第三节_化学反应热的计算

合集下载

第三节化学反应热的计算

第三节化学反应热的计算

第三节 化学反应热的计算[目标要求] 1.理解盖斯定律的意义。

2.能用盖斯定律和热化学方程式进行有关反应热的简单计算。

一、盖斯定律1.含义(1)不管化学反应是____完成或分______完成,其反应热是_________的。

(2)化学反应的反应热只与反应体系的始态和终态有关,而与反应的途径无关。

例如,ΔH 1、ΔH 2、ΔH 3之间有如下的关系:_____________________。

2.意义利用盖斯定律,可以__________计算一些难以测定的_____________。

例如:C(s)+12O 2(g)===CO(g) 上述反应在O 2供应充分时,可燃烧生成CO 2;O 2供应不充分时,虽可生成CO ,但同时还部分生成CO 2。

因此该反应的ΔH ____________,但是下述两个反应的ΔH 却可以直接测得:(1)C(s)+O 2(g)===CO 2(g) ΔH 1=-393.5 kJ·mol -1(2)CO(g)+12O 2(g)===CO 2(g) ΔH 2=-283.0 kJ·mol -1 根据盖斯定律,就可以计算出欲求反应的ΔH 。

分析上述两个反应的关系,即知:ΔH =_______________。

则C(s)与O 2(g)生成CO(g)的热化学方程式为C(s)+12O 2(g)===CO(g) ΔH =-110.5 kJ·mol -1。

思维拓展 热化学方程式的性质1 热化学方程式可以进行方向改变,方向改变时,反应热数值不变,符号相反。

2 热化学方程式中物质的化学计量数和反应热可以同时改变倍数。

3 热化学方程式可以叠加,叠加时,物质和反应热同时叠加。

课堂检测:1、由氢气和氧气反应生成4.5 g 水蒸气放出60.45 kJ 的热量,则反应:2H 2(g)+ O 2(g)===2H 2O(g)的ΔH 为( )A .-483.6 kJ·mol -1B .-241.8 kJ·mol -1C .-120.6 kJ·mol -1D .+241.8 kJ·mol -12、甲烷的燃烧热ΔH =-890.3 kJ·mol -11 kg CH 4在25℃,101 kPa 时充分燃烧生成液态水放出的热量约为( )A .-5.56×104 kJ·mol -1B .5.56×104 kJ·mol -1C .5.56×104 kJD .-5.56×104 kJ3、已知下列热化学方程式:①Fe 2O 3(s)+3CO(g)===2Fe(s)+3CO 2(g) ΔH 1=-26.7 kJ·mol -1②3Fe 2O 3(s)+CO(g)===2Fe 3O 4(s)+CO 2(g) ΔH 2=-50.75 kJ·mol -1③Fe 3O 4(s)+CO(g)===3FeO(s)+CO 2(g) ΔH 3=-36.5 kJ·mol -1 则反应FeO(s)+CO(g)===Fe(s)+CO 2(g)的焓变为( )A .+7.28 kJ·mol -1B .-7.28 kJ·mol -1C .+43.68 kJ·mol -1D .-43.68 kJ·mol-1 4、已知:(1)Zn(s)+1/2O 2(g)===ZnO(s) ΔH =-348.3 kJ·mol -1(2)2Ag(s)+1/2O 2(g)===Ag 2O(s) ΔH =-31.0 kJ·mol -1则Zn(s)+Ag 2O(s)===ZnO(s)+2Ag(s)的ΔH 等于( )A .-317.3 kJ·mol -1B .-379.3 kJ·mol -1C .-332.8 kJ·mol -1D .+317.3 kJ·mol -15、已知25℃、101 kPa 条件下:4Al(s)+3O 2(g)===2Al 2O 3(s) ΔH =-2 834.9 kJ·mol -14Al(s)+2O 3(g)===2Al 2O 3(s) ΔH =-3 119.1 kJ·mol -1由此得出的正确结论是( )A .等质量的O 2比O 3能量低,由O 2变为O 3为吸热反应B .等质量的O 2比O 3能量低,由O 2变为O 3为放热反应C .O 3比O 2稳定,由O 2变为O 3为吸热反应D .O 2比O 3稳定,由O 2变为O 3为放热反应6、能源问题是人类社会面临的重大课题,H 2、CO 、CH 3OH 都是重要的能源物质,它们的燃烧热依次为-285.8 kJ·mol -1、-282.5 kJ·mol -1、-726.7 kJ·mol -1。

高中化学第三节 化学反应热的计算优秀课件

高中化学第三节 化学反应热的计算优秀课件

A.ΔH2>ΔH1 C.ΔH1+ΔH2=ΔH3
B.ΔH1+ΔH2>ΔH3 D.ΔH1<ΔH3
D
(二)“叠加减〞法--正向思维 消掉目标方程中没有的物质
C(s)+O2(g)=CO2(g)
△H1=-393.5 kJ/mol
-) CO(g)+1/2O2(g)=CO2(g) △H2=-283.0 kJ/mol
第三节 化学反响热的计算
一、盖斯定律
化学反响不管是一步完成还是分几步完成,其反响热 总是相同的。
化学反响的反响热只与反响体系的始态和终态有关, 而与反响的途径无关。
态:物质种类、物质的量、物质的状态及环境条件
A
ΔH
B
ΔH1
ΔH2
C
ΔH=ΔH1+ΔH2
阅读教材P11~12
2H2(g) +O2(g) =2H2O(l) △H1 < 0
5、反响热的大小比较 (江苏)以下热化学方程式程中△H前者大于后者的是〔 C
①C(s)+O2(g)=CO2(g) △H1 C(s)+1/2O2(g)=CO(g) △H2
状态:s→l→g 变化时,会吸热; 反之会放热。
②S(s)+O2(g)=SO2(g) △H3 S(g)+O2(g)=SO2(g) △H4
(2)“叠加减〞法 ①P4(白磷,s)+5O2(g)===P4O10(s) ΔH1=-2 983.2 kJ·mol-1 ②P(红磷, s)+5/4O2(g)=1/4P4O10(s) △H2= -738.5 kJ/mol ③P4(白磷,s)===4P(红磷,s) ΔH= ? 。 ③ = ① - 4×②
k〔J/2m〕oCl O(g)+1/2O2(g)=CO2(g) △H2=-283.0 kJ/mol

化学反应热的计算公式

化学反应热的计算公式

化学反应热的计算公式1.根据反应物与生成物的生成焓之差计算反应热:热力学第一定律表明,在恒定压力下,化学反应的反应热与化学反应物与生成物的焓变有关。

如果我们可以精确测量反应物与生成物的生成焓,就可以通过它们的差值计算反应热。

生成焓(也称为摩尔生成焓)是指在标准状态下,物质生成的过程中所吸收或放出的热量。

通常使用反应热的标准状态为298 K和1 atm的压力。

反应热(ΔH)的计算可以通过化学方程式中物质的化学键能和生成焓之间的关系来进行。

计算公式如下:ΔH=Σ(生成物的摩尔生成焓)-Σ(反应物的摩尔生成焓)其中,Σ表示对所有物质求和,生成焓为正值当物质吸热,为负值当物质放热。

例如,对于以下反应:2H2(g)+O2(g)→2H2O(g)可以通过查阅化学数据手册获得反应物和生成物的生成焓值:ΔH=2ΔHf(H2O)-2ΔHf(H2)-ΔHf(O2)2.根据燃烧热计算反应热:燃烧热(也称为标准燃烧焓)是指物质完全燃烧所释放的热量。

对于燃烧反应,反应热可以直接通过燃烧热进行计算。

燃烧热是物质在燃烧过程中生成的水和二氧化碳释放的热量。

计算公式如下:燃烧热=(燃烧生成的水的摩尔数)×ΔHf(H2O)+(燃烧生成的二氧化碳的摩尔数)×ΔHf(CO2)其中,ΔHf(H2O)和ΔHf(CO2)为水和二氧化碳的摩尔生成焓,可以从化学数据手册中获取。

需要注意的是,计算反应热时必须考虑反应物和生成物之间的摩尔比例关系。

在上述计算燃烧热的公式中,根据燃烧反应的化学方程式确定了生成水和二氧化碳的摩尔比例。

总之,计算化学反应热可以通过求取反应物与生成物的生成焓差异或利用燃烧热进行。

这两种方法都需要了解化学反应方程式和化学数据手册中提供的物质摩尔生成焓。

通过计算化学反应热,我们可以更全面地了解化学反应的热力学性质,对于化学反应的研究和工业应用具有重要意义。

高考化学 第一章 第三节 化学反应热的计算课件 4

高考化学 第一章 第三节 化学反应热的计算课件 4

2.运用盖斯定律解题的常用方法 (1)虚拟路径法[以 C(s)+O2(g) CO2(g)为例]
图 1-3-1 则有:ΔH1=ΔH2+ห้องสมุดไป่ตู้H3。
(2)加合法:即将化学方程式像代数方程式那样进行代数运 算,反应热也以同样方式进行运算。
例如:求 P4(s,白磷)→P(s,红磷)的热化学方程式。
已知:①P4(s,白磷)+5O2(g) P4O10(s) ΔH1
CO(g)+12O2(g)
CO2(g) ΔH2=-282.57 kJ/mol
则反应 C(s)+O2(g) CO2 (g)的反应热为( D )。
A.+172.22 kJ/mol
B.-172.22 kJ/mol
C.+392.93 kJ/mol
D.-392.93 kJ/mol
解析:由盖斯定律可知ΔH=ΔH1+ΔH2=-110.35 kJ/mol +(-282.57 kJ/mol)=-392.93 kJ/mol,故 D 项正确。
若 C(s)+12O2(g)
CO(g)的反应热为 ΔH,则 ΔH=ΔH1-ΔH2
=__-__3_9_3_.5__k_J_/m__o_l-__(_-__2_8_3_._0_k_J_/m__o_l)__=-__1_1_0_._5_k_J_/m__o_l。
盖斯定律 1.盖斯定律的应用及意义 根据盖斯定律,可以将热化学方程式相加减,间接把一些 生产和科研中难以测定的反应热计算出来;还可以比较物质的 稳定性,通常来讲,放热反应的生成物比反应物稳定,吸热反 应的反应物比生成物稳定。
盖斯定律及其应用 【例 1】(2010 年广东理综)在 298 K、100 kPa 时,已知: 2H2O(g) O2(g)+2H2(g) ΔH1 Cl2(g)+H2(g) 2HCl(g) ΔH2 2Cl2(g)+2H2O(g) 4HCl(g)+O2(g) ΔH3 则ΔH3 与ΔH1 和ΔH2 间的关系正确的是( )。

第三节化学反应热的计算ppt课件

第三节化学反应热的计算ppt课件
自学导引
一、盖斯定律 1.盖斯定律的内容:不管化学反应是一步完成或分几 步完成,其反应热是相同的。或者说,化学反应的反应热只 与反应体系的始态和终态有关,而与反应的途径无关。 2.盖斯定律的解释:能量的释放或吸收是以发生化学 变化的物质为基础的,两者密不可分,但以物质为主。 思考题1 如何用能量守恒的原理理解盖斯定律? 答案 盖斯定律体现了能量守恒原理,因为化学反应的 始态物质和终态物质各自具有的能量是恒定的,二者的能量 差就是反应放出或吸收的热量。只要始态和终态定了,不论 途经哪些中点状态,最终的能量差就是固定的。
切关系
思维激活
在化学科学研究中,常常需要通过实验测定物质在发生 化学反应时的反应热,但是某些反应的反应热,由于种种原 因不能直接测得,只能通过化学计算的方式间接地获得。在 生产中对于燃料的燃烧,反应条件的控制以及“废热”的利 用,也需要进行反应热的计算。
反应热的计算要依据什么来进行?
自学导引
一、怎样进行反应热的计算 1.热化学方程式与数学上的方程式相似,可以移项同 时改变正、负号;各项的系数包括ΔH的数值可以同时扩大或 缩小相同的倍数。
B.-1638 kJ·mol-1 D.126 kJ·mol-1
知识点2:有关反应热的综合考查
例2 已知下列两个热化学方程式:
H2(g)+O2(g)=H2O(l) ΔH=-285.8 kJ·mol-1
C3H8(g)+5O2(g)=3CO2(g)+4H2O(l) ΔH=-2220.0 kJ·mol-1
知识点2:盖斯定律的应用
例2 已知下列热化学方程式:
(1)CH3COOH(l)+2O2(g)=2CO2(g)+2H2O(l) ΔH1=- 870.3 kJ·mol-1
(2)C(s)+O2(g)=CO2(g) ΔH2=-393.5 kJ·mol-1

第三节 盖斯定律化学反应热的计算 部分高考真题

第三节  盖斯定律化学反应热的计算 部分高考真题

第三节盖斯定律化学反应热的计算中和热:在稀溶液中,酸与碱发生中和反应生成1mol H2O时所释放的热量称为中和热。

强酸与强碱反应生成可溶性盐的热化学方程式为:H+(aq)+ OH- (aq) == H2O(l) △H= -57.3kJ/mol盖斯定律:不管化学反应是一步完成或分几步完成,其反应热是相同的。

即化学反应的反应热只与反应体系的始态和终态有关,而与反应途径无关。

假设反应体系的始态为S,终态为L,若S→L,△H﹤0;则L→S,△H﹥0。

1、100g碳燃烧所得气体中,CO占1/3体积,CO2占2/3体积,且C(s)+1/2 O2(g)==CO(g)△H=-110.35 kJ·mol-1,CO(g)+1/2 O2(g)===CO2(g) △H=—282.57kJ·mol-1与这些碳完全燃烧相比较,损失的热量是( )A、392.92kJB、2489.44kJC、784.92kJD、3274.3kJ2、火箭发射时可用肼(N2H4)作燃料,二氧化氮作氧化剂,这两者反应生成氮气和水蒸汽。

已知:N2(g)+2O2(g)=2NO2(g)△H=+67.7kJ·mol-1 N2H4(g)+O2(g)=N2(g)+2H2O(g)△H=-534kJ·mol-1则1mol气体肼和NO2完全反应时放出的热量为( )A、100.3kJB、567.85kJC、500.15kJD、601.7kJ3、已知:CH4(g)+2O2(g)==CO2(g)+2H2O(l) △H=-Q1kJ·mol-1H2(g)+O2(g)==2H2O(g) △H=-Q2kJ·mol-1H2(g)+O2(g)==2H2O(l) △H=-Q3kJ·mol-1常温下,取体积比为4:1的甲烷和氢气的混合气体11.2L(标准状况),经完全燃烧后恢复到到常温,放出的热量(单位:kJ)为( )A、0.4Q1+0.05Q3B、0.4Q1+0.05Q2C、0.4Q1+0.1Q3D、0.4Q1+0.2Q34、充分燃烧一定量丁烷气体放出的热量为Q,完全吸收它生成的CO2生成正盐,需要5mol·L-1的kOH溶液100mL ,则丁烷的燃烧热为( )A、16QB、8QC、4QD、2Q5、已知胆矾溶于水时溶液温度降低。

课件6:1.3 化学反应热的计算

课件6:1.3 化学反应热的计算
Q 393.51
395.41 Q (用含 Q 的代数式表示)。
5.已知胆矾溶于水时溶液温度降低,胆矾分解的热化学
方程式为:
CuSO4•5H2O(s)===CuSO4(s)+5H2O(l) ΔH= +Q1 kJ·mol-1
【答案】-339.2 kJ·mol-1
例2 写出石墨变成金刚石的热化学方程式。 (25 ℃,101 kPa时) 说明:(1)可以在书中查找需要的数据
(2)并告诉大家你设计的理由。
查燃烧热表知: ①C(s,石墨)+O2(g)===CO2(g) ΔH1=-393.5 kJ·mol-1 ②C(s,金刚石)+O2(g)===CO2(g) ΔH2=-395.0 kJ·mol-1 所以, ①- ②得:
B
A 请思考:由起点 A 到终点 B 有多少条途径? 从不同途径由 A 点到 B 点的位移有什么关系?
如何理解盖斯定律?
A
ΔH
B
ΔH1
ΔH2
C
ΔH、ΔH1、ΔH2
之间有何关系?
ΔH=ΔH1+ΔH2
一.盖斯定律
1.盖斯定律的内容:不管化学反应是一步完成或分几步完 成,其反应热是相同。换句话说,化学反应的反应热只与反 应体系的始态和终态有关,而与反应的途径无关。
CO2占2/3体积,且
C(s)

1 2
O2(g)
===CO(g)
ΔH = -110.35 kJ·mol-1
CO(g)

1 2
O2(g)
===CO2(g)
ΔH = -282.57 kJ·mol-1
与这些碳完全燃烧相比,损失的热量是( C )
A.392.92 kJ
B.2 489.44 kJ

化学反应热量的计算与反应焓

化学反应热量的计算与反应焓

化学反应热量的计算与反应焓一、化学反应热量的概念1.化学反应热量:化学反应过程中放出或吸收的热量,简称反应热。

2.放热反应:在反应过程中放出热量的化学反应。

3.吸热反应:在反应过程中吸收热量的化学反应。

二、反应热量的计算方法1.反应热的计算公式:ΔH = Q(反应放出或吸收的热量)/ n(反应物或生成物的物质的量)2.反应热的测定方法:a)量热法:通过测定反应过程中温度变化来计算反应热。

b)量热计:常用的量热计有贝克曼温度计、环形量热计等。

三、反应焓的概念1.反应焓:化学反应过程中系统的内能变化,简称焓变。

2.反应焓的计算:ΔH = ΣH(生成物焓)- ΣH(反应物焓)四、反应焓的计算方法1.标准生成焓:在标准状态下,1mol物质所具有的焓值。

2.标准反应焓:在标准状态下,反应物与生成物标准生成焓的差值。

3.反应焓的计算公式:ΔH = ΣH(生成物)- ΣH(反应物)五、反应焓的应用1.判断反应自发性:根据吉布斯自由能公式ΔG = ΔH - TΔS,判断反应在一定温度下的自发性。

2.化学平衡:反应焓的变化影响化学平衡的移动。

3.能量转化:反应焓的变化反映了化学反应中能量的转化。

六、反应焓的单位1.标准摩尔焓:kJ/mol2.标准摩尔反应焓:kJ/mol七、注意事项1.反应热与反应焓是不同的概念,但在实际计算中常常相互关联。

2.反应热的测定应注意实验误差,提高实验准确性。

3.掌握反应焓的计算方法,有助于理解化学反应中的能量变化。

综上所述,化学反应热量的计算与反应焓是化学反应过程中重要的知识点。

掌握这些知识,有助于深入理解化学反应的本质和能量变化。

习题及方法:1.习题:已知1mol H2(g)与1mol O2(g)反应生成1mol H2O(l)放出285.8kJ的热量,求0.5mol H2(g)与0.5mol O2(g)反应生成1mol H2O(l)放出的热量。

解题方法:根据反应热的计算公式ΔH = Q/n,其中Q为反应放出的热量,n为反应物或生成物的物质的量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

答案
A
跟踪练习2
( )
下图构想的物质循环中太阳能最终转化为
A.化学能 C.生物能 答案 B
B.热能 D.电能
思维激活
在化学科学研究中,常常需要通过实验测定物质在发生 化学反应时的反应热,但是某些反应的反应热,由于种种原 因不能直接测得,只能通过化学计算的方式间接地获得。在 生产中对于燃料的燃烧,反应条件的控制以及“废热”的利 用,也需要进行反应热的计算。 反应热的计算要依据什么来进行?
ΔH3=ΔH1-ΔH2
=-393.5 kJ· -1-(-283.0 kJ· -1) mol mol =-110.5 kJ· -1 mol
所以C(s)+O2(g)=CO(g) ΔH3=-110.5 kJ· -1 mol
(三)、应用盖斯定律计算反应热时应注意的事项
1.热化学方程式中物质的化学计量数同乘以某一个数 时,反应热数值也必须乘上该数。 2.热化学方程式相加减时,同种物质之间可相加减, 反应热也随之相加减。
3.将一个热化学方程式颠倒时,ΔH的“+”、“-”
号必须随之改变。 4.若热化学方程式需相减,最好能先把被减方程式进 行颠倒,然后相加,更不易出错。
例1、已知下列热化学方程式: Zn(S)+1/2 O2(g)=ZnO(S) △H1;(1) Hg(l)+1/2 O2(g)=HgO(S) △H2; (2) 则Zn(S)+ HgO(S)= Hg(l)+ ZnO(S), (3) △H值为=?
解析
依据反应:
2C(s)+2H2(g)+O2(g)=CH3COOH(l)
可将(1)、(2)、(3)分别演变成如下情况: ①2CO2(g)+2H2O(l)=CH3COOH(l)+2O2(g) 870.3 kJ· -1 mol ΔHa=+
②2C(s)+2O2(g)=2CO2(g) ΔHb=-2×393.5 kJ· -1 mol
①能直接测定吗?如何测? ②若不能直接测,怎么办?
1、提出问题
在化学科学研究中,常ຫໍສະໝຸດ 需要知道物质在 发生化学反应时的反应热,但有些反应的反应 热很难直接测得,我们怎样才能获得它们的反 应热数据呢?
如何得到 C(s) + 1/2O2(g) ==CO(g)的反应热?
2、分析问题 C(s) + O2(g) == CO2(g) △H1 ……(1) △H2 ……(2)
1、请用自己的话描述一下盖斯定律。 2、盖斯定律有哪些用途?
典例导析
知识点1:盖斯定律的意义 例1 实验中不能直接测出由石墨和氢气反应生成甲烷 的反应热,但可通过测出CH4、石墨及H2燃烧反应的反应热, 再求由石墨生成甲烷的反应热。已知: ①CH4(g)+2O2(g)=CO2(g)+2H2O(l) ΔH1=-890.3 kJ· -1 mol ②C(石墨)+O2(g)=CO2(g) ΔH2=-393.5 kJ· -1 mol
=-393.5 kJ· -1+2×(-285.8 kJ· -1)-(-890.3 kJ· -1) mol mol mol
=-74.8 kJ· -1 mol 答案 -74.8 kJ· -1 mol
跟踪练习1 盖斯定律指出:化学反应的反应热只与反 应的始态(各反应物)和终态(各生成物)有关,而与具体反应进 行的途径无关。物质A在一定条件下可发生一系列转化,由 右图判断下列关系错误的是( )
A、△H2-△H1 C、△H1-△H2
B、△H2+△H1 D、-△H1-△H2
依题意可知:(3) = (1) - (2)
即△H = △H1 —△H2
例2:写出石墨变成金刚石的热化学方程式 (25℃,101kPa时) 说明:可以在书中查找需要的数据(P7)
查燃烧热表知(P7):
①C(石墨,s)+O2(g)==CO2(g) △H1=-393.5kJ/m ol ②C(金刚石,s)+O2(g)==CO2(g) △H2=-395.0kJ/m ol
正逆反应的反应热效应数值相等,符号相反。
△H1 < 0
S(始态)
L(终态)
△H2 > 0
根据能量守恒定律: 若某化学反应从始态(S)到 终态(L)其反应热为△H1,而从终态(L)到始 态(S)的反应热为△H2,这两者和为0。 即△H1 + △H 2 = 0
的反应热△H1
1 如何测定 C ( s ) O2 ( g ) CO ( g ) 2
CO(g) + 1/2O2(g) ==CO2(g) 3、解决问题
C(s) + 1/2O2(g) == CO(g) △H3 = ?
C(s)+1/2O2(g)=CO(g)
△H3=?
+) CO(g)+1/2O2(g)=CO2(g) △H2=-283.0 kJ/mol
C(s)+O2(g)=CO2(g) △H3+ △H2= △H1 ∴△H3 = △H1 - △H2 △H1=-393.5 kJ/mol
例如:
(1)C(s)+ O2(g)=CO2(g) ΔH1=-393.5 kJ· -1 mol
1 (2)CO(g)+ O2(g)=CO2(g) ΔH2=-283.0 kJ· -1 mol 2 1 求C(s)+O2(g)=CO(g)的反应热。 2
解析:
根据上述两个反应的关系可知:
ΔH1=ΔH2+ΔH3,
A.A→F:ΔH=-ΔH6 B.ΔH1+ΔH2+ΔH3+ΔH4+ΔH5+ΔH6=1 C.C→F:|ΔH|=|ΔH1+ΔH2+ΔH6| D.ΔH1+ΔH2+ΔH3=-(ΔH4+ΔH5+ΔH6) 答案 B
知识点2:盖斯定律的应用 例2 已知下列热化学方程式: (1)CH3COOH(l)+2O2(g)=2CO2(g)+2H2O(l) ΔH1=- 870.3 kJ· -1 mol (2)C(s)+O2(g)=CO2(g) ΔH2=-393.5 kJ· -1 mol 1 (3)H2(g)+ O2(g)=H2O(l) ΔH3=-285.8 kJ· -1 mol 2 则反应:2C(s)+2H2(g)+O2(g)=CH3COOH(l)的反应热 为( ) A.-488.3 kJ· -1 mol B.-244.15 kJ· -1 mol C.488.3 kJ· -1 mol D.244.15 kJ· -1 mol
2.反应热总值一定。如右图表示始态到终态的反应热, 则ΔH=ΔH1+ΔH2=ΔH3+ΔH4+ΔH5。
(二)、盖斯定律在科学研究中的重要意义
因为有些反应进行得很慢,有些反应不容易直接发生, 有些反应的产品不纯(有副反应发生),这给测定反应热造成 了困难。此时如果应用盖斯定律,就可以间接地把它们的反 应热计算出来。
(1)已知石墨的燃烧热:△H=-393.5kJ/mol 1.写出石墨的完全燃烧的热化学方程式
C(g) O2 (g) CO2 (g); H 393.5kJ / mol S
2.二氧化碳转化为石墨和氧气的热化学方程式
CO2 ( g ) C(s) O2 ( g ); H 393.5kJ / mol
[特别提醒]
利用盖斯定律解题的关键是设计流程:从反应物开始, 经历若干中间反应(并不是真实的反应历程),最终生成生成 物。分析过程中要注意同一物质的不同状态,因为物质的状 态不同,吸收或放出的热量也不相同。 二、进行反应热的计算时需注意的问题 1.反应热数值与各物质的化学计量系数成正比,因此 热化学方程式中各物质的化学计量数改变时,其反应热数值
名师解惑
一、反应热的计算 1.由化学反应的本质(旧键断裂-新键生成)及化学反应 能量变化的原因(反应物的总能量与生成物的总能量不等)可 得: (1)反应热=断裂旧键所需的能量-生成新键释放的能量 (2)反应热=生成物的总能量-反应物的总能量 2.根据盖斯定律计算:不管化学反应是一步完成或分 几步完成,其反应热是相同的。也就是说,化学反应的反应 热只与反应的始态和终态有关,而与具体反应的途径无关。 所以,可将热化学方程式进行适当的“加”、“减”等变形, ΔH进行相应的变化后来计算反应热。 3.其他相关计算 根据比热容公式ΔH=CmΔt进行计算;由生成反应的焓 变计算:反应热=生成物生成焓之和-反应物生成焓之和。
所以, ①- ②得: C(石墨,s) = C(金刚石,s)
△H=+1.5kJ/mol
例3 已知 ① CO( g ) 1 2 O2 ( g ) CO2 ( g ); H1 283.0kJ / mol ② H 2 (g) 1 2 O2 (g) H 2O(l);H 2 285.8kJ / mol ③ C2 H5OH (l ) 3O2 (g) 2CO2 (g) 3H 2O(l)
解:依题意可知,发射火箭燃料发生如下反应 2 N2H4(g)+ 2NO2(g)== 3N2(g)+4H2O(l) △H=? (3) 依题意可知:(3) = (2) x 2 - (1) 即△H = 2△H2—△H1 = - 1135.2kJ/mol 得:2 N2H4(g)+ 2NO2(g)== 3N2(g)+4H2O(l) △H=-1135.2kJ/mol
自学导引
一、怎样进行反应热的计算
1.热化学方程式与数学上的方程式相似,可以移项同 时改变正、负号;各项的系数包括ΔH的数值可以同时扩大或
缩小相同的倍数。
2.根据盖斯定律,可以将两个或两个以上的热化学方 程式包括其ΔH相加或相减,得到一个新的热化学方程式。 3.可燃物完全燃烧产生的热量=n×ΔH。 思考题 已知C(s)+O2(g)=CO2(g) ΔH=-393.5 kJ· -1,则2.5 mol C在O2中完全燃烧生 mol 成CO2时放出多少热量? 答案 983.75 kJ 二、进行反应热计算常用的几种方法 1.列方程或方程组法。 2.平均值法。 3.极限分析法。 4.十字交叉法。 5.估算法(仅适于选择题)。
相关文档
最新文档