新高一衔接班数学讲义
高一数学暑期预科-初高衔接课讲义

新高一数学必备知识一、乘法公式1、完全平方公式和平方差公式()2222b ab a b a +±=± ()()22b a b a b a -=-+2、和立方与差立方公式()3223333b ab b a a b a +++=+ ()3223333b ab b a a b a -+-=-3、立方和与立方差公式()()3322b a b ab a b a +=+-+ ()()3322b a b ab a b a -=++-二、一元二次方程1、韦达定理一元二次方程的根与系数之间存在下列关系:若ax 2+bx +c =0(a ≠0)两根分别是x 1,x 2,则x 1+x 2=b a -,x 1·x 2=ca.也被称为韦达定理.以两个数x 1,x 2为根的一元二次方程(二次项系数为1)是x 2-(x 1+x 2)x +x 1·x 2=0. 利用根与系数的关系求值,要熟练掌握以下等式变形:一元二次方程的两根之差的绝对值是一个重要的量,今后我们经常会遇到求这一个量的问题(相关地,抛物线与x 轴两交点间的距离),为了解题简便,我们可以探讨出其一般规律:设x 1和x 2分别是一元二次方程ax 2+bx +c =0(a ≠0)的两根,则a ac b b x 2421-+-=,aac b b x 2422---=,||4|242||2424|||222221a acb a ac b a ac b b a ac b b x x -=-=-----+-=-∴||a ∆=.【例题精讲】例1. 已知方程5x 2+kx -6=0的一个根是2,求它的另一个根及k 的值.例2. 若x 1和x 2分别是一元二次方程2x 2+5x -3=0的两根. (1) 求|x 1-x 2|的值; (2) 求222111x x +的值; (3) 求31x +32x 的值.例3. 已知α、β是方程x 2+2x -5=0的两个实数根,则α2+αβ+2α的值为_______.【巩固练习】1. 1x 和2x 为一元二次方程013222=-+-m x x 的两个实根,并1x 和2x 满足不等式142121<-+x x x x ,则实数m 的值范围是 .2. 关于x 的方程240x x m ++=的两根为x 1,x 2满足| x 1-x 2|=2,求实数m 的值.3. 已知α、β是方程210x x --=的两个实数根,则代数式)2(22-+βαα的值为 .2、利用韦达定理逆定理,构造一元二次方程辅助解题等【例题精讲】例1. 设a ,b 是相异的两实数,满足ab b a b b a a 2222,34,34++=+=求的值例2. 0519998081999522=++=+-b b a a 及已知,求ba的值.【巩固练习】1. 如果a 、b 都是质数,且0132=+-m a a ,0132=+-m b b ,求baa b +的值2. 设实数a ,b 分别满足,01999,01991922=++=++b b a a 且ba ab ab 14,1++≠求的值.3. △ABC 的一边长为5,另两边长恰为方程01222=+-m x x 的两根,则m 的取值范围是 .3、根的分布定理 (1)0分布一元二次方程()200ax bx c a ++=≠的根从几何意义上来说就是二次函数()c bx ax x f ++=2与x 轴交点的横坐标,所以研究02=++c bx ax 的实根的情况,可从函数()c bx ax x f ++=2的图象上进行研究.0∆>⎧0∆>⎧【例题精讲】例1. 已知方程()2210x m x m -++=有两个不等正实根,求实数m 的取值范围.例2. 若方程05)2(2=-+-+m x m x 的根满足下列条件,分别求出实数m 的取值范围. (1)方程两实根均为正数;(2)方程有一正根一负根.【巩固练习】已知一元二次方程()()221210m x mx m +-+-=有一正根和一负根,求实数m 的取值范围.(2)k分布【知识梳理】kk k【例题精讲】例1. 若关于x 的方程02=++a x x 的一个大于1、另一根小于1,求实数a 的取值范围.例2. 若关于x 的方程02=++a x x 的两根均小于1,求实数a 的取值范围.例3.已知二次函数()()()222433y m x m x m =+-+++与x 轴有两个交点,一个大于1,一个小于1,求实数m 的取值范围.【巩固练习】1. 关于x 的方程02)1(22=-+-+a x a x 的一个根比1大,另一个根比1小,则( )12121||11>-<<<-><<-a a D a Ca B a A 或2. 实数k 为何值时,方程022=-+-k kx x 的两根都大于21 .3. (1)已知:,αβ是方程()221420x m x m +-+-=的两个根,且2αβ<<,求m 的取值范围;(2)若220x ax ++=的两根都小于1-,求a 的取值范围.(3)m、n分布()0⎧>f m()0⎧<f m【例题精讲】例1. 已知关于x 的二次方程x 2+2mx +2m +1=0,(1)若方程有两根,其中一根满足011<<-x ,另一根满足212<<x ,求m 的范围; (2)若方程两根满足1021<≤<x x ,求m 的范围.例 2. 关于x 的二次方程()2271320x p x p p -++--=的两根βα,满足012αβ<<<<,求实数p 的取值范围.例3. 二次函数6)1(2522-++-=m x m x y 的图像与x 轴的两个交点满足1121≤<≤-x x ,且分居y 轴的两侧,求实数m 的取值范围.例4. 若二次函数y =的图象与两端点为A (0,3),B (3,0)的线段AB 有两个不同的交点,求m 的取值范围.21x mx -+-【巩固练习】1. 关于x 的方程0532=+-a x x 的两根分别满足021<<-x ,312<<x ,求a 的取值范围.2. 二次方程2210x kx k ++-=的两个根1x 与2x ,当121x -<<-且212x <<时,实数k 的取值范围是 .总结:一元二方程根的分布只需考虑三个方面:(1)a 和△的符号(2)对称轴相对于区间的位置(3)所给区间端点函数值符号【例题精讲】例1.当关于x 的方程的根满足下列条件时,求实数a 的取值范围: (1)方程x 2-ax+a -7=0的两个根一个大于2,另一个小于2; (2)方程ax 2+3x+4=0的根都小于1;(3)方程x 2-2(a+4)x+2a 2+5a +3=0的两个根都在31-≤≤x 内;(4)方程7x 2-(a+13)x+2a -1=0的一个根在10<<x 内,另一个根在21<<x 内.例2.已知函数22()(21)2f x x a x a =--+-与非负x 轴至少有一个交点,求a 的取值范围.【巩固练习】已知方程03)3(24=+--m x m mx 有一个根小于1-,其余三个根都大于1-,求m 的取值范围.三、不等式1、一元二次不等式例1. 解下列不等式(1)()()x x x 2531-<--; (2)()()21311+>+x x x ;(3)()()()233122+>-+x x x ; (4)2223133x x x ->+-; (5)()13112->+-x x x x(6)x 2+2x -3≤0; (7)x -x 2+6<0; (8)4x 2+4x +1≥0; (9)x 2-6x +9≤0; (10)-4+x -x 2<0.例2.设R m ∈,解关于x 的不等式0322<-+m mx mx .2、分式不等式及高次不等式(1)简单分式不等式的解法:已知f (x )与g (x )是关于x 的多项式,不等式()0()f x g x >,()0()f x g x <,()0()f x g x ≥,()0()f xg x ≤称为分式不等式.前面介绍过的符号法则可以进行推广,进而可以研究分式不等式.将分式不等式进行同解变形,利用不等式的同解原理将其转化为有理整式不等式(组)即可求解.具体如下:()0()f x g x >①,即()0()0f x g x >⎧⎨>⎩或()0()0f xg x <⎧⎨<⎩,即()()0f x g x ⋅>;()0()f x g x <②,即()0()0f x g x >⎧⎨<⎩或()0()0f x g x <⎧⎨>⎩,即()()0f x g x ⋅<; ()0()f x g x ≥③,即()()0()0f x g x g x ⋅≥⎧⎨≠⎩,即()()0f x g x ⋅>或()0f x =; ()0()f x g x ≤④,即()()0()0f x g x g x ⋅≤⎧⎨≠⎩,即()()0f x g x ⋅<或()0f x =.(2)简单高次不等式的解法:不等式的最高次项的次数高于2的不等式称为高次不等式.前面介绍过的符号法则可以进行推广,进而可以研究高次不等式.解高次不等式的方法有两种:方法1:将高次不等式f (x )>0(<0)中的多项式f (x )分解成若干个不可约因式的乘积,根据符号法则等价转化为两个或多个不等式(组)即可求解.但应注意:原不等式的解集是各不等式(组)解集的并集,且次数较大时,此种方法比较烦琐.方法2:穿针引线法:①将不等式化为标准形式,右端为0,左端为一次因式(因式中x 的系数为正)或二次不可约因式的乘积;②求出各因式的实数根,并在数轴上标出;③自最右端上方起,用曲线自右向左依次由各根穿过数轴,遇奇次重根穿过,遇偶次重根穿而不过(奇过偶不过);④记数轴上方为正,下方为负,根据不等式的符号即可写出解集.例题解析(1)求不等式032≥-+x x 的解集 (2)求不等式3223x x -≥+的解集(3)求不等式221x x 的解集(4)求不等式()()0236522≤++--x x x x 的解集3、恒成立与有解问题一元二次不等式的恒成立问题,即可以看成一个函数()x f y =的图象与x 轴的位置关系问题,若是不等式()0>x f 恒成立,即函数图象恒在x 轴上方,且与x 轴无交点,同理可以得到其他类似情形。
暑假新高一数学衔接讲义含初中高中部分

第1讲数与式910+⨯(1)n n ++第2讲一元二次函数与二次不等式第3讲一元二次方程与韦达定理第4讲绝对值不等式与无理式不等式第5讲集合的基本概念例5.设集合}{12A x x =<<,}{B x x a =<,且A B ⊆,则实数a 的范围是( ).2A a ≥ B.2a > C.1a > D.1a ≤变式:若A={x|x2-3x+2=0},B={x|x2-a x+a -1=0},且B⊆A,则a 的值为___ ___【典型例题—2】韦恩图: 【内容概述】用平面上封闭曲线的内部代表集合,这种图叫做韦恩图。
例6. 求下列集合之间的关系,并用Venn 图表示.A ={x |x 是平行四边形},B ={x |x 是菱形},C ={x |x 是矩形},D ={x |x 是正方形}. 【典型例题—3】集合相等:设集合A={x|x 2-1=0},B ={-1,1},那么这两个集合会有什么关系呢?【概括】集合A 与集合B 中的元素完全相同,只是表示方法不同,我们就说集合A 与集合B 相等,即:A=B例7.判断集合{}2A x x ==与集合{}240B x x =-=的关系. 例8.判断集合A 与B 是否相等?(1) A={0},B= ∅;(2) A={…,-5,-3,-1,1,3,5,…},B={x| x=2m+1 ,m ∈Z } ; (3) A={x| x=2m-1 ,m ∈Z },B={x| x=2m+1 ,m ∈Z }.变式:已知三元集合A={y x xy x -,,},B={y x |,|,0 },且A=B,求y x 与的值.【典型例题—4】真子集: 【内容概述】如果集合B 是集合A 的子集,并且集合A 中至少有一个元素不属于集合B ,那么把集合B 叫做集合A 的真子集.记作BA (或AB), 读作“A 真包含B ”(或“B 真包含于A ”).[不包含本身的子集叫做真子集] 对于集合A 、B 、C ,如果A B ,BC ,则AC .例9.选用适当的符号“⊂≠”或“”填空:(1){1,3,5}_ _{1,2,3,4,5}; (2){2}_ _ {x| |x|=2}; (3){1} _∅. 例10.设集合{}0,1,2M =,试写出M 的所有子集,和真子集变式:已知集}{2230A x x x =--=,}{10B x ax =-= 若B⊂≠A,求a 的值所组成的集合M.【典型例题—5】空集 【内容概述】1、我们把不含任何元素的集合叫做空集,记作∅2、空集是任何集合的子集。
新高一数学衔接讲义讲义系列一之欧阳语创编

第1讲数与式910+⨯2(1)n n ++第2讲一元二次函数与二次不等式第3讲一元二次方程与韦达定理第4讲绝对值不等式与无理式不等式第5讲集合的基本概念对于集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就 说这两个集合是包含关系,集合A 为集合B 的子集。
记作()A B B A ⊆⊇或 读作A 含于B例2.用符号“⊆”、“⊇”、“∈”或“∉”填空:(1){},,,a b c d {},a b ; (2) ∅{}1,2,3; (3) N Q ;(4) 0R ; (5) d {},,a b c ; (6) {}|35x x <<{}|06x x <. 例3.写出集合{a ,b }的所有子集,例4.说出下列每对集合之间的关系.(1)A ={1,2,3,4,},B ={3,4}. (2)P ={x |x 2=1},Q ={-1,1}. (3)N ,N*.例5.设集合}{12A x x =<<,}{B x x a =<,且A B ⊆,则实数a 的范围是( ) .2A a ≥ B.2a > C.1a > D.1a ≤变式:若A={x|x2-3x+2=0},B={x|x2-a x+a -1=0},且B⊆A,则a 的值为______【典型例题—2】韦恩图:【内容概述】用平面上封闭曲线的内部代表集合,这种图叫做韦恩图。
例6. 求下列集合之间的关系,并用Venn 图表示.A ={x |x 是平行四边形},B ={x |x 是菱形},C ={x |x 是矩形},D ={x |x 是正方形}.【典型例题—3】集合相等:设集合A={x|x 2-1=0},B ={-1,1},那么这两个集合会有什么关系呢?【概括】集合A 与集合B 中的元素完全相同,只是表示方法不同,我们就说集合A 与集合B 相等,即:A=B例7.判断集合{}2A x x ==与集合{}240B x x =-=的关系.例8.判断集合A 与B 是否相等?(1) A={0},B=∅;(2) A={…,-5,-3,-1,1,3,5,…},B={x| x=2m+1 ,m ∈Z };(3) A={x| x=2m-1 ,m ∈Z },B={x| x=2m+1 ,m ∈Z }.变式:已知三元集合A={y x xy x -,,},B={y x |,|,0 },且A=B,求y x 与的值.【典型例题—4】真子集:【内容概述】如果集合B 是集合A 的子集,并且集合A 中至少有一个元素不属于集合B ,那么把集合B 叫做集合A 的真子集.记作B A (或A B), 读作“A 真包含B ”(或“B 真包含于A ”).[不包含本身的子集叫做真子集] 对于集合A 、B 、C ,如果AB ,BC ,则A C . 例9.选用适当的符号“⊂≠”或“”填空:(1){1,3,5}_ _{1,2,3,4,5}; (2){2}_ _ {x| |x|=2}; (3){1} _∅. 例10.设集合{}0,1,2M =,试写出M 的所有子集,和真子集变式:已知集}{2230A x x x =--=,}{10B x ax =-= 若B⊂≠A,求a 的值所组成的集合M.【典型例题—5】空集【内容概述】1、我们把不含任何元素的集合叫做空集,记作∅2、空集是任何集合的子集。
新高一数学衔接讲义讲义系列一之欧阳地创编

第1讲数与式910+⨯2(1)n n ++第2讲一元二次函数与二次不等式第3讲一元二次方程与韦达定理第4讲绝对值不等式与无理式不等式第5讲集合的基本概念},Q={-1,例6. 求下列集合之间的关系,并用Venn 图表示.A ={x |x 是平行四边形},B ={x |x 是菱形},C ={x |x 是矩形},D ={x |x 是正方形}.【典型例题—3】集合相等:设集合A={x|x 2-1=0},B ={-1,1},那么这两个集合会有什么关系呢?【概括】集合A 与集合B 中的元素完全相同,只是表示方法不同,我们就说集合A 与集合B 相等,即:A=B例7.判断集合{}2A x x ==与集合{}240B x x =-=的关系.例8.判断集合A 与B 是否相等?(1) A={0},B=∅;(2) A={…,-5,-3,-1,1,3,5,…},B={x| x=2m+1 ,m ∈Z };(3) A={x| x=2m-1 ,m ∈Z },B={x| x=2m+1 ,m ∈Z }.变式:已知三元集合A={y x xy x -,,},B={y x |,|,0 },且A=B,求y x 与的值.【典型例题—4】真子集:【内容概述】如果集合B 是集合A 的子集,并且集合A 中至少有一个元素不属于集合B ,那么把集合B 叫做集合A 的真子集.记作B A (或A B), 读作“A 真包含B ”(或“B 真包含于A ”).[不包含本身的子集叫做真子集] 对于集合A 、B 、C ,如果AB ,BC ,则A C . 例9.选用适当的符号“⊂≠”或“”填空:(1){1,3,5}_ _{1,2,3,4,5}; (2){2}_ _ {x| |x|=2}; (3){1} _∅. 例10.设集合{}0,1,2M =,试写出M 的所有子集,和真子集变式:已知集}{2230A x x x =--=,}{10B x ax =-= 若B⊂≠A,求a 的值所组成的集合M.第6讲集合的基本运算知识点二、交集【内容概述】1、交集的定义:一般地,由属于集合A 且属于集合B 的所有元素组成的集合,叫做A 与B 的交集.数学语言表述为B A ,},|{B x A x x B A ∈∈=且 .2、交集的运算必须掌握的几条性质:(1)A B B A =;(2)B B A A B A ⊆⊆ ,;(3)∅=∅=∅=A A A A A ,;(4)A B A B A =⇔⊆ ;(5))()(C B A C B A =.【典型例题】例3.设}6,5,3,1{},4,3,1{},3,2,1{===C B A ,求)(,)(C B A C B A .变式1:已知集合},019|{22为常数a a ax x x A =-+-=,}065|{2=+-=x x x B , }082|{2=-+=x x x C ,求当a 为何值时,∅≠B A 与∅=C A 同时成立.变式2:已知集合}9,1,5{},,12,0{2a a B a a A --=-=分别符合下列条件的a 的值.(1)B A ∈9; (2){}B A =9.例4.设集合}|{},1,0,1{2x x x N M ≤=-=,则N M =_______________________.变式1:图中阴影部分用集合表示为_______________.变式2:已知集合}3|{},42|{a x a x B x x A <<=<<=.(1)若∅=B A ,求a 的取值范围;(2)若}4|{<<=x a x B A ,求a 的取值范围.知识点三、补集【内容概述】1.全集:在研究集合与集合之间的关系时,有时这些集合都是某一个给定集合的子集,这个给定集合可以看成一个全集,用符号“U ”表示,也就是说,全集含有我们所要研究的各个集合的全部元素.2.补集:如果集合A 是全集U 的一个子集,由全集U 中不属于集合A 的所有元素组成的集合,叫做集合A 相对于全集U 的补集,简称为集合A 的补集.3.对补集定义的理解要注意以下几点:(1)补集是相对于全集而存在的,研究一个集合的补集之前一定要明确其所对应的全集.比如当研究数的运算性质时,我们常常将实数集R 当做全集.(2)补集既是集合之间的一种关系,同时也是集合之间的一种运算,当然也是一种数学思想.(3)从符号角度来看,若U x ∈,U A ⊂,则A x ∈和A C x U ∈二者必居其一.4.集合图形,理解补集的如下性质:(1)∅====∅∅=)(,)(,)(,,A C A U A C A A A C C U C U C U U U U U U(2)若B A ⊆,则)()(B C A C U U ⊇;反之,若)()(B C A C U U ⊇,则B A ⊆(3)若A=B ,则B C A C U U =;反之,若B C A C U U =,则A=B【典型例题】例 5.设全集U 是实数集R ,}4|{2>=x x A ,}13|{<≥=x x x B 或都是U 的子集,则图中阴影部分所表示的集合是__________________.变式1:已知集合}012|{2=++=b ax x x A 和}0|{2=+-=b ax x x B满足R U B C A B A C U U ===},4{)(},2{)( ,求实数a 、b 的值.变式2:设集合}123|),{(},,|),{(=--=∈=x y y x M R y x y x U ,}1|),{(+≠=x y y x N , 则)()(N C M C U U =__________________.例 6.已知全集R U =,}12|{},523|{≤≤-=+<<=x x P a x a x M ,若P C M U ⊂,求实数a 的取值范围.变式1:已知集合},0624|{2R x m mx x x A ∈=++-=,},0|{R x x x B ∈<=,若∅≠B A ,求实数m 的取值范围.变式2:已知集合}50|{≤-<=a x x A ,}62|{≤<-=x a x B . (1)若A B A = ,求a 的取值范围;(2)若A B A = ,求a 的取值范围.例7.学校50名学生调查对A 、B 两个事件的态度,有如下结果:赞成A 的人数是全体的五分之三,其余的不赞成;赞成B 的比赞成A 的多3人,其余的不赞成;另外,对A ,B 都不赞成的学生数比对A ,B 都赞成的学生数的三分之一多1人,问对A ,B 都赞成的学生和都不赞成的学生各有多少人?例8.设集合}3,2,1{=I ,A 是集合I 的子集,如果把满足I A M = 的集合M 叫做集合A 的“配集”,则当}2,1{=A 时,A 的配集的个数是_________________.课后作业第7讲集合的综合复习第8讲函数的概念与定义域考点及考试要求1.了解函数的概念;2.理解函数的三种表示方法;3.了解简单的分段函数教学内容知识点一、区间的概念【内容概述】设baRba<∈且,,区间是集合的另一种形式.对于区间的理解应注意:2、区间的左端点必须小于右端点,有时我们将b-a成为区间的长度,对于只有一个元素的集合我们仍然用集合来表示,如{}a;3、注意开区间),(ba与点),(ba在具体情景中的区别.若表示点),(ba的集合应为{}),(ba;4、用数轴来表示区间时,要特别注意实心点与空心点的区别;5、对于一个不等式的解集,我们既可以用集合形式来表示,也可用区间形式来表示;6、要注意区间表示实数集的几条原则,数集是连续的,左小,右大,开或闭不能混淆.【典型例题】例1.把下列数集用区间表示:(1)}1|{-≥xx;(2)}0|{<xx;(3)}11|{<<-xx;(4)}4210|{≤≤<<xxx或知识点二、函数的定义【内容概述】一般地,设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A的任意一个数x,在集合B中都有唯一确定的数)(xf和它对应,那么就称BAf→:为从集合A到集合B的一个函数,记作)(xfy=,Ax∈.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x值相对应的y值叫做函数值,函数值的集合}|)({Axxf∈叫做函数的值域.显然:BAxxf⊆∈}|)({【典型例题】例5.高为h ,底面半径为R 的圆柱形容器内,以单位时间内体积为a 的速度灌水.试求水面高y 用时间t 表示的函数式,并求其定义域. 例6.已知函数32341++-=ax ax ax y 的定义域为R ,求实数a 的取值范围.例7.设}20|{},20|{≤≤=≤≤=y y N x x M ,下图中的四个图形,其中能表示从集合M 到集合N 的函数关系的有( )知识点四、抽象函数的定义域【拓展】 【内容概述】(1)函数)(x f 的定义域是指x 的取值范围;(2)函数))((x g f 的定义域是指x 的取值范围,而不是)(x g 的取值范围;(3)已知))((x g f 的定义域为B ,求)(x f 的定义域,其实质是已知))((x g f 中x 的取值范围为B ,求出)(x g 的范围(值域),此范围就是)(x f 的定义域. 【典型例题】例8.已知函数)(x f 的定义域为]9,0[,求)12(+x f 的定义域.变式1:已知函数)(x f 的定义域为]13,5[,求)(2x f 的定义域.变式2:已知函数)(x f 的定义域为]3,3[-,求)12(2+x f 的定义域.例9.已知函数)(x f 的定义域为]5,21[,)1()1()(++-=x f x f x g 求)(x g 的定义域.变式1:已知函数)(x f 的定义域为]4,31[,)1()()(xf x f xg +=求)(x g 的定义域.变式2:已知函数)(x f 的定义域为]4,1[,)()()(2x f x f x g +=求)(x g 的定义域.知识点五、检验图形是否为函数图像的方法 【内容概述】要判断一个图形是否是函数图象,首先要看图形对应的x 轴部分上的任意一个x 是否都有唯一的y 与之对应.若是,则该图形是函数的图象;若至少有一个x 值,存在两个或两个以上的y 与之对应,则此图形一定不是函数的图象.或者过图形上任一点,作x 轴的垂线,若该垂线与图形无任何其他的公共点,则此图形是函数的图象,否则该图形一定不是函数的图象.除上述之外,还要关注函数的定义域、值域与图象中所示的定义域(图形正对着x 轴上的所有实数)、值域(图形正对y 轴上的所有实数)是否一致. 【典型例题】第9讲 求函数的值域例10.设}20|{},22|{≤≤=≤≤-=y y N x x M ,函数)(x f 的定义域为M ,值域为N ,则)(x f 的图象可以是( )A B C D 课下作业1.下列各组函数表示相等函数的是( )4、⎩⎨⎧<->=0,,0,)(x x x x f 与||)(x x g =5、12)(+=x x f 与xxx x g +=22)(6、|1|)(2-=x x f 与22)1()(-=t t g7、2)(x x f =与x x g =)(2.函数xx y 1+=的定义域为_______________. 3.函数12)(22-+-=a ax x x f 的定义域为A ,若A ∉2,则a 的取值范围是____.4.已知函数)(x f y =的定义域为]4,1[,求函数)(2x f y =的定义域.5.已知)(x f 的定义域为]2,0(,求函数)()12(2x f x f +-的定义域.教学目标1。
新高一数学衔接讲义讲义系列一之欧阳德创编

第1讲数与式910+⨯2(1)n n ++一元二次函数与二次不等式第2讲第3讲一元二次方程与韦达定理第4讲绝对值不等式与无理式不等式第5讲集合的基本概念对于集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就 说这两个集合是包含关系,集合A 为集合B 的子集。
记作()A B B A ⊆⊇或 读作A 含于B例2.用符号“⊆”、“⊇”、“∈”或“∉”填空:(1){},,,a b c d {},a b ; (2) ∅{}1,2,3; (3) N Q ;(4) 0R ; (5) d {},,a b c ; (6) {}|35x x <<{}|06x x <. 例3.写出集合{a ,b }的所有子集,例4.说出下列每对集合之间的关系.(1)A ={1,2,3,4,},B ={3,4}. (2)P ={x |x 2=1},Q ={-1,1}. (3)N ,N*.例5.设集合}{12A x x =<<,}{B x x a =<,且A B ⊆,则实数a 的范围是( ) .2A a ≥ B.2a > C.1a > D.1a ≤变式:若A={x|x2-3x+2=0},B={x|x2-a x+a -1=0},且B⊆A,则a 的值为______【典型例题—2】韦恩图:【内容概述】用平面上封闭曲线的内部代表集合,这种图叫做韦恩图。
例6. 求下列集合之间的关系,并用Venn 图表示.A ={x |x 是平行四边形},B ={x |x 是菱形},C ={x |x 是矩形},D ={x |x 是正方形}.【典型例题—3】集合相等:设集合A={x|x 2-1=0},B ={-1,1},那么这两个集合会有什么关系呢?【概括】集合A 与集合B 中的元素完全相同,只是表示方法不同,我们就说集合A 与集合B 相等,即:A=B例7.判断集合{}2A x x ==与集合{}240B x x =-=的关系.例8.判断集合A 与B 是否相等?(1) A={0},B=∅;(2) A={…,-5,-3,-1,1,3,5,…},B={x| x=2m+1 ,m ∈Z };(3) A={x| x=2m-1 ,m ∈Z },B={x| x=2m+1 ,m ∈Z }.变式:已知三元集合A={y x xy x -,,},B={y x |,|,0 },且A=B,求y x 与的值.【典型例题—4】真子集:【内容概述】如果集合B 是集合A 的子集,并且集合A 中至少有一个元素不属于集合B ,那么把集合B 叫做集合A 的真子集.记作B A (或A B), 读作“A 真包含B ”(或“B 真包含于A ”).[不包含本身的子集叫做真子集] 对于集合A 、B 、C ,如果AB ,BC ,则A C . 例9.选用适当的符号“⊂≠”或“”填空:(1){1,3,5}_ _{1,2,3,4,5}; (2){2}_ _ {x| |x|=2}; (3){1} _∅. 例10.设集合{}0,1,2M =,试写出M 的所有子集,和真子集变式:已知集}{2230A x x x =--=,}{10B x ax =-= 若B⊂≠A,求a 的值所组成的集合M.【典型例题—5】空集【内容概述】1、我们把不含任何元素的集合叫做空集,记作∅2、空集是任何集合的子集。
新高一数学衔接讲义讲义系列一(完整资料)

例14.设 ,且e>1,2c2-5ac+2a2=0,求e的值.
变式1:对任意的正整数n, ______________-
变式2:选择题:若 ,则 =( )
(A)1 (B) (C) (D)
变式3:计算 .
知识点四、因式分解
【内容概述】
因式分解是代数式的一种重要的恒等变形,它与整式乘法是相反方向的变形。在分式运算、解方程及各种恒等变形中起着重要的作用。是一种重要的基本技能。
②分母中有根式(如 ),或被开方数有分母(如 ).这时可将其化为 形式(如 可化为 ) ,转化为 “分母中有根式”的情况.
化简时,要把分母中的根式化为有理式,采取分子、分母同乘以一个根式进行化简.(如 化为 ,其中 与 叫做互为有理化因式).
【典型例题—2】:有理化因式和分母有理化
有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个代数式叫做有理化因式。如 与 ; 与 互为有理化因式。
例24.(x2-5x+2)(x2-5x+4)-8
课后练习
1.填空:
(1) ( );
(2) ;
(3) .
(4)若 ,则 的值为________
(5)若 ,则 ______________
(6) , ,则 ________________
(7)若 ,则 _______________
(8)若 ,则( )
分母有理化:在分母含有根式的式子里,把分母中的根式化去,叫做分母有理化。
例9.计算:(1) (2)
例10.设 ,求 的值
知识点三、分式
【典型例题—1】:分式的化简
例11.化简 例12.化简
【典型例题—2】:分式的证明
新高一数学初升高数学衔接班第2讲—二次根式

新高一数学初升高数学衔接班第2讲——二次根式通用版初高中衔接课程第二讲:二次根式——初遇分母(子)有理化一、学习目标:1. 了解无理式、有理式的概念,进一步熟悉二次根式的运算方法。
2. 能进行二次根式的运算和化简,会进行分母有理化。
二、学习重点:二次根式的化简与运算三、课程精讲:1. 知识回顾:1)二次根式式子a(a≥0)叫做二次根式。
2)最简二次根式同时满足:①被开方数的因数是整数,因式是整式(分母中不含根号);②被开方数中含能开得尽方的因数或因式。
这样的二次根式叫做最简二次根式。
3)同类二次根式几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫同类二次根式。
4)二次根式的性质①(a)2=a(a≥0);②2a=│a│=(0)0(0)(0)a aaa a>⎧⎪=⎨⎪-<⎩;③ab=a·b(a≥0,b≥0);④b ba a=(b≥0,a>0)。
例1. 填空题:(1)若式子23x2--有意义,则x的取值范围是_______。
(2)实数a,b,c如图所示,化简2a-│a-b│+2()b c+=______。
思路导航:回忆二次根式的定义与性质解答:(1)由x-3≥03x-2≠0,得x≥3且x≠7。
(2)由图可知,a<0,b>0,c<0,且│b│>│c│2a-a,-│a-b│=a-b2()b c+2a│a-2()b c+。
例2. 选择题:(1)在下列各组根式中,是同类二次根式的是()A. B.C..1D a + 2ab(2)在根式1 )A. 1) 2)B. 3) 4)C. 1) 3)D. 1) 4)(3)已知a>b>0,的值为( )A.2B. 2C.D. 12思路导航:回忆同类二次根式、最简二次根式的概念解答:(1,∴A 错。
B 正确。
|b = ∴C 错,显然,D 也错,∴选B 。
(2)选C 。
(3)∵a>b>02 2=a+b -1,2===,故选A 。
新高一数学衔接讲义讲义系列一之欧阳科创编

第1讲数与式910+⨯(1)n n ++第2讲一元二次函数与二次不等式第3讲一元二次方程与韦达定理第4讲绝对值不等式与无理式不等式第5讲集合的基本概念8.已知集合M ={-2,3x 2+3x -4,x 2+x -4},若2∈M ,求x.知识点五、集合间的基本关系【典型例题—1】子集的概念:例1.观察下列几组集合,有什么共同的地方(1)A={1,2,3} B={1,2,3,4,5}(2)A={3,5,7} B={3,5,7}(3)A=2{|210}x x x -+= B=2{|230}x x x --= 我们可以发现A 中的任何一个元素在B 中都能找到。
那么这样的两个集合是什么样的关系呢 ?【概括】对于集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就 说这两个集合是包含关系,集合A 为集合B 的子集。
记作()A B B A ⊆⊇或 读作A 含于B例2.用符号“⊆”、“⊇”、“∈”或“∉”填空:(1){},,,a b c d {},a b ; (2) ∅{}1,2,3; (3) N Q ;(4) 0R ; (5) d {},,a b c ; (6) {}|35x x <<{}|06x x <. 例3.写出集合{a ,b }的所有子集,例4.说出下列每对集合之间的关系.(1)A ={1,2,3,4,},B ={3,4}. (2)P ={x |x 2=1},Q ={-1,1}. (3)N ,N*.例5.设集合}{12A x x =<<,}{B x x a =<,且A B ⊆,则实数a 的范围是( ) .2A a ≥ B.2a > C.1a > D.1a ≤变式:若A={x|x2-3x+2=0},B={x|x2-a x+a -1=0},且B⊆A,则a 的值为______【典型例题—2】韦恩图:【内容概述】用平面上封闭曲线的内部代表集合,这种图叫做韦恩图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲一元二次不等式的解法
(要求:本次课在学生学有余力的情况下,教师可以补充以下内容:
1.可以将解一元二次不等式与解分式不等式合起来讲,并补充根式不等式、高次不等式、含一个绝对值符号的不等式的解法;
2.一定要讲授立方和、立方差的分解公式;
3.二次根式的化简。
)
【学习目标】
1.复习因式分解(十字交差法,公式法)、解一元二次方程、画二次函数的图像
2通过图象,理解并掌握一元二次不等式、二次函数及一元二次方程之间的关系
3学会解一元二次不等式、学会不等式解集的表示方法
【知识要点】
1.二次函数与一元二次方程的性质如下表:
2.(1)集合表示法:x|x?a或x?b,?x|a?x?b??等。
(2)区间表示法:设a、b是两个实数,且a<b,则: {x|a?x?b}?[a,b]叫区间; {x|a?x?b}?(a,b)叫区间; {x|a?x?b}?[a,b),{x|a?x?b}?(a,b]都叫半开半闭区间.实数集R用区间(??,??)表示,其中“∞”读“”;“-∞”读“负无穷大”;“+∞”读“正无穷大”.我们可以把满足错误!未找到引用源。
的实数错误!未找到引用源。
的集合分别表示为____________、____________、____________、____________。
【合作交流】
例1.分解因式:(1)x2-3x+2= (2)x?5x?3
2训练1..分解因式:(1)x2+4x-12= (2)x?2x?1
例2.作出二次函数(1)y??(x?1) (2)y?x?2x?3的图像;
1 222??。