30°,∴DH=1,GH=,∵∠C=45°,∴DH=CH=1,∴CG=GH+CH=1+.24.解:(1)鱼的平均重量为:=1.84千克.答:鱼塘里这种鱼平均每条的质量约1.84千克;(2)鱼的总重量为2000×95%×1.84=3496千克.答:鱼塘里这种鱼的总质量估计是3496千克.25.解:∵PA切⊙O于A,AB是⊙O的直径,∴∠PAO=90°,∵∠P=30°,∴∠AOP=60°,∴∠B=∠AOP=30°.26.解:(1)当自变量是﹣2时,函数值是;故答案为:(2)该函数的图象如图所示;(3)当x=2时所对应的点如图所示,且m=;故答案为:;(4)函数的性质:当0<x<1时,y随x的增大而减小.故答案为:当0<x<1时,y随x的增大而减小.27.解:(1)∵y=(m+2)x2﹣2(m+2)x﹣m+5=(m+2)(x﹣1)2﹣2m+3,∴对称轴方程为x=1.(2)①如图,由题意知直线l的解析式为y=n,∵直线l与抛物线只有一个公共点,∴n=﹣2m+3.②依题可知:当﹣2m+3=﹣7时,直线l与新的图象恰好有三个公共点.∴m=5.(3)抛物线y=(m+2)x2﹣2(m+2)x﹣m+5的顶点坐标是(1,﹣2m+3).依题可得解得∴m的取值范围是﹣2<m≤1.28.(1)解:∵△ABC是等边三角形,∴AB=BC=AC=6,∠B=∠C=60°.∵AE=4,∴BE=2,则BE=BD,∴△BDE是等边三角形,∴∠BED=60°,又∵∠EDF=60°,∴∠CDF=180°﹣∠EDF﹣∠B=60°,则∠CDF=∠C=60°,∴△CDF是等边三角形,∴CF=CD=BC=BD=6﹣2=4.故答案是:4;(2)证明:如图①,∵∠EDF=60°,∠B=60°,∴∠CDF+BDE=120°,∠BED+∠BDE=120°,∴∠BED=∠CDF.又∠B=∠C=60°,∴△EBD∽△DCF;【思考】存在,如图②,过D作DM⊥BE,DG⊥EF,DN⊥CF,垂足分别是M、G、N,∵ED平分∠BEF且FD平分∠CFE.∴DM=DG=DN.又∠B=∠C=60°,∠BMD=∠CND=90°,∴△BDM≌△CDN,∴BD=CD,即点D是BC的中点,∴=;【探索】如图③,连接AO,作OG⊥BE,OD⊥EF,OH⊥CF,垂足分别是G、D、H.则∠BGO=∠CHO=90°,∵AB=AC,O是BC的中点,∴∠B=∠C,OB=OC,∴△OBG≌△OCH,∴OG=OH,GB=CH,∠BOG=∠COH=90°﹣α,则∠GOH=180°﹣(∠BOG+∠COH)=2α,∴∠EOF=∠B=α由(2)题可猜想应用EF=ED+DF=GE+FH(可通过半角旋转证明),则C△AEF=AE+EF+AF=AE+EG+FH+AF=AG+AH=2AG,设AB=m,则OB=m cosα,GB=m cos2α.====1﹣cosα.故答案是:1﹣cosα.29.解:(1)∵一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,∴A(4,0),C(0,8),∴OA=4,OC=8,∵AB⊥x轴,CB⊥y轴,∠AOC=90°,∴四边形OABC是矩形,∴AB=OC=8,BC=OA=4,在Rt△ABC中,根据勾股定理得,AC==4,故答案为:8,4,4;(2)A、①由(1)知,BC=4,AB=8,由折叠知,CD=AD,在Rt△BCD中,BD=AB﹣AD=8﹣AD,根据勾股定理得,CD2=BC2+BD2,即:AD2=16+(8﹣AD)2,∴AD=5,②由①知,D(4,5),设P(0,y),∵A(4,0),∴AP2=16+y2,DP2=16+(y﹣5)2,∵△APD为等腰三角形,∴Ⅰ、AP=AD,∴16+y2=25,∴y=±3,∴P(0,3)或(0,﹣3)Ⅱ、AP=DP,∴16+y2=16+(y﹣5)2,∴y=,∴P(0,),Ⅲ、AD=DP,25=16+(y﹣5)2,∴y=2或8,∴P(0,2)或(0,8).B、①、由A①知,AD=5,由折叠知,AE=AC=2,DE⊥AC于E,在Rt△ADE中,DE==,②、∵以点A,P,C为顶点的三角形与△ABC全等,∴△APC≌△ABC,或△CPA≌△ABC,∴∠APC=∠ABC=90°,∵四边形OABC是矩形,∴△ACO≌△CAB,此时,符合条件,点P和点O重合,即:P(0,0),如图3,过点O作ON⊥AC于N,易证,△AON∽△ACO,∴,∴,∴AN=,过点N作NH⊥OA,∴NH∥OA,∴△ANH∽△ACO,∴,∴,∴NH=,AH=,∴OH=,∴N(,),而点P2与点O关于AC对称,∴P2(,),同理:点B关于AC的对称点P1,同上的方法得,P1(﹣,),即:满足条件的点P的坐标为:(0,0),(,),(﹣,).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

海世 ★博 会 上 2019年中考数学模拟试题(一)一、精心选一选(本大题共12小题,每小题3分,满分36分)1、据《中国经济周刊》报道,上海世博会第四轮环保活动投资总金额高达820亿元,其中820亿用科学记数法表示为[考查科学记数法与人文] A 、111082.0⨯ B 、10102.8⨯ C 、9102.8⨯ D 、81082⨯2、下列说法正确的是 [考查几何图形的性质] A 、对角线互相垂直且相等的四边形是正方形 B 、等腰梯形既是轴对称图形又是中心对称图形 C 、圆的切线垂直于经过切点的半径D 、垂直于同一直线的两条直线互相垂直3、不等式组⎩⎨⎧≤>4x x 的解集在数轴上,图3-3-7所示)表示应是 [考查不等式组的解集]4、将一副三角板按图中的方式叠放,则角α等于 [考查几何图形角的计算]A 、75oB 、60oC 、45oD 、30o5、在函数121x y x +=-中,自变量x 的取值范围是 [考查函数自变量取值范围的求法] A 、1x -≥ B 、1x >-且12x ≠ C 、1x ≥-且12x ≠ D 、1x -≥6、一个正方体的表面展开图如图所示,则原正方体中的“★”所在面的对面所标的字是 [考查课题学习]A 、上B 、海C 、世D 、博7、下列四个函数图象中,当x >0时,y 随x 的增大而增大的是[考查函数的图象与性质]8、如图湖泊的中央有一个建筑物AB ,某人在地面C 处测得其顶部A 的仰角为60°,然后,自C 处沿BC 方向行100m 到D 点,又测得其 顶部A 的仰角为30°,则建筑物AB 的高为(结果保留根号)[考查解直角三角形]A 、m 350B 、m 325C 、m 330D 、m 3100 9、某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份 平均每月的增长率为x ,那么x 满足的方程是[考查方程中增长率应用问题] A 、182)1(502=+x B 、182)1(50)1(50502=++++x x C 、50(1+2x)=182D 、182)21(50)1(5050=++++x x10、如图,点P 是双曲线4(0)y x x=>上一个动点,点Q 为线段OP 的中点,则⊙O 的面积不可能是[考查圆的有关计算] A 、π B 、2π C 、3π D 、4π 11、如图,将边长为2的等边三角形沿x 轴正方向连续翻折2018次,依次得到点P 1、P 2、P 3、…、P 2018, 则点P 2018的坐标是 [考查学生探索规律的能力] A 、)32011(, B 、)320114022(,C 、)320012011(,D 、)34022(, 12、已知二次函数)0(2≠++=a c bx ax y 的图象如图所示, 有下列5个结论:① 0>abc ;② c a b +<;③024>++c b a ;④042>-ac b ;⑤ )(b am m b a +>+, (1≠m 的实数)其中正确的结论有[考查图象信息处理能力]A.、2个 B 、 3个 C 、 4个 D 、 5个题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二、细心填一填(本大题共6小题,每小题3分,满分18分)13、已知圆锥的高是cm 30,母线长是cm 50,则圆锥的侧面积是 .。

[考查圆锥的侧面积]14、若一次函数121)1(2-+-=k x k y 的图象不过第一象限,则k 的取值范围是 。

[考查一次函数的图象和性质]15、长方体的主视图、俯视图如图3所示(单位:m ) 则其左视图面积是___________ [考查三视图]16、若二次函数k x x y ++-=22的部分图象如图所示,则关于x 的一元二次方程022=++-k x x 的一个解31=x ,另一个解=2x [考查方程与函数关系的应用]17、一个口袋中有10个红球和若干个白球,请通过以下实验估计口袋中白球的个数:从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不断重复上述过程.实验中总共摸了200次,其中有50次摸到红球.则白球有_________个。

[考查概率与分式方程的应用]18、如图,n+1个上底、两腰长皆为1,下底长为2的等腰梯形的下底均在同一直线上,设四边形P 1M 1N 1N 2面积为S 1,四边形P 2M 2N 2N 3的面积为S 2,……,四边形P n M n N n N n+1的面积记为S n ,通过逐一计算S 1,S 2,…,可得S n = [考查图形探索规律问题]αO y x 1 1 O y x 1 1 C O y x 1 1 D O y x 1 1 OyxP 1P 2P 3…AN 1N 2N 3N 4N 5M 1M 2 M3 M 4…xyOx=113 第16题图A 30° 60° D 100 CB 第15题图三、用心做一做(本大题共7小题,满分66分)19、(8分)先化简41)231(2-+÷-+a a a , 然后请你给a 选取一个合适的值, 再求此时原式的值.[考查化简求值]20、(10分)有四张背面相同的纸牌A ,B ,C ,D ,其正面分别划有四个不同的稽核图形(如图).小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸出一张.(1)用树状图(或列表法)表示两牌所有可能出现的结果(纸牌可用A 、 B 、C 、D 表示); (2)求摸出两张牌面图形都是中心对称图形的纸牌的概率.[考查概率]21、(8分)联合是“世界环境日”,为配合今年的“世界环境日”宣传活动,某校课外活动小组对全校师生开展了以“爱护环境,从我做起”为主题的问卷调查活动.将调查结果分析整理后,制成了下面的两个统计图.其中:A :能将垃圾放到规定的地方,而且还会考虑垃圾的分类;B :能将垃圾放到规定的地方,但不会考虑垃圾的分类;C :偶尔会将垃圾放到规定的地方;D :随手乱扔垃圾。

根据以上信息回答下列问题:(1)该校课外活动小组共调查了多少人?并补全上面的条形统计图;(2)如果该校共有师生2 400人,那么随手乱扔垃圾的约有多少人?其扇形统计图中所构成的圆心角为多少度?[考查统计与环保]22、(8分)已知关于x 的方程x 2– ( k + 2 ) x +41k 2+1 = 0 (1)k 取什么值时,方程有两个不相等的实数根?(2)如果方程的两个实数根21x x 、(12x x <)满足123x x +=,求k 的值和方程的两根。

[考查一元二次方程的根与系数的关系]23、(10分)如图所示,在Rt ∆ABC 中,∠C=90°,∠BAC=60°,AB=8.半径为3的⊙M 与射线BA 相切,切点为N ,且AN=3.将Rt ∆ABC 顺时针旋转120°后得到Rt ∆ADE ,点B 、C 的对应点分别是点D 、E. (1)画出旋转后的Rt ∆ADE ,求出Rt ∆ADE 的直角边DE 被⊙M 截得的弦PQ 的长度;(2)判断Rt ∆ADE 的斜边AD 所在的直线与⊙M 的位置关系,并说明理由.[考查切线的证明与计算] 24、(10分)光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A 、B 两地区收割小麦,其中30台派往A 地区,20台派往B 地区.两地区与该农机租赁公司商定的每天的租赁价格见下表:每台甲型收割机的租金 每台乙型收割机的租金A 地区 2018元 2018元B 地区 2018元 2018元(1)设派往A 地区x 台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y与x 间的函数关系式,并写出x 的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于20180元,说明有多少种分派方案,并将各种方案设计出来。

[考查方案设计]25、(12分)已知:抛物线()20y ax bx c a =++≠的对称轴为1x =-,与x 轴交于A B ,两点,与y 轴交于点C ,其中()30A -,、()02C -,. (1)求这条抛物线的函数表达式.(2)若一动点P 从OC 的中点M 出发,先到达x 轴上的某点(设为点F ),再到达抛物线的对称轴上某点(设为点G ),最后运动到点C ,求使点P 运动的总路径最短的点F 、点G 的 坐标,并求出这个最短总路径的长。

(3)若点D 是线段OC 上的一个动点(不与点O 、点C 重合). 过点D 作AC DE //交x 轴于点E ,AC 交抛物线的对称轴于点Q ,连接QD 、QE .设CD 的长为m ,DEQ∆的面积为S .求S 与m 之间的函数关系式.试说明S 是否存在最大值,若存在,请求出最大值;若不存在,请说明理。

[考查二次函数综合]A CxyB O AC x yB O参考答案题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B C B A C B C A B A D A13、2200cm π;14、21≤<k ;15、23m ;16、12-=x ;17、30;18、43121433⨯+-n 19、原式=a+2,当a=0时,原式=2(注:a 不能取12-±和) 20、(1)第一次摸的牌第二次摸的牌 (列表略) (2)1421、(1)300人;(2)240人,36º22、(1)等的实数根时,原方程有两个不相当042>-ac b0)141(4)2(22>+⨯-+∴k k0>∴k 即当0>k 时,原方程有两个不相等的实数根。

(2)Θ0>k 时,原方程有两个不相等的实数根0221>+=+∴k x x ,0141221>+=•k x x 同为正与21x x ∴,Θ123x x +=,321=+∴x x 32=+k ,1=k则原方程为:014132=++-x x ,211=x ,252=x23、(1)如图Rt ∆ADE 就是要画的(图形正确就得分) . (2) 22(3)AD 与⊙M 相切.证明:过点M 作MH ⊥AD 于H ,连接MN, MA,则MN ⊥AE 且MN=3 在Rt △AMN 中,tan ∠MAN=AN MN =33 ∴∠MAN=30°∵∠DAE=∠BAC=60° ∴∠MAD=30°∴∠MAN=∠MAD=30°∴MH=MN (由△MHA ≌△MNA 或解Rt △AMH 求得MH=3从而得MH=MN 亦可)∴AD 与⊙M 相切. 24、(1)若派往A 地区的乙型收割机为x 台,则派往A 地区的甲型收割机为(30-x)台;派往B 地区的乙型收割机为(30-x )台,派往B 地区的甲型收割机为(x -10)台. ∴y =2018x +2018(30-x)+2018(30-x)+2018(x -10)=200x +20180. x 的取值范围是:10≤x ≤30(x 是正整数). (2)由题意得200x +20180≥20180,解不等式得x ≥28.由于10≤x ≤30,∴x 取28,29,30这三个值, ∴有3种不同分配方案.①当x =28时,即派往A 地区甲型收割机2台,乙型收割机28台;派往B 地区甲型收割机18台,乙型收割机2台.②当x =29时,即派往A 地区甲型收割机1台,乙型收割机29台;派往B 地区甲型收割机19台,乙型收割机1台.③ 当x =30时,即30台乙型收割机全部派往A 地区;20台甲型收割机全部派往B 地区.25、解:(1)由题意得129302b a a b c c ⎧=⎪⎪⎪-+=⎨⎪⎪=-⎪⎩ 解得23432a b c ⎧=⎪⎪⎪=⎨⎪=-⎪⎪⎩∴此抛物线的解析式为224233y x x =+-(2)作点M 关于x 轴的对称点M ′,再作点C 关于对称轴的对称点C ′,连结C ′M ′交x 轴于点F ,交对称轴于点G.则C ′M ′为所求的最短路径.123:+=''x y l M C)0,32(-F )21,1(--GAxy BO M•M '•G•F •C•最短路径的长为:13 (3)S 存在最大值 理由:∵DE AC ∥.∴OED OAC △∽△.∴OD OE OC OA =,即223m OE-=.∴332OE m =-, 连结OQ ,CDQ AEQ ODE OAC S S S S S ∆∆∆∆---==()11313323222222m m m ⎛⎫⨯⨯-⨯-⨯--⨯ ⎪⎝⎭=()22333314244m m m -+=--+ ∵304-< ∴当1m =时,34S =最大。

相关文档
最新文档