2019-2020学年高考数学一轮复习《平面解析几何初步》教案.doc

合集下载

(全国版)高考数学一轮复习 第8章 平面解析几何 第2讲 两直线的位置关系学案-人教版高三全册数学学

(全国版)高考数学一轮复习 第8章 平面解析几何 第2讲 两直线的位置关系学案-人教版高三全册数学学

第2讲 两直线的位置关系板块一 知识梳理·自主学习[必备知识]考点1 两条直线的位置关系 1.两条直线平行与垂直 (1)两条直线平行①对于两条不重合的直线l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,若其斜率分别为k 1、k 2,则有l 1∥l 2⇔k 1=k 2,b 1≠b 2.②当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2. (2)两条直线垂直①如果两条直线l 1,l 2的斜率存在,设为k 1、k 2,则有l 1⊥l 2⇔k 1k 2=-1. ②当其中一条直线的斜率不存在,而另一条的斜率为0时,l 1⊥l 2. 2.两条直线的交点直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2的交点坐标就是方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解.考点2 三种距离公式1.两点P 1(x 1,y 1),P 2(x 2,y 2)之间的距离 |P 1P 2|=(x 1-x 2)2+(y 1-y 2)2. 2.点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2.3.两条平行线Ax +By +C 1=0与Ax +By +C 2=0(其中C 1≠C 2)间的距离d =|C 1-C 2|A 2+B2.[必会结论]1.与直线Ax +By +C =0(A 2+B 2≠0)垂直和平行的直线方程可设为: (1)垂直:Bx -Ay +m =0;(2)平行:Ax +By +n =0. 2.与对称问题相关的两个结论:(1)点P (x 0,y 0)关于A (a ,b )的对称点为P ′(2a -x 0,2b -y 0). (2)设点P (x 0,y 0)关于直线y =kx +b 的对称点为P ′(x ′,y ′),则有⎩⎪⎨⎪⎧y ′-y 0x ′-x 0·k =-1,y ′+y2=k ·x ′+x 02+b ,可求出x ′,y ′.[考点自测]1.判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)若两直线的方程组成的方程组有解,则两直线相交.( ) (2)点P (x 0,y 0)到直线y =kx +b 的距离为|kx 0+b |1+k2.( ) (3)直线外一点与直线上一点的距离的最小值就是点到直线的距离.( )(4)两平行线间的距离是一条直线上任一点到另一条直线的距离,也可以看作是两条直线上各取一点的最短距离.( )(5)若点A ,B 关于直线l :y =kx +b (k ≠0)对称,则直线AB 的斜率等于-1k,且线段AB的中点在直线l 上.( )答案 (1)× (2)× (3)√ (4)√ (5)√2.[课本改编]过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A.x -2y -1=0 B .x -2y +1=0 C.2x +y -2=0 D .x +2y -1=0答案 A解析 设直线方程为x -2y +c =0,又经过点(1,0),故c =-1,所求方程为x -2y -1=0.3.[2018·重庆模拟]若直线ax +2y +1=0与直线x +y -2=0互相垂直,那么a 的值等于( )A.1 B .-13 C .-23D .-2答案 D解析 由a ·1+2·1=0得a =-2,故选D.4.[课本改编]已知点(a,2)(a >0)到直线l :x -y +3=0的距离为1,则a 等于( ) A. 2 B .2- 2 C.2-1 D.2+1答案 C解析 由题意知|a -2+3|2=1,∴|a +1|=2,又a >0,∴a =2-1.5.[课本改编]平行线3x +4y -9=0和6x +8y +2=0的距离是( ) A.85 B .2 C.115 D.75 答案 B解析 依题意得,所求的距离等于|-18-2|62+82=2. 6.[2018·南宁模拟]直线x -2y +1=0关于直线x =1对称的直线方程是( ) A.x +2y -1=0 B .2x +y -1=0 C.2x +y -3=0 D .x +2y -3=0 答案 D解析 设所求直线上任一点(x ,y ),则它关于直线x =1的对称点(2-x ,y )在直线x -2y +1=0上,即2-x -2y +1=0,化简得x +2y -3=0.板块二 典例探究·考向突破 考向平行与垂直问题例1 (1)直线2x +y +m =0和x +2y +n =0的位置关系是( ) A.平行 B .垂直 C.相交但不垂直 D .不能确定答案 C解析 由⎩⎪⎨⎪⎧2x +y +m =0,x +2y +n =0,可得3x +2m -n =0,由于3x +2m -n =0有唯一解,故方程组有唯一解,故两直线相交,两直线的斜率分别为-2,-12,斜率之积不等于-1,故不垂直.(2)[2018·金华十校模拟]“直线ax -y =0与直线x -ay =1平行”是“a =1”成立的( )A.充分不必要条件 B .必要不充分条件 C.充要条件 D .既不充分也不必要条件答案 B解析 由直线ax -y =0与x -ay =1平行,得a 2=1,即a =±1,所以“直线ax -y =0与x -ay =1平行”是“a =1”的必要不充分条件.触类旁通两直线位置关系问题的解题策略(1)充分掌握两直线平行与垂直的条件是解决此类试题的关键,对于斜率都存在且不重合的两条直线l 1和l 2,l 1∥l 2⇔k 1=k 2,l 1⊥l 2⇔k 1·k 2=-1.若有一条直线的斜率不存在,那么另一条直线的斜率是否存在一定要特别注意.(2)设l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1⊥l 2⇔A 1A 2+B 1B 2=0.【变式训练1】 (1)“m =3”是“直线l 1:2(m +1)x +(m -3)y +7-5m =0与直线l 2:(m -3)x +2y -5=0垂直”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件 答案 A解析 由l 1⊥l 2,得2(m +1)(m -3)+2(m -3)=0, ∴m =3或m =-2,∴m =3是l 1⊥l 2的充分不必要条件.(2)[2018·宁夏模拟]若直线l 1:x +2my -1=0与l 2:(3m -1)x -my -1=0平行,则实数m 的值为________.答案 0或16解析 因为直线l 1:x +2my -1=0与l 2:(3m -1)x -my -1=0平行,则斜率相等或者斜率不存在,-12m =3m -1m 或者m =0,∴m =16或0.考向距离公式的应用例2 [2018·潍坊模拟]已知点P (2,-1). (1)求过点P 且与原点的距离为2的直线l 的方程;(2)求过点P 且与原点的距离最大的直线l 的方程,最大距离是多少?(3)是否存在过点P 且与原点的距离为6的直线?若存在,求出方程;若不存在,请说明理由.解 (1)过点P 的直线l 与原点的距离为2,而点P 的坐标为(2,-1),显然,过P (2,-1)且垂直于x 轴的直线满足条件,此时l 的斜率不存在,其方程为x =2.若斜率存在,设l 的方程为y +1=k (x -2), 即kx -y -2k -1=0.由已知得|-2k -1|k 2+1=2,解得k =34,此时l 的方程为3x -4y -10=0.综上,可得直线l 的方程为x =2或3x -4y -10=0.(2)作图可得过点P 与原点O 的距离最大的直线是过点P 且与PO 垂直的直线,如图.由l ⊥OP ,得k l k OP =-1,所以k l =-1k OP=2.由直线方程的点斜式得y +1=2(x -2),即2x -y -5=0.所以直线2x -y -5=0是过点P 且与原点O 的距离最大的直线,最大距离为|-5|5= 5.(3)由(2)可知,过点P 不存在到原点的距离超过5的直线,因此不存在过点P 且到原点的距离为6的直线.触类旁通与距离有关问题的常见类型及解题策略(1)求距离.利用距离公式求解法将两条平行线间的距离转化为点到直线的距离. (2)已知距离求参数值.列方程求出参数.(3)求距离的最值.可利用距离公式得出距离关于某个点的函数,利用函数知识求最值. 【变式训练2】 (1)若直线l 1:x -2y +m =0(m >0)与直线l 2:x +ny -3=0之间的距离是5,则m +n =( )A.0 B .1 C .-1 D .2 答案 A解析 ∵直线l 1:x -2y +m =0(m >0)与直线l 2:x +ny -3=0之间的距离为5,∴⎩⎪⎨⎪⎧n =-2,|m +3|5=5,∴n =-2,m =2(负值舍去),∴m +n =0.(2)已知点A (-3,-4),B (6,3)到直线l :ax +y +1=0的距离相等,则实数a 的值为________.答案 -13或-79解析 由题意及点到直线的距离公式得|-3a -4+1|a 2+1=|6a +3+1|a 2+1,解得a =-13或-79. 考向对称问题命题角度1 点关于点的对称 例3 过点P (0,1)作直线l 使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,求直线l 的方程.解 设l 1与l 的交点为A (a,8-2a ),则由题意知,点A 关于点P 的对称点B (-a,2a -6)在l 2上,代入l 2的方程得-a -3(2a -6)+10=0,解得a =4,即点A (4,0)在直线l 上, 所以由两点式得直线l 的方程为x +4y -4=0.命题角度2 点关于线的对称例4 若将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m ,n )重合,则m +n =________.答案345解析 由题可知纸的折痕应是点(0,2)与点(4,0)连线的中垂线,即直线y =2x -3,它也是点(7,3)与点(m ,n )连线的中垂线,于是⎩⎪⎨⎪⎧3+n 2=2×7+m2-3,n -3m -7=-12,解得⎩⎪⎨⎪⎧m =35,n =315,故m +n =345.命题角度3 直线关于直线的对称例5 直线2x -y +3=0关于直线x -y +2=0对称的直线方程是( ) A.x -2y +3=0 B .x -2y -3=0 C.x +2y +1=0 D .x +2y -1=0答案 A解析 设所求直线上任意一点P (x ,y ),则P 关于x -y +2=0的对称点为P ′(x 0,y 0),由⎩⎪⎨⎪⎧x +x 02-y +y 02+2=0,x -x 0=-(y -y 0),得⎩⎪⎨⎪⎧x 0=y -2,y 0=x +2,由点P ′(x 0,y 0)在直线2x -y +3=0上, 则2(y -2)-(x +2)+3=0,即x -2y +3=0. 命题角度4 对称问题的应用例6 已知直线l :x -2y +8=0和两点A (2,0),B (-2,-4). (1)在直线l 上求一点P ,使|PA |+|PB |最小; (2)在直线l 上求一点P ,使||PB |-|PA ||最大.解 (1)设A 关于直线l 的对称点为A ′(m ,n ),则⎩⎪⎨⎪⎧n -0m -2=-2,m +22-2·n +02+8=0,解得⎩⎪⎨⎪⎧m =-2,n =8,故A ′(-2,8).P 为直线l 上的一点,则|PA |+|PB |=|PA ′|+|PB |≥|A ′B |,当且仅当B ,P ,A ′三点共线时,|PA |+|PB |取得最小值,为|A ′B |,点P 即是直线A ′B 与直线l 的交点,解⎩⎪⎨⎪⎧x =-2,x -2y +8=0,得⎩⎪⎨⎪⎧x =-2,y =3,故所求的点P 的坐标为(-2,3).(2)A ,B 两点在直线l 的同侧,P 是直线l 上的一点,则||PB |-|PA ||≤|AB |,当且仅当A ,B ,P 三点共线时,||PB |-|PA ||取得最大值,为|AB |,点P 即是直线AB 与直线l 的交点,又直线AB 的方程为y =x -2,解⎩⎪⎨⎪⎧y =x -2,x -2y +8=0,得⎩⎪⎨⎪⎧x =12,y =10,故所求的点P 的坐标为(12,10).触类旁通解决对称问题的方法 (1)中心对称①点P (x ,y )关于O (a ,b )的对称点P ′(x ′,y ′)满足⎩⎪⎨⎪⎧x ′=2a -x ,y ′=2b -y .②直线关于点的对称可转化为点关于点的对称问题来解决. (2)轴对称①点A (a ,b )关于直线Ax +By +C =0(B ≠0)的对称点为A ′(m ,n ),则有⎩⎪⎨⎪⎧n -b m -a ×⎝ ⎛⎭⎪⎫-A B =-1,A ·a +m 2+B ·b +n 2+C =0.②直线关于直线的对称可转化为点关于直线的对称问题来解决.核心规律1.两直线的位置关系要考虑平行、垂直和重合.2.对称问题一般是将线与线的对称转化为点与点的对称.3.光线的反射问题具有入射角等于反射角的特点,这样就有两种对称关系,一是入射光线与反射光线关于过反射点且与反射轴垂直的直线(法线)对称,二是入射光线与反射光线所在直线关于反射轴对称.满分策略1.在判断两条直线的位置关系时,首先应分析直线的斜率是否存在.若直线无斜率,要单独考虑.2.使用点到直线的距离公式前必须将直线方程化为一般式,同时此公式对直线与坐标轴垂直或平行的情况也适用;使用两平行线间的距离公式时,一定要注意先把两直线方程中的x ,y 的系数化成相等.板块三 启智培优·破译高考题型技法系列 13——物理光学中对称思想的应用[2018·湖南模拟]在等腰直角三角形ABC 中,AB =AC =4,点P 为边AB 上异于A ,B 的一点,光线从点P 出发,经BC ,CA 反射后又回到点P .若光线QR 经过△ABC 的重心,则AP 等于( )A.2 B .1 C.83 D.43解题视点 依入射光线与反射光线的对称性知,点P 关于直线BC 的对称点P 2在直线RQ上,点P 关于直线AC 的对称点P 1也在直线RQ 上,所以点P 1,D ,P 2三点共线(D 为△ABC 的重心),利用kP 1D =kP 2D 即可破解.解析 以A 为原点,AB 为x 轴,AC 为y 轴建立直角坐标系如图所示.则A (0,0),B (4,0),C (0,4).设△ABC 的重心为D ,则D 点坐标为⎝ ⎛⎭⎪⎫43,43. 设P 点坐标为(m,0),则P 点关于y 轴的对称点P 1为(-m,0),因为直线BC 方程为x +y -4=0,所以P 点关于BC 的对称点P 2为(4,4-m ),根据光线反射原理,P 1,P 2均在QR 所在直线上,∴kP 1D =kP 2D ,即4343+m =43-4+m 43-4,解得m =43或m =0.当m =0时,P 点与A 点重合,故舍去.∴m =43.答案 D答题启示 许多问题都隐含着对称性,要注意深刻挖掘,充分利用对称变换来解决,如角平分线、线段中垂线、光线反射等,恰当地利用平面几何的知识对解题能起到事半功倍的效果.跟踪训练光线从A (-4,-2)点射出,射到直线y =x 上的B 点后被直线y =x 反射到y 轴上的C 点,又被y 轴反射,这时反射光线恰好过点D (-1,6),求BC 所在的直线方程.解 作出草图,如图所示,设A 关于直线y =x 的对称点为A ′,D 关于y 轴的对称点为D ′,则易得A ′(-2,-4),D ′(1,6).由入射角等于反射角可得A ′D ′所在直线经过点B 与C .故BC 所在的直线方程为y +46+4=x +21+2.即10x -3y +8=0.板块四 模拟演练·提能增分[A 级 基础达标]1.[2018·四川模拟]设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件 答案 A解析 若两直线平行,则a (a +1)=2,即a 2+a -2=0,∴a =1或-2,故a =1是两直线平行的充分不必要条件.2.若直线mx +4y -2=0与直线2x -5y +n =0垂直,垂足为(1,p ),则实数n 的值为( )A.-12 B .-2 C .0 D .10 答案 A解析 由2m -20=0得m =10.由垂足(1,p )在直线mx +4y -2=0上,得10+4p -2=0,∴p =-2.又垂足(1,-2)在直线2x -5y +n =0上,则解得n =-12.3.[2018·启东模拟]不论m 为何值时,直线(m -1)x +(2m -1)y =m -5恒过定点( ) A.⎝ ⎛⎭⎪⎫1,-12 B .(-2,0) C.(2,3) D .(9,-4)答案 D解析 由(m -1)x +(2m -1)y =m -5,得(x +2y -1)m -(x +y -5)=0,由⎩⎪⎨⎪⎧x +2y -1=0,x +y -5=0,得定点坐标为(9,-4),故选D.4.P 点在直线3x +y -5=0上,且点P 到直线x -y -1=0的距离为2,则P 点坐标为( )A.(1,2)B .(2,1)C.(1,2)或(2,-1) D .(2,1)或(-1,2)答案 C解析 设P (x,5-3x ),则d =|x -5+3x -1|12+(-1)2=2,化简得|4x -6|=2,即4x -6=±2,解得x =1或x =2,故点P 的坐标为(1,2)或(2,-1).5.[2018·绵阳模拟]若P ,Q 分别为直线3x +4y -12=0与6x +8y +5=0上任意一点,则|PQ |的最小值为( )A.95B.185C.2910D.295 答案 C解析 因为36=48≠-125,所以两直线平行,由题意可知|PQ |的最小值为这两条平行直线间的距离,即|-24-5|62+82=2910,所以|PQ | 的最小值为2910. 6.[2018·合肥模拟]已知直线l :x -y -1=0,l 1:2x -y -2=0.若直线l 2与l 1关于l 对称,则l 2的方程是( )A.x -2y +1=0 B .x -2y -1=0 C.x +y -1=0 D .x +2y -1=0答案 B解析 因为l 1与l 2关于l 对称,所以l 1上任一点关于l 的对称点都在l 2上,故l 与l 1的交点(1,0)在l 2上.又易知(0,-2)为l 1上一点,设它关于l 的对称点为(x ,y ),则⎩⎪⎨⎪⎧x +02-y -22-1=0,y +2x ×1=-1,解得⎩⎪⎨⎪⎧x =-1,y =-1,即(1,0),(-1,-1)为l 2上两点,可得l 2的方程为x -2y -1=0.7.若动点A ,B 分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则AB 的中点M 到原点的距离的最小值为( )A.3 2 B .2 2 C .3 3 D .4 2 答案 A解析 ∵l 1:x +y -7=0和l 2:x +y -5=0是平行直线,∴可判断AB 所在直线过原点且与直线l 1,l 2垂直时,中点M 到原点的距离最小.∵直线l 1:x +y -7=0,l 2:x +y -5=0,∴两直线的距离为|7-5|12+12=2,又原点到直线l 2的距离为522,∴AB 的中点M 到原点的距离的最小值为522+22=3 2.故选A.8.设点A (-1,0),B (1,0),直线2x +y -b =0与线段AB 相交,则b 的取值范围是________.答案 [-2,2]解析 b 为直线y =-2x +b 在y 轴上的截距,如图,当直线y =-2x +b 过点A (-1,0)和点B (1,0)时,b 分别取得最小值和最大值. ∴b 的取值范围是[-2,2].9.已知直线l 1:ax -y +2a =0,l 2:(2a -1)x +ay +a =0互相垂直,则实数a 的值是________.答案 0或1解析 因为直线l 1:ax -y +2a =0,l 2:(2a -1)x +ay +a =0互相垂直,故有a (2a -1)+a (-1)=0,可知a 的值为0或1.10.[2018·银川模拟]点P (2,1)到直线l :mx -y -3=0(m ∈R )的最大距离是________. 答案 2 5解析 直线l 经过定点Q (0,-3),如图所示.由图知,当PQ ⊥l 时,点P (2,1)到直线l 的距离取得最大值|PQ |= (2-0)2+(1+3)2=25,所以点P (2,1)到直线l 的最大距离为2 5.[B 级 知能提升]1.[2018·东城期末]如果平面直角坐标系内的两点A (a -1,a +1),B (a ,a )关于直线l 对称,那么直线l 的方程为( )A.x -y +1=0 B .x +y +1=0 C.x -y -1=0 D .x +y -1=0答案 A解析 因为直线AB 的斜率为a +1-aa -1-a=-1,所以直线l 的斜率为1,设直线l 的方程为y =x +b ,由题意知直线l 过点⎝⎛⎭⎪⎫2a -12,2a +12,所以2a +12=2a -12+b ,解得b =1,所以直线l 的方程为y =x +1,即x -y +1=0.故选A.2.[2018·宜春统考]已知直线l 过点P (3,4)且与点A (-2,2),B (4,-2)等距离,则直线l 的方程为( )A.2x +3y -18=0B.2x -y -2=0C.3x -2y +18=0或x +2y +2=0D.2x +3y -18=0或2x -y -2=0 答案 D解析 依题意,设直线l :y -4=k (x -3), 即kx -y +4-3k =0, 则有|-5k +2|k 2+1=|k +6|k 2+1,因此-5k +2=k +6或-5k +2=-(k +6),解得k =-23或k =2,故直线l 的方程为2x +3y -18=0或2x -y -2=0.3.[2018·淮安调研]已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为________________.答案 6x -y -6=0解析 设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′,所以⎩⎪⎨⎪⎧b -4a -(-3)·1=-1,-3+a 2-b +42+3=0,解得a =1,b =0.又反射光线经过点N (2,6),所以所求直线的方程为y -06-0=x -12-1,即6x -y -6=0.4.已知两条直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值:(1)l 1⊥l 2,且l 1过点(-3,-1);(2)l 1∥l 2,且坐标原点到这两条直线的距离相等. 解 (1)由已知可得l 2的斜率存在,且k 2=1-a . 若k 2=0,则1-a =0,a =1.∵l 1⊥l 2,∴直线l 1的斜率k 1必不存在,即b =0. 又∵l 1过点(-3,-1), ∴-3a +4=0,即a =43(矛盾),∴此种情况不存在,∴k 2≠0,即k 1,k 2都存在.∵k 2=1-a ,k 1=a b,l 1⊥l 2, ∴k 1k 2=-1,即a b(1-a )=-1.①又∵l 1过点(-3,-1),∴-3a +b +4=0.② 由①②联立,解得a =2,b =2.(2)∵l 2的斜率存在且l 1∥l 2,∴直线l 1的斜率存在,k 1=k 2,即ab=1-a .③又∵坐标原点到这两条直线的距离相等,且l 1∥l 2, ∴l 1,l 2在y 轴上的截距互为相反数,即4b=b ,④联立③④,解得⎩⎪⎨⎪⎧a =2,b =-2或⎩⎪⎨⎪⎧a =23,b =2.∴a =2,b =-2或a =23,b =2.5.[2018·合肥模拟]已知直线l :2x -3y +1=0,点A (-1,-2).求: (1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程; (3)直线l 关于点A (-1,-2)对称的直线l ′的方程. 解 (1)设A ′(x ,y ),由已知条件得⎩⎪⎨⎪⎧ y +2x +1×23=-1,2×x -12-3×y -22+1=0,解得⎩⎪⎨⎪⎧x =-3313,y =413.∴A ′⎝ ⎛⎭⎪⎫-3313,413.(2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点M ′必在直线m ′上. 设对称点M ′(a ,b ),则⎩⎪⎨⎪⎧2×a +22-3×b +02+1=0,b -0a -2×23=-1,得M ′⎝⎛⎭⎪⎫613,3013.设直线m 与直线l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0,得N (4,3).又∵m ′经过点N (4,3),∴由两点式得直线m ′的方程为9x -46y +102=0. (3)解法一:在l :2x -3y +1=0上任取两点,如M (1,1),N (4,3),则M ,N 关于点A (-1,-2)的对称点M ′,N ′均在直线l ′上, 易得M ′(-3,-5),N ′(-6,-7), 再由两点式可得l ′的方程为2x -3y -9=0. 解法二:∵l ∥l ′,∴设l ′的方程为2x -3y +C =0(C ≠1). ∵点A (-1,-2)到两直线l ,l ′的距离相等, ∴由点到直线的距离公式,得|-2+6+C |22+32=|-2+6+1|22+32,解得C =-9, ∴l ′的方程为2x -3y -9=0.解法三:设P (x ,y )为l ′上任意一点, 则P (x ,y )关于点A (-1,-2)的对称点为P ′(-2-x ,-4-y ).∵点P ′在直线l 上,∴2(-2-x )-3(-4-y )+1=0, 即2x -3y -9=0.。

高三数一轮复习课件:第九章 平面解析几何. .ppt..

高三数一轮复习课件:第九章 平面解析几何. .ppt..
解:如图,因为 kAP=12- -01=1,
kBP= 03--10=- 3, 所以 k∈(-∞,- 3]∪[1,+∞). 故填(-∞,- 3]∪[1,+∞).
2019年5月30日
你是我心中最美的云朵
18
类型二 求直线方程
根据所给条件求直线的方程. (1)直线过点(-4,0),倾斜角的正弦值为 1100; (2)直线过点(-3,4),且在两坐标轴上的截距相等; (3)直线过点(5,10),且到原点的距离为 5.
2019年5月30日
你是我心中最美的云朵
13
类型一 直线的倾斜角和斜率
(1)设直线 2x+my=1 的倾斜角为 α,若 m∈(-∞, -2 3)∪[2,+∞),则角 α 的取值范围是________.
解:据题意知 tanα=-m2 ,因为 m<-2 3或 m≥2.
所以 0<tanα< 33或-1≤tanα<0.
(3)过点 P1(x1,y1),P2(x2,y2)的直线方程 ①若 x1=x2,且 y1≠y2 时,直线垂直于 x 轴,方程为____________; ②若 x1≠x2,且 y1=y2 时,直线垂直于 y 轴,方程为____________; ③若 x1=x2=0,且 y1≠y2 时,直线即为 y 轴,方程为____________; ④若 x1≠x2,且 y1=y2=0,直线即为 x 轴,方程为____________.
x=


y=
.
2019年5月30日
你是我心中最美的云朵
4
2.直线的倾斜角与斜率 (1)直线的倾斜角:当直线 l 与 x 轴相交时,取 x 轴作为基准,x 轴____________与 直线 l 向上方向之间所成的角 α 叫做直线 l 的倾斜角.当直线 l 与 x 轴________或________ 时,我们规定它的倾斜角为 0°.因此,直线的倾斜角 α 的取值范围为 __________________. (2)斜率:一条直线的倾斜角 α 的____________叫做这条直线的斜率,常用小写字母 k 表示,即 k=______(α≠______).当直线平行于 x 轴或者与 x 轴重合时,k______0; 当直线的倾斜角为锐角时,k______0;当直线的倾斜角为钝角时,k______0;倾斜角为 ______的直线没有斜率.倾斜角不同,直线的斜率也不同.因此,我们可以用斜率表示 直线的倾斜程度.

(完整word版)平面解析几何初步复习课教学设计.doc

(完整word版)平面解析几何初步复习课教学设计.doc

平面解析几何初步复习课教学设计(一)教材分析解析几何的主要内容为直线与圆,圆锥曲线,坐标系与参数方程。

根据课程标准要求,在必修 2 解析几何初步中,学生学习的最基本内容为直线与直线方程,圆与圆的方程,并初步建立空间坐标系的概念。

这一内容是对全体学生设计的,大部分学生在选修中还将进一步学习圆锥曲线,坐标系与参数方程等有关内容。

因此,本章要求学生掌握解析几何最基本的思想方法--------用代数的方法研究曲线的几何性质,并学习最基本的直线,圆的方程,并通过方程研究他们的图形性质。

这样的安排,一方面降低了解析几何的难度,多次反复又逐步提高学生对解析几何的认识,另一方面对部分在解析几何学习上有较高要求的学生,可以在选修部分拓广加强。

因此教学中,要体会必修 2 的 4 个特点①是学习立体几何与解析几何的初级阶段②仅仅是初步③是螺旋式上升的开始④ . 感性认识到理性认识的过渡期。

( 二 )课程内容标准(教学大纲与课程标准比较)《教学大纲》《课程标准》主要变化点直线和圆的方程 (22 课时 ) 平面解析几何初步 ( 约 18 课时 ) 1.平面解析几何分直线的倾斜角和斜率。

直线(1) 直线与方程层为三块:初步(必方程的点斜式和两点式。

直①在平面直角坐标系中,结合具体修)、圆锥曲线(必线方程的一般式。

图形,探索确定直线位置的几何要选)和坐标系与参数两条直线平行与垂直的条素。

方程(自选)。

件。

两条直线的交角。

点到②理解直线的倾斜角和斜率的概2.线性规划问题移直线的距离。

念,经历用代数方法刻画直线斜率到《数学 5》“不等用二元一次不等式表示平面的过程,掌握过两点的直线斜率的式”部分;原立几 B区域。

简单线性规划问题。

计算公式。

教材“空间直角坐实习作业。

③能根据斜率判定两条直线平行标系”移至解几初曲线与方程的概念。

由已知或垂直。

步。

条件列出曲线方程。

④根据确定直线位置的几何要素,3.注重过程教学,圆的标准方程和一般方程。

2019-2020学年高中数学 第2章平面解析几何初步复习与小结教案 苏教版必修2.doc

2019-2020学年高中数学 第2章平面解析几何初步复习与小结教案 苏教版必修2.doc

2019-2020学年高中数学第2章平面解析几何初步复习与小结教案
苏教版必修2
教学目标:
1.复习《平面解析几何初步》的相关知识及基本应用;
2.掌握典型题型及其处理方法.
教材分析及教材内容的定位:
本章研究平面直角坐标系中直线与圆的有关知识以及空间直角坐标系,是高中知识的重点内容,也是高考的高频考点;充分体现了高中数学的坐标法方程法的解题思想.
教学重点:
《平面解析几何初步》的知识梳理和题型归类.
教学难点:
《平面解析几何初步》的重点题型的处理方法.
教学方法:
导学点拨法.
教学过程:
一、问题情境
1.情境;
2.问题:本章我们学了哪些内容?
二、学生活动
1.回顾本章所学内容;
2.在教师引导下归纳本章知识结构;
3.在教师引导下做例题和习题.
三、建构数学
1.知识分析;
五、要点归纳与方法小结
本节课学习了以下内容:
1.全章知识总结;
2.题型与方法总结;
3.数形结合、函数与方程、转化与化归、分类讨论等思想总结.。

2019-2020年高考数学一轮复习 9.13 立体几何的综合问题教案

2019-2020年高考数学一轮复习 9.13 立体几何的综合问题教案

2019-2020年高考数学一轮复习 9.13 立体几何的综合问题教案●知识梳理1.线与线、线与面、面与面间的平行、垂直关系.2.空间角与空间距离.3.柱、锥、球的面积与体积.4.平面图形的翻折,空间向量的应用.●点击双基1.若Rt△ABC的斜边BC在平面α内,顶点A在α外,则△ABC在α上的射影是A.锐角三角形B.钝角三角形C.直角三角形D.一条线段或一钝角三角形解析:当平面ABC⊥α时,为一条线段,结合选择肢,知选D.答案:D2.长方体AC1的长、宽、高分别为3、2、1,从A到C1沿长方体的表面的最短距离为A.1+B.2+C.3D.2解析:求表面上最短距离常把图形展成平面图形.答案:C3.设长方体的对角线长为4,过每个顶点的三条棱中总有两条棱与对角线的夹角为60°,则长方体的体积是A.27B.8C.8D.16解析:先求出长方体的两条棱长为2、2,设第三条棱长为x,由22+22+x2=42x=2,∴V=2×2×2=8.答案:B4.棱长为a的正方体的各个顶点都在一个球面上,则这个球的体积是_____________.解析:易知球的直径2R=a.所以R=a.所以V=R3= a3.答案:a35.已知△ABC的顶点坐标为A(1,1,1)、B(2,2,2)、C(3,2,4),则△ABC的面积是_____________.解析:=(1,1,1),=(2,1,3),cos〈,〉==,∴sin A=.∴S=||||sin A=··= .答案:●典例剖析【例1】在直角坐标系O—xyz中,=(0,1,0),=(1,0,0),=(2,0,0), =(0,0,1).(1)求与的夹角α的大小;(2)设n=(1,p,q),且n⊥平面SBC,求n;(3)求OA与平面SBC的夹角;(4)求点O到平面SBC的距离;(5)求异面直线SC与OB间的距离.解:(1)如图,= -=(2,0,-1),= + =(1,1,0),则||==,||==.cos α=cos 〈,〉===,α=arccos. n ·=0,n ·=0.∵=(2,0,-1),= -=(1,-1,0), 2-q =0, p =1, 1-p =0. q =2,(3)OA 与平面SBC 所成的角θ和OA 与平面SBC 的法线所夹角互余,故可先求与n 所成的角.=(0,1,0),||=1,|n |==.∴cos 〈,n 〉===,即〈,n 〉=arccos.∴θ=-arccos. (4)点O 到平面SBC 的距离即为在n 上的投影的绝对值, ∴d =|·|== .(5)在异面直线SC 、OB 的公垂线方向上的投影的绝对值即为两条异面直线间的距离,故先求与SC 、OB 均垂直的向量m .设m =(x ,y ,1),m ⊥且m ⊥, 则m ·=0,且m ·=0. 2x -1=0, x =,x +y =0, y =-. ∴m =(,-,1),d ′=|·|= =. 特别提示 借助于平面的法向量,可以求斜线与平面所成的角,求点到平面的距离,类似地可以求异面直线间的距离.本题选题的目的是复习如何求平面的法向量,以及如何由法向量求角、求距离.【例2】 如图,已知一个等腰三角形ABC 的顶角B =120°,过AC 的一个平面α与顶点B 的距离为1,根据已知条件,你能求出AB 在平面α上的射影AB 1的长吗?如果不能,那么需要增加什么条件,可以使AB 1=2?解:在条件“等腰△ABC 的顶角B =120°”下,△ABC 是不能唯一确定的,这样线段AB 1也是不能确定的,需要增加下列条件之一,可使AB 1=2:①CB 1=2;②CB =或AB =;③直线AB 与平面α所成的角∠BAB 1=arcsin ;④∠ABB 1=arctan2;⑤∠B 1AC =arccos ;⑥∠AB 1C =π-arccos ;⑦AC =;⑧B 1到AC 的距离为;⑨B 到AC 的距离为;⑩二面角B —AC —B 1为arctan2等等.思考讨论本题是一个开放型题目,做这类题的思维是逆向的,即若AB 1=2,那么能够推出什么结果,∴ (2)∵n ⊥平面SBC ,∴n ⊥且n ⊥,即∴ 即n =(1,1,2).∴ 即再回过来考虑根据这一结果能否推出AB1=2.【例3】(xx年春季北京)如图,四棱锥S—ABCD的底面是边长为1的正方形,SD垂直于底面ABCD,SB=,(1)求证:BC⊥SC;(2)求面ASD与面BSC所成二面角的大小;(3)设棱SA的中点为M,求异面直线DM与SB所成角的大小.剖析:本题主要考查直线与平面的位置关系等基本知识,考查空间想象能力、逻辑思维能力和运算能力.(1)证法一:∵底面ABCD是正方形,∴BC⊥DC.∵SD⊥底面ABCD,∴DC是SC在平面ABCD上的射影.由三垂线定理得BC⊥SC.证法二:∵底面ABCD是正方形,∴BC⊥DC.∵SD⊥底面ABCD,∴SD⊥BC.又DC∩SD=D,∴BC⊥平面SDC.∴BC⊥SC.(2)解法一:∵SD⊥底面ABCD,且ABCD为正方形,∴可以把四棱锥S—ABCD补形为长方体A1B1C1S—ABCD,如上图,面ASD与面BSC所成的二面角就是面ADSA1与面BCSA1所成的二面角,∵SC⊥BC,BC∥A1S,∴SC⊥A1S.又SD⊥A1S,∴∠CSD为所求二面角的平面角.在Rt△SCB中,由勾股定理得SC=,在Rt△SDC中,由勾股定理得SD=1.∴∠CSD=45°,即面ASD与面BSC所成的二面角为45°.解法二:如下图,过点S作直线l∥AD,∴l在面ASD上.∵底面ABCD为正方形,∴l∥AD∥BC.∴l在面BSC上.∴l为面ASD与面BSC的交线.∵SD⊥AD,BC⊥SC,∴l⊥SD,l⊥SC.∴∠CSD为面ASD与面BSC所成二面角的平面角.(以下同解法一).(3)解法一:如上图,∵SD=AD=1,∠SDA=90°,∴△SDA是等腰直角三角形.又M是斜边SA的中点,∴DM⊥SA.∵BA⊥AD,BA⊥SD,AD∩SD=D,∴BA⊥面ASD,SA是SB在面ASD上的射影.由三垂线定理得DM⊥SB.∴异面直线DM与SB所成的角为90°.解法二:如下图,取AB的中点P,连结MP、DP.在△ABS中,由中位线定理得PM∥BS.∴DM与SB所成的角即为∠DMP.又PM2=,DP2=,DM2=.∴DP2=PM2+DM2.∴∠DMP=90°.∴异面直线DM与SB所成的角为90°.●闯关训练夯实基础1.下图是一个无盖的正方体盒子展开后的平面图,A、B、C是展开图上的三点,则在正方体盒子中,∠ABC的值为A.180°B.120°C.60°D.45°答案:C2.在棱长为1的正方体ABCD—A1B1C1D1中,M、N分别为A1B1和BB1的中点,那么直线AM与CN所成的角为A.arccosB.arccosC.arccosD.arccos解法一:∵=+,= +,∴·=而== = .同理,||=.如令α为所求之角,则cos α==4521=,∴α=arccos.应选D.解法二:建立如图所示的空间直角坐标系,把D 点视作原点O ,分别以、、的方向为x 轴、y 轴、z 轴的正方向,则A (1,0,0)、M (1,,1)、C (0,1,0)、N (1,1,).∴=(0,,1),=(1,0,).故·=0×1+×0+1×=, ||==, ||==. ∴cos α==252521⋅=.∴α=arccos. 答案:D3.图甲是一个正三棱柱形的容器,高为2a ,内装水若干.现将容器放倒,把一个侧面作为底面,如图乙所示,这时水面恰好为中截面,则图甲中水面的高度为_____________.解析:设正三棱柱的底面积为S ,将图乙竖起得图丙,则V 水=V 柱-V =S ·2a -(S )·2a =aS .设图甲中水面的高度为x ,则S ·x =aS ,得x =a .答案:4.在三棱锥P —ABC 中,底面是边长为2 cm 的正三角形,PA =PB =3 cm ,转动点P 时,三棱锥的最大体积为.解析:点P到面ABC距离最大时体积最大,此时面PAB⊥面ABC,高PD=2.V=××4×2= .答案: cm35.把长、宽各为4、3的长方形ABCD,沿对角线AC折成直二面角,求顶点B和顶点D的距离.解:如图,作BE⊥AC于E,∵二面角B—AC—D为直二面角,BE⊥AC,∴BE⊥平面ADC,DE平面ADC,BE⊥DE.在Rt△ABC中,可得BE=,AE=,在△ADE中,DE2=AE2+AD2-2AD·AE·cos∠EAD=+16-2··4·=.在Rt△BDE中,BD=BE2+ED2=.培养能力6.已知正方形ABCD的边长为1,分别取边BC、CD的中点E、F,连结AE、EF、AF,以AE、EF、FA为折痕,折叠使点B、C、D重合于一点P.(1)求证:AP⊥EF;(2)求证:平面APE⊥平面APF;(3)求异面直线PA和EF的距离.(1)证明:如下图,∵∠APE=∠APF=90°,PE∩PF=P,∴PA⊥平面PEF.∵EF平面PEF,∴PA⊥EF.(2)证明:∵∠APE=∠EPF=90°,AP∩PF=P,∴PE⊥平面APF.又PE平面PAE,∴平面APE⊥平面APF.(3)解:在面PEF中,作PG⊥EF,垂足为G,∵AP与面PEF垂直,PG平面PEF,∴AP⊥PG,PG⊥EF,PG是AP与EF的公垂线.在等腰Rt△PEF中,PE=PF=,∠EPF=90°,∴PG=EG=.7.(文)如图,在四棱锥P—ABCD中,底面ABCD是一直角梯形,∠BAD=90°,AD∥BC,AB=BC=a,AD=2a,PA⊥底面ABCD,PD与底面成30°角.(1)若AE⊥PD,E为垂足,求证:BE⊥PD;(2)求异面直线AE与CD所成的角.(1)证明:以A为原点,AB、AD、AP所在直线为坐标轴,建立空间直角坐标系,则A(0,0,0),B(a,0,0),D(0,2a,0),P(0,0,a),· =(a,0,0)·(0,2a,-a)=0,又· =0,∴⊥,⊥.∴PD⊥BE.(2)解:∵PA⊥面ABCD,PD与底面成30°角,∴∠PDA=30°.过E作EF⊥AD,垂足为F,则AE=a,∠EAF=60°,AF=a,EF=a,∴E(0,a,a).于是=(0,a,a).又C(a,a,0),D(0,2a,0),∴CD=(-a,a,0).cos〈,〉===,∴异面直线AE与CD所成的角是arccos.(理)四棱锥P—ABCD中,PC⊥平面ABCD,PC=2,在四边形ABCD中,∠B=∠C=90°,CD∥AB,AB=4,CD=1,点M在PB上,且MB=3PM,PB与平面ABC成30°角,(1)求证:CM∥面PAD;(2)求证:面PAB⊥面PAD;(3)求点C到平面PAD的距离.分析:本题主要考查空间直角坐标系的概念、空间点和向量的坐标表示以及用向量法证明平行关系,同时考查向量研究空间图形的数学思想方法.如下图,建立空间直角坐标系O—xyz,C为坐标原点O,突破点在于求出相关的向量所对应的坐标.(1)证明:如图,建立空间直角坐标系.∵PC⊥平面ABCD,∴∠PBC为PB与平面ABC所成的角,即∠PBC=30°.∵|PC|=2,∴|BC|=2,|PB|=4.得D(1,0,0)、B(0,2,0)、A(4,2,0)、P(0,0,2).∵|MB|=3|PM|,∴|PM|=1,M(0,,),=(0,,),=(-1,0,2),=(3,2,0).设=x+y(x、y∈R),则(0,,)=x(-1,0,2)+y(3,2,0)x=且y=,∴= + .∴、、共面.又∵C平面PAD,故CM∥平面PAD.(2)证明:过B作BE⊥PA,E为垂足.∵|PB|=|AB|=4,∴E为PA的中点.∴E(2,,1),=(2,-,1).又∵·=(2,-,1)·(3,2,0)=0,∴⊥,即BE⊥DA.而BE⊥PA,∴BE⊥面PAD.∵BE面PAB,∴面PAB⊥面PAD.(3)解:由BE⊥面PAD知,平面PAD的单位向量n0==(2,-,1).∴CD=(1,0,0)的点C到平面PAD的距离d=|n0·|=|(2,-,1)·(1,0,0)|=.探究创新8.(xx年北京宣武区二模题)如图,AB为圆柱OO1的母线,BD为圆柱OO1下底面直径,AB=BD=2,点C为下底面圆周⊙O上的一点,CD=1.(1)求三棱锥C—ABD的体积;(2)求面BAD与面CAD所成二面角的大小;(3)求BC与AD所成角的大小.分析:本题主要考查直线、平面的位置关系,考查圆柱的有关概念,考查直线、平面所成角的概念及求法,考查空间想象能力和推理能力.解:(1)∵AB为圆柱OO1的母线,∴AB⊥下底面.∴AB为棱锥A—BCD的高.而点C在⊙O上,∴△BCD为直角三角形,∠BCD=90°.∵BD=2,CD=1,∴BC=.∴V三棱锥C—ABD=V三棱锥A—BCD=××1××2=.(2)过B作BE⊥AD,垂足为E,过点B作BF⊥AC,垂足为点F,连结EF.由BD为底面圆的直径,得BC⊥CD.∵AB⊥平面BCD,BC⊥CD,∴AC⊥CD.而AC∩BC=C,∴CD⊥平面ABC.而CD 平面ADC ,∴平面ABC ⊥平面ADC ,且它们的交线为AC . ∵BF 平面ABC ,BF ⊥AC ,垂足为点F , ∴BF ⊥平面ACD .而BE ⊥AD ,AD 平面ACD ,∴EF ⊥AD .平面ABD ∩平面ACD =AD ,∴∠BEF 是面ABD 与面ACD 所成的二面角的平面角. 由BE =AD =,AC =,AB =2,可求出BF =.∴sin ∠BEF ==27212=.∵∠BEF 为锐角,∴∠BEF =arcsin. 故所求二面角的大小为arcsin.(3)过点D 在下底面作DG ∥BC 交⊙O 于点G ,则∠GDA 为BC 与AD 所成的角.连结BG 、AG ,由BD 是⊙O 的直径,得GD ⊥BG ,则AG ⊥DG ,BC =GD .∴cos ∠GDA ===. ∴∠GDA =arccos.∴所求BC 与AD 所成的角的大小为arccos. ●思悟小结1.利用向量解立体几何问题,要仔细分析问题特点,把已知条件用向量表示,把一些待求的量用基向量或其他向量表示,将几何的位置关系的证明问题或数量关系的运算问题转化为典型的向量运算,以算代证,以值定形.这种方法可减少复杂的空间结构分析,使得思路简捷、方法清晰、运算直接,能迅速准确地解决问题.2.线线垂直、两异面直线的夹角、两点间的距离等问题的解决往往借助于向量坐标.正方体、长方体、底面有一角为直角的直棱柱、底面为菱形的直四棱柱、四棱锥等凡能出现三条两两垂直直线的图形,常常考虑空间直角坐标系.3.在综合问题中,首先要注意是否构建直角坐标系,能较易建立直角坐标系的,尽量建立直角坐标系.其次要注意向量运算与基本性质相结合的论述,这是今后的方向,可以“形到形”,可以“数到形”,注意数形结合,向量方法与传统方法各有千秋,相得益彰.必须熟练掌握向量的基本知识和技能,尤其提出如下几点:(1)怎样选择应用基底(不设直角坐标系)和建立直角坐标系及坐标系建立技巧; (2)法向量的应用对处理角和距离的重要性; (3)怎样用向量解决立体几何中的几大常见题型;(4)准确判断是否选用向量处理问题,明确向量解题的缺点; (5)空间向量是怎样由平面向量拓展而来的. ●教师下载中心教学点睛要给学生归纳、总结,使学生系统地掌握线线、线面、面面的位置关系,特别是平行与垂直的判定与性质,通过对照,深刻理解异面直线所成的角、斜线与平面所成的角、二面角的平面角,理解点到面的距离、异面直线的距离.通过解题总结证明立体几何问题的常见方法,注意培养学生的空间想象能力.拓展题例【例1】已知直线a∥α,且a与α间的距离为d,a在α内的射影为a′,l为平面α内与a′平行的任一直线,则a与l之间的距离的取值范围是A.[d,+∞)B.(d,+∞)C.(0,d]D.{d}解析:如图,在a上任取一点P作PO⊥a′,垂足为O,过O作OA⊥l,垂足为A,连结PA.则PA⊥l,PA⊥a,故PA就是a与l之间的距离.在Rt△POA中,PA>PO=d,选B.答案:B【例2】如图,已知底面半径为r的圆柱被一个平面所截,剩下部分母线长的最大值为a,最小值为b,那么圆柱被截后剩下部分的体积是__________.解析:两个相同的几何体倒立一个,对应合缝,恰好形成一个圆柱体.答案:πr2(a+b)【例3】(xx年北京西城区一模题)如图,正三棱柱ABC—A1B1C1的所有棱长均为2,P 是侧棱AA1上任意一点.(1)求证:B1P不可能与平面ACC1A1垂直;(2)当BC1⊥B1P时,求线段AP的长;(3)在(2)的条件下,求二面角C—B1P—C1的大小.(1)证明:连结B1P,假设B1P⊥平面ACC1A1,则B1P⊥A1C1.由于三棱柱ABC—A1B1C1为正三棱柱,∴AA1⊥A1C1.∴A1C1⊥侧面ABB1A1.∴A1C1⊥A1B1,即∠B1A1C1=90°.这与△A1B1C1是等边三角形矛盾.∴B1P不可能与平面ACC1A1垂直.(2)解:取A1B1的中点D,连结C1D、BD、BC1,则C1D⊥A1B1,又∵AA1⊥平面A1B1C1,∴AA1⊥C1D.∴C1D⊥平面ABB1A1.∴BD是BC1在平面ABB1A1上的射影.∵BC1⊥B1P,∴BD⊥B1P.∴∠B1BD=90°-∠BB1P=∠A1B1P.又A1B1=B1B=2,∴△BB1D≌△B1A1P,A1P=B1D=1.∴AP=1.(3)解:连结B1C,交BC1于点O,则BC1⊥B1C.又BC1⊥B1P,∴BC1⊥平面B1CP. 过O在平面CPB1上作OE⊥B1P,交B1P于点E,连结C1E,则B1P⊥C1E,∴∠OEC1是二面角C—B1P—C1的平面角.由于CP=B1P=,O为B1C的中点,连结OP,∴PO⊥B1C,OP·OB1=OE·B1P.∴OE=.∴tan∠OEC1==.∴∠OEC1=arctan.故二面角C—B1P—C1的大小为arctan.。

2019-2020年高考数学第一轮复习教案人教版(I)

2019-2020年高考数学第一轮复习教案人教版(I)

2019-2020年高考数学第一轮复习教案人教版(I)【教学目标】掌握两平面垂直的判定和性质,并用以解决有关问题.【知识梳理】1.定义两个平面相交,如果所成的二面角是直二面角,就说这两个平面互相垂直.重要提示1.两个平面垂直的性质定理,即:“如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面”是作点到平面距离的依据,要过平面外一点P作平面α的垂线,通常是先作(找)一个过点P并且和α垂直的平面β,设β α=l,在β内作直线a⊥l,则a⊥α.2.三种垂直关系的证明(1)线线垂直的证明①利用“两条平行直线中的一条和第三条直线垂直,那么另一条也和第三条直线垂直”;②利用“线面垂直的定义”,即由“线面垂直⇒线线垂直”;③利用“三垂线定理或三垂线定理的逆定理”.(2)线面垂直的证明①利用“线面垂直的判定定理”,即由“线线垂直⇒线面垂直”;②利用“如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于同一个平面”;③利用“面面垂直的性质定理”,即由“面面垂直⇒线面垂直”;④利用“一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面”.(3)面面垂直的证明①利用“面面垂直的定义”,即证“两平面所成的二面角是直二面角;②利用“面面垂直的判定定理”,即由“线面垂直⇒面面垂直”.【点击双基】1、在三棱锥A-BCD中,若AD⊥BC,BD⊥AD,⊿BCD是锐角三角形,那么必有……()A、平面ABD⊥平面ADCB、平面ABD⊥平面ABCC、平面ADC⊥平面BCDD、平面ABC⊥平面BCDCB E H ASm AP n B α a γ β 2、直三棱柱ABC-A 1B 1C 1中,∠ACB=900,AC=AA 1=a ,则点A 到平面A 1BC 的距离是( )A 、aB 、 2 aC 、22a D 、 3 a 3、设两个平面α、β,直线l ,下列三个条件:① l ⊥α; ② l ∥β;③α⊥β,若以其中两个作为前提,另一个作为结论,则可构成三个命题,这三个命题中正确的个数是( )A 、3B 、2C 、 1D 、 04、在正方体ABCD-A 1B 1C 1D 1中,截面A 1BD 与底面ABCD 所成的二面角A 1-BD-A 的正切值为 。

2020版高考数学(文)大一轮复习导学案:第八章 平面解析几何

2020版高考数学(文)大一轮复习导学案:第八章 平面解析几何

第一节直线的倾斜角与斜率、直线的方程[基础梳理]1.直线的倾斜角(1)定义:(2)范围:直线的倾斜角α的取值范围是:[0,π).2.直线的斜率3.两直线的平行、垂直与其斜率的关系4.直线方程的五种形式续表5.线段的中点坐标公式若点P 1,P 2的坐标分别为(x 1,y 1),(x 2,y 2),线段P 1,P 2的中点M 的坐标为(x ,y ),则⎩⎪⎨⎪⎧x =x 1+x 22,y =y 1+y 22,此公式为线段P 1P 2的中点坐标公式.1.斜率与倾斜角的两个关注点(1)倾斜角α的范围是[0,π),斜率与倾斜角的函数关系为k =tan α,图象为:(2)当倾斜角为时,直线垂直于x 轴,斜率不存在.2.直线A 1x +B 1y +C 1=0与A 2x +B 2y +C 2=0垂直的充要条件为A 1A 2+B 1B 2=0. [四基自测]1.直线l :x sin 30°+y cos 150°+1=0的斜率是( ) A.33 B. 3 C .- 3 D .-33 答案:A2.已知直线l 经过点P (-2,5),且斜率为-34,则直线l 的方程为( ) A .3x +4y -14=0 B .3x -4y +14=0 C .4x +3y -14=0 D .4x -3y +14=0答案:A3.已知直线斜率的绝对值为1,其倾斜角为________. 答案:π4或34π4.过点(5,0),且在两轴上的截距之差为2的直线方程为________. 答案:3x +5y -15=0或7x +5y -35=0考点一 直线的倾斜角与斜率◄考基础——练透 [例1] (1)(2019·常州模拟)若ab <0,则过点P ⎝ ⎛⎭⎪⎫0,-1b 与Q ⎝ ⎛⎭⎪⎫1a ,0的直线PQ 的倾斜角的取值范围是________.(2)直线l :ax +(a +1)y +2=0的倾斜角大于45°,求a 的取值范围.解析:(1)k PQ =-1b -00-1a=a b <0,又倾斜角的取值范围为[0,π),故直线PQ 的倾斜角的取值范围为⎝ ⎛⎭⎪⎫π2,π.(2)当a =-1时,直线l 的倾斜角为90°,符合要求;当a ≠-1时,直线l 的斜率为-aa +1.则有-a a +1>1或-a a +1<0,解得-1<a <-12或a <-1或a >0.综上可知,实数a的取值范围是⎝ ⎛⎭⎪⎫-∞,-12∪(0,+∞).答案:(1)(π2,π) (2)见解析1.三个不同的点A (2,3),B (-1,5),C (x ,x 2+2x +6)共线,则实数x 的值为________.解析:因为三个不同的点A (2,3),B (-1,5),C (x ,x 2+2x +6)共线,所以由斜率公式得5-3-1-2=x 2+2x +6-3x -2,解得x =-1或-53,当x =-1时,点C ,B 重合,舍去.所以x =-53.答案:-53 2.(2019·太原模拟)已知点A (2,-3),B (-3,-2),直线l 过点P (1,1)且与线段AB 有交点,则直线l 的斜率k 的取值范围为________. 解析:如图所示,k P A =1+31-2=-4,k PB =1+21+3=34.要使直线l 与线段AB 有交点,则有k ≥34或k ≤-4.答案:(-∞,-4]∪⎣⎢⎡⎭⎪⎫34,+∞考点二 求直线方程◄考能力——知法 [例2] 求适合下列条件的直线方程:(1)经过点P (3,2),且在两坐标轴上的截距相等;(2)求过点(2,1)且在x 轴上的截距与在y 轴上的截距之和为6的直线方程. (3)求经过点A (-5,2),且在x 轴上的截距等于在y 轴上截距的2倍的直线方程. 解析:(1)设直线l 在x ,y 轴上的截距均为a ,若a =0,即l 过点(0,0)和P (3,2), ∴l 的方程为y =23x ,即2x -3y =0. 若a ≠0,则设l 的方程为x a +ya =1, ∵l 过点(3,2),∴3a +2a =1, ∴a =5,即l 的方程为x +y -5=0,综上可知,直线l 的方程为2x -3y =0或x +y -5=0. (2)法一:由题意可设直线方程为x a +yb =1.则⎩⎪⎨⎪⎧a +b =6,2a +1b=1,解得a =b =3,或a =4,b =2.故所求直线方程为x +y -3=0或x +2y -4=0.法二:设直线方程为y =kx +b ,则在x 轴上的截距为-b k ,所以b +⎝ ⎛⎭⎪⎫-b k =6,①又直线过点(2,1),则2k +b =1.② 由①②得⎩⎨⎧k =-1,b =3或⎩⎪⎨⎪⎧k =-12,b =2.故所求直线方程为x +y -3=0或x +2y -4=0. (3)当直线不过原点时, 设所求直线方程为x 2a +ya =1,将(-5,2)代入所设方程,解得a =-12, 此时,直线方程为x +2y +1=0. 当直线过原点时,斜率k =-25, 直线方程为y =-25x ,即2x +5y =0, 综上可知,所求直线方程为 x +2y +1=0或2x +5y =0.1.求直线方程的方法2.考虑问题的特殊情况,如斜率不存在的情况,截距等于零的情况.1.在本例(1)中,过点(3,2),且在两轴上截距互为相反数的直线方程是什么? 解析:(1)若直线过原点,适合题意,其方程为y =23x , 即2x -3y =0.(2)若直线不过原点,设直线方程为x a +y-a=1,∴3a -2a =1,∴a =1,方程为x -y -1=0.综上,直线方程为2x -3y =0或x -y -1=0.2.在本例(3)中,改为“过点A (-5,2),且与两坐标轴形成的三角形面积为92”,求直线方程.解析:设所求直线在x 轴的截距为a ,在y 轴上的截距为b , 则⎩⎪⎨⎪⎧-5a +2b =112|ab |=92,∴⎩⎨⎧a =-3b =-3,或⎩⎪⎨⎪⎧a =152b =65.∴方程为x +y +3=0或4x +25y -30=0. 考点三 两条直线的位置关系◄考基础——练透[例3] (1)“a =0”是“直线l 1:(a +1)x +a 2y -3=0与直线l 2:2x +ay -2a -1=0平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:(1)当a =0时,l 1:x -3=0,l 2:2x -1=0,故l 1∥l 2. 当l 1∥l 2时,若l 1与l 2斜率不存在,则a =0;若l 1与l 2斜率都存在,则a ≠0,有-a +1a 2=-2a 且3a 2≠2a +1a ,解得a ∈,故当l 1∥l 2时,有a =0.故选C. 答案:C(2)已知直线l 1:(a +2)x +(1-a )y -3=0与直线l 2:(a -1)x +(2a +3)y +2=0,则“a =1”是“l 1⊥l 2”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:l 1⊥l 2的充要条件是(a +2)(a -1)+(1-a )·(2a +3)=0,即a 2-1=0,故有(a -1)(a +1)=0,解得a =±1.显然“a =1”是“a =±1”的充分不必要条件,故选A. 答案:A两直线位置关系的判断方法1.如果直线ax +(1-b )y +5=0和(1+a )x -y -b =0同时平行于直线x -2y +3=0,求ab .解析:法一:由题意, 得⎩⎨⎧a ·(-2)-(1-b )·1=0,(1+a )·(-2)-(-1)×1=0.解得a =-12,b =0.易知此时它们的截距也不相等,所以ab =0.法二:直线x -2y +3=0的斜率为12,则另两条直线的斜率一定存在且等于12,所以12=-a 1-b =-1+a -1,解得a =-12,b =0,易知此时它们的截距也不相等,所以ab =0.2.若过点A (-2,m ),B (m,4)的直线与直线2x +y +2=0平行,则m 的值为________.解析:∵过点A ,B 的直线平行于直线2x +y +2=0, ∴k AB =4-mm +2=-2,解得m =-8.答案:-8逻辑推理、直观想象_求直线方程的易错问题(一)直线方程是解析几何的入门内容,基本概念、公式较多,由于学生对直线的构成要素理解不清或方程形式认识欠缺,而导致错误. 1.对倾斜的概念与范围理解有误[例1] 已知直线l 过点(2,1),且与x 轴的夹角为45,求直线l 的方程. 解析:由直线l 与x 轴的夹角为45知,直线l 的倾斜角为45或135.当直线l 的倾斜角为45时,其斜率为k =tan 45=1,而直线l 过点(2,1),故其方程为y -1=x -2,即y =x -1;当直线l 的倾斜角为135时,其斜率为k =tan 135=-1,而直线l 过点(2,1),故其方程为y -1=-(x -2),即y =-x +3.综上所述,所求直线方程为y =x -1或y =-x +3.2.忽略两直线平行与重合的区别 例2已知直线l 1:x +m 2y +6=0与l 2:(m -2)x +3my +2m =0平行,则实数m =________.解析:(1)若两直线的斜率都存在,设斜率分别为k 1,k 2,截距分别为b 1,b 2,则k 1=-1m 2,k 2=-m -23m ,b 1=-6m 2,b 2=-23.因为l 1∥l 2,故k 1=k 2且b 1≠b 2,即-1m 2=-m -23m 且-6m 2≠-23,解得m =-1. (2)若两直线的斜率都不存在,则m =0. 综上所述,m =-1或0. 答案:-1或0课时规范练 A 组 基础对点练1.设直线ax +by +c =0的倾斜角为α,且sin α+cos α=0,则a ,b 满足( ) A .a +b =1 B .a -b =1 C .a +b =0D .a -b =0解析:因为sin α+cos α=0, 所以tan α=-1.又因为α为倾斜角,所以斜率k =-1. 而直线ax +by +c =0的斜率k =-ab , 所以-ab =-1,即a -b =0. 答案:D2.直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围是( ) A .[-3,1]B .(-∞,-3]∪[1,+∞) C.⎣⎢⎡⎦⎥⎤-33,1 D.⎝⎛⎦⎥⎤-∞,-33∪[1,+∞)解析:因为k AP =1-02-1=1,k BP =3-00-1=-3,所以k ∈(-∞,-3]∪[1,+∞). 答案:B3.(2019·开封模拟)过点A (-1,-3),斜率是直线y =3x 的斜率的-14的直线方程为( ) A .3x +4y +15=0 B .3x +4y +6=0 C .3x +y +6=0 D .3x -4y +10=0解析:设所求直线的斜率为k,依题意k=-34,又直线经过点A(-1,-3),因此所求直线方程为y+3=-34(x+1),即3x+4y+15=0.答案:A4.直线l经过点A(1,2),在x轴上的截距的取值范围是(-3,3),则其斜率的取值范围是( )A.-1<k<1 5B.k>1或k<1 2C.k>1或k<1 5D.k>12或k<-1解析:设直线的斜率为k,则直线方程为y-2=k(x-1),令y=0,得直线l在x轴上的截距为1-2 k,则-3<1-2k<3,解得k>12或k<-1.答案:D5.(2019·张家口模拟)若直线mx+ny+3=0在y轴上的截距为-3,且它的倾斜角是直线3 x-y=33的倾斜角的2倍,则( )A.m=-3,n=1B.m=-3,n=-3C.m=3,n=-3D.m=3,n=1解析:对于直线mx+ny+3=0,令x=0得y=-3n,即-3n=-3,n=1.因为3x-y=33的倾斜角为60°,直线mx+ny+3=0的倾斜角是直线3x-y=33的2倍,所以直线mx+ny+3=0的倾斜角为120°,即-mn=-3,m= 3.答案:D6.经过点A (-5,2),且在x 轴上的截距等于在y 轴上截距的2倍的直线方程为( )A .5x +2y =0或x +2y +1=0B .x +2y +1=0C .2x +5y =0或x +2y +1=0D .2x +5y =0解析:当截距为零时,直线方程为y =-25x ;当截距不为零时,设直线方程为x 2b +y b =1,因为直线过点A (-5,2),所以-52b +2b =1,计算得b =-12,所以直线方程为x -1+y-12=1,即x +2y +1=0,所以所求直线方程为2x +5y =0或x+2y +1=0. 答案:C7.若直线y =kx +1与以A (3,2),B (2,3)为端点的线段有公共点,则k 的取值范围是________.解析:由题可知直线y =kx +1过定点P (0,1),且k PB =3-12-0=1,k P A =2-13-0=13,结合图象可知,当直线y =kx +1与以A (3,2),B (2,3)为端点的线段有公共点时,k 的取值范围是⎣⎢⎡⎦⎥⎤13,1.答案:⎣⎢⎡⎦⎥⎤13,18.将直线y =x +3-1绕它上面一点(1,3)沿逆时针方向旋转15°,所得到的直线方程是________.解析:由y =x +3-1得直线的斜率为1,倾斜角为45°.因为沿逆时针方向旋转15°,角变为60°,所以所求直线的斜率为 3.又因为直线过点(1,3),所以直线方程为y -3=3(x -1),即y =3x .答案:y =3x9.已知点A (-1,t ),B (t,4),若直线AB 的斜率为2,则实数t 的值为________. 解析:由题意知,k AB =2,即4-t t +1=2,解得t =23.答案:2310.已知直线l 1:mx +y +4=0和直线l 2:(m +2)x -ny +1=0(m ,n >0)互相垂直,则mn 的取值范围为________.解析:因为l 1⊥l 2,所以m (m +2)+1×(-n )=0,得n =m 2+2m ,因为m >0,所以mn =m m 2+2m =1m +2,则0<1m +2<12,故m n 的取值范围为(0,12).答案:(0,12)B 组 能力提升练11.若直线l :kx -y +2+4k =0(k ∈R )交x 轴负半轴于A ,交y 轴正半轴于B ,则当△AOB 的面积取最小值时直线l 的方程为( ) A .x -2y +4=0 B .x -2y +8=0 C .2x -y +4=0D .2x -y +8=0解析:由l 的方程,得A ⎝ ⎛⎭⎪⎫-2+4k k ,0,B (0,2+4k ).依题意得⎩⎪⎨⎪⎧-2+4kk <0,2+4k >0,解得k >0.因为S =12|OA |·|OB |=12⎪⎪⎪⎪⎪⎪2+4k k ·|2+4k |=12(2+4k )2k =12⎝ ⎛⎭⎪⎫16k +4k +16≥12×(2×8+16)=16.当且仅当16k =4k ,即k =12时,等号成立.此时l 的方程为x -2y +8=0. 答案:B12.设直线l 的方程为x +y cosθ+3=0(θ∈R ),则直线l 的倾斜角α的取值范围是( ) A .[0,π) .⎝ ⎛⎭⎪⎫π4,π2 C.⎣⎢⎡⎦⎥⎤π4,3π4 .⎝ ⎛⎭⎪⎫π4,π2∪⎝ ⎛⎭⎪⎫π2,3π4解析:当cos θ=0时,方程变为x +3=0,其倾斜角为π2; 当cos θ≠0时,由直线l 的方程,可得斜率k =-1cos θ. 因为cos θ∈[-1,1]且cos θ≠0, 所以k ∈(-∞,-1]∪[1,+∞), 即tan α∈(-∞,-1]∪[1,+∞),又α∈[0,π),所以α∈⎣⎢⎡⎭⎪⎫π4,π2∪⎝ ⎛⎦⎥⎤π2,3π4,综上知,直线l 的倾斜角α的取值范围是⎣⎢⎡⎦⎥⎤π4,3π4.答案:C 13.(2019·西安临潼区模拟)已知直线x +a 2y -a =0(a 是正常数),当此直线在x 轴,y 轴上的截距和最小时,正数a 的值是( ) A .0 B .2 C. 2D .1解析:直线x +a 2y -a =0(a 是正常数)在x 轴,y 轴上的截距分别为a 和1a ,此直线在x 轴,y 轴上的截距和为a +1a ≥2,当且仅当a =1时,等号成立.故当直线x +a 2y -a =0在x 轴,y 轴上的截距和最小时,正数a 的值是1,故选D. 答案:D 14.(2019·北京二十四中模拟)已知点M (0,-1),点N 在直线x -y +1=0上,若直线MN 垂直于直线x +2y -3=0, 则点N 的坐标是( ) A .(-2,-1) B .(2,3) C .(2,1)D .(-2,1)解析:∵点N 在直线x -y +1=0上, ∴可设点N 坐标为(x 0,x 0+1).根据经过两点的直线的斜率公式,得k MN =(x 0+1)+1x=x 0+2x 0.∵直线MN 垂直于直线x +2y -3=0,直线x +2y -3=0的斜率k =-12, ∴k MN ×⎝ ⎛⎭⎪⎫-12=-1,即x 0+2x 0=2,解得x 0=2.因此点N 的坐标是(2,3),故选B. 答案:B15.设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|P A |·|PB |的最大值是________.解析:动直线x +my =0(m ≠0)过定点A (0,0),动直线mx -y -m +3=0过定点B (1,3).由题意易得直线x +my =0与直线mx -y -m +3=0垂直,即P A ⊥PB .所以|P A |·|PB |≤|P A |2+|PB |22=|AB |22=12+322=5,即|P A |·|PB |的最大值为5. 答案:5 16.已知直线x =π4是函数f (x )=a sinx -b cosx (ab ≠0)图象的一条对称轴,则直线ax +by +c =0的倾斜角为________. 解析:f (x )=a 2+b 2sin(x -φ),其中tan φ=b a ,将x =π4代入,得sin(π4-φ)=±1,即π4-φ=k π+π2,k ∈Z ,解得φ=-k π-π4,k ∈Z .所以tan φ=tan ⎝ ⎛⎭⎪⎫-k π-π4=-1=b a ,所以直线ax +by +c =0的斜率为-a b =1,故倾斜角为π4.答案:π4第二节 直线的交点与距离公式[基础梳理] 三种距离1.点到直线的距离公式 (1)直线方程为一般式. (2)公式中分母与点无关. (3)分子与点及直线方程都有关. 2.两平行直线间的距离(1)是一条直线上任意一点到另一条直线的距离. (2)也可以看成是两条直线上各取一点的最短距离. [四基自测]1.点(1,-1)到直线x -y +1=0的距离是( ) A.12B.32C.22D.322答案:D2.直线2x -y =-10,y =x +1,y =ax -2交于一点,则a 的值为________. 答案:233.已知点A (3,2)和B (-1,4)到直线ax +y +1=0的距离相等,则a 的值为________.答案:-4或124.已知两平行线l 1:2x +3y =6,l 2:2x +3y -1=0,则l 1与l 2间距离为________.答案:51313考点一 直线的交点及应用◄考基础——练透 [例1] 求满足下列条件的直线方程:(1)经过两条直线2x -3y +10=0和3x +4y -2=0的交点,且垂直于直线3x -2y +2 019=0.(2)经过两条直线2x +y -8=0和x -2y +1=0的交点,且平行于直线4x -3y +2 018=0.(3)已知直线l 经过点P (3,1),且被两条平行直线l 1:x +y +1=0和l 2:x +y +6=0截得的线段长为5,求直线l 的方程.解析:(1)解方程组⎩⎨⎧2x -3y +10=0,3x +4y -2=0得两条直线的交点坐标为(-2,2),因为所求直线垂直于直线3x -2y +2 019=0,所以所求直线的斜率为k =-23,所以所求直线方程为y -2=-23(x +2),即2x +3y -2=0.(2)解方程组⎩⎨⎧2x +y -8=0,x -2y +1=0得两条直线的交点坐标为(3,2),因为所求直线平行于直线4x -3y +2 018=0,所以所求直线的斜率为k =43,所以所求直线方程为y -2=43(x -3),即4x -3y -6=0. (3)法一:若直线l 的斜率不存在,则直线l 的方程为x =3,此时与l 1,l 2的交点分别为A ′(3,-4),B ′(3,-9),截得的线段A ′B ′的长|A ′B ′|=|-4+9|=5,符合题意.若直线l 的斜率存在,则设直线l 的方程为y =k (x -3)+1. 解方程组⎩⎨⎧ y =k (x -3)+1,x +y +1=0,得A ⎝ ⎛⎭⎪⎫3k -2k +1,-4k -1k +1,解方程组⎩⎨⎧y =k (x -3)+1,x +y +6=0,得B ⎝ ⎛⎭⎪⎫3k -7k +1,-9k -1k +1.由|AB |=5,得⎝ ⎛⎭⎪⎫3k -2k +1-3k -7k +12+⎝ ⎛⎭⎪⎫-4k -1k +1+9k -1k +12=52.解之,得k =0,即所求的直线方程为y =1. 综上可知,所求直线l 的方程为x =3或y =1. 法二:如图所示,作直线l 1:x +y +1=0,l 2:x +y +6=0.l 1与x 、y 轴的交点A (-1,0)、B (0,-1), l 2与x 、y 轴交点C (-6,0)、D (0,-6). ∴|BD |=5,|AC |=5.过点(3,1)与l 1、l 2截得的线段长为5. 即平行x 轴或y 轴.∴所求直线方程为x =3或y =1.1.两直线交点的求法求两直线的交点坐标,就是解由两直线方程组成的方程组,以方程组的解为坐标的点即为交点.2.求过两直线交点的直线方程的方法(1)直接法:①先求出两直线的交点坐标;②结合题设中的其他条件,写出直线方程;③将直线方程化为一般式.(2)直线系法:①设过两直线A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0交点的直线方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0. ②利用题设条件,求λ的值,得出直线方程.③验证A 2x +B 2y +C 2=0是否符合题意. (3)数形结合法,求直线截得的线段长.1.将(1)中的条件改为“经过两条直线2x -3y +10=0和3x +4y -2=0的交点,且与坐标轴围成的三角形的面积为1”.解析:解方程组⎩⎨⎧2x -3y +10=0,3x +4y -2=0得两条直线的交点坐标为(-2,2),设所求直线的斜率为k (k ≠0),直线方程为y -2=k (x +2),所以两个截距分别为2k +2,-2k +2k ,所以直线与坐标轴围成三角形的面积为S =12|2k +2|⎪⎪⎪⎪⎪⎪2k +2k =1,解方程得k =-2或-12,所以所求直线方程为2x +y +2=0或x +2y -2=0. 2.本例(3)改为过点M (0,1)作直线,使它被两条直线l 1:x -3y +10=0,l 2:2x +y -8=0所截得的线段恰好被M 所平分,则此直线方程为________.解析:过点M 且与x 轴垂直的直线是x =0,它和直线l 1,l 2的交点分别是⎝ ⎛⎭⎪⎫0,103,(0,8),显然不符合题意,故可设所求直线方程为y =kx +1,其图象与直线l 1,l 2分别交于A ,B 两点,则有①⎩⎨⎧y A =kx A +1,x A -3y A +10=0,②⎩⎨⎧y B =kx B +1,2x B +y B -8=0. 由①解得x A =73k -1,由②解得x B =7k +2. 因为点M 平分线段AB ,所以x A +x B =2x M , 即73k -1+7k +2=0,解得k =-14. ∴所求直线为y =-14x +1,即x +4y -4=0. 答案:x +4y -4=0考点二 距离问题◄考能力——知法[例2] (1)已知两条平行直线l 1:mx +8y +n =0与l 2:2x +my -1=0间的距离为5,则直线l 1的方程为________. 解析:因为l 1∥l 2,所以m 2=8m ≠n-1,所以⎩⎨⎧ m =4,n ≠-2或⎩⎨⎧m =-4,n ≠2.①当m =4时,直线l 1的方程为4x +8y +n =0, 把l 2的方程写成4x +8y -2=0, 所以|n +2|16+64=5,解得n =-22或18. 故所求直线l 1的方程为2x +4y -11=0或2x +4y +9=0. ②当m =-4时,直线l 1的方程为4x -8y -n =0, 把l 2的方程写成4x -8y -2=0, 所以|-n +2|16+64=5,解得n =-18或22. 故所求直线l 1的方程为2x -4y +9=0或2x -4y -11=0. 答案:2x ±4y +9=0或2x ±4y -11=0 (2)(2019·昆明模拟)点P 到点A ′(1,0)和直线x =-1的距离相等,且P 到直线y =x 的距离等于22,这样的点P 共有( ) A .1个 B .2个 C .3个D .4个解析:设点P (x ,y ),由题意知(x -1)2+y 2=|x +1|,且22=|x -y |2,所以⎩⎨⎧ y 2=4x ,|x -y |=1,即⎩⎨⎧y 2=4x ,x -y =1, ①或⎩⎨⎧y 2=4x ,x -y =-1,② 解①得⎩⎨⎧ x =3-22,y =2-22或⎩⎨⎧x =3+22,y =2+22,解②得⎩⎨⎧x =1,y =2,因此,这样的点P 共有3个.答案:C (3)(2018·高考全国卷Ⅲ)直线x +y +2=0分别与x 轴,y 轴交于A ,B 两点,点P 在圆(x -2)2+y 2=2上,则△ABP 面积的取值范围是( ) A .[2,6] B .[4,8] C .[2,32]D .[22,32]解析:设圆(x -2)2+y 2=2的圆心为C ,半径为r ,点P 到直线x +y +2=0的距离为d ,则圆心C (2,0),r =2,所以圆心C 到直线x +y +2=0的距离为22,可得d max =22+r =32,d min =22-r = 2.由已知条件可得|AB |=22,所以△ABP 面积的最大值为12|AB |·d max =6,△ABP 面积的最小值为12AB ·d min =2. 综上,△ABP 面积的取值范围是[2,6]. 故选A. 答案:A1.用点到直线的距离公式,直线方程必须为一般式;2.两平行线间的距离公式,两直线方程中x ,y 的系数分别相同; 3.两个公式中的“绝对值”号不可盲目去掉,要等价变化.1.(2019·厦门模拟)若两平行直线3x -2y -1=0,6x +ay +c =0之间的距离为21313,则c 的值是________.解析:依题意知,63=a -2≠c-1,解得a =-4,c ≠-2,即直线6x +ay +c =0可化为3x -2y +c2=0, 又两平行线之间的距离为21313,所以⎪⎪⎪⎪⎪⎪c 2+132+(-2)2=21313,解得c =2或-6. 答案:2或-62.已知直线l 在两坐标轴上的截距相等,且点A (1,3)到直线l 的距离为2,则直线l 的方程为________.解析:当直线过原点时,设直线方程为y =kx ,由点A (1,3)到直线l 的距离为2,得|k -3|1+k2=2,解得k =-7或k =1,此时直线l 的方程为y =-7x 或y =x ;当直线不过原点时,设直线方程为x +y =a ,由点A (1,3)到直线l 的距离为2,得|4-a |2=2,解得a =2或a =6,此时直线l 的方程为x +y -2=0或x +y -6=0.综上所述,直线l 的方程为y =-7x 或y =x 或x +y -2=0或x +y -6=0.答案:y =-7x 或y =x 或x +y -2=0或x +y -6=0 考点三 对称问题◄考基础——练透 角度1 对称问题的求法[例3] 已知直线l :2x -3y +1=0,点A (-1,-2).求: (1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程; (3)直线l 关于点A 的对称直线l ′的方程. 解析:(1)设对称点A ′的坐标为(m ,n ),由已知可得⎩⎪⎨⎪⎧n +2m +1·23=-1,2·m -12-3·n -22+1=0,解得⎩⎪⎨⎪⎧m =-3313,n =413,即A ′⎝ ⎛⎭⎪⎫-3313,413.(2)在直线m 上取一点,如B (2,0),则B 关于l 的对称点必在m ′上,设对称点为B ′(a ,b ),则由⎩⎪⎨⎪⎧2·a +22-3·b +02+1=0,b -0a -2·23=-1,得B ′⎝ ⎛⎭⎪⎫613,3013.设m 与l 的交点为N ,由⎩⎨⎧2x -3y +1=0,3x -2y -6=0,得N (4,3).设直线m ′上任意一点的坐标为(x ,y ),由两点式得直线m ′的方程为y -33013-3=x -4613-4,即9x -46y +102=0. (3)法一:在l :2x -3y +1=0上任取两点,如M (1,1),N (4,3).则M ,N 关于点A 的对称点M ′,N ′均在直线l ′上.易知M ′(-3,-5),N ′(-6,-7),由两点式可得l ′的方程为2x -3y -9=0.法二:设直线l 关于点A 的对称直线l ′上的任意一点P (x ,y ),则点P (x ,y )关于点A (-1,-2)的对称点为P ′(-2-x ,-4-y ). ∵点P ′在直线l 上,∴2(-2-x )-3(-4-y )+1=0,即2x -3y -9=0. 角度2 对称问题的应用 [例4] (1)(2019·淮安模拟)已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为________.(2)已知直线l :x -2y +8=0和两点A (2,0),B (-2,-4).在直线l 上求一点P ,使|P A |+|PB |最小.解析:(1)设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′, 所以⎩⎪⎨⎪⎧b -4a -(-3)·1=-1,-3+a 2-b +42+3=0,解得a =1,b =0.又反射光线经过点N (2,6). 所以所求直线的方程为y -06-0=x -12-1,即6x -y -6=0. (2)设A 关于直线l 的对称点为A ′(m ,n ), 则⎩⎪⎨⎪⎧n -0m -2=-2,m +22-2·n +02+8=0,解得⎩⎨⎧m =-2,n =8,故A ′(-2,8). P 为直线l 上的一点,则|P A |+|PB |=|P A ′|+|PB |≥|A ′B |,当且仅当B ,P ,A ′三点共线时,|P A |+|PB |取得最小值,为|A ′B |,点P 即是直线A ′B 与直线l 的交点,解方程组⎩⎨⎧ x =-2,x -2y +8=0,得⎩⎨⎧x =-2,y =3,故所求的点P 的坐标为(-2,3). 答案:(1)6x -y -6=0 (2)见解析有关对称问题的规律方法续表1.(2019·岳阳模拟)直线x-2y+1=0关于直线x=1对称的直线方程是( ) A.x+2y-1=0 B.2x+y-1=0C.2x+y-3=0 D.x+2y-3=0解析:法一:设所求直线上任一点为(x,y),则它关于x=1的对称点(2-x,y)在直线x-2y+1=0上,所以2-x-2y+1=0,化简得x+2y-3=0.法二:根据直线x-2y+1=0关于直线x=1对称的直线斜率是互为相反数得答案A或D,再根据两直线交点在直线x=1上知选D.答案:D2.已知三角形的一个顶点A(4,-1),它的两条角平分线所在直线的方程分别为l1:x-y-1=0和l2:x-1=0,则BC边所在直线的方程为_________________ _________________________________________________.解析:A 不在这两条角平分线上,因此l 1,l 2是另两个角的角平分线.点A 关于直线l 1的对称点A 1,点A 关于直线l 2的对称点A 2均在边BC 所在直线l 上. 设A 1(x 1,y 1),则有⎩⎪⎨⎪⎧y 1+1x 1-4×1=-1,x 1+42-y 1-12-1=0,解得⎩⎨⎧x 1=0,y 1=3,所以A 1(0,3).同理设A 2(x 2,y 2),易求得A 2(-2,-1). 所以BC 边所在直线方程为2x -y +3=0. 答案:2x -y +3=直观想象、逻辑推理——求直线方程易错问题(二) 一、混淆截距与距离[例1] 求过点(-5,-4)且与两坐标轴围成的三角形的面积为5的直线方程.解析:利用直线的截距式方程求解 可得4a +5b =-ab .又直线与两坐标轴围成的三角形的面积为5,则12|a |·|b |=5,即|ab |=10. 联立方程组⎩⎨⎧4a +5b =-ab ,|ab |=10,解得⎩⎪⎨⎪⎧a =-52,b =4或⎩⎨⎧a =5,b =-2. 所以,所求直线的方程为x-52+y 4=1或x 5+y-2=1,即8x -5y +20=0或2x -5y -10=0.二、对位置情形考虑不全[例2]求过点P(1,2)且与点A(2,3),B(4,-5)距离相等的直线方程.解析:(1)若A,B两点位于所求直线的同一侧,则所求直线与直线AB平行,故其斜率与直线AB的斜率相等,即k=k AB=-4.又所求直线过点P(1,2),故其方程为y-2=-4(x-1),即y=-4x+6.(2)若A,B两点位于所求直线的两侧,则所求直线经过线段AB的中点(3,-1).又所求直线过点P(1,2),故其方程为y-(-1)2-(-1)=x-31-3,即y=-32x+72.综上所述,所求直线方程为y=-4x+6或y=-32x+72.3.忽略平行线间距离公式的应用条件[例3]已知两平行直线l1:3x+4y+5=0与l2:6x+8y-15=0,求与l1,l2等距离的直线l的方程.解析:l2:6x+8y-15=0的方程等价变形为l2:3x+4y-152=0.由题意,直线l与两条平行直线l1:3x+4y+5=0、l2:3x+4y-152=0平行,故可设其方程为3x+4y+C=0.因为l与l1,l2的距离相等,即|5-C|32+42=|-152-C|32+42,解得C=-54.所以,直线l的方程为3x+4y-54=0,即12x+16y-5=0.课时规范练A组基础对点练1.若直线2x+3y-1=0与直线4x+my+11=0平行,则m的值为( )A.83 B .-83 C .-6D .6解析:由题设可得,m 3=42≠11-1,则m =6.答案:D 2.(2019·长沙模拟)已知M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪y -3x -2=3,N ={(x ,y )}|ax +2y +a =0}且M ∩N =,则a =( ) A .-2 B .-6 C .2D .-2或-6解析:由题意可知,集合M 表示过点(2,3)且斜率为3的直线,但除去点(2,3),而集合N 表示一条直线,该直线的斜率为-a2,且过点(-1,0),若M ∩N =,则有两种情况:①集合M 表示的直线与集合N 表示的直线平行,即-a2=3,解得a =-6;②集合N 表示的直线过点(2,3),即2a +2×3+a =0,解得a =-2.综上,a =-2或-6. 答案:D 3.(2019·石家庄模拟)直线2x +3y -k =0和直线x -ky +12=0的交点在x 轴上,则k 的值为( ) A .-24 B .24 C .6D .±6解析:直线2x +3y -k =0和直线x -ky +12=0的交点在x 轴上,可设交点坐标为(a,0),则⎩⎨⎧ 2a -k =0,a +12=0即⎩⎨⎧a =-12,k =-24.答案:A 4.(2019·郑州模拟)已知直线l 1的方程为3x +4y -7=0,直线l 2的方程为6x +8y +1=0,则直线l 1与l 2的距离为( )A.85 B.32C.4 D.8解析:因为直线l1的方程为3x+4y-7=0,直线l2的方程为6x+8y+1=0,即3x+4y+12=0,所以直线l1与l2的距离为⎪⎪⎪⎪⎪⎪12+732+42=32.答案:B5.垂直于直线y=x+1且与圆x2+y2=1相切于第一象限的直线方程是( ) A.x+y-2=0 B.x+y+1=0C.x+y-1=0 D.x+y+2=0解析:由题意可设圆的切线方程为y=-x+m,因为与圆相切于第一象限,所以m>0且d=|m|2=1,故m=2,所以切线方程为x+y-2=0,故选A.答案:A6.(2019·哈尔滨模拟)已知直线3x+2y-3=0与直线6x+my+7=0互相平行,则它们之间的距离是( )A.4 B.13 2C.21313 D.71326解析:由直线3x+2y-3=0与6x+my+7=0互相平行,得m=4,所以直线分别为3x+2y-3=0与3x+2y+72=0.它们之间的距离是⎪⎪⎪⎪⎪⎪72+332+22=132,故选B.答案:B7.若在平面直角坐标系内过点P(1,3)且与原点的距离为d的直线有两条,则d 的取值范围为________.解析:|OP|=2,当直线l过点P(1,3)且与直线OP垂直时,有d=2,且直线l 有且只有一条;当直线l 与直线OP 重合时,有d =0,且直线l 有且只有一条;当0<d <2时,有两条. 答案:0<d <28.已知直线l 过点P (3,4)且与点A (-2,2),B (4,-2)等距离,则直线l 的方程为________.解析:设所求直线的方程为y -4=k (x -3),即kx -y -3k +4=0,由已知及点到直线的距离公式可得|-2k -2+4-3k |1+k 2=|4k +2+4-3k |1+k2,解得k =2或k =-23,即所求直线的方程为2x +3y -18=0或2x -y -2=0. 答案:2x +3y -18=0或2x -y -2=09.已知直线x +2y =2分别与x 轴、y 轴相交于A ,B 两点,若动点P (a ,b )在线段A B 上,则ab 的最大值为________.解析:由题得A (2,0),B (0,1),由动点P (a ,b )在线段AB 上,可知0≤b ≤1,且a +2b =2,从而a =2-2b ,故ab =(2-2b )b =-2b 2+2b =-2⎝ ⎛⎭⎪⎫b -122+12.由于0≤b ≤1,故当b =12时,ab 取得最大值12.答案:1210.已知直线l 1与直线l 2:4x -3y +1=0垂直且与圆C :x 2+y 2=-2y +3相切,则直线l 1的方程是________.解析:圆C 的方程为x 2+(y +1)2=4,圆心为(0,-1),半径r =2.由已知可设直线l 1的方程为3x +4y +c =0,则|3×0+4×(-1)+c |32+42=2,解得c =14或c =-6.即直线l 1的方程为3x +4y +14=0或3x +4y -6=0. 答案:3x +4y +14=0或3x +4y -6=0B 组 能力提升练11.已知A (-2,1),B (1,2),点C 为直线y =13x 上的动点,则|AC |+|BC |的最小值为( ) A .2 2B .2 3C .2 5D .27解析:设B 关于直线y =13x 的对称点为B ′(x 0,y 0),则⎩⎪⎨⎪⎧y 0-2x 0-1=-3,y 0+22=13×x 0+12,解得B ′(2,-1).由平面几何知识得|AC |+|BC |的最小值即是|B ′A |=(2+2)2+(-1-1)2=2 5.故选C. 答案:C12.直线mx +4y -2=0与直线2x -5y +n =0垂直,垂足为(1,p ),则n 的值为( )A .-12B .-14C .10D .8解析:由直线mx +4y -2=0与直线2x -5y +n =0垂直,得2m -20=0,m =10,直线10x +4y -2=0过点(1,p ),有10+4p -2=0,解得p =-2,点(1,-2)又在直线2x -5y +n =0上,则2+10+n =0,解得n =-12.故选A. 答案:A13.在直角三角形ABC 中,点D 是斜边AB 的中点,点P 为线段CD 的中点,则|P A |2+|PB |2|PC |2=( ) A .2 B .4 C .5D .10解析:如图所示,以C 为原点,CB ,CA 所在直线为x 轴,y 轴,建立平面直角坐标系.设A (0,a ),B (b,0),则D (b 2,a 2),P (b 4,a4),由两点间的距离公式可得|P A |2=b 216+9a 216,|PB |2=9b 216+a 216,|PC |2=b 216+a216.所以|P A |2+|PB |2|PC |2=1016(a 2+b 2)a 2+b 216=10.答案:D14.已知直线l 被两条直线l 1:4x +y +3=0和l 2:3x -5y -5=0截得的线段的中点为P (-1,2),则直线l 的一般式方程为( ) A .3x -y +5=0 B .3x +y +1=0 C .x -3y +7=0D .x +3y -5=0解析:设直线l 与l 1的交点为A (x 0,y 0),由已知条件,得直线l 与l 2的交点为B (-2-x 0,4-y 0),并且满足 ⎩⎨⎧4x 0+y 0+3=0,3(-2-x 0)-5(4-y 0)-5=0,即⎩⎨⎧ 4x 0+y 0+3=0,3x 0-5y 0+31=0,解得⎩⎨⎧x 0=-2,y 0=5.因此直线l 的方程为y -2=5-2-2+1(x +1),即3x +y +1=0.答案:B15.光线从点A (-4,-2)射出,到直线y =x 上的点B 后被直线y =x 反射到y 轴上的点C ,又被y 轴反射,这时反射光线恰好过点D (-1,6),则BC 所在的直线方程为________.解析:作出草图,如图所示,设A 关于直线y =x 的 对称点为A ′,D 关于y 轴的对称点为D ′,则易得 A ′(-2,-4),D ′(1,6).由反射角等于入射角可得 A ′D ′所在直线经过点B 与C .故BC 所在的直线方 程为y -6=-4-6-2-1(x -1),即10x -3y +8=0.答案:10x -3y +8=016.△ABC 的边AB ,AC 所在直线方程分别为2x -y +1=0,x +3y -9=0,边BC的中点为D (2,-1),则这个三角形的面积是________. 解析:设点B (x ,y ),则C (4-x ,-2-y ),所以⎩⎨⎧ 2x -y +1=0,4-x +3(-2-y )-9=0,解这个方程组得⎩⎨⎧x =-2,y =-3,,所以B (-2,-3),C (6,1). 所以边BC 所在直线方程为y +1-3+1=x -2-2-2, 即x -2y -4=0,由方程组⎩⎨⎧2x -y +1=0,x +3y -9=0,解得顶点A ⎝ ⎛⎭⎪⎫67,197,所以高为d =⎪⎪⎪⎪⎪⎪67-2×197-45=6075,|BC |=82+42=45,所以三角形的面积为S =12|BC |d =12×45×6075=1207.答案:1207第三节 圆的方程[基础梳理] 1.圆的定义、方程2.点与圆的位置关系点M (x 0,y 0)与圆(x -a )2+(y -b )2=r 2的位置关系: (1)点M (x 0,y 0)在圆外,则(x 0-a )2+(y 0-b )2>r 2. (2)点M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2. (3)点M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2<r 2.1.方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件:A =C ≠0,B =0,且D 2+E 2-4F >0.2.以A (x 1,y 1),B (x 1,y 2)为直径的圆的方程为(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0. [四基自测]1.圆x 2+y 2-4x +6y =0的圆心坐标是( ) A .(2,3) B .(-2,3) C .(-2,-3) D .(2,-3)答案:D2.过点A (1,-1),B (-1,1),且圆心在直线x +y -2=0上的圆的方程是( ) A .(x -3)2+(y +1)2=4 B .(x +3)2+(y -1)2=4C .(x -1)2+(y -1)2=4D .(x +1)2+(y +1)2=4 答案:C3.△AOB 中,A (4,0),B (0,3),O (0,0),则△AOB 外接圆的方程为________. 答案:x 2+y 2-4x -3y =04.圆x 2+y 2+2y -3=0的圆心到直线y =x +1的距离为________. 答案:2考点一 求圆的方程◄考基础——练透[例1] (1)圆心为(1,1)且过原点的圆的方程是( ) A .(x -1)2+(y -1)2=1 B .(x +1)2+(y +1)2=1 C .(x +1)2+(y +1)2=2 D .(x -1)2+(y -1)2=2 (2)(2019·长沙模拟)已知三点A (1,0),B (0,3),C (2,3),则△ABC 外接圆的圆心到原点的距离为( )A.53 B.213 C.253D.43(3)在平面直角坐标系xOy 中,以点A (1,0)为圆心且与直线mx -y -2m -1=0(m ∈R )相切的所有圆中,半径最大的圆的标准方程为________.解析:(1)由题意可得圆的半径为r =2,则圆的标准方程为(x -1)2+(y -1)2=2. (2)圆心在直线BC 的垂直平分线,即x =1上,设圆心D (1,b ),由|DA |=|DB |得|b |=1+(b -3)2,解得b =233,所以圆心到原点的距离为 d =12+⎝ ⎛⎭⎪⎫2332=213.(3)因为直线与圆相切,所以半径等于圆心到直线的距离,r =|m -0-2m -1|1+m 2=|m +1|1+m 2=(1+m )21+m 2=1+2m 1+m 2,因为1+m 2≥2m ,所以2m 1+m 2≤1,所以r ≤1+1=2,所以半径最大的圆的标准方程为(x -1)2+y 2=2. 答案:(1)D (2)B (3)见解析求圆的方程的方法续表1.将本例(1)改为圆心在y 轴上,且过点(3,1)的圆与x 轴相切,则该圆的方程是( )A .x 2+y 2+10y =0B .x 2+y 2-10y =0C .x 2+y 2+10x =0D .x 2+y 2-10x =0解析:根据题意,设圆心坐标为(0,r ),半径为r ,则32+(r -1)2=r 2,解得r =5,可得圆的方程为x 2+y 2-10y =0,故选B. 答案:B2.本小题(3)改为:在平面直角坐标系xOy 中,过点A (1,0)作直线mx -y -2m -1=0(m ∈R )的垂线,垂足为B ,以A ,B 的连线段为直径的所有圆中,半径最大的圆的一般方程为________.解析:因为直线mx -y -2m -1=0(m ∈R )过定点 C (2,-1),所以直径AB 的最大值为|AC |=2, 所以所求半径最大的圆的标准方程为 ⎝ ⎛⎭⎪⎫x -322+⎝ ⎛⎭⎪⎫y +122=12, 化为一般方程为x 2+y 2-3x +y +2=0. 答案:x 2+y 2-3x +y +2=0考点二 与圆有关的最值问题◄考能力——知法[例2] (1)已知在圆x 2+y 2-4x +2y =0内,过点E (1,0)的最长弦和最短弦分别是AC 和BD ,则四边形ABCD 的面积为( ) A .35 B .6 5 C .415D .215解析:圆x 2+y 2-4x +2y =0,即(x -2)2+(y +1)2=5,圆心M (2,-1),半径r =5,最长弦AC 为圆的直径为25,BD 为最短弦,则AC 与BD 互相垂直,ME =2,BD =2BE =2×5-2=23, 四边形ABCD 的面积 S =S △ABD +S △BDC=12×BD ×EA +12×BD ×EC =12×BD ×AC =12×23×2 5 =215,选D. 答案:D(2)已知实数x 、y 满足x 2+y 2-4x +1=0. ①求yx 的最大值与最小值; ②求y -x 的最大值、最小值; ③求x 2+y 2的最大值、最小值. 解析:①原方程可化为(x -2)2+y 2=3, 表示以(2,0)为圆心,3为半径的圆. yx 的几何意义是圆上一点与原点连线的斜率,所以设yx =k ,即y =kx .如图所示,当直线y =kx 与圆相切时,斜率k 取最大值或最小值,此时|2k -0|k 2+1=3,解得k =±3.所以yx 的最大值为3,最小值为- 3.②y -x 可看作是直线y =x +b 在y 轴上的截距,如图所示,当直线y =x +b 与圆相切时,纵截距b 取得最大值或最小值,此时|2-0+b |2=3,解得b =-2±6.所以y -x 的最大值为-2+6,最小值为-2- 6.③如图所示,x 2+y 2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点和圆心连线与圆的两个交点处取得最大值和最小值.又圆心到原点的距离为(2-0)2+(0-0)2=2,所以x 2+y 2的最大值是(2+3)2=7+43,x 2+y 2的最小值是(2-3)2=7-4 3.1.(2019·广西南宁联考)在平面直角坐标系xOy 中,已知(x 1-2)2+y 21=5,x 2-2y 2+4=0,则(x 1-x 2)2+(y 1-y 2)2的最小值为( ) A.55 B.15 C.1215D.1155解析:由已知得点(x 1,y 1)在圆(x -2)2+y 2=5上,点(x 2,y 2)在直线x -2y +4=0上,故(x 1-x 2)2+(y 1-y 2)2表示圆(x -2)2+y 2=5上的点和直线x -2y +4=0上点的距离平方,而距离的最小值为|2+4|1+4-5=55,故(x 1-x 2)2+(y 1-y 2)2的最小值为15.故选B. 答案:B2.(2019·聊城模拟)已知M (m ,n )为圆C :x 2+y 2-4x -14y +45=0上任意一点, (1)求m +2n 的最大值; (2)求n -3m +2的最大值和最小值.解析:(1)因为x 2+y 2-4x -14y +45=0的圆心C (2,7),半径r =22, 设m +2n =t ,将m +2n =t 看成直线方程, 因为该直线与圆有公共点,所以圆心到直线的距离d =|1×2+2×7-t |12+22≤22,解上式得:16-210≤t ≤16+210, 所以,所求的最大值为16+210.(2)记点Q (-2,3).因为n -3m +2表示直线MQ 的斜率,设直线MQ 的方程为y -3=k (x +2), 即kx -y +2k +3=0,则n -3m +2=k . 由直线MQ 与圆C 有公共点, 所以|2k -7+2k +3|1+k 2≤2 2.可得2-3≤k ≤2+3,所以n -3m +2的最大值为2+3,最小值为2- 3.数学运算、直观想象——利用圆求最值的学科素养在数学中,涉及的代数式或者线段长度最值时,如果动点在圆上运动,可借助圆求解.[例1] 已知实数a ,b ,c 满足a +c =2b ,点P (-1,0)在动直线ax +by +c =0上的射影为M ,点N (3,3),则线段MN 的长度的最大值是________.解析:由已知a +c =2b ,可知动直线ax +by +c =0过定点Q (1,-2),所以点M 在以PQ 为直径的圆x 2+(y +1)2=2上,因为圆心(0,-1)到点N 的距离为5,故可得MN 的长度的最大值是5+ 2. 答案:5+ 2[例2] 已知a ,b ,c 是同一平面内的三个向量,其中a ,b 是互相垂直的单位向量,且(a -c )·(3b -c )=1,则|c |的最大值为________.解析:记a =(1,0),b =(0,1),c =(x ,y ),则可得x 2+y 2-x -3y -1=0,即(x -。

2019-2020年高考数学 平面解析几何复习学案

2019-2020年高考数学 平面解析几何复习学案

2019-2020年高考数学平面解析几何复习学案【知识特点】1、本章内容主要包括直线与方程、圆与方程、圆锥曲线,是解析几何最基本,也是很重要的内容,是高中数学的重点内容,也是高考重点考查的内容之一;2、本章内容集中体现了用坐标法研究曲线的思想与方法,概念、公式多,内容多,具有较强的综合性;3、研究圆锥曲线的方法很类似,因此可利用类比的方法复习椭圆、双曲线、抛物线的定义与几何性质,掌握解决解析几何问题的最基本的方法。

【重点关注】1、关于直线的方程,直线的斜率、倾斜角,几种距离公式,两直线的位置关系,圆锥曲线的定义与性质等知识的试题,都属于基本题目,多以选择题、填空题形式出现,一般涉及两个以上的知识点,这些将是今后高考考查的热点;2、关于直线与圆的位置关系,圆与圆的位置关系的题目出现次数较多,既有选择题、填空题,也有解答题。

既考查基础知识的应用能力,又考查综合运用知识分析问题、解决问题的能力;3、直线与圆锥曲线联系在一起的综合题多以高档题出现,要求学生分析问题的能力,计算能力较高;4、注重数学思想方法的应用解析法、数形结合思想、函数与方程的思想、转化与化归的思想、分类讨论思想及待定系数法在各种题型中均有体现,应引起重视。

【地位和作用】解析几何是17世纪数学发展的重大成果之一,其本质是用代数方法研究图形的几何性质,体现了数形结合的重要数学思想。

在本模块中,学生将在平面直角坐标系中建立直线和圆的代数方程,运用代数方法研究它们的几何性质及其相互位置关系,并了解空间直角坐标系。

体会数形结合的思想,初步形成用代数方法解决几何问题的能力。

在平面解析几何初步的教学中,教师应帮助学生经历如下的过程:首先将几何问题代数化,用代数的语言描述几何要素及其关系,进而将几何问题转化为代数问题;处理代数问题;分析代数结果的几何含义,最终解决几何问题。

这种思想应贯穿平面解析几何教学的始终,帮助学生不断地体会“数形结合”的思想方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年高考数学一轮复习《平面解析几何初步》教案
1.掌握两条直线平行和垂直的条件,掌握两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系.
2.会用二元一次不等式表示平面区域.
3.了解简单的线性规划问题,了解线性规划的意义,并会简单的应用.
4.了解解析几何的基本思想,了解用坐标法研究几何问题的方法.
5.掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程的概念.
在近几年的高考试题中,两点间的距离公式、中点坐标公式、直线方程的点斜式、斜截式、一般式、斜率公式及两条直线的位置关系,圆的方程及直线与圆、圆与圆的位置关系是考查的热点.但由于知识的相互渗透,综合考查直线与圆锥曲线的关系一直是高考命题的大热门,应当引起特别注意,本章的线性规划内容是新教材中增加的新内容,近年来,在高考中经常考查,但基本上以中易题出现.考查的数学思想方法,主要是数形结合、分类讨论、方程的思想和待定系数法等.
第1课时直线的方程
线的斜率不存在,此时直线的倾斜角为90°. 3.方
例1. 已知直线(2m 2+m -3)x +(m 2
-m)y =4m -1.① 当m = 时,直线的倾斜角为45°.②当m = 时,直线在x 轴上的截距为1.③ 当m = 时,直线在y 轴上的截距为-2
3.④
当m = 时,直线与x 轴平行.⑤当m = 时,直线过原点. 解:(1) -1 ⑵ 2或-2
1 ⑶ 3
1或-2 ⑷-2
3 ⑸ 4
1
变式训练1.(1)直线3y + 3 x +2=0的倾斜角是 ( ) A .30° B.60° C.120° D.150° (2)设直线的斜率k=2,P 1(3,5),P 2(x 2,7),P (-1,y 3)是直线上的三点,则x 2,y 3依次是 ( )
A .-3,4
B .2,-3
C .4,-3
D .4,3
(3)直线l 1与l 2关于x 轴对称,l 1的斜率是-7 ,则l 2的斜率是 ( )
A .7
B .-7 (4)直线l 经过两点(1,-2),(-3,4),则该直线的方程是 .
解:(1)D . (2)C .提示:用斜率计算公式
12
12
y y x x --.
∴AB =(2,4),BC =(1,2),∴AB =2BC 又∵AB 与BC 有公共点B ,∴A、B 、C 三点共线
变式训练2. 设a ,b ,c 是互不相等的三个实数,如果A (a ,a 3
)、B (b ,b 3
)、C (c ,c 3
)在同一直线上,求证:
证明 ∵A、B 、C 三点共线,∴k AB =k AC , ∴
c
a c a
b a b a --=
--3333,化简得a 2+ab+b 2=a 2+ac+c 2

∴b 2
-c 2
+ab-ac=0,(b-c )(a+b+c )=0, ∵a、b 、c 互不相等,∴b -c≠0,∴a+b+c=0.
例3. 已知实数x,y 满足y=x 2
-2x+2 (-1≤x≤1). 试求:
2
3
++x y 的最大值与最小值. 解: 由
2
3
++x y 的几何意义可知,它表示经过定点P (-2,-3)与曲线段AB 上任一点(x,y)的直线的斜率k,如图可知:k PA ≤k≤k PB ,
由已知可得:A (1,1),B (-1,5), ∴3
4≤k≤8, 故
23++x y 的最大值为8,最小值为3
4
.
变式训练3. 若实数x,y 满足等式(x-2)2
+y 2
=3,那么x
y
的最大值为 ( )
.2
1
B.
3
3
2
3
D.3
答案
例4. 已知定点P(6, 4)与直线l 1:y =4x ,过点P 的直线l 与l 1交于第一象限的Q 点,与x 轴正半轴交于点M .求使△OQM 面积最小的直线l 的方程. 解:Q 点在l 1: y =4x 上,可设Q(x 0,4x 0),则PQ 的方程为:6
6
44400--=
--x x x y 令y =0,得:x =
1500-x x (x 0>1),∴ M(1
500-x x
,0) ∴ S △OQM =21·1500-x x ·4x 0=10·1
02
0-x x
=10·[(x 0-1)+1
1
0-x +2]≥40 当且仅当x 0-1=1
1
0-x 即x 0=2取等号,∴Q(2,8) PQ 的方程为:
6
26
484--=--x y ,∴x+y -10=0
变式训练4.直线l 过点M(2,1),且分别交x 轴y 轴的正半轴于点A 、B ,O 为坐标原点. (1)当△AOB 的面积最小时,求直线l 的方程; (2)当MB MA ⋅取最小值时,求直线l 的方程.
解:设l :y -1=k(x -2)(k <0) 则A(2-
k
1
,0),B(0,1-2k) ①由S =21(1-2k)(2-
k 1)=2
1
(4-4k -k 1) ≥
2
1⎥⎥⎦⎤
⎢⎢⎣
⎡-⋅-+)1()4(24k k =4
当且仅当-4k =-
k 1,即k =-2
1
时等号成立 ∴△AOB 的面积最小值为4
此时l 的方程是x +2y -4=0 ②∵|MA|·|MB|=224411
k k
+⋅+ =
||)1(22k k +=2⎥⎦

⎢⎣⎡-+-)()1(k k ≥4 当且仅当-k =-
k
1
即k =-1时等号成立 此时l 的方程为x +y -3=0
(本题也可以先设截距式方程求解)
1.直线方程是表述直线上任意一点M 的坐标x 与y 之间的关系式,由斜率公式可导出直线方程的五种形式.这五种形式各有特点又相互联系,解题时具体选取哪一种形式,要根据直线的特点而定.
2.待定系数法是解析几何中常用的思想方法之一,用此方法求直线方程,要注意所设方程的适用范围.如:点斜式、斜截式中首先要存在斜率,截距式中横纵截距存在且不为0,两点式的横纵坐标不能相同等(变形后除处).
3.在解析几何中,设点而不求,往往是简化计算量的一个重要方法.
4.在运用待定数法设出直线的斜率时,就是一种默认斜率存在,若有不存在的情况时,就会出现解题漏洞,此时就要补救:较好的方法是看图,数形结合来找差距.。

相关文档
最新文档