著名数学定理
数学著名定理完整版

数学著名定理1、几何中的着名定理1、勾股定理(毕达哥拉斯定理)2、射影定理(欧几里得定理)3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分4、四边形两边中心的连线的两条对角线中心的连线交于一点5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。
6、三角形各边的垂直一平分线交于一点。
7、从三角形的各顶点向其对边所作的三条垂线交于一点8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足不L,则AH=2OL9、三角形的外心,垂心,重心在同一条直线上。
10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上12、库立奇*大上定理:(圆内接四边形的九点圆)圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。
13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)ss为三角形周长的一半14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2)16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有n×AB2+m×AC2=(m+n)AP2+mnm+nBC217、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形,21、爱尔可斯定理1:若△ABC和三角形△都是正三角形,则由线段AD、BE、CF的重心构成的三角形也是正三角形。
数学定理列表

数学定理列表
1、黎曼猜想:任何一个整数都可以表示为若干个素数的幂的和。
2、勒贝格猜想:任何一次以上的素数只能用两个素数和的形式表示出来,即:任何大于二的自然数都可以表示为两个素数的和。
3、哥德巴赫猜想:任何一大于两的偶数都可以表示成为两个素数之和。
4、佩里定理:四边形内任意两个顶点之间所对应的线段条数等于它们
对应对角线条数二倍;
5、勾股定理:在一个直角三角形中,两个直角邻边的长度的平方之和
等于斜边的长度的平方;
6、保持定理:n阶矩阵A乘以n阶单位矩阵I所得的结果等于A本身;
7、弗拉格玛尔公式:一个大于3的整数的阶乘的和等于该数的一半的
平方乘以π的正方形根;
8、锥形定理:对于任意一个随机选择的多面体,存在一个以其二次边
界面的面积为系数的关于去尖的半径的等式。
9、克莱因定理:在多边形中尖的外心和内心分坐标平面上,若其边长
分别为a1,a2,a3…an(n个),则他们的外心坐标之和<br>
等于该多边形内心坐标之和;
10、贝尔定理:如果多面体的面数为偶数,其表面上尖的总数等于多面体体积的自然数倍。
数学史上的重要数学定理

数学史上的重要数学定理数学作为一门古老而重要的学科,有许多重要的数学定理对整个学科的发展和应用起到了至关重要的作用。
本文将介绍数学史上的一些重要数学定理,包括皮亚诺公理、费马大定理、哥德巴赫猜想以及勾股定理等。
1. 皮亚诺公理皮亚诺公理,也称为数理逻辑中的皮亚诺公理系统,是建立自然数的数学基础的重要定理。
它由意大利数学家乔万尼·皮亚诺于19世纪末提出,并在20世纪被哥德尔和图灵等人进一步发展完善。
皮亚诺公理系统由5条公理和1条公理模式组成,可以用来推导自然数的性质和证明数学定理,是数学推理的基础。
2. 费马大定理费马大定理是数学史上备受瞩目的一则难题,由法国数学家皮埃尔·德·费马在17世纪提出,并在近四百年后由英国数学家安德鲁·怀尔斯证明。
费马大定理表述为:对于任意大于2的整数n,方程x^n+y^n=z^n没有正整数解。
这个定理在数论中具有极大的重要性,对于数学的发展起到了巨大的推动作用。
3. 哥德巴赫猜想哥德巴赫猜想是数论中的一个重要猜想,由德国数学家克里斯蒂安·哥德巴赫在18世纪提出。
猜想的内容是:任何一个大于2的偶数都可以表示为两个素数之和。
虽然至今没有找到严格的证明,但这个猜想在数论研究中具有重要地位,并且一直是数学家们努力探索的对象,也推动了数论领域的发展。
4. 勾股定理勾股定理是古希腊数学家毕达哥拉斯提出的,因此也被称为毕氏定理。
它描述了右角三角形间边长关系的重要定理。
勾股定理表述为:在一个直角三角形中,直角边的平方等于其他两条边的平方和。
这个定理在几何学中应用广泛,是解决三角形相关问题的重要工具。
总结:数学史上有许多重要的数学定理,上述的皮亚诺公理、费马大定理、哥德巴赫猜想以及勾股定理只是其中的一部分。
这些数学定理对于数学学科的发展起到了重要的作用,推动了数学的进步和应用。
通过深入学习和理解这些数学定理,我们能够更好地理解数学的本质和数学在现实生活中的应用。
世界十大数学定理

世界十大数学定理
1、欧拉定理:任何正整数的立方都可以写成一个奇数和一个偶数的和。
2、勒贝格定理:任何多项式都可以分解成简单的多项式乘积。
3、费马大定理:如果一个数字是素数的平方和的形式,它一定可以表示为两个素数的和。
4、黎曼猜想:每一个正整数都可以表示为至多四个素数的乘积。
5、佩尔根定理:任何正整数都可以写成至多四个质数的和。
6、哥德巴赫猜想:每一个大于6的偶数都可以表示成两个素数的和。
7、华容道定理:任何多项式的和的幂次大于多项式的乘积的幂次。
8、海涅定理:任何正整数都可以表示成不超过五个质数的平方和的形式。
9、卡尔斯科尔-普拉特定理:椭圆曲线的特定的点数可以表示成一个多项式的方程解的集合。
10、埃尔米特定理:任意一个整数都可以表示成四个整数的平方和。
数学定理大全

数学定理大全
以下是一些重要的数学定理:
1. 费马小定理:若p为质数,a为整数,且a与p互质,则a^p-1
≡ 1 (mod p)。
2. 欧拉定理:若a和m互质,则a^φ(m) ≡ 1 (mod m),其中φ(m)表示小于或等于m的正整数中与m互质的数的个数。
3.柯西-斯瓦茨不等式:对任意的向量a和b,有|a·b|≤|a|·|b|,其中·表示向量的点积。
4.皮克定理:对于一个格点多边形(多边形的顶点坐标都是整数),
它内部的格点个数加上边界上的格点个数减去一等于该多边形的面积。
5.卡特兰数:第n个卡特兰数C(n)表示长度为n的合法括号序列个数,其递推式为C(n)=C(0)C(n-1)+C(1)C(n-2)+...+C(n-1)C(0),初始条
件为C(0)=1。
6.斯特林数:第二类斯特林数S(n,k)表示把n个固定物体分成k个
非空组合的方案数,其递推式为S(n,k)=kS(n-1,k)+S(n-1,k-1),初始条
件为S(0,0)=1。
7.随机森林定理:如果你在森林里面找了足够多的树,那么随机森林
中的预测结果将近似为每个决策树的预测结果的平均值或者投票结果。
8.舒尔定理:对于任意一个无向图,其所有节点度数之和等于其边数
的两倍。
9.哈密尔顿回路定理:一个有向或无向图中存在哈密尔顿回路的充要条件是对于任意的非空子集U,满足|U|≤n/2,其补图的连通块中最多有|U|个点。
10.十进制循环小数:对于一个分数a/b,它十进制下的循环节长度等于b除以b的所有质因数中不含2和5的质因数的最小公倍数。
中国人命名的数学物理定理

中国人命名的数学物理定理
1.费马小定理:由法国数学家费马提出,用于求解模运算问题,被称为“模运算的黄金法则”。
2. 高斯定理:由德国数学家高斯提出,用于计算三维空间中任意闭合曲面内的电场强度,被称为“电场的基本定理”。
3. 欧拉公式:由瑞士数学家欧拉提出,描述了三个基本常数e、i和π之间的关系,被称为“数学之美的象征”。
4. 阿贝尔定理:由挪威数学家阿贝尔提出,描述了无穷级数的性质,被称为“级数的王者”。
5. 黎曼猜想:由德国数学家黎曼提出,是数论领域中的一道难题,被认为是数学中最重要的未解之谜之一。
6. 狄拉克方程:由英国物理学家狄拉克提出,描述了自由粒子在相对论情况下的运动,被称为“相对论下的薛定谔方程”。
7. 熵增定理:由奥地利物理学家卡尔·魏兹勒提出,描述了热力学中熵增加的规律,被称为“热力学第二定律”。
8. 韦恩图:由英国数学家韦恩提出,用于描述集合之间的关系,被称为“集合论的图形表示”。
9. 薛定谔方程:由奥地利物理学家薛定谔提出,描述了量子物理中的波函数,被称为“量子力学的基本方程”。
10. 矩阵乘法定理:由美国数学家施特劳斯提出,描述了矩阵相乘的运算规律,被称为“线性代数的基本定理”。
- 1 -。
数学定律大全

数学定律大全在数学领域,有许多重要的定律被广泛应用于各种数学问题的解决和推导中。
这些定律涵盖了各个数学分支,包括代数、几何、概率论等。
本文将介绍一些数学定律的基本概念和应用。
希望通过阅读本文,读者能更好地理解和应用这些数学定律。
一、代数定律1. 加法交换律:对于任意两个实数a和b,a + b = b + a。
2. 加法结合律:对于任意三个实数a、b和c,(a + b) + c = a + (b +c)。
3. 乘法交换律:对于任意两个实数a和b,a × b = b × a。
4. 乘法结合律:对于任意三个实数a、b和c,(a × b) × c = a × (b ×c)。
5. 分配律:对于任意三个实数a、b和c,a × (b + c) = a × b + a × c。
二、几何定律1. 皮亚诺公理:几何推理的基础,包括点、线、平行线、共线等基本概念。
2. 直角三角形定理:直角三角形的斜边平方等于两直角边平方之和。
3. 同位角定理:同位角互补或同位角相等。
4. 锐角三角函数定理:正弦函数、余弦函数和正切函数等定义和性质。
5. 平行线定理:包括同位角定理、内错角定理、同旁内角定理等。
三、概率论定律1. 概率的加法定律:对于两个事件A和B,其和事件的概率为P(A∪B) = P(A) + P(B) - P(A∩B)。
2. 独立事件定律:对于两个独立事件A和B,其交事件的概率为P(A∩B) = P(A) × P(B)。
3. 贝叶斯定理:用于计算条件概率的定理,根据已知信息计算未知的概率。
四、微积分定律1. 导数定义:函数在某点的导数表示函数曲线在该点的切线斜率。
2. 导数的四则运算:包括导数的加减乘除法则,用于计算复杂函数的导数。
3. 牛顿-莱布尼茨公式:函数的不定积分与定积分之间的关系,用于计算函数的积分。
4. 泰勒展开式:将一个函数表示为无限次求导的多项式形式,用于近似函数。
十大数学定理的简介和应用

十大数学定理的简介和应用数学作为一门基础学科,涵盖了广泛而深奥的知识体系。
在这个领域中,有许多重要的数学定理对于我们理解和应用数学知识起着至关重要的作用。
本文将介绍十大数学定理,并探讨它们在实际生活中的应用。
一、费马大定理(Fermat's Last Theorem)费马大定理是数论中的一个重要定理,它声称对于大于2的任何整数n,方程x^n + y^n = z^n没有正整数解。
这个问题曾经困扰了数学家们长达几个世纪,直到1994年安德鲁·怀尔斯(Andrew Wiles)给出了完整的证明。
尽管费马大定理在纯数学领域中的应用有限,但它的证明过程对于数学研究方法的发展产生了巨大影响。
二、哥德巴赫猜想(Goldbach's Conjecture)哥德巴赫猜想是一个数论问题,即每个大于2的偶数都可以表示为两个质数之和。
虽然至今尚未得到证明,但该猜想已经通过计算机验证了很多特例。
哥德巴赫猜想在密码学、编码理论等领域有广泛的应用。
三、皮亚诺公理(Peano's Axioms)皮亚诺公理是数学基础理论中的一组公理,用于构建自然数系统。
它规定了自然数的性质,例如后继、归纳等。
皮亚诺公理在数学逻辑和基础数学领域有重要的应用,为数学推理提供了坚实的基础。
四、欧拉公式(Euler's Formula)欧拉公式是数学中一条重要的等式,它描述了数学中最基本的数学常数e、π和i之间的关系。
欧拉公式在复数分析、电路理论、物理学等领域中有广泛的应用。
五、伽罗瓦理论(Galois Theory)伽罗瓦理论是代数学中的一种分支,研究了域论中的对称性质。
它解决了代数方程的可解性问题,对于数论、几何学等领域的研究起到了重要的推动作用。
六、柯西-施瓦茨不等式(Cauchy-Schwarz Inequality)柯西-施瓦茨不等式是一个重要的数学不等式,它描述了内积空间中向量之间的关系。
该不等式在概率论、信号处理、优化理论等领域有广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
著名数学定理 15定理15-定理是由约翰·何顿·康威(John Horton Conway ,1937-)和W.A.Schneeberger 于1993年证明的定理,内容为:如果一个二次多项式可以通过变量取整数值而表示出1~15的值(更严格的结论是只要表示出1,2,3,5,6,7,10,14,15)的话(例如a 2+b 2+c 2+d 2),该二次多项式可以通过变量取整数值而表示出所有正整数.6714(黑洞数)定理 黑洞数又称陷阱数,是类具有奇特转换特性的整数.任何一个数字不全相同整数,经有限“重排求差”操作,总会得某一个或一些数,这些数即为黑洞数.“重排求差”操作即把组成该数的数字重排后得到的最大数减去重排后得到的最小数.或者是冰雹原理中的“1”黑洞数.举个例子,三位数的黑洞数为495.简易推导过程:随便找个数,如297,三个位上的数从小到大和从大到小各排一次,为972和279,相减,得693.按上面做法再做一次,得到594,再做一次,得到495.之后反复都得到495.再如,四位数的黑洞数有6174.阿贝尔-鲁菲尼定理 定理定义:阿贝尔-鲁菲尼定理并不是说明五次或更高次的多项式方程没有解.事实上代数基本定理说明任意非常数的多项式在复数域中都有根.然而代数基本定理并没有说明根的具体形式.通过数值方法可以计算多项式的根的近似值,但数学家也关心根的精确值,以及它们能否通过简单的方式用多项式的系数来表示.例如,任意给定二次方程ax 2+bx+c=0(a ≠0),它的两个解可以用方程的系数来表示:aac b b r 2422,1-±-=. 这是一个仅用有理数和方程的系数,通过有限次四则运算和开平方得到的解的表达式,称为其代数解.三次方程,四次方程的根也可以使用类似的方式来表示.阿贝尔-鲁菲尼定理的结论是:任意给定一个五次或以上的多项式方程:()0,500111≠≥=++⋅⋅⋅++--n n n n n a n a x a x a x a ,那么不存在一个通用的公式(求根公式),使用 n a a a ,,,10⋅⋅⋅ 和有理数通过有限次四则运算和开根号得到它的解.或者说,当n 大于等于5时,存在n 次多项式,它的根无法用自己的系数和有理数通过有限次四则运算和开根号得到.换一个角度说,存在这样的实数或复数,它满足某个五次或更高次的多项式方程,但不能写成任何由方程系数和有理数构成的代数式.这并不是说每一个五次或以上的多项式方程,都无法求得代数解.比如025=-x 的解就是52.具体区分哪些多项式方程可以有代数解而哪些不能的方法由伽罗瓦给出,因此相关理论也被称为伽罗瓦理论.简单来说,某多项式方程有代数解,等价于说它对应的域扩张上的伽罗瓦群是一个可解群.对于一般的二次,三次和四次方程,它们对应的伽罗瓦群是二次,三次和四次对称群: 432,,σσσ ,它们都是可解群.但一般的五次方程对应的是五次对称群5σ,这是一个不可解群.当次数n 大于等于5时,情况也是如此.阿贝尔二项式定理 二项式定理可以用以下公式表示:()∑=-=+n r r r n r n n b a C b a 0.其中,()!!!r n r n C r n -=,又有 ⎪⎪⎭⎫ ⎝⎛r n 等记法,称为二项式系数,即取的组合数目.此系数亦可表示为杨辉三角形.它们之间是互通的关系.艾森斯坦因判别法 艾森斯坦判别法是说:给出下面的整系数多项式()011a x a x a x f n n n n +++=-- 如果存在素数p ,使得p 不整除a n ,但整除其他a i (i=0,1,...,n -1);p² 不整除a 0 ,那么f (x )在有理数域上是不可约的.奥尔定理 离散数学中图论的一个定理)如果一个总点数至少为3的简单图G 满足:G 的任意两个点u 和v 度数之和至少为n ,即deg (u )+deg (v )≥n ,那么G 必然有哈密顿回路.阿基米德折弦定理它描述了简单图拥有哈密顿回路的一个充分条件.表达式deg (u )+deg (v )≥n →G 有哈密顿通路相关概念:简单图:没有重边和环的无向图.度数:某点所连接的边的数目.哈密顿回路:经过图的所有的点的一条回路. 阿基米德折弦定理(阿基米德中点定理) AB 和BC 是⊙O 的两条弦(即ABC 是圆的一条折弦),BC >AB ,M 是弧ABC 的中点,则从M 向BC 所作垂线之垂足D 是折弦ABC 的中点,即CD =AB +BD .折弦定义:从圆周上任一点出发的两条弦,所组成的折线,我们称之为该图的一条折弦.伯特兰·切比雪夫定理 伯特兰·切比雪夫定理说明:若整数n > 3,则至少存在一个质数p ,符合n < p < 2n − 2.另一个稍弱说法是:对于所有大于1的整数n ,存在一个质数p ,符合n < p < 2n .贝亚蒂定理 定义一个正无理数r 的贝亚蒂列B r 为B r =[r ],[2r ],[3r ],...=[nr ](n ≥1),这里的[ ]是取整函数.若然有两个正无理数p ,q 且111=+q p ,(即1-=p p q ) ,则B p =[np ](n ≥1),B q =[nq ](n ≥1)构成正整数集的一个分划:+=⋃∅=⋂Z B B B B q p q p ,.布利安桑定理 布利安桑定理叙述如下:如果六边形的边交替地通过两个定点P 和Q ,则连接六边形的相对的顶点的三条对角线是共点的.布列安桑(Brainchon )定理是一个射影几何中的著名定理,它断言六条边和一条圆锥曲线相切的六边形的三条对角线共点,此点称为该六边形的布列安桑点.布朗定理 设P(x)为满足p ≤ x 的素数数目,使得p + 2也是素数(也就是说,P (x )是孪生素数的数目).那么,对于x ≥ 3,我们有:()()()22log log log x x x c x P <,其中c 是某个常数. 裴蜀定理(贝祖定理) 对任何整数a 、b 和它们的最大公约数d ,关于未知数x 和y 的线性不定方程(称为裴蜀等式):若a ,b 是整数,且(a ,b )=d ,那么对于任意的整数x ,y ,ax +by 都一定是d 的倍数,特别地,一定存在整数x ,y ,使ax +by =d 成立。
半角定理 做三角形内切圆,在AB ,AC ,BC 边上的切点分别为D ,E ,F ,令2c b a s ++= (其中A ,B ,C 为三角形内角的符号),则有()()()2tan 2tan 2tanC c s B b s A a s r -+-+-=,()()()s c s b s a s a s A ----=12tan ,()()()s c s b s a s b s B ----=12tan ,()()()sc s b s a s c s C ----=12tan . 代数学基本定理:任何复系数一元n 次多项式 方程在复数域上至少有一根(n ≥1),由此婆罗摩笈多定理半角定理 拿破仑定理推出,n 次复系数多项式方程在复数域内有且只有n 个根(重根按重数计算).简介:(n ≥1) 代数学基本定理说明,任何复系数一元n 次多项式方程在复数域上至少有一根.由此推出,n 次复系数多项式方程在复数域内有且只有n 个根(重根按重数计算). 有时这个定理表述为:任何一个非零的一元n 次复系数多项式,都正好有n 个复数根.这似乎是一个更强的命题,但实际上是“至少有一个根”的直接结果,因为不断把多项式除以它的线性因子,即可从有一个根推出有n 个根.尽管这个定理被命名为“代数基本定理”,但它还没有纯粹的代数证明,许多数学家都相信这种证明不存在 .另外,它也不是最基本的代数定理;因为在那个时候,代数基本上就是关于解实系数或复系数多项式方程,所以才被命名为代数基本定理.陈氏定理 任何一个充分大的偶数都可以表示成一个素数和一个不超过两个素数的乘积之和.婆罗摩笈多定理 若圆内接四边形的对角线相互垂直,则垂直于一边且过对角线交点的直线将平分对边.如图,圆内接四边形ABCD 的对角线AC ⊥BD ,垂足为M .EF ⊥BC ,且M 在EF 上.那么F 是AD 的中点.拿破仑定理 拿破仑定理由拿破仑发现:“以三角形各边为边分别向外侧作等边三角形,则他们的中心构成一个等边三角形.”该等边三角形称为拿破仑三角形.如果向内(原三角形不为等边三角形)作三角形,结论同样成立.牛顿定理 特指平面几何中的牛顿定理(Newton 's Theorem )牛顿线:和完全四边形(定义:我们把两两相交,且没有三线共点的四条直线及它们的六个交点所构成的图形,叫做完全四边形)四边相切的有心圆锥曲线的心的轨迹是一条直线,是完全四边形三条对角线中点所共的线.(1)完全四边形三条对角线中点共线;(2)圆外切四边形的两条对角线的中点,及该圆的圆心,三点共线;(3)圆的外切四边形的对角线的交点和以切点为顶点的四边形对角线交点重合. 清宫定理 设P ,Q 为△ABC 的外接圆上异于A ,B ,C 的两点,P 关于三边BC ,CA ,AB 的对称点分别是U ,V ,W ,且QU ,QV ,QW 分别交三边BC ,CA ,AB 或其延长线于D ,E ,F ,则D ,E ,F 在同一直线上.中线定理 (阿波罗尼乌斯定理,重心定理)三角形一条中线两侧所对边平方和等于底边的一半的平方与该边中线平方的和的两倍.燕尾定理 在三角形ABC 中,AD ,BE ,CF 相交于同一点O ,有S △AOB ∶S △AOC =BD ∶CD ,S △AOB ∶S △COB =AE ∶CE ,S △BOC ∶S △AOC =BF ∶AF .共角定理 若两个三角形有一组对应角相等或互补,则它们的面积比等于对应两边乘积的比.张角定理 在△ABC 中,D 是BC 上的一点,连结AD .那么ADBAC AB CAD AC BAD ∠=∠+∠sin sin sin . 西姆松定理 过三角形外接圆上异于三角形顶点的任意一点作三边或其延长线上的垂线,则三垂足共线.(此线常称为西姆松线).西姆松定理的逆定理为:若一点在三角形三边所在直线上的射影共线,则该点在此三角形的外接圆上. 清宫定理 燕尾定理西姆松定理九点圆九点圆 三角形三边的中点,三高的垂足和三个欧拉点(联结三角形各顶点与垂心所得三线段的中点)九点共圆.通常称这个圆为九点圆(nine -point circle ),或欧拉圆,费尔巴哈圆. 九点圆是一个更一般的定理:垂心四面体各棱的中点,各棱相对于对棱的垂心12点共球的一个特例.当一个顶点被压入所对面的时候,12点的共球就退化为9点共圆. 蝴蝶定理 设M 为圆内弦PQ 的中点,过M 作弦AB 和CD .设AD 和BC 各相交PQ于点X 和Y ,则M 是XY 的中点.坎迪定理 AB 是圆内的一段弦,P 是弦AB 上任意一点,C ,D 是圆上的任意两点,连接CP ,DP 并延长分别交圆于F ,E ,连接CE ,DF 分别交AB 于G ,H ,设AP =a ,BP =b ,GP =x ,HP =y ,则(1/a )-(1/b )=(1/x )-(1/y ) .塞瓦定理 塞瓦定理是指在△ABC 内任取一点O ,延长AO ,BO ,CO 分别交对边于D ,E ,F ,则1=⨯⨯BF AF AE CE CD BD . 塞瓦线 (切氏线)三角形一个顶点与其对边上一点的连线托勒密定理 圆的内接凸四边形两对对边乘积的和等于两条对角线的乘积. 原文:圆的内接四边形中,两对角线所包矩形的面积等于 一组对边所包矩形的面积与另一组对边所包矩形的面积之和. 从这个定理可以推出正弦,余弦的和差公式及一系列的三角恒等式,托勒密定理实质上是关于共圆性的基本性质.梅涅劳斯定理 当直线交△ABC 三边所在直线BC ,AC ,AB 于点D ,E ,F 时,1=⨯⨯EACE DC BD FB AF . 欧拉定理 在数论中,也称费马-欧拉定理,若n ,a 为正整数,且n ,a 互质,则:.几何定理 内容:(1)设三角形的外接圆半径为R ,内切圆半径为r ,外心与内心的距离为d ,则d 2=R 2-2Rr .(2)三角形ABC 的垂心H ,九点圆圆心V ,重心G ,外心O 共线 ,称为欧拉线.拓扑公式:V +F -E =X (P ),V 是多面体P 的顶点个数,F 是多面体P 的面数,E 是多面体P 的棱的条数,X (P )是多面体P 的欧拉示性数.如果P 可以同胚于一个球面(可以通俗地理解为能吹胀成一个球面),那么X (P )=2,如果P 同胚于一个接有h 个环柄的球面,那么X (P )=2-2h .X (P )叫做P 的拓扑不变量,是拓扑学研究的范围.复变函数定理内容:欧拉定理:e ix =cosx +isinx (e 是自然对数的底,i 是虚数单位).它将三角函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位.将公式里的x 换成-x ,得到:e -ix =cosx -isinx ,然后采用两式相加减的方法得到:2cos ,2sin ix ix ix ix e e x i e e --+=-=.这两个也叫做欧拉公式.将e ix =cosx +isinx 中的x 取作π就得到:e i π+1=0.这个等式也叫做欧拉公式,它是数学里最令人着迷的一个公式,它将数学里最重要的几个数字联系到了一起:两个超越数:自然对数的底e ,圆周率π,两个单位:虚数单位i 和自然数的单位1,以及数学里常见的0.数学家们评价它是“上帝创造的公式”,我们只能看它而不能理解它.费马小定理 a 是不能被质数p 整除的正整数(即:假如p 是质数,且gcd (a ,p )=1),则有a (p -1)≡1(mod p ).即:假如a 是整数,p 是质数,且a ,p 互质(即两者只有一个公约数1),那么a 的(p -1)次方除以p 的余数恒等于1.帕普斯定理 直线l 1上依次有点A ,B ,C ,直线l 2上依次有点D ,E ,F ,设AE ,BD 交于P ,AF ,DC 交于Q ,BF ,蝴蝶定理帕普斯定理EC 交于R ,则P ,Q ,R 共线.斯台沃特定理 任意三角形ABC 中,D 是边BC 上一点,连接AD ,则BC CD BD BC AD BD AC CD AB ⨯⨯=⨯-⨯+⨯222.设BC =a ,AC =b ,AB =c ,BD =u ,CD =v ,AD =w ,则uva a w u b v c =-+222.斯坦纳-雷米欧司定理 两角的平分线相等的三角形是等腰三角形.调和四边形 调和四边形是指对边乘积相等的圆内接四边形.性质:1,调和四边形的其中一条对角线,与过其余两点的四边形外接圆的两条切线,这三条直线共点;2,设调和四边形ABCD 中,对角线AC 中点为M ,则△AMB ∽△DMA ∽△DCB ,△BMC ∽△CMD ∽△BAD ;3,设调和四边形ABCD 中,对角线AC 与过B ,D 两点的四边形ABCD 外接圆的切线所共的点记为P ,记AP 交BD 于Q ,则AQ 为△ABD 的一条陪位中线(三角形的一条中线关于与其共顶点的内角平分线的对称直线在三角形内所成的线段叫做三角形的陪位中线),A ,Q ,C ,P 四点为调和点列;取对角线AC 中点M ,设四边形ABCD 外接圆圆心为O ,则B ,P ,D ,O ,M 五点共圆.糖水不等式 a 克糖水中有b 克糖(a >0,b >0,且a >b ),则糖的质量和糖水的质量比为:a b ,若再添加c 克糖(c >0),则糖的质量和糖水的质量比为:c a c b ++.生活经验告诉我们:添加糖后,糖水会更甜,于是得出一个不等式:a b c a c b >++(a >b >0,c >0).趣称之为“糖水不等式”.糖水不等式为不等式中的难点.费马大定理 当整数n >2时,关于x , y , z 的方程 x n + y n = z n 没有正整数解.莫利定理 也称为莫雷角三分线定理.将三角形的三个内角三等分,靠近某边的两条三分角线相交得到一个交点,则这样的三个交点可以构成一个正三角形.这个三角形常被称作莫利正三角形.三余弦定理 设二面角M -AB -N 的度数为α,在平面M 上有一条射线AC ,它和棱AB 所成角为β,和平面N 所成的角为γ,则 βαγsin sin sin ⋅=(如图).(注明:折叠角公式(又名:三余弦定理)以及三正弦定理的应用为立体几何的解题带来了许多方便.)若已知二面角其中一个半平面内某直线与二面角的棱所成的角,以及该直线与另一半平面所成的角,则可以求该二面角的正弦值.密克定理是几何学中关于相交圆的定理.1838年,奥古斯特·密克(AugusteMiquel )叙述并证明了数条相关定理.许多有用的定理可由其推出.定理陈述:三圆定理:设三个圆C 1, C 2, C 3交于一点O ,而M , N , P 分别是C 1 和C 2, C 2和C 3, C 3和C 1的另一交点.设A 为C 1的点,直线MA 交C 2于B ,直线P A 交C 3于C .那么B , N , C 这三点共线.逆定理:如果是三角形,M , N , P 三点分别在边AB , BC , CA 上,那么△AMP ,△BMN ,△CPN 的外接圆交于一点O .完全四线形定理:如果ABCDEF 是完全四线形,那么三角三余弦定理形的外接圆交于一点 O ,称为密克点.四圆定理:设C 1, C 2,C 3, C 4为四个圆,A 1和B 1是C 1和C 2的交点,A 2和B 2是C 2 和C 3的交点,A 3和B 3是C 3和C 4的交点,A 4和B 4是C 1和C 4的交点.那么A 1, A 2, A 3, A 4四点共圆当且仅当B 1, B 2, B 3, B 4四点共圆.五圆定理:设ABCDE 为任意五边形,五点F , G , H , I , J 分别是EA 和BC , AB 和CD , BC 和DE , CD 和EA , DE 和AB 的交点,那么△ABF ,△BCJ △CDI ,△DEH ,△AEG 的外接圆的五个不在五边形上的交点共圆,不穿过这些交点的圆也穿过五个外接圆的圆心.皮克定理 一张方格纸上,上面画着纵横两组平行线,相邻平行线之间的距离都相等,这样两组平行线的交点,就是所谓格点.如果取一个格点做原点O ,取通过这个格点的横向和纵向两直线分别做横坐标轴OX 和纵坐标轴OY ,并取原来方格边长做单位长,建立一个坐标系.这时前面所说的格点,显然就是纵横两坐标都是整数的那些点.如图中的O ,P ,Q ,M ,N 都是格点.由于这个缘故,我们又叫格点为整点.一个多边形的顶点如果全是格点,这多边形就叫做格点多边形.有趣的是,这种格点多边形的面积计算起来很方便,只要数一下图形边线上的点的数目及图内的点的数目,就可用公式算出.这个公式是皮克(Pick )在1899年给出的,被称为“皮克定理”,这是一个实用而有趣的定理.给定顶点坐标均是整点(或正方形格点)的简单多边形,皮克定理说明了其面积S 和内部格点数目n ,边上格点数目s 的关系:12-+=s n S (其中n 表示多边形内部的点数,s 表示多边形边界上的点数,S 表示多边形的面积) 抽屉原理(鸽巢原理,重叠原理,狄利克雷抽屉原理) 第一抽屉原理:原理1: 把多于n +1个的物体放到n 个抽屉里,则至少有一个抽屉里的东西不少于两件.原理2 :把多于mn (m 乘n )+1(n 不为0)个的物体放到n 个抽屉里,则至少有一个抽屉里有不少于(m +1)的物体.原理3 :把无穷多件物体放入n 个抽屉,则至少有一个抽屉里 有无穷个物体.第二抽屉原理:把(mn -1)个物体放入n 个抽屉中,其中必有一个抽屉中至多有(m —1)个物体(例如,将3×5-1=14个物体放入5个抽屉中,则必定有一个抽屉中的物体数少于等于3-1=2).德·摩根定律 在命题逻辑和逻辑代数中,德·摩根定律(或称德·摩根定理)是关于命题逻辑规律的一对法则.在命题逻辑中存在着下面这些关系:非(P 且Q )=(非P )或(非Q );非(P 或Q ) = (非P )且(非Q ).形式逻辑中此定律表达形式:()()()Q P Q P ⌝∨⌝⇔∧⌝,()()()Q P Q P ⌝∧⌝⇔∨⌝;在集合论中:()C C C B A B A ⋃=⋂,()C C C B A B A ⋂=⋃;在概率论中:B A B A =,B A B A =, 11≥≥=n n An An , 11≥≥=n n An An .迪尼定理 在数学中,迪尼定理叙述如下:设 X 是一个紧致的拓扑空间,f (n ) 是 X 上的一个单调递增的连续实值函数列,即使得对任意 n 和 X 中的任意 x 都有f n (x )≤f n +1(x ).如果这个函数列逐点收敛到一个连续的函数f ,那么这个函数列一致收敛到f .这个定理以意大利数学家乌利塞·迪尼命名.对于单调递减的函数列,定理同样成立.这个定理是少数的由逐点收敛可推出一致收敛的例子之一,原因是由单调性这个更强的条件.注意定理中的f 一定要是连续的,否则可以构造反例.比如说在区间 [0,1] 上的函数列 {x n }.这是一个单调递减函数,逐点收敛到函数f :当 x 属于 [0,1) 时f (x )等于 0 ,等于 1.但这个函数列不是一致收敛的,因为f 不连续.等周定理 等周定理,以及其面积之间的关系.其中的“等周”指的是周界的长度相等.等周定理说明在周界长度相等的封闭几何形状之中,以圆形的面积最大;另一个说法是面积相等的几何形状之中,以圆形的周界长度最小.它可以以不等式表达:若P 为封闭曲线的周界长,A 为曲线所包围的区域面积,24P A ≤π等周问题有许多不同的推广,例如在各种曲面而不是平面上的等周问题,以及在高维的空间中给定的“表面”或区域的最大“边界长度”问题等.在物理中,等周问题和跟所谓的最小作用量原理有关.一个直观的表现就是水珠的形状.在没有外力的情况下(例如失重的太空舱里),水珠的形状是完全对称的球体.这是因为当水珠体积一定时,表面张力会迫使水珠的表面积达到最小值.根据等周定理,最小值是在水珠形状为球状时达到.多项式余数定理(余数定理) 多项式余数定理是指一个多项式 f (x ) 除以一线性多项式 x - a 的余数是 f (a ).例如, 31124523-+-+x x x x 的余数是1361312343523=+⨯-⨯+⨯. 棣莫弗定理 设两个复数(用三角函数形式表示)()1111sin cos θθi r Z +=,()2222sin cos θθi r Z +=,则:()()[]21212121sin cos θθθθ+++=i r r Z Z .棣莫弗-拉普拉斯定理 棣莫弗—拉普拉斯中心极限定理,即二项分布以正态分布为其极限分布定律.设随机变量ηn =(n =1,2…)()()1,10,≥<<n p p n B Y n ,则对任意实数x 有()()x e x p np np Y P x dt t n n ∅==⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤--⎰∞--∞→22211lim π.笛卡尔定理 (1)若平面上四个半径为r 1,r 2,r 3,r 4的圆两两相切于不同点,则其半径满足以下结论:(1)若四圆两两外切,则∑∑===⎪⎪⎭⎫ ⎝⎛412241121i i i i r r ;若半径为r 1,r 2,r 3的圆内切于半径为r 4的圆中,则∑==⎪⎪⎭⎫ ⎝⎛-++41224321121111i i r r r r r .(2)若五个球的半径分别是r i (i =1,2,...,5),满足任意一个球与另外四个球外切,则∑∑===⎪⎪⎭⎫ ⎝⎛512251131i i i i r r . 多项式定理 ()n m a a a +++ 21的展开式的通项是m m m x m x x x x x x x x n x x n x n a a a a C C C C T 321321211321---=,所以多项式的展开式是()m mm x m x x x x x x x x n x x n x n n m a a a a C C C C T a a a 32132121132121---∑∑==+++,其中∑表示通项T 在满足条件:m x x x ,,,21 为非负整数,并且n x x x m =+++ 21下所有项的和式.笛沙格定理 笛沙格同调定理(同调三角形定理):平面上有两个三角形△ABC ,△DEF ,设它们的对应顶点(A 和D ,B 和E ,C 和F )的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.定理推广:其逆定理也成立:笛沙格对合定理:一条直线与一个完全四点形的三双对边的交点与外接于该四点形的圆锥曲线构成一个对合的四个点偶. 一个点与一个完全四线形的三双对顶点的连线和从该点向内切于该四线形的圆锥曲线所引的切线构成一个对合的四个射线偶合.一个完全四点形(四线形)实际上含有四点(线)1,2,3,4和它们的六条连线交点23,14,31,24,12,34;其中23与14,31与24,12与34称为对边(对顶点).(该定理在空间中也成立.)费马点 “费马点”是指位于三角形内且到三角形三个顶点距离之和最短的点.若给定一个三角形△ABC 的话,从这个三角形的费马点P 到三角形的三个顶点A ,B ,C 的距离之和比从其它点算起的都要小.这个特殊点对于每个给定的三角形都只有一个.定义1.若三角形3个内角均小于120°,那么3条距离连线正好三等分费马点所在的周角,即该点所对三角形三边的张角相等,均为120°.所以三角形的费马点也称为三角形的等角中心.(托里拆利的解法中对这个点的描述是:对于每一笛沙格定理凡·奥贝尔定理芬斯勒·哈德维格尔定理个角都小于120°的三角形ABC 的每一条边为底边,向外作正三角形,然后作这三个正三角形的外接圆.托里拆利指出这三个外接圆会有一个共同的交点,而这个交点就是所要求的点.这个点和当时已知的三角形特殊点都不一样.这个点因此也叫做托里拆利点.)2.若三角形有一内角大于等于120°,则此钝角的顶点就是距离和最小的点. 费马平方和定理 奇质数能表示为两个平方数之和的充分必要条件是该质数被4除余1. 凡·奥贝尔定理 任意一个四边形,在其边外侧构造一个正方形.将相对的正方形的中心连起,得出两条线段.线段的长度相等且互相垂直(凡·奥贝尔定理适用于凸凹四边形). 芬斯勒–哈德维格尔定理 若两个正方形ABCD 和AB 'C 'D '拥有同一个顶点A .B 'D 的中点,BD '的中点,ABCD 的中心和AB 'C 'D '的中心将组成一个正方形.费马多边形数定理 每一个正整数最多可以表示为n 个n 边形数的和.也就是说,每一个数最多可以表示为三个三角形数(三角形数:古希腊著名科学家毕达哥拉斯把数1,3,6,10,15,21……这些数量的(石子),都可以排成三角形,像这样的数称为三角形数.把1.4.9.16.…这样的数称为正方形数)之和,四个平方数之和,五个五边形数之和,依此类推.一个三角形数的例子,是17 = 10 + 6 + 1.一个众所周知的特例,是四平方和定理,它说明每一个正整数都可以表示为四个平方数之和,例如7 = 4 + 1 + 1 + 1.合比定理 在一个比例里,第一个比的前后项的和与它后项的比,等于第二个比的前后项的和与它的后项的比,这叫做比例中的合比定理.即:如果d c b a =,那么dd c b b a +=+(b ,d ≠0). 分比定理 在一个比例里,第一个比的前后项的差与它的后项的比,等于第二个比的前后项的差与它们的后项的比,这叫做比例中的分比定理.即:如果d c b a =那么d d c b b a -=-(b ,d ≠0). 合分比定理 一个比例里,第一个前后项之和与它们的差的比,等于第二个比的前后项的和与它们的差的比.这叫做比例中的合分比定理.即:如果d c b a =那么dc d c b a b a -+=-+(b ,d ,a -b ,c -d ≠0). 等比定理(更比定理) 一个比的前项与另一个比的后项互调后,所得结果仍是比例.即:如果d c b a =那么d b c a =(a ,b ,c ,d ≠0).推论:若如果n n b a b a b a b a ==== 332211,则nn b b b b a a a a b a b a b a ++++++++==== 321321332211. 圆幂定理 内容: 如果交点为P 的两条相交直线与圆O 相交于A ,B 与C ,D ,则P A ·PB =PC ·PD .圆幂定理是对相交弦定理,切割线定理及割线定理(切割线定理推论)以及它们推论的统一与归纳.根据两条与圆有相交关系的线的位置不同,有以下定理:(1)相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.(2)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.(3)割线定理:从圆外一点P引两条割线与圆分别交于A ,B ;C ,D ,则有P A ·PB =PC ·PD .古尔亭定理 (古尔丁定理,帕普斯几何中心定理)定义:以平面图形绕同一平面上的任何一条与该图形不相交的直线旋转一周三角形数 圆幂定理的所有情况。