分解质因数

合集下载

奥数——分解质因数

奥数——分解质因数

分解质因数★知识要点质因数:如果一个质数是某个数的约数,称这个质数为这个数的质因数。

分解质因数:把一个合数用质因数相乘的形式表示出来。

分解质因数的两种常用方法:直接分解法和短除法。

★例题精讲例1、将360分解质因数。

直接分解法:短除法:练习1、将10101分解质因数。

例2、将下列8个数平均分成两组,使这两组数的乘积相等,应怎样分?26、39、46、57、85、95、119、161练习2、将12、14、18、45、77、105、175、275这8个数平均分成两组,使这两组数的乘积相等,应怎样分?例3、要使975×935×972×()这个乘积的最后四位数字为0,在括号内最小应填什么数?练习3、1×2×3×4×……×25的乘积的末尾有几个零?例4、已知a×(b+c)=221,请将a,b,c分别换成一个质数,使等式成立。

练习4、某车间有216个零件,如果平均分成若干份,分得份数在5到20之间,那么有多少种分法?例5、下面算式中,不同的字母代表不同的数字。

求算式abc×c=1995。

练习5、有四个孩子,恰好一个比一个大1岁,他们的年龄相乘的积等于3024,问这四个孩子中年龄最大的是几岁?作业1、把77分解质因数:77=( )。

2、把143分解质因数:143=( )。

3、把1001分解质因数:1001=( )。

4、把41041分解质因数:41041=( )。

5、一个合数能分解成三个不同的质因数,这个合数最小是 ( )。

6、三个连续自然数的积是60,则这三个数分别是(),(),()。

7、33×34×35×……×50的乘积的末尾有几个零?8、1×2×3×4×5×……×99×100,积的末尾有多少个零?9、一个两位数除310余37.这个数是多少?10、要使486×135×1925×□的结果的最后五位都是零,□中最小填( )。

分解质因数

分解质因数

1.什么叫分解质因数?答:把一个合数,用质因数相乘的形式表示出来,叫做分解质因数。

例如: 24=2 × 2 × 2 × 3, 75=3 × 5 × 5 。

2.怎样分解质因数?答:把一个数分解质因数,要从最小的质数除起,一直除到结果为质数为止(短除法)。

3.分解质因数的目的?答:一是为了研究已知数与未知数之间的关系,从而使某些问题得到解决;二是为求最大公约数、最小公倍数服务。

【例1】有4名同学参加夏令营,他们的年龄恰好一个比一个大1岁。

且知他们年龄的乘积是17160,你知道他们分别是多少岁呢?解析:17160=2 × 2 × 2 × 3 × 5 × 11 × 13=10 × 11 × 12 × 13【练习1】三个连续奇数的乘积是1287,则这三个数的和是多少?解析:1287=3 × 3 × 11 × 13=9 × 11 × 13 9+11+13=33【例2】三个质数的和是38 ,求这三个质数的乘积最大值是多少?解析:奇+奇+偶=偶必有质数2,剩余两数和为36,则各自为 17和19【练习2】两个质数的和是 2001 ,这两个质数的乘积是多少?解析:同理【例3】把 7、 14、 20、 21、 28、 30 这六个数分成两组,每组三个数相乘,使他们的积相等应该如何分?解析:将每个数分解质因数,然后将质因数个数均分。

【练习3 】将 21、30、65、126、143、169、275 分成两组,使两组数的积相等。

解析:同理【例题4】在1 × 2 × 3 × 4 × 5 ×…× 200 的末尾,连续有多少个零?解析:一个质因数2 和一个质因数 5 相乘会使末尾产生一个0,质因数2的个数显然比质因数5的个数多,质因数的5的个数的确定:200 ÷ 5=40 200 ÷ 25=8 200 ÷ 125=1...75 所以有 40+8+1=49 个5 ,因此有49 个0末尾。

分解质因数

分解质因数
•两个质数的和是1995,这两个数的乘积是(

· 连续九个自然数中至多有(
)个质数
用若干个0若干个1写成一个多位数,如果这个数能被 225整除,那么这个数最小是多少?
课前热身:
1、什么是分解质因数? 2、分解质因数的方法是什么? 3、把60、40、63、78、99、105分解质因数
2 3 5 3 40=2×2×2×5 2 5 2 63=3×3×7 3 7
有8个不同约数的最小自然数是多少?
8=2×4=(1+1)×(3+1) 最小为:2×2×2×3=24
一个数是5个2、3个3、2个5、1个7连乘的积,这个数的 两位因数中,最大的是几? 最大是96(2×2×2×2×2×3)
在101与300之间,只有3个约数的自然数有几个?
有3个,分别为121,169,289
五一班李明期末考试后,爸爸问他考了多少分,他说: 我的成绩乘我的名次乘我的年龄结果是2910,你能算出 小明的成绩,名次还有年龄吗? 2910=2×3×5×97,由于小明是五年级的 学生,所以,小明的年龄应是10岁,那么名次 是第三名,成绩是97分。
新河村农民用几只船分三次运送405袋化肥。已知每只 船载的化肥袋数相等且至少7袋。问每次应有多少只船, 每只船载多少袋化肥?(每只船至多50袋)
2520=2x2x2x3x3x5x7 =3x(2x2)x5x(2x3)x7 =3x4x5x6x7 答:五名小朋友的年龄分别是3岁、4岁、5岁、六 岁、7岁。
30
6
5
2 3
2 30
15 3 5 30=2x3x5
52=2×2×13
77=7×11
65=5×13
78=2×3×13
66=2×3×11

将一个正整数分解质因数

将一个正整数分解质因数

将一个正整数分解质因数
每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数,把一
个合数用质因数相乘的形式表示出来,叫做分解质因数。

如30=2×3×5 。

分解质因数只
针对合数。

定义
把一个合数分解成若干个质因数的乘积的形式,Loupe质因数的过程叫作水解质因数。

分解质因数只针对合数。

(分解质因数也称分解素因数)求一个数分解质因数,要从
最小的质数除起,一直除到结果为质数为止。

分解质因数的算式叫短除法,和除法的性质
相似,还可以用来求多个数的公因式。

定理
不存在最大质数的证明:(使用反证法)
假设存有最小的质数为n,则所有的质数序列为:n1,n2,n3……n
设m=(n1×n2×n3×n4×……n)+1,
可以证明m无法被任何质数相乘,得出结论m也就是一个质数。

而m\uen,与假设矛盾,故可证明不存在最大的质数。

第二种因数分解的方法:
年,john pollard提出。

该算法时间复杂度为o( )。

详见参考资料。

分解质因数格式

分解质因数格式

分解质因数格式介绍分解质因数是指将一个非负整数分解成若干个质数的乘积的过程。

它在数论和代数中有着重要的应用,不仅能够帮助我们研究数字的性质,还可以在解决实际问题时发挥重要作用。

质因数的定义质因数,即素因数,是指不能再进一步分解的素数。

一个正整数可以唯一地表示为若干个质因数的乘积,这些质因数可以重复出现。

例如,12可以分解为2*2*3。

分解质因数的步骤分解质因数的过程可以通过以下步骤进行:1.从最小的质数2开始,尝试将给定的正整数n除以2。

如果n可以整除,则将2加入质因数的集合,并将n更新为n/2。

如果n不能整除,则进入下一步骤。

2.从质数3开始,尝试将n除以3。

如果n可以整除,则将3加入质因数的集合,并将n更新为n/3。

如果n不能整除,则进入下一步骤。

3.依次尝试将n除以大于3的质数,直到不能整除为止。

4.如果n仍然大于1,则n本身就是一个质数,将n加入质因数的集合。

5.完成分解质因数的过程。

分解质因数的示例让我们使用一个示例来演示分解质因数的过程。

假设我们要分解质因数的数为84。

按照上述步骤进行:1.尝试将84除以2。

84可以整除2,所以将2加入质因数的集合,更新n=42。

2.尝试将42除以2。

42可以整除2,所以将2加入质因数的集合,更新n=21。

3.尝试将21除以2。

但21不能整除2,因此尝试将21除以下一个质数3。

21可以整除3,所以将3加入质因数的集合,更新n=7。

4.由于7是一个质数,将7加入质因数的集合。

5.分解质因数过程结束,质因数的集合为{2, 2, 3, 7}。

因此,84的质因数分解为2*2*3*7。

分解质因数的应用分解质因数在数学和实际问题中有着广泛的应用。

以下是一些分解质因数的应用场景:1.素数判定:通过分解质因数,我们可以判断一个数是否为素数。

如果一个数的分解质因数集合只包含它本身,那么它就是素数;否则,它不是素数。

2.公约数和最大公约数:通过分解质因数,我们可以求解两个数的公约数和最大公约数。

分解质因数(优秀6篇)

分解质因数(优秀6篇)

分解质因数(优秀6篇)分解质因数篇一教学目标(一)理解质因数、的意义。

(二)会把一个合数,掌握用短除式。

(三)培养学生观察分析,概括的能力。

教学重点和难点(一)质因数与的意义。

(二)用短除式。

教学用具投影片。

教学过程设计(一)复习准备1.请说出1~12这些数中的质数和合数。

(投影片)学生口答后,投影出示答案:①2,3,5,7,11是质数;②4,6,8,9,10,12是合数。

2.说一说质数与合数的区别?3.请想一想,第1题答案中的两组数,哪一组数能分成比它本身小的两个数相乘的形式?哪一组不能?为什么?学生口答后,老师指出:像这样的数,即合数,因为它们除了1和本身外,还有别的约数,所以都可以用几个比本身小的数相乘的形式表示出来。

这节课就来研究要求连乘式子里的因数都是质数的情况。

(二)学习新课1.质因数的意义,分别质因数的意义和方法。

(1)板书例3 6,28和60可以写成哪几个质数相乘的形式?教师板书出6,学生口答后,老师再用塔式分解式写出2,3,圈上。

教师:用算式如何表示,学生口答后老师板书;6=2×3。

教师板书出28,学生口答后,老师按塔式分解式写出:4,7,7是质数,圈上。

问:4老师为什么没圈?(4不是质数,继续分解。

)板书;2,2,圈上。

请用算式表示。

板书;28=2×2×7。

教师:请用上面的方法把60分成几个质数相乘的形式。

老师巡视中请一位同学板书出塔式分解式和算式。

(如下)(2)教师:请观察,(指塔式分解式和算式)每个合数都写成什么形式?(每个合数都写成了几个质数相乘的形式。

)教师:这些质数,在式子里与原来的合数是什么关系?(这些质数都是原来合数的因数。

) 教师:像这样,把一个合数写成几个质因数相乘的形式,其中每个质数都是这个合数的因数,叫做这个合数的质因数。

板书:质因数。

教师:请说一说什么是质因数。

请说一说上面三个算式中谁是谁的质因数。

针对学生口答,老师说明:讲质因数时,要说出这个质数是哪个合数的质因数,不能单独说一个数是质因数。

分解质因素

分解质因素

分解质因数分解质因数就是把一个合数用质因数相乘的形式表示出来。

有许多数学题用分解质因数的方法能够很快的找到答案。

这方面的应用也非常广泛。

【例1】计算119+993×17[分析]通过观察式子可知,把119分解质因数,119=7×17,这样两个加数中均含有质因数17,可把公约数提取出来,使计算简便。

[解]119+993×17=7×17+993×17=17×(7+993)=17×1000=17000点评今后我们可以自觉、灵活、合理地运用分解质因数的方法,使计算更简便,提高正确率。

【例2】将33、26、65、34、51、55这六个数分成两组,每组3个数,且每组3个数的乘积相等。

[分析]先把六个数分别分解质因数,然后把相同的质因数分摊到两个组中,使每组数中含有的质因数相同,两组数的乘积才能相等。

[解]33=3×11 26=2×1365=5×13 34=2×1751=3×17 55=5×11从上面的分解质因数来看,共有2个2,2个3,2个5,2个11,2个13,2个17。

将这些质因数平均分配到两个组,每组中含有:2、3、5、7、13、17、19、23。

第一组是:33、34、65。

第二组是:51、26、55。

点评合理地运用分解质因数的方法,可以把问题化繁为简,化难为易。

【例3】小宋是锡师附小五年级学生,他参加省小数报竞赛取得比较好的成绩。

已知他的名次、年龄和所得分数的乘积是2328。

请你算一下他的名次、年龄和得分是多少?[分析]既然2328是三个数的乘积,那么就把2328分解质因数:2328=2×2×2×3×97。

小宋是五年级学生,不可能是2岁、3岁,也不可能是(2×2)岁、(2×2×2)岁、(2×3)岁,因此可以肯定小宋是(2×2×3)=12岁,得了第2名,成绩为97分。

数的质因数分解

数的质因数分解

数的质因数分解质因数分解是指将一个正整数表示为几个质数的乘积形式。

在数论中,质数是只能被1和自身整除的自然数,而合数是至少有一个大于1且小于自身的因数的自然数。

质因数分解是数学中重要且基础的概念,它在因式分解、最小公倍数、约数等问题的求解中起着关键的作用。

本文将详细介绍数的质因数分解的原理和方法。

一、质因数分解的原理质因数分解的原理基于唯一分解定理,即每一个大于1的自然数都可以唯一地表示为一系列质数的乘积形式。

根据这个定理,任何一个合数都可以分解为若干个质数的乘积,质数的个数可能是1个或多个。

例如,合数18可以分解为2×3×3,其中2和3都是质数。

二、质因数分解的方法1.试除法试除法是最常见也是最简单的质因数分解方法。

它的基本思想是从最小的质数2开始,依次试除给定的整数,如果能整除则继续除以该质数,直到不能整除为止。

然后再用下一个质数试除,直到得到质因数分解的结果。

例如,对于数60,我们可以用试除法进行质因数分解:60 ÷ 2 = 3030 ÷ 2 = 1515 ÷ 3 = 5最终得到60的质因数分解为2×2×3×5。

2.分解质因数法分解质因数法是另一种常用的质因数分解方法。

它的基本思路是先找到一个质因数,然后将原数除以这个质因数并继续分解商,直到商为1为止。

例如,对于数36,我们可以用分解质因数法进行质因数分解:36 ÷ 2 = 1818 ÷ 2 = 99 ÷ 3 = 33 ÷ 3 = 1最终得到36的质因数分解为2×2×3×3。

三、质因数分解的应用1.最小公倍数和最大公约数质因数分解在求解最小公倍数和最大公约数时非常有用。

最小公倍数是指两个数中包含了它们的所有质因数的整数的乘积,而最大公约数是指两个数中公共的质因数的乘积。

通过将两个数进行质因数分解,我们可以很方便地求得它们的最小公倍数和最大公约数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分解质因数
专题简析:
一个自然数的因数中,为质数的因数叫做这个数的质因数。

把一个合数,用质因数相乘的形式表示出来,叫做分解质因数。

例如:24=2×2×2×3,75=3×5×5。

我们数学课本上介绍的分解质因数,是为求最大公约数和最小公倍数服务的。

其实,把一个数分解成质因数相乘的形式,能启发我们寻找解答许多难题的突破口,从而顺利解题。

例1.把18个苹果平均分成若干份,每份大于1个,小于18个。

一共有多少种不同的分法?
变式训练
1.有60个同学分成人数相等的小组去慰问解放军叔叔,每组不少于6人,不多于15人。

有哪几种分法?
2. 195个同学排成长方形队伍做早操,行数和列数都大于1,共有几种排法?
例2.有168颗糖,平均分成若干份,每份不得少于10颗,也不能多于50颗。

共有多少种分法?
变式训练
1.把462名学生分成人数相等的若干组去参加课外活动小组,每小组人数在10至25人之间,求每组的人数及分成的组数。

2.四个连续奇数的和是19305,这个四奇数分别是多少?
例3.将下面八个数平均分成两组,使这两组数的乘积相等。

2、5、14、24、27、55、56、99
变式训练
1.下面四张小纸片各盖住一个数字,如果这四个数字是连续的偶数,请写出这个完整的算式。

□□×□□=1288
2. 把40、45、63、65、78、99、105这八个数平分成两组,使两组四个数的乘积相等。

例4.王老师带领一班同学去植树,学生恰好分成4组。

如果王老师和学生每人植树一样多,那么他们一共植了539棵。

这个班有多少个学生?每人植树多少棵?
变式训练
1. 小青去看电影,他买的票的排数与座位号数的积是391,而且排数比座位号数大6。

小青买的电影票是几排几座?
2.把一篮苹果分给4人,使四人的苹果数一个比一个多2,且他们的苹果个数之积是1920。

这篮苹果共有多少个?
例5.下面的算式里,□里数字各不相同,求这四个数字的和。

□□×□□=1995
变式训练
1.在下面算式的框内,各填入一个数字,使算式成立。

□□□×□=1995
分解质因数(二)
专题简析:
许多题目,特别是一些竞赛题,初看起来很玄妙,但它们都与乘积有关,对于这类题目,我们可以用分解质因数的方法求解。

因此,掌握并灵活应用分解质因数的知识,能解答许多一般方法不能解答的与积有关的应用题。

例1.三个质数的和是80,这三个数的积最大可以是多少?
变式训练
1.有三个质数,它们的乘积是1001,这三个质数各是多少?
例2.长方形的面积是375平方米,已知它的宽比长少10米,长和宽的和是多少米?
变式训练
1. 237除以一个两位数,所得的余数是6,请写出适合于这个条件的所有两位数。

2. 有一块长方形的场地,它是由319块1平方分米的水泥方砖铺成的,求这块长方形场地的周长。

例3.某班同学在班主任老师带领下去种树,学生恰好平均分成三组,如果师生每人种树一样多,一共种了1073棵,那么,平均每人种了多少棵?
变式训练
1.一个长方体的长、宽、高是三个连续的自然数。

已知这个长方体的体积是9240立方厘米,那么,这个长方体的表面积是多少?
例4.把155/186和221/187约分。

变式训练
1.请用上面的方法把下面的几个分数约分。

46/69 143/117 247/323 161/253
例5.小明用2.16元买了一种画片若干张,如果每张画片的价钱便宜1分钱,那么他还能多买3张。

小明买了多少张画片?
变式训练
1. 自然数a乘以2376,所得的积正好是自然数b的平方,求a最小是多少?
课后作业:
1.甲数比乙数大9,两个数的积是792,求甲、乙两数分别是多少。

2.把1、2、3、4、5、6、7、8、9九张卡片分给甲、乙、丙三人,每人各3张。

甲说:“我的三个数的积是48。


乙说:“我的三个数的和是16。

”丙说:“我的三个数的积是63。

”甲、乙、丙各拿了哪几张卡片?
3.有三个自然数a、b、c,已知a×b=30,b×c=35,c×a=42,求a×b×c的积是多少?
4.3月12日是植树节,李老师带领同学们排成两路人数相等的纵队去植树。

已知李老师和同学们每人植树的棵数
相等,一共植了111棵树,求有多少个学生。

5.有一个长方体,它的长、宽、高是三个连续的自然数,且体积是39270立方厘米,求这个长方体的表面积。

6.张明是个初中生,有一次,他参加数学竞赛后,所得的名次、分数和他的岁数三者的积是2910。

求张明的成绩、
名次和年龄分别是多少?
7.有4个孩子,恰好一个比一个大1岁,4人的年龄积是3024,这4个孩子中最大的几岁?
8.王老师带同学们擦玻璃,同学们恰好平均分成3组。

如果师生每人擦的块数同样多,一共擦111块,那么,平均
每人擦了多少块?
9.将750元奖金平均分给若干个获奖者,如果每人所得的钱数化成角为单位的数就正好是得钱人数的12倍,求获
奖人数和每人分得的钱数。

相关文档
最新文档