MOS管电路工作原理及详解没有之一

合集下载

最经典MOS管电路工作原理及详解没有之一

最经典MOS管电路工作原理及详解没有之一

最经典MOS管电路工作原理及详解没有之一最经典MOS管电路工作原理及详解没有之一引言金属氧化物半导体场效应管(MOS管)是现代电子器件中最重要的元件之一。

其简单可靠的特性使得它被广泛应用于各种电路中。

本文将详细介绍MOS管的工作原理及其在电路中的应用。

MOS管基本结构MOS管由金属-氧化物-半导体结构组成。

它包括一个P型或N型基底(S)和负电压 gate 之间的氧化层与金属电极(G)以及源(D)和漏极(S)两个接触点。

氧化层通常由二氧化硅材料构成。

MOS管工作原理MOS管的工作原理是基于栅极电场对电荷载体浓度的控制。

当施加在栅极上的电压发生变化时,电场会改变二氧化硅层下的电荷载体浓度。

这将导致了漏极和源极区域之间的电流的控制。

MOS管的工作可以分为三个区域:割开区(cutoff)、线性区(linear)和饱和区(saturation)。

割开区当栅极电压低于阈值电压时,MOS管处于割开区,漏极和源极之间的电流几乎没有流动。

在这个区域内,MOS管相当于一个开断的开关,不导通任何电流。

线性区当栅极电压超过阈值电压,但不足以将MOS管推入饱和区时,MOS管处于线性区。

在这个区域内,漏极和源极之间的电流与栅极电压成正比。

可以调节栅极电压来控制电流的大小。

饱和区当栅极电压足以将MOS管推入饱和区时,MOS管处于饱和区。

在这个区域内,电流几乎不再与栅极电压有关,而主要取决于漏极和源极之间的电压差。

MOS管在饱和区工作时,可提供稳定的电流放大功能。

MOS管电路应用MOS管由于其优越的特性,广泛应用于各种电路中。

以下是几个常见的MOS管电路应用示例:开关电路MOS管作为开关元件的应用十分广泛。

在数字电路中,MOS管可用于实现逻辑门电路,通过调节栅极电压来控制电流的开关状态。

,MOS管还可用于交流电源开关、电机驱动器等电路中。

放大电路MOS管可用作放大电路的关键组件。

在放大电路中,MOS管的饱和区工作特性使得其能够提供高增益的放大功能。

mos管的工作原理

mos管的工作原理

mos管的工作原理MOS管的工作原理。

MOS管,即金属-氧化物-半导体场效应管,是一种常见的半导体器件,广泛应用于集成电路和功率电子领域。

它具有高输入阻抗、低输入电流、低噪声和低功耗等优点,因此在电子设备中扮演着重要的角色。

本文将介绍MOS管的工作原理,以便更好地理解其在电路中的应用。

MOS管由金属-氧化物-半导体三层结构组成,其中金属层和半导体层之间通过氧化物层隔开。

当在MOS管的栅极上施加正电压时,栅极和源极之间形成电场,使得氧化物层下的半导体中出现一个带电层,这个带电层将控制源极和漏极之间的电流。

因此,MOS管的工作原理可以简单地概括为栅极电压控制漏极-源极之间的电流。

在MOS管中,当栅极电压为零时,氧化物层下的半导体中不存在带电层,此时MOS管处于截止状态,漏极和源极之间的电流非常小。

而当施加正电压到栅极时,电场将使得氧化物层下的半导体中出现带电层,这个带电层将控制漏极和源极之间的电流。

因此,MOS管可以被看作是一个电压控制的电流源。

MOS管的工作原理还可以从能带结构的角度来理解。

在MOS管中,半导体和金属之间的能带结构是不连续的,而通过氧化物层将它们隔开。

当施加正电压到栅极时,会在氧化物层下的半导体中形成一个空穴层,这个空穴层将控制漏极和源极之间的电流,从而实现对电流的控制。

因此,MOS管的工作原理也可以通过能带理论来解释。

除了工作原理,MOS管的特性也与其工作原理密切相关。

由于MOS管的栅极具有很高的输入电阻,所以可以在电路中起到信号放大的作用。

同时,MOS管的漏极和源极之间的电流可以通过调节栅极电压来控制,因此可以实现对电流的精确控制。

这些特性使得MOS管在集成电路和功率电子领域得到了广泛的应用。

总之,MOS管是一种重要的半导体器件,其工作原理是通过栅极电压控制漏极和源极之间的电流。

通过能带理论的解释,可以更深入地理解MOS管的工作原理。

MOS管的特性与其工作原理密切相关,这些特性使得MOS管在电子设备中发挥着重要的作用。

MOS管电路工作原理及详解

MOS管电路工作原理及详解

MOS管电路工作原理及详解在电子电路的世界里,MOS 管(MetalOxideSemiconductor FieldEffect Transistor,金属氧化物半导体场效应晶体管)扮演着极为重要的角色。

它的工作原理看似复杂,实则有章可循。

MOS 管有增强型和耗尽型之分,我们先从增强型 MOS 管说起。

增强型 MOS 管又分为 N 沟道增强型和 P 沟道增强型。

以 N 沟道增强型 MOS 管为例,它由源极(S)、漏极(D)和栅极(G)组成。

在栅极和源极之间加上正向电压,并且达到一定的阈值时,在靠近栅极下方的 P 型半导体表面会形成一个反型层,也就是 N 型导电沟道。

这个沟道就像一条“通道”,让电子能够从源极流向漏极,从而形成电流。

当栅源电压越大,导电沟道就越宽,电流也就越大。

这就好比是控制水流的阀门,栅源电压就是控制阀门开度的手,电压越大,阀门开得越大,水流(电流)也就越大。

而 P 沟道增强型 MOS 管的工作原理与 N 沟道类似,只是导电的载流子是空穴。

再来说说耗尽型 MOS 管。

耗尽型 MOS 管在制造时,在栅极下方的半导体表面已经存在一定的导电沟道。

当栅源电压为零时,就有电流从源极流向漏极。

当栅源电压为负时,导电沟道变窄,电流减小;当栅源电压为正时,导电沟道变宽,电流增大。

在实际的电路应用中,MOS 管常常被用作开关。

比如在电源电路中,通过控制 MOS 管的导通和截止,实现电源的开关控制,从而达到节能和保护电路的目的。

当栅源电压达到开启电压时,MOS 管导通,相当于开关闭合;当栅源电压低于开启电压时,MOS 管截止,相当于开关断开。

MOS 管还可以用于放大电路。

在放大电路中,通过输入信号改变栅源电压,从而控制漏极电流的变化,实现信号的放大。

这是因为栅源电压的微小变化能够引起漏极电流较大的变化。

在 MOS 管的电路设计中,需要考虑一些重要的参数。

比如阈值电压,它决定了 MOS 管导通和截止的条件。

MOS管电路工作原理及详解

MOS管电路工作原理及详解

MOS管电路工作原理及详解MOS管,全称金属氧化物半导体场效应管(Metal-Oxide-Semiconductor Field-Effect Transistor),是一种重要的半导体器件,广泛应用于各种电路中,如放大、开关和逻辑电路等。

其工作原理和详解如下。

MOS管是一种固态电子器件,由金属栅、氧化物绝缘层和半导体管道构成。

工作时,栅极的电势可以控制管道中的电流流动。

当栅极电压Vgs为零,即不施加任何电压时,MOS管处于截止状态,不导电。

当施加正电压到栅极,即Vgs > 0时,形成一个正电场,吸引电子进入通道,导致N型沟道中电子增加,电荷密度增加,电流开始流动,MOS管进入导通状态。

而当施加负电压到栅极,即Vgs < 0时,形成一个负电场,把放在绝缘氧化物界面的电子吸引到栅极区域,减少沟道中电子数目,导致电流减小,MOS管进入截止状态。

因此,通过改变栅极电压,可以控制MOS管的导电特性。

MOS管有两种类型:P型MOS(PMOS)和N型MOS(NMOS)。

在PMOS 中,栅极为N型半导体,通道为P型半导体;而在NMOS中,栅极为P型半导体,通道为N型半导体。

两种类型的MOS管具有不同的导通方式。

对于PMOS,当栅极电压为负值(Vgs < 0),P型沟道会形成一个电子空穴击穿区域,通道中的电子将被拉入空穴区域,电流减小。

而当栅极电压为正值(Vgs > 0),击穿区域的电子将会被驱逐回通道,创造一个恢复的电子空穴区域,电流增加。

所以,PMOS管的导通与栅极电压是相反的。

对于NMOS,当栅极电压为负值(Vgs < 0),P型沟道中的电子将被排斥到源极区域,通道被堵塞,电流减小。

而当栅极电压为正值(Vgs > 0),电子将被吸引到沟道并形成导电路径,电流增加。

因此,NMOS的导通与栅极电压是一致的。

MOS管的导通特性由其工作区域决定,通常可分为三个区域:截止区、饱和区和线性区。

mos管工作原理及详解

mos管工作原理及详解

万联芯城致力于打造一个方便快捷的电子物料采购平台。

采购MOS管等电子元器件,就到万联芯城,万联芯城MOS场效应管主打IR,AOS,VISHAY等知名国际品牌,均为原装进口货源,当天可发货。

点击进入万联芯城点击进入万联芯城MOS管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。

对于这两种增强型MOS管,比较常用的是NMOS。

原因是导通电阻小,且容易制造。

所以开关电源和马达驱动的应用中,一般都用NMOS。

下面的介绍中,也多以NMOS为主。

MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。

寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍。

在MOS管工作原理图上可以看到,漏极和源极之间有一个寄生二极管。

这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。

顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。

MOS管工作原理图电源开关电路详解这是该装置的核心,在介绍该部分工作原理之前,先简单解释一下MOS的工作原理图。

它一般有耗尽型和增强型两种。

本文使用的为增强型MOSMOS管,其内部结构见mos管工作原理图。

它可分为NPN型PNP型。

NPN型通常称为N沟道型,PNP型也叫P沟道型。

由图可看出,对于N沟道的场效应管其源极和漏极接在N型半导体上,同样对于P沟道的场效应管其源极和漏极则接在P型半导体上。

我们知道一般三极管是由输入的电流控制输出的电流。

但对于场效应管,其输出电流是由输入的电压(或称电场)控制,可以认为输入电流极小或没有输入电流,这使得该器件有很高的输入阻抗,同时这也是我们称之为场效应管的原因。

为解释MOS管工作原理图,我们先了解一下仅含有一个P—N结的二极管的工作过程。

mos管或电路

mos管或电路

mos管或电路MOS管,即金属氧化物半导体场效应晶体管,是一种常用的半导体器件,常用于集成电路中。

MOS管的工作原理是通过调节栅极电压来控制导通沟道的电阻,从而实现信号的放大、开关和放大等功能。

下面将详细介绍MOS管的结构、工作原理和应用。

MOS管的结构包括源极、漏极和栅极三个部分。

源极和漏极之间通过氧化物绝缘层隔开,栅极则通过栅极氧化层与沟道相隔开。

当在栅极上加上正电压时,栅极下方的沟道会形成导通通道,从而使源极和漏极之间产生导通。

当栅极上的电压变化时,沟道的导电性也会相应变化,实现对电流的调节。

MOS管的工作原理是基于场效应的调控。

栅极上的电压改变了栅极下方的场强,从而改变了沟道的导电性。

当栅极电压为正时,沟道导通,电流从源极流向漏极,此时MOS管处于导通状态。

而当栅极电压为零或负时,沟道的导电性减弱或消失,电流无法通过,MOS管处于截止状态。

通过调节栅极电压,可以实现对电流的精确控制,从而实现放大、开关和放大等功能。

MOS管在集成电路中有着广泛的应用。

作为场效应晶体管的一种,MOS管可以用于数字电路、模拟电路和混合电路中。

在数字电路中,MOS管可用作开关,实现逻辑门的功能;在模拟电路中,MOS管可用作放大器,实现信号的放大和处理;在混合电路中,MOS管既可以用于数字信号处理,又可以用于模拟信号处理,实现电路的多功能集成。

总的来说,MOS管作为一种常用的半导体器件,具有结构简单、工作稳定和应用广泛的特点。

通过对栅极电压的调节,可以实现对电流的精确控制,从而实现各种电路功能的实现。

在未来的发展中,MOS管将继续发挥重要作用,推动集成电路的不断进步。

MOS管电路工作原理及详解

MOS管电路工作原理及详解

MOS管电路工作原理及详解在电子电路的世界里,MOS 管(MetalOxideSemiconductor FieldEffect Transistor,金属氧化物半导体场效应晶体管)是一种极其重要的元件。

它的性能卓越,应用广泛,从简单的电子设备到复杂的集成电路,都能看到MOS 管的身影。

为了更好地理解和运用MOS 管,我们需要深入探究其电路工作原理。

MOS 管主要有两种类型:增强型和耗尽型。

增强型 MOS 管又分为N 沟道增强型和 P 沟道增强型;耗尽型 MOS 管同样分为 N 沟道耗尽型和 P 沟道耗尽型。

在实际应用中,增强型 MOS 管更为常见。

先来说说 N 沟道增强型 MOS 管的结构。

它由一块 P 型半导体作为衬底,在上面扩散两个高浓度的 N 型区,分别作为源极(S)和漏极(D)。

在源极和漏极之间的衬底表面覆盖一层很薄的二氧化硅绝缘层,然后在绝缘层上沉积一层金属铝,形成栅极(G)。

当栅极电压为零时,源极和漏极之间没有导电沟道,MOS 管处于截止状态。

当在栅极和源极之间加上正向电压(VGS),并且 VGS 超过一定的阈值电压(VT)时,在靠近栅极下方的 P 型半导体表面会形成一个N 型导电沟道。

此时,若在漏极和源极之间加上电压(VDS),就会有电流(IDS)从漏极流向源极,MOS 管处于导通状态。

而且,IDS的大小与 VGS 和 VDS 都有关系。

在 VGS 一定的情况下,当 VDS 较小时,IDS 随 VDS 线性增加,MOS 管工作在电阻区。

随着 VDS 的增大,靠近漏极一端的导电沟道会变窄,这种现象被称为沟道夹断。

当 VDS 增加到使得沟道在漏极一端刚好夹断时,称为预夹断状态。

继续增大 VDS,夹断区会延长,而IDS 基本保持不变,MOS 管工作在恒流区。

P 沟道增强型 MOS 管的工作原理与 N 沟道增强型 MOS 管类似,只是所加电压的极性相反。

再谈谈 MOS 管在电路中的应用。

MOS管工作原理详细讲解

MOS管工作原理详细讲解

MOS管工作原理详细讲解MOS管(Metal–Oxide–Semiconductor Field-Effect Transistor,金属-氧化物-半导体场效应晶体管)是一种重要的电子器件,广泛应用于电子领域中。

它采用了金属-氧化物-半导体结构,具有高度的集成度、低功耗和快速开关速度等优点。

下面将详细讲解MOS管的工作原理。

MOS管的结构一般由P型或N型半导体基底、N型或P型沟道、金属栅极和绝缘层构成。

基底扮演着支撑的作用,而绝缘层则用于隔离栅极和沟道之间,通常是用氧化硅(SiO2)材料制备。

当栅极施加正电压时,栅极和沟道之间会形成一个电场。

根据栅极电压的不同,MOS管可以工作在三种模式下:截止区、线性区和饱和区。

1.截止区:在截止区,栅极电压低于沟道引起的阈值电压。

此时,沟道中的电子和空穴不能形成导电通道。

整个沟道的电阻非常大,电流基本上是不流动的。

MOS管处于截止状态,不导电。

2.线性区:当栅极电压高于阈值电压时,沟道中的电子和空穴被弯曲,形成了一个导电通道。

这个导电通道具有可变电阻,称为沟道电阻。

当在沟道两端施加一个电压时,电流会通过沟道流过。

此时,MOS管处于线性状态,电流与电压成正比。

3.饱和区:当栅极电压继续增加,逐渐超过了一定的阈值电压,并且沟道已经完全形成。

这时,栅极电场已经无法影响到沟道中的电子和空穴。

电流的增长不再与栅极电压相关。

MOS管处于饱和状态,电流基本上保持不变,称为饱和电流。

MOS管的控制是通过栅极电压来实现的。

当栅极电压变化时,会引起沟道的电压和电流的变化。

MOS管的沟道电流与栅极电压的平方成正比。

因此,可以通过改变栅极电压来控制电流的大小。

MOS管的开关速度非常快,因为它的结构中不包含PN接头和载流子的注入。

当栅极电压施加或者移除时,沟道不会存在大量的载流子重新注入或排出的时间延迟。

这种快速的开关速度使得MOS管在高频率应用中表现出色。

另外,MOS管还具有低功率消耗的特点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电路符号
小结:“MOS管的开关条件”
前面解决了MOS管的接法问题,接下来谈谈MOS管的 开关条件:
控制极电平为“ ?V ” 时MOS管导通(饱和导通)? 控制极电平为“ ?V ” 时MOS管截止?
这个问题涉及到MOS管原理,我们这里不谈,只记结果:
不论N沟道还是P沟道MOS管, G极电压都是与S极做比较。
实物 看看这些MOS管:
呵呵,都是很常见的吧?
能告诉大家, 哪个脚是S(源极)吗?
哪个脚是D(漏极)?
G(栅极)呢? 是P沟道还是N沟道MOS? 呵呵,这个有点难哦。
给你万用表,怎么测量 MOS管是好是坏呢?
实物
1 如何分辨三个极?
首先,来看看常见的SO-8封装MOS管吧。
共有八个脚,显然会有几个脚内部是相连的。 第1步: 请确定MOS管PIN1(第一脚) 方法:芯片上会用一个小圆点标示出PIN1,
(想像DS边的三节断续线是连通的)
P沟道
不论N沟道还是P沟道MOS管, 中间衬底箭头方向和寄生二极管的箭 头方向总是一致的:
要么都由S指向D, 要么都由D指向S。
D极
电路符号
4 它能干吗用呢?
在我们天天面对的笔记本主板上,
MOS管有两大作用:
此处电压
被拉低
开1关. 开作用关(作1)用: ;
2. 隔离作用。
三个脚的极性判断完后,接下就该判断是P沟道还是N沟道了:
S极
N沟道MOSFET
G极 箭头指向G极的是N沟道
D极
电路符号
S极
P沟道MOSFET
G极 箭头背向G极的是P沟道
D极
当然也可以先判断沟道类型,再判断三个脚极性。
电路符号
小测试: 先判断是什么沟道,再判断三个脚极性。
G极 1
1 S极
2 D极
D极 2
NMOS管正确接法:
D极接输入;S极接输出。
假如:
S接输入,D接输出呢?
输入
S极
G极
N沟道
D极
输出
由于寄生二极管直接导通,因此 S极电压可以无条件到D极,MOS 管就失去了开关的作用。
PMOS管正确接法:
S极接输入;D极接输出。
假如反接:
D接输入,S接输出。
输出
S极
G极
P沟道
D极
输入
同样失去了开关作用。
N沟道: UG>US时导通。 (简单认为)UG=US时截止。
P沟道: UG<US时导通。 (简单认为)UG=US时截止。
但UG比US大(或小)多少伏时MOS管才会饱和导通呢?
电路符号
饱和导通问题:
UG比US大(或小)多少伏时MOS管才会饱和导通呢?
这要看具体的MOS管,不同MOS管需要的压差不同。
作用: 电压通断(开关)
常用接法: D极接输入,UD=5V。 S极接输出。
截止条件: UG=US=0V。
导通条件: UG比US大10V以上, UG=US+10V=15V。 (导通时,US=5V)
电路符号
示例3:
PMOS管: AOD425
作用: 电压通断(开关)
+19V S极
常用接法: S极接输入,US=19V。 D极接输出。
电路符号
电路符号篇
电路符号
开始之前,一个小测试:
请回答: 哪个脚是S(源极)?
哪个脚是D(漏极)?
G(栅极)呢?
是P沟道还是N沟道MOS?
如果接入电路, D极和S极,哪一个该接输 入,哪个接输出? 你答对了吗?
电路符号 再来一个,试试看:
ቤተ መጻሕፍቲ ባይዱ
哪个脚是S(源极)?
哪个脚是D(漏极)?
G(栅极)呢? 是P沟道还是N沟道MOS? 依据是什么?
电路符号
MOS管作用总结:
(结合寄生二极管)
如果MOS管用作开关时,(不论N沟道还是P沟道), 一定是寄生二极管的负极接输入边,正极接输出端或接地。 否则就无法实现开关功能了。
所以,N沟道一定是D极接输入,S极接输出或地。 P沟道则相反,一定是S极接输入,D极接输出。
如果MOS管用作隔离时,(不论N沟道还是P沟道), 寄生二极管的方向一定是和主板要实现的单向导通方向 一致。
假如MOS管表面磨损,或是无法辨认PIN1的标记圆点,你可以用什么 方法确认PIN1脚,以及G极,D极和S极? 拿出万用表,试试吧!
实物
再来看看相似的DFN封装MOS管:
外形上来看,DNF封装的MOS管仍旧有8个脚,但已经变成贴片形式, 节约了高度,散热性能更好些。 但其PIN脚极性还是一样排列。
还有Ultra SO-8封装的MOS管:
Ultra SO-8封装的MOS管相对DFN封装厚度 上有点增加,PIN1,2,3直接相连成为S极。
实物
接下来,看看6个脚的TSOP-6封装MOS管:
SI3456
PIN1,2,5,6为D极; PIN3为G极;
PIN4为S极。
同样是6个脚,的SOT-363封装MOS管则为双MOS管:
笔记本主板上用PMOS做隔离管的最常见,但也有极少 的主板用NMOS来实现。
电路符号 5 做个挑错游戏吧
有没有发现过笔记本电路图上的MOS管也有画错的? 通过前面的学习, 我们来做个挑错 游戏吧, 看看你能发现多 少错误?
图1
电路符号
两张截图里, 你发现了几处错误?
答案在文档最后面。
图2
实物
实物篇
导通
+1.5V
+15V
由+1.5V_SUS产生+1.5V电路(2)
电路符号
看过前面的例子,你能总结出“MOS管用做开关时在电路 中的连接方法”吗?
其实关键就是: 确定哪一个极连接输入端;哪个极连接输出端。 控制极电平为“ ?V ” 时MOS管导通(饱和导通)? 控制极电平为“ ?V ” 时MOS管截止?
如果接入电路, D极和S极,哪一个该接输 入,哪个接输出?
这次怎么样?
电路符号 1 三个极怎么判定 ?
MOS管符号上的三个脚的辨认要抓住关键地方 。
S极
G极,不用说比较好认。
S极,
G极
不论是P沟道还是N沟道,
两根线相交的就是;
D极,
不论是P沟道还是N沟道,
D极
是单独引线的那边。
电路符号 2 他们是N沟道还是P沟道?
电路符号
示例1:
19V
Adapter
PMOS管: AOL1413
接地
6V 19V
5V
导通
作用: 隔离
19V
截导止通
19V
隔离
19V
BAT
大家有兴趣可分析一下:拔掉适配器后只用电池供电时AOL1413的工作情况,试试吧!
电路符号
笔记本主板上的隔离,其实质是将适配器电压(+19V) 和电池电压(+12V左右)分隔开来。不让它们直接相通。 但又能在拔除任意一种电源时,保证电脑都有持续的供电,实 现电源无缝切换。
实物
最后,3PIN脚的MOS管: (1)SOT-23
3
D
G
S
1
2
PIN1为G极;PIN2为S极;PIN3为D极。
图纸习惯
但请大家特别注意:主板上标示的PIN1与PIN2脚与此刚好颠倒了。
主板图纸上也是如此。 而且,似乎作为一种错误的习惯被保持了下来。
另外一种3PIN脚的MOS管: (2)TO-252
3
1
2
2
1
常见型号有: AOD425
实物
2 它是N沟道还是P沟道的呢?
先从简单的开始,拿最常见的3PIN脚MOS管(SOT-23)讲起。
D
G S
01.6220V
接下来, 将万用表调 到“二极体档”。
由上一小节内容,我们可以立即找 到MOS管的G,S,D三极。
电路符号
示例1:
NMOS管: 2N7002E
作用: 信号切换(开关)
D极 05V
G极
3V
导通
S极
常用接法: S极接地,US=0V。
截止条件: UG=US=0V。
导通条件: UG比US大3V---5V即可, UG=3V。
电路符号
示例2:
NMOS管: AON7406
D极 5V
+15V G极
S极
导通
05V
它一般会在芯片的左下角。
第2步: 请确定MOS管其他脚
方法:从PIN1开始,逆时针方向依次为2,3, …..6,7,8脚。
实物
第3步: 请确定三个极。
D极单独位于一边,而G极是第4PIN。 剩下的3个脚则是S极。 它们的位置是相对固定的,记住这一点很有 用。
看看我们常见的NMOS管4816:
请注意:不论NMOS管还是PMOS管,上述PIN脚的确定方法都是一样的。
A
B
此处MOS管实现的功能就是:隔离作用。
所以,所谓的MOS管的隔离作用,其实质也就是实现电路 的单向导通,它就相当于一个二级管。
但在电路中我们常用隔离MOS,是因为: 使用二级管,导通时会有压降,会损失一些电压。而使用 MOS管做隔离,在正向导通时,在控制极加合适的电压,可以 让MOS管饱和导通,这样通过电流时几乎不产生压降。
S极 3
P沟道MOSFET
3 G极
N沟道MOSFET
电路符号
3 寄生二极管的方向如何判定?
接下来,是寄生二极管的方向判断:
S极
寄生二极管
S极
G极
N沟道 G极
P沟道
D极
D极
它的判断规则就是:
N沟道,由S极指向D极; P沟道,由D极指向S极。
相关文档
最新文档