第五章弯曲应力力习题
材料力学简明教程(景荣春)课后答案第五章

第5章 弯曲应力思考题5-1 最大弯曲正应力是否一定发生在弯矩值最大的横截面上?答 不一定。
最大弯曲正应力发生在弯矩与弯曲截面系数比值最大的横截面上。
5-2 矩形截面简支梁承受均布载荷q 作用,若梁的长度增加一倍,则其最大正应力是原来的几倍?若截面宽度缩小一倍,高度增加一倍,则最大正应力是原来的几倍?答 若梁的长度增加一倍,则其最大正应力是原来的4倍;若截面宽度缩小一倍,高度增加一倍,则最大正应力是原来的1/2倍。
5-3 由钢和木胶合而成的组合梁,处于纯弯状态,如图。
设钢木之间胶合牢固不会错动,已知弹性模量,则该梁沿高度方向正应力分布为图a ,b ,c ,d 中哪一种。
w E E s >思考题5-3图答 (b)5-4 受力相同的两根梁,截面分别如图,图a 中的截面由两矩形截面并列而成(未粘接),图b 中的截面由两矩形截面上下叠合而成(未粘接)。
从弯曲正应力角度考虑哪种截面形式更合理?思考题5-4图答 (a)5-5从弯曲正应力强度考虑,对不同形状的截面,可以用比值AW来衡量截面形状的合理性和经济性。
比值AW较大,则截面的形状就较经济合理。
图示3种截面的高度均为h ,请从AW的角度考虑哪种截面形状更经济合理?思考题5-5图答 (c)5-6 受力相同的梁,其横截面可能有图示4种形式。
若各图中阴影部分面积相同,中空部分的面积也相同,则哪种截面形式更合理?思考题5-6图答 (b)(从强度考虑,(b),(c)差不多,从工艺考虑,(b)简单些)5-7 弯曲切应力公式*S zz F S I bτ=的右段各项数值如何确定?答 为整个横截面上剪力;为整个横截面对中性轴的惯性矩;b 为所求切应力所在位置横截面的宽度;为横截面上距中性轴为y (所求切应力所在位置)的横线以下面积(或以上面积)对中性轴静矩的绝对值。
S F z I *z S5-8 非对称的薄壁截面梁承受横向力作用时,怎样保证只产生弯曲而不发生扭转变形? 答使梁承受的横向力过弯曲中心,并与形心主惯性轴平行。
第五章习题答案

5-1 把直径1d mm =的钢丝绕在直径为2m 的卷筒上,试计算该钢丝中产生的最大应力。
设200E GPa =解:钢丝绕在直径为D 的卷筒上后产生弯曲变形,其中性层的曲率半径为22D d Dρ+=≈(因D d >>) 该钢丝中产生的最大应力为39maxmax/211020010100/22y d d E E E Pa MPa D D σρ-⨯====⨯⨯=5.4 矩形截面悬臂梁如图所示。
已知4l m =,23b h =,10/q kN m =,[]10MPa σ=,试确定此梁横截面的尺寸。
解:作梁的弯矩图如图所示。
梁的最大弯矩发生在固定端截面上。
22max 111048022M ql kN m ==⨯⨯=⋅ 由强度条件,有max maxmax 26[]z M M W bhσσ==≤ 将23b h =代入上式,得0.416416h m mm ≥=== 22773b h mm =≥ 5.5 20a 工字钢梁的支承和受力情况如图所示。
若[]160MPa σ=,试求许可载荷F 。
解:(1)求支座反力。
选整个梁为研究对象,受力分析如图所示。
列平衡方程,有0yF =∑,0A B F F F F ++-=()0AM=∑F ,6240B F F F ⨯-⨯+⨯=解得:13A F F =,13B F F =-M O212qlM O(2)作梁的弯矩图如图所示。
由图可知该梁的最大弯矩为max 23C M M F ==查表得No.20a 工字钢的抗弯截面系数为3237z W cm =,由强度条件,有max max 2/3[]z zM F W W σσ==≤ 解得663[]3237101601056.922z W F kN σ-⨯⨯⨯⨯≤==所以许可载荷56.9F kN =。
5.8 压板的尺寸和载荷情况如图所示。
材料为45钢,380s MPa σ=,取安全因数1.5n =。
试校核压板的强度。
解:由受力分析可知最大弯矩发生在m m -截面处,且其值为3max 10.0215.4100.02308M P N m =⨯=⨯⨯=⋅m m -截面的抗弯截面系数z W 为333max11302030121212156810zz I W mm y ⨯⨯-⨯⨯=== 压板的最大应力为max max 9308197156810z M MPa W σ-===⨯ 而许用应力为380[]2531.5sMPa nσσ===截面m-m因最大应力小于许用应力,所以压板的强度足够。
工程力学--材料力学(北京科大、东北大学版)第4版第五章习题答案

⼯程⼒学--材料⼒学(北京科⼤、东北⼤学版)第4版第五章习题答案第五章习题5-1⼀矩形截⾯梁如图所⽰,试计算I-I截⾯A、B、C、D各点的正应⼒,并指明是拉应⼒还是压应⼒。
5-2⼀外伸梁如图所⽰,梁为16a号槽刚所⽀撑,试求梁的最⼤拉应⼒和最⼤压应⼒,并指明其所作⽤的界⾯和位置。
5-3⼀矩形截⾯梁如图所⽰,已知P=2KN,横截⾯的⾼宽⽐h/b=3;材料为松⽊,其许⽤应⼒为。
试选择横截⾯的尺⼨。
5-4⼀圆轴如图所⽰,其外伸部分为空⼼管状,试做弯矩图,并求轴内的最⼤正应⼒。
5-5 ⼀矿车车轴如图所⽰。
已知 a=0.6cm,p=5KN,材料的许⽤应⼒,试选择车轴轴径。
5-6 ⼀受均布载荷的外伸刚梁,已知q=12KN/m,材料的许⽤⽤⼒。
试选择此量的⼯字钢的号码.5-7 图⽰的空⽓泵的操纵杆右端受⼒为8.5KN,截⾯I-I和II-II位矩形,其⾼宽⽐为h/b=3,材料的许⽤应⼒。
试求此⼆截⾯的尺⼨。
5-8 图⽰为以铸造⽤的钢⽔包。
试按其⽿轴的正应⼒强度确定充满钢⽔所允许的总重量,已知材料的许⽤应⼒,d=200mm.5-9 求以下各图形对形⼼轴的z的惯性矩。
5-10 横梁受⼒如图所试。
已知P=97KN,许⽤应⼒。
校核其强度。
5-11 铸铁抽承架尺⼨如图所⽰,受⼒P=16KN。
材料的许⽤拉应⼒。
许⽤压应⼒。
校核截⾯A-A的强度,并化出其正应⼒分布图。
5-12 铸铁T形截⾯如图所⽰。
设材料的许⽤应⼒与许⽤压应⼒之⽐为,试确定翼缘的合理跨度b.5-13 试求题5-1中截⾯I-I上A、B、C、D各点处的切应⼒。
5-14 制动装置的杠杆,在B处⽤直径d=30mm的销钉⽀承。
若杠杆的许⽤应⼒,销钉的,试求许可载荷和。
5-15 有⼯字钢制成的外伸梁如图所⽰。
设材料的弯曲许⽤应⼒,许⽤且应⼒,试选择⼯字钢的型号。
5-16 ⼀单梁吊车由40a号⼯字钢制成,在梁中段的上下翼缘上各加焊⼀块的盖板,如图所⽰。
已知梁跨长=8m,=5.2m,材料的弯曲许⽤应⼒,许⽤且应⼒。
2第五章 弯曲应力

(3)计算 M max
(4)计算 Wzn Beams)
解:(1)计算简图
(2)绘弯矩图
(3)根据
max
M max Wz
计算
(6.7 50) 103 9.5
Wz
M max
4 140106
962106 m3 962cm3
M B 4kN m
-
+
B截面
4kN
t max M B y1 27.2MPa [ t]
80
Iz
z y1
20
120
y2
20
cmax M B y2 46.2MPa [ c]
Iz
C截面
t max
MC y2 Iz
28.8MPa
[ t]
( Stresses in Beams)
F1≤19200N=19.2kN
2. 由c,max ≤[c] 确定[F]。
c,max
(F
/ 2 2m)(134103m) 5493 10-8m4
90106 Pa
F2≤36893N=36.893kN
[F]=19.2kN,可见梁的强度由拉应力确定。
( Stresses in Beams)
最大正应力等于: max
M max Wz
Fl 1 bh2
6Fl bh2
6
( Stresses in Beams)
练习
图示为机车轮轴的简图。试校核轮轴的强度。已知
d1 160mm d2 130mm,a 0.267m,b 0.16m,F 62.5kN,
《材料力学》 第五章 弯曲内力与弯曲应力

第五章 弯曲内力与应力 §5—1 工程实例、基本概念一、实例工厂厂房的天车大梁,火车的轮轴,楼房的横梁,阳台的挑梁等。
二、弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线。
变形特点——杆轴线由直线变为一条平面的曲线。
三、梁的概念:主要产生弯曲变形的杆。
四、平面弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线,且都在梁的纵向对称平面内(通过或平行形心主轴且过弯曲中心)。
变形特点——杆的轴线在梁的纵向对称面内由直线变为一条平面曲线。
五、弯曲的分类:1、按杆的形状分——直杆的弯曲;曲杆的弯曲。
2、按杆的长短分——细长杆的弯曲;短粗杆的弯曲。
3、按杆的横截面有无对称轴分——有对称轴的弯曲;无对称轴的弯曲。
4、按杆的变形分——平面弯曲;斜弯曲;弹性弯曲;塑性弯曲。
5、按杆的横截面上的应力分——纯弯曲;横力弯曲。
六、梁、荷载及支座的简化(一)、简化的原则:便于计算,且符合实际要求。
(二)、梁的简化:以梁的轴线代替梁本身。
(三)、荷载的简化:1、集中力——荷载作用的范围与整个杆的长度相比非常小时。
2、分布力——荷载作用的范围与整个杆的长度相比不很小时。
3、集中力偶(分布力偶)——作用于杆的纵向对称面内的力偶。
(四)、支座的简化:1、固定端——有三个约束反力。
2、固定铰支座——有二个约束反力。
3、可动铰支座——有一个约束反力。
(五)、梁的三种基本形式:1、悬臂梁:2、简支梁:3、外伸梁:(L 称为梁的跨长) (六)、静定梁与超静定梁静定梁:由静力学方程可求出支反力,如上述三种基本形式的静定梁。
超静定梁:由静力学方程不可求出支反力或不能求出全部支反力。
§5—2 弯曲内力与内力图一、内力的确定(截面法):[举例]已知:如图,F ,a ,l 。
求:距A 端x 处截面上内力。
解:①求外力la l F Y l FaF m F X AYBY A AX)(F, 0 , 00 , 0-=∴==∴==∴=∑∑∑ F AX =0 以后可省略不求 ②求内力xF M m l a l F F F Y AY C AY s ⋅=∴=-==∴=∑∑ , 0)( , 0∴ 弯曲构件内力:剪力和弯矩1. 弯矩:M ;构件受弯时,横截面上存在垂直于截面的内力偶矩。
工程力学2第五章 弯曲应力

max
M max ymax M max IZ WZ
目录
§5-3 横力弯曲时的正应力
弯曲正应力强度条件
σmax
M
max
y max
Iz
M
max
WZ
σ
1.等截面梁弯矩最大的截面上 2.离中性轴最远处 3.变截面梁要综合考虑 M 与 I z 4.脆性材料抗拉和抗压性能不同,两方面都要考虑
FS 90kN
M
-
x 90kN
I Z 5.832 10-5 m4 1 M EI
ql 2 / 8 67.5kN m
EI Z 200 109 5.832 10 -5 C MC 60 103 194.4m
x
目录
21
§5-3 横力弯曲时的正应力
第五章 弯曲应力
目录
第五章
弯曲应力
§5-1 纯弯曲 §5-2 纯弯曲时的正应力 §5-3 横力弯曲时的正应力 §5-4 弯曲切应力 §5-6 提高弯曲强度的措施
目录
§5-1 纯弯曲
回顾与比较 内力 应力
FN A
T IP
M FS
目录
? ?
§5–1 引言
(Introduction)
4 103 8810-3 c,max 7.6410-6 46 .1106 Pa 46 .1MPa c
目录
§5-3 横力弯曲时的正应力
(3)作弯矩图
(4)B截面校核
2 .5kN.m
t ,max 27.2MPa t
c,max 46.1MPa c
目录
§5-3 横力弯曲时的正应力
第五章弯曲应力

★
的材料(例铸铁),宜采用截面不对称于中性轴。
z
z
2.变截面梁与等强度梁
等截面梁:Wz = 常数,
等强度梁是一种变截面梁,即各截面上的最大正应力都相 等,且等于许用应力:
3. 梁的合理受力 ① 合理布置载荷
P
Wz = 常数,降低 P
(+)
(+)
P
(+)
q=P/l
(+)
(+)
② 合理布置支座位置
型钢的Iz 和Wz 可查型钢表。
B
y
(中性轴)
z
q=60kN/m
【例】简支梁如图所示,
A
B 试求:梁内的最大正应力。
3m
解:画弯矩图,求最大弯矩
120
180
z
y
M
Mmax
+
x
【例】 求图示梁的最大弯曲正应力,d = 60mm。
d
z
解:
(-)
【例】 求图示梁中央截面上的最大拉应力和 最大压应力以及 G点的正应力,梁由10号槽钢制成。
x
§5–2 对称弯曲正应力
M 纵向对称面
M 一、变形及基本假设
中性层 中性轴 横向线ab变形后仍为直
线,但相对于原来的位置
aa bb
旋转了一个角度;纵向线 弯成弧线(M>0,上缩下伸 ;M<0,上伸下缩),横向
M
M 线与变形后的纵向线仍保
aa
b
b
持垂直。 平面假设
中性层和中性轴
由梁的变形规律,可知梁内必有一层纤维既不伸长也不缩短 ,此层纤维称为中性层。中性层与横截面的交线称为中性轴。 中性轴通过截面形心且垂直于外力作用平面。
M 6kN·m
材料力学习题及答案

材料力学-学习指导及习题答案第一章绪论1-1 图示圆截面杆,两端承受一对方向相反、力偶矩矢量沿轴线且大小均为M的力偶作用。
试问在杆件的任一横截面m-m上存在何种内力分量,并确定其大小。
解:从横截面m-m将杆切开,横截面上存在沿轴线的内力偶矩分量M x,即扭矩,其大小等于M。
1-2 如图所示,在杆件的斜截面m-m上,任一点A处的应力p=120 MPa,其方位角θ=20°,试求该点处的正应力σ与切应力τ。
解:应力p与斜截面m-m的法线的夹角α=10°,故σ=p cosα=120×cos10°=118.2MPaτ=p sinα=120×sin10°=20.8MPa1-3 图示矩形截面杆,横截面上的正应力沿截面高度线性分布,截面顶边各点处的正应力均为σmax=100 MPa,底边各点处的正应力均为零。
试问杆件横截面上存在何种内力分量,并确定其大小。
图中之C点为截面形心。
解:将横截面上的正应力向截面形心C简化,得一合力和一合力偶,其力即为轴力F N=100×106×0.04×0.1/2=200×103 N =200 kN其力偶即为弯矩M z=200×(50-33.33)×10-3 =3.33 kN·m1-4 板件的变形如图中虚线所示。
试求棱边AB与AD的平均正应变及A点处直角BAD的切应变。
解:第二章轴向拉压应力2-1试计算图示各杆的轴力,并指出其最大值。
解:(a) F N AB=F, F N BC=0, F N,max=F(b) F N AB=F, F N BC=-F, F N,max=F(c) F N AB=-2 kN, F N2BC=1 kN, F N CD=3 kN, F N,max=3 kN(d) F N AB=1 kN, F N BC=-1 kN, F N,max=1 kN2-2 图示阶梯形截面杆AC,承受轴向载荷F1=200 kN与F2=100 kN,AB段的直径d1=40 mm。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 弯曲应力习题
一、单项选择题
1、梁纯弯曲时,梁横截面上产生的应力为( ) A 、正应力 B 、拉应力 C 、压应力 D 、切应力
二、填空题
1、对于圆形截面的梁,其对圆心的极惯性矩I p = ;截面对过圆心的Z 轴的惯性矩I z = ;截面的抗扭截面系数W p = ;截面的抗弯截面系数W z =
2、在梁弯曲变形时
1
Z
M
EI ρ
=
,式中ρ 表示梁中性层的曲率半径,M 表示梁横截面上的 ,I z 表示梁横截面的 ,EI z 称为梁的抗弯 。
3、梁纯弯曲时,梁纯弯曲时,横截面上的正应力沿高度方向呈 分布,横截面上距中性轴愈远的点处应力的绝对值 ,中性轴上的各点应力为 . 4、根据梁弯曲的平面假设,梁上其间存在一层既不伸长也不缩短的纤维,这一层纤维称为 。
该层与梁横截面的交线称为 。
~
三、计算题
1、由50a 号工字钢制成的简支梁如图所示,q =30kN/m ,a =3m ,50a 号工字钢的抗弯截面系数W z =1860×10-6m 3,大梁材料的许用应力[σ]=160Mpa ,试校核梁的强度。
'
2、如图所示矩形截面悬臂梁,外载荷F =3kN ,梁长l =300mm ,其高宽比为h /b =3,材料的许用应力[σ]=160Mpa ,试按梁的弯曲强度条件设计该矩形截面梁的尺寸。
图5.3.1
3、如图所示的简支梁,梁横截面为圆形,直径D =25mm
,P =60N ,m =180N •m, a =2m ,圆形截面梁材料的许用应力[σ]=140Mpa ,试校核梁的强度。
{
4、如图所示悬臂梁,外伸部分长度为l ,截面为b ×4b 的矩形,自由端作用力为P 。
拟用图(a )和图(b )两种方式搁置,试求图(a )情形下梁横截面上的最大拉应力(σmax ) 和
图(b )情形下梁横截面上的最大拉应力(σmax )。
图中力的单位为(N ),尺寸单位为(mm )。
(
(a)
】
5、如图一单梁吊车,其跨度l =10m ,吊车大梁由45a 号工字钢制成,45a 号工字钢的抗弯截面系数W z =1430×10-6m 3,大梁材料的许用应力[σ]=140Mpa ,电葫芦自重G =15kN ,最大起重量Q=55kN ,试校核大梁的强度。
(大梁自重暂不考虑。
)
图5.3.2
图 5.3.3
图 5.3.4
图5.3.5。
6、如图一空气泵的操纵杆,右端受力为,截面I -I 为矩形,其高宽比为h / b =3,
材料的许用应力[σ]=50Mpa ,试求该横截面的尺寸。
图中尺寸单位为mm 。
7、悬臂梁受均布载荷作用如图所示,已知梁的跨度=1m l ,均布载荷集度=6kN/m q ;梁由10号槽钢制成,截面有关尺寸如图所示,横截面的惯性矩44
z =25.610mm I 。
试求此梁的最大拉应力和最大压应力。
|
8、矿车车轴受力如图所示,已知a = 0.6m ,F =5kN ,材料的许用应力[]=80MPa σ,试选择车轴直径。
图5.3.6
图 5.3.7
?
9、一吊车梁受力如图,跨度l 为8m ,梁由20a 工字钢制成,抗弯截面系数W z =237cm 3, 材料许用应力为 [σ]=200Mpa ,求该梁可能承载的最大起重量。
10、一矩形截面木梁受力如图所示,已知=10kN P ,=1m a ;木材的许用应力
[]=10MPa σ。
设梁横截面的高宽比为h/b =,试选择梁的截面尺寸。
、
11、一吊车梁受力如图,若起重量F 为20kN ,跨度l 为8m ,梁由20a 工字钢制成,抗弯截面系数W z =237cm 3, 材料许用应力为 [σ]=200Mpa ,校核梁的强度。
12、一矩形截面木梁受力如图所示,已知=10kN F ,=1.2m a ;木材的许用应力
[]=10MPa σ。
设梁横截面的高宽比为h/b =2,试选择梁的截面尺寸。
第五章弯曲应力习题答案
一、单项选择题
1、A
图 5.3.8
二、填空题
1、
4
433
d d d d 32
641632
{
2、弯矩 惯性矩 刚度
3、线性 愈大 零
4、中性层 中性轴
三、 计算题
1、 解:
max M 270kN m =⋅
[]3max -6z 827010σ1860101.4510pa
=145Mpa <σ160Mpa
M W ⨯==
⨯=⨯=
故梁的强度足够。
.
2、
解:
max M 900N m =⋅
[]3max 3
z
90010σσ160Mpa 96
M b W ⨯==≤= 15.5mm 46.5mm b h ≥≥
— 3、 解:
故梁的强度足够。
4、
解:
[]max 33
Z 3max Z M 160N m W 0.11562.5mm M 16010σ102.4Mpa <σ140Mpa
W 1562.5
d =⋅==⨯====
Fl=
()(Mpa)8b 3Pl (4b)b 6Pl W M σ3
2Z a max =⨯==
》
()
(Mpa)2b 3Pl b 4b 6Pl W M σ3
2Z b
max =⨯==
5、
解:M=1/2(G + Q )×l /2 = 1/2(55+15)×10/2 ×106 =175×106 (N mm ⋅)
[]6
6917510122.4Mpa <140Mpa 14301010
Z M W σσ-⨯====⨯⨯ 故大梁的强度足够。
6、 解:
M=×103×(720-80)=5440×103(N mm ⋅)
()
[]3
2
6544010503Z M Mpa W b b σσ⨯⨯==≤=⨯ 解得: b≥41.7mm; h=125.1 mm 7、 解:(1)求最大弯矩 梁在固定端横截面上的弯矩最大,其值为2
max
2600013000N m 2
2
ql M
⨯=
=
=⋅
(2)求最大应力
因危险截面上的弯矩为负,故截面上边缘受最大拉应力,
6max max 18
6max max 28
30000.015217810Pa 178MPa
25.61030000.032838510Pa 385MPa
25.610t z c z
M y I M y I σσ--=⋅=⨯=⨯=⨯=
⋅=
⨯=⨯=⨯
8、 解:
36max 3
max
max 6
max 510600310N mm 0.1[]310[]8072.5mm
Z Z
Z M Fa W d M W M W d σσσ==⨯⨯=⨯⋅==
≤⨯≥=
≥。