高中文科数学公式及知识点总结大全(精华版)

高中文科数学公式及知识点速记

一、函数、导数

1、函数的单调性

(1)设2121],,[x x b a x x <∈、那么

],[)(0)()(21b a x f x f x f 在?<-上是增函数; ],[)(0)()(21b a x f x f x f 在?>-上是减函数.

(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减

函数.

2、函数的奇偶性

对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。 奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。 3、函数)(x f y =在点0x 处的导数的几何意义

函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.

*二次函数: (1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a

-+- 4、几种常见函数的导数

①'

C 0=;②1

'

)(-=n n nx

x ; ③x x cos )(sin '=;④x x sin )(cos '

-=;

⑤a a a x

x ln )('

=;⑥x

x e e ='

)(; ⑦a x x a ln 1)(log '

=

;⑧x

x 1)(ln '

= 5、导数的运算法则

(1)'

'

'

()u v u v ±=±. (2)'

'

'

()uv u v uv =+. (3)''

'2

()(0)u u v uv v v v

-=≠. 6、会用导数求单调区间、极值、最值

7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 指数函数、对数函数

分数指数幂

(1)m n

a =0,,a m n N *>∈,且1n >).

高中文科数学公式及知识点总结大全(精华版)

(2)1m n

m n

a

a

-

=

=

(0,,a m n N *

>∈,且1n >).

高中文科数学公式及知识点总结大全(精华版)

根式的性质

(1)当n

a =;

高中文科数学公式及知识点总结大全(精华版)

高中文科数学公式及知识点总结大全(精华版)

高中文科数学公式及知识点总结大全(精华版)

高中文科数学公式及知识点总结大全(精华版)

高中文科数学公式及知识点总结大全(精华版)

当n

(1) r s

a a a

?=

(2) ()(

r s rs

a a

=

(3)()r r r

ab a b

=

注:若a>0,

指数幂都适用.

.0,1,0)

a a N

>≠>.

.1,0

m>,且1

m≠,0

N>).

对数恒等式:

推论log m n

a

b

常见的函数图象

8

22

sin cos

θθ

+

9

α

π±

kα看成锐角时该函数的符号;

α

π

π±

+

2

kα看成锐角时该函数的符号。()()

1sin2kπα

+=()()

2tan

k k

παα

+=∈Z.

()()

2sinπα

+=-()tan

παα

+=.

()()

3sin sin

α

-=-tanα

=-.

()()

4sinπα

-=)tan

παα

-=-.

()5sin

2

π

α

??

-=

?

??

cos

2

π

αα

??

+=

?

??

,cos sin

2

π

αα

??

+=-

?

??

10、和角与差角公式

sin()sin cos cos sin αβαβαβ±=±;

cos()cos cos sin sin αβαβαβ±=;

tan tan tan()1tan tan αβ

αβαβ

±±=.

11、二倍角公式

sin 2sin cos ααα=.

2222cos 2cos sin 2cos 112sin ααααα=-=-=-.

22tan tan 21tan α

αα

=

-. 公式变形: ;

2

2cos 1sin ,2cos 1sin 2;

2

2cos 1cos ,2cos 1cos 22222α

αααα

ααα-=-=+=+=

12、 函数sin()y x ω?=+的图象变换

①的图象上所有点向左(右)平移?个单位长度,得到函数()sin y x ?=+的图象;再将函数()sin y x ?=+的图象上所有点的横坐标伸长(缩短)到原来的

1

ω

倍(纵坐标不变),得到函数()sin y x ω?=+的图象;再将函数()sin y x ω?=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数

()sin y x ω?=A +的图象.

②数sin y x =的图象上所有点的横坐标伸长(缩短)到原来的

1

ω

倍(纵坐标不变),得到函数 sin y x ω=的图象;再将函数sin y x ω=的图象上所有点向左(右)平移

?

ω

个单位长度,得到函数()sin y x ω?=+的图象;再将函数()sin y x ω?=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍

(横坐标不变),得到函数()sin y x ω?=A +的图象.

sin y x =

cos y x = tan y x =

图象

定义域

R

R

,2x x k k ππ??

≠+∈Z ????

函 数

性 质

高中文科数学公式及知识点总结大全(精华版)

14、辅助角公式

)sin(cos sin 22?++=+=x b a x b x a y 其中a

b =

?tan 15.正弦定理 :2sin sin sin a b c

R A B C

===(R 为ABC ?外接圆的半径). 2sin ,2sin ,2sin a R A b R B c R C ?===::sin :sin :sin a b c A B C ?= 16.余弦定理

2222cos a b c bc A =+-;2222cos b c a ca B =+-;2222cos c a b ab C =+-.

17.面积定理

(1)111

222a b c S ah bh ch =

==(a b c h h h 、、分别表示a 、b 、c 边上的高). (2)111

sin sin sin 222

S ab C bc A ca B ===.

18、三角形内角和定理

在△ABC 中,有()

A B C C A B ππ++=?=-+

222

C A B π+?

=-222()C A B π?=-+. 19、a 与b 的数量积(或内积)

θcos ||||?=?

20、平面向量的坐标运算

(1)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--. (2)设a =11(,)x y ,b =22(,)x y ,则b a ?=2121y y x x +. (3)设a =),(y x ,则22y x a +=

21、两向量的夹角公式

设a =11(,)x y ,b =22(,)x y ,且0≠b ,则

121

cos ||||

a b

a b x θ?=

=

?+a =11(,)x y ,

b =22(,)x y ).

22设a =11(,)x y ,b =22(,)x y ,且b ≠0

//?λ= 12210x y x y ?-=.

)(≠⊥ ?0=?12120x x y y ?+=.

*平面向量的坐标运算

高中文科数学公式及知识点总结大全(精华版)

(1)设a =11(,)x y ,b =22(,)x y ,则a +b =1212(,)x x y y ++. (2)设a =11(,)x y ,b =22(,)x y ,则a -b =1212(,)x x y y --. (3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.

(4)设a =(,),x y R λ∈,则λa =(,)x y λλ.

(5)设a =11(,)x y ,b =22(,)x y ,则a ·b =1212x x y y +.

三、数列

23、数列的通项公式与前n 项的和的关系

11,

1,2

n n n s n a s s n -=?=?-≥?( 数列{}n a 的前n 项的和为12n n s a a a =++

+).

24、等差数列的通项公式

*11(1)()n a a n d dn a d n N =+-=+-∈;

25、等差数列其前n 项和公式为

1()2n n n a a s +=

1(1)2n n na d -=+211

()22

d n a d n =+-. 26、等比数列的通项公式

1*11()n n

n a a a q q n N q

-==

?∈; 27、等比数列前n 项的和公式为

11

(1),11,1n n a q q s q na q ?-≠?=-??=? 或 11,11,1

n n a a q

q q s na q -?≠?

-=??=?.

四、不等式

28、xy y x ≥+2

。必须满足一正(y x ,都是正数)

、二定(xy 是定值或者y x +是定值)、三相等(y x =时等号成立)才可以使用该不等式)

(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2; (2)若和y x +是定值s ,则当y x =时积xy 有最大值

24

1s . 五、解析几何

29、直线的五种方程

(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).

(3)两点式

11

2121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).

(4)截距式 1x y

a b

+=(a b 、分别为直线的横、纵截距,0a b ≠、)

(5)一般式 0Ax By C ++=(其中A 、B 不同时为0).

30、两条直线的平行和垂直

若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ?=≠; ②12121l l k k ⊥?=-. 31、平面两点间的距离公式

,A B

高中文科数学公式及知识点总结大全(精华版)

d =A 11(,)x y ,B 22(,)x y ).

32、点到直线的距离

高中文科数学公式及知识点总结大全(精华版)

d =

(点00(,)P x y ,直线l :0Ax By C ++=).

33、 圆的三种方程

(1)圆的标准方程 2

2

2

()()x a y b r -+-=.

(2)圆的一般方程 2

20x y Dx Ey F ++++=(22

4D E F +->0).

(3)圆的参数方程 cos sin x a r y b r θ

θ=+??

=+?

.

* 点与圆的位置关系:点00(,)P x y 与圆2

2

2

)()(r b y a x =-+-的位置关系有三种

高中文科数学公式及知识点总结大全(精华版)

若d =d r >?点P 在圆外;d r =?点P 在圆上;d r

直线0=++C By Ax 与圆2

2

2

)()(r b y a x =-+-的位置关系有三种:

0相离r d ;

0=???=相切r d ;

0>???<相交r d . 弦长=2

22d r -

其中2

2

B

A C Bb Aa d +++=

.

35、椭圆、双曲线、抛物线的图形、定义、标准方程、几何性质

椭圆:22221(0)x y a b a b +=>>,2

22b c a =-,

离心率c e a ==,参数方程是cos sin x a y b θθ

=??=?.

高中文科数学公式及知识点总结大全(精华版)

双曲线:12222=-b y a x (a>0,b>0),2

22b a c =-,离心率1>=a c e ,渐近线方程是x a

b y ±=.

抛物线:px y 22

=,焦点)0,2(p ,准线2

p x -=。抛物线上的点到焦点距离等于它到准线的距离.

36、双曲线的方程与渐近线方程的关系

(1)若双曲线方程为12222=-b y a x ?渐近线方程:22220x y a b -=?x a

b

y ±=.

(2)若渐近线方程为x a

b

y ±=?0=±b y a x ?双曲线可设为λ=-2222b y a x .

(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-22

22b

y a x (0>λ,焦点在x 轴上,0<λ,

焦点在y 轴上).

37、抛物线px y 22

=的焦半径公式

抛物线2

2(0)y px p =>焦半径2

||0p

x PF +

=.(抛物线上的点到焦点距离等于它到准线的距离。) 38、过抛物线焦点的弦长p x x p

x p x AB ++=+++=21212

2.

六、立体几何

39.证明直线与直线的平行的思考途径 (1)转化为判定共面二直线无交点; (2)转化为二直线同与第三条直线平行; (3)转化为线面平行; (4)转化为线面垂直; (5)转化为面面平行. 40.证明直线与平面的平行的思考途径 (1)转化为直线与平面无公共点; (2)转化为线线平行; (3)转化为面面平行. 41.证明平面与平面平行的思考途径 (1)转化为判定二平面无公共点; (2)转化为线面平行; (3)转化为线面垂直.

42.证明直线与直线的垂直的思考途径 (1)转化为相交垂直; (2)转化为线面垂直; (3)转化为线与另一线的射影垂直; (4)转化为线与形成射影的斜线垂直. 43.证明直线与平面垂直的思考途径 (1)转化为该直线与平面内任一直线垂直; (2)转化为该直线与平面内相交二直线垂直; (3)转化为该直线与平面的一条垂线平行; (4)转化为该直线垂直于另一个平行平面。 44.证明平面与平面的垂直的思考途径

(1)转化为判断二面角是直二面角; (2)转化为线面垂直;45、柱体、椎体、球体的侧面积、表面积、体积计算公式 圆柱侧面积=rl π2,表面积=2

22r rl

ππ+

圆椎侧面积=rl π,表面积=2r rl ππ+

1

3V Sh =柱体(S 是柱体的底面积、h 是柱体的高).

1

3

V Sh =锥体(S 是锥体的底面积、h 是锥体的高).

球的半径是R ,则其体积343

V R π=,其表面积2

4S R π=.

46、若点A 111(,,)x y z ,点B 222(,,)x y z ,则,A B d =||AB AB AB =

高中文科数学公式及知识点总结大全(精华版)

?=47、点到平面距离的计算(定义法、等体积法)

48、直棱柱、正棱柱、长方体、正方体的性质:侧棱平行且相等,与底面垂直。

正棱锥的性质:侧棱相等,顶点在底面的射影是底面正多边形的中心。

七、概率统计

49、平均数、方差、标准差的计算

平均数:n x x x x n ++=

21 方差:])()()[(12

22212x x x x x x n s n -+-+-=

标准差:])()()[(1

22221x x x x x x n

s n -+-+-= 50、回归直线方程 (了解即可)

y a bx =+,其中()()()1122211n n

i i i i i i n n

i i

i i x x y y x y nx y b x x x nx a y bx

====?

---?

?==?--??

=-?∑∑∑∑.经过(x ,y )点。 51、独立性检验 )

)()()(()(22

d b c a d c b a bd ac n K ++++-=(了解即可)

52、古典概型的计算(必须要用列举法...、列表..法.、树状..图.的方法把所有基本事件表示出来,不重复、不遗漏)

八、复数

53、复数的除法运算

2

2)()())(())((d c i

ad bc bd ac di c di c di c bi a di c bi a +-++=-+-+=++. 54、复数z a bi =+的模||z =||a bi +

.

高中文科数学公式及知识点总结大全(精华版)

55、复数的相等:a bi c di a +=+?.(,,,a b c d R ∈) 56、复数z a bi =+的模(或绝对值)||z =||a bi +

57、复数的四则运算法则

高中文科数学公式及知识点总结大全(精华版)

(1)()()()()a bi c di a c b d i +++=+++; (2)()()()()a bi c di a c b d i +-+=-+-; (3)()()()()a bi c di ac bd bc ad i ++=-++; (4)2222

()()(0)ac bd bc ad

a bi c di i c di c d c d +-+÷+=

++≠++.

原命题若p 则q 否命题若┐p 则┐q

逆命题若q 则p

逆否命题若┐q 则┐p

互为逆否互

逆否互为逆否

互逆

互58、复数的乘法的运算律

对于任何123,,z z z C ∈,有 交换律:1221z z z z ?=?.

结合律:123123()()z z z z z z ??=??. 分配律:1231213()z z z z z z z ?+=?+? .

九、参数方程、极坐标化成直角坐标

55、???==y x θρθρsin cos ??

???≠=+=)

0(tan 2

22x x y

y x θρ 十、命题、充要条件

充要条件(记p 表示条件,q 表示结论)

(1)充分条件:若p q ?,则p 是q 充分条件.

(2)必要条件:若q p ?,则p 是q 必要条件.

(3)充要条件:若p q ?,且q p ?,则p 是q 充要条件.

注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.

56.真值表

十一、直线与平面的位置关系

空间点、直线、平面之间的位置关系 三个公理:

(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 (2)公理2:过不在一条直线上的三点,有且只有一个平面。

(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。 空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系:

高中文科数学公式及知识点总结大全(精华版)

相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点;

异面直线: 不同在任何一个平面内,没有公共点。 2 公理4:平行于同一条直线的两条直线互相平行。

3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补

4 注意点:

① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为简便,点O 一般取在两直线中的一条上;

② 两条异面直线所成的角θ∈ ;

共面直线

(0,

)2π

③当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a⊥b;

④两条直线互相垂直,有共面垂直与异面垂直两种情形;

⑤计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。

空间中直线与平面、平面与平面之间的位置关系

1、直线与平面有三种位置关系:

(1)直线在平面内——有无数个公共点

(2)直线与平面相交——有且只有一个公共点

(3)直线在平面平行——没有公共点

高中文科数学公式及知识点总结大全(精华版)

直线、平面平行的判定及其性质

直线与平面平行的判定

1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。简记为:线线平行,则线面平行。

平面与平面平行的判定

1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。

2、判断两平面平行的方法有三种:

(1)用定义;

(2)判定定理;

(3)垂直于同一条直线的两个平面平行。

直线与平面、平面与平面平行的性质

1、定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。

简记为:线面平行则线线平行。

2、定理:如果两个平面同时与第三个平面相交,那么它们的交线平行。

直线、平面垂直的判定及其性质

直线与平面垂直的判定

1、定义:如果直线L与平面α内的任意一条直线都垂直,我们就说直线L与平面α互相垂直,记作L⊥α,直线L叫做平面α的垂线,平面α叫做直线L的垂面。如图,直线与平面垂直时,它们唯一公共点P叫做垂足。

2、判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。

平面与平面垂直的判定

1、二面角的概念:表示从空间一直线出发的两个半平面所组成的图形

A

梭l β

B

α

2、二面角的记法:二面角α-l-β或α-AB-β

3、两个平面互相垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。直线与平面、平面与平面垂直的性质

1、定理:垂直于同一个平面的两条直线平行。

2性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。

本文档部分内容来源于网络,如有内容侵权请告知删除,感谢您的配合!

相关文档
  • 高中文科数学公式大全

  • 高中数学公式总结大全

  • 高中数学公式大全总结

  • 高中数学公式总结

  • 高三文科数学公式总结

相关推荐: