药物的化学结构与药效的关系

合集下载

药物化学结构与药效的关系

药物化学结构与药效的关系

药物化学结构与药效的关系药物化学结构与药效之间存在密切的关系。

药物化学结构决定了药物的物理化学性质、代谢途径和药效特点等。

药物的化学结构特点直接影响了药物在体内的吸收、分布、代谢和排泄等方面的药代动力学过程,进而影响药物在生物体内产生的药效。

首先,药物化学结构影响药物的吸收。

药物分子的溶解度、离子性以及脂溶性等因素可以影响药物在胃肠道内的解离、溶解和吸收。

药物分子的大小、电荷等特点也决定了药物是否能够穿透细胞膜,进而进入细胞内发挥药效。

其次,药物化学结构影响药物在体内的分布。

药物分子的极性和非极性部分、药物分子的离子性以及蛋白结合性等特点决定了药物在体内组织和细胞内的分布情况。

药物分子的极性可影响药物通过血脑屏障或胎盘屏障的能力,从而影响药物对中枢神经系统或胎儿的影响程度。

此外,药物化学结构还影响药物的代谢途径和代谢产物。

药物分子含有特定的官能团和化学键,决定了药物在体内的代谢途径,如氧化、还原、羟基化、脱甲基化等。

药物的代谢产物可能具有不同的活性和药理效应,药物化学结构对药物代谢过程的选择性和速度也有一定影响。

最后,药物化学结构决定药物的药效特点。

药物分子的化学结构与药物与靶点之间的相互作用密切相关。

药物分子与靶点之间的相互作用方式包括非共价作用和共价作用。

药物分子的大小、形状、电荷分布等特点决定了药物与靶点之间的空间匹配程度,进而影响药物与靶点的亲和力和选择性。

药物与靶点的结合对药物的治疗效果起到关键作用,药物化学结构对药物的药效和副作用具有重要影响。

总之,药物化学结构与药效之间存在紧密的关系。

药物化学结构可以影响药物的吸收、分布、代谢和药效特点,对药物的药效产生直接影响。

因此,在药物研究与开发过程中,药物化学结构设计是重要的策略之一,通过合理设计药物分子的化学结构,可以调控药物的药代动力学过程和药效特点,以达到更好的药物治疗效果。

药物结构与药效关系

药物结构与药效关系

根据药物化学结构对生物活性的影响程度,或根据作用方式,宏观上将药物分为非特异性结构药物和特异性结构药物。

前者的药理作用与化学结构类型关系较少,主要受理化性质影响。

大多数药物属于后一类型,其活性与化学结构相互关联,并与物定受体的相互作用有关。

决定药效的主要因素有二:(1)药物必须以一定的浓度到达作用部位,才能产生应有的药效。

(2)药物和受体相互作用,形成复合物,产生生物化学和生物物理的变化。

依赖于药物的特定化学结构,但也受代谢和转运的影响。

第一节药物的基本结构和结构改造作用相似的药物结构也多相似。

在构效关系研究中,对具有相同药理作用的药物,剖析其化学结构中的相同部分,称为基本结构。

基本结构可变部分的多少和可变性的大小各不相同,有其结构的专属性。

基本结构的确定却有助于结构改造和新药设计。

第二节理化性质对药效的影响理化性质影响非特异性结构药物的活性,起主导作用。

特异性结构药物的活性取决于其与受体结合能力,也取决于其能否到达作用部位的性质。

药物到达作用部位必须通过生物膜转运,其通过能力有赖于药物的理化性质及其分子结构。

对药物的药理作用影响较大的性质,既有物理的,又有化学的。

一、溶解度、分配系数对药效的影响药物转运扩散至血液或体液,需有一定的水溶性(又称亲水性或疏脂性)。

通过脂质的生物膜转运,需有一定的脂溶性(又称亲脂性或疏水性)。

脂溶性和水溶性的相对大小一般以脂水分配系数表示。

即化合物在非水相中的平衡浓度Co 和水相中的中性形式平衡浓度Cw之比值:P=Co/Cw因P值效大,常用lgP。

非水相目前广泛采用溶剂性能近似生物膜、不吸收紫外光、可形成氢键及化学性质稳定的正辛醇。

分子结构的改变将对脂水分配系数发生显著影响。

卤原子增大4~20倍,—CH2—增大2~4倍。

以O代-CH2-,下降为1/5~1/20。

羟基下降为1/5~1/150。

脂氨基下降为1/2~1/100。

引入下列基团至脂烃化合物(R),其lgP的递降顺序大致为:C6H5 > CH3 > Cl > R > -COOCH3 > -N(CH3)2 > OCH3 > COCH3 > NO2 > OH > NH2 > COOH > CONH2引入下列基团至芳烃化合物(Ar),其lgP的递降顺序大致为:C6H5 > C4H9 >> I > Cl > Ar > OCH3> NO2 ≥COOH > COCH3> CHO > OH > NHCOCH3> NH2 > CONH2 > SO2NH2作用于中枢神经系统的药物,需通过血脑屏障,需较大的脂水分配系数。

药物的化学结构和药效的关系药物化学

药物的化学结构和药效的关系药物化学

总结词
计算机辅助药物设计利用计算机模拟 技术来预测和优化药物与靶点的相互 作用。
详细描述
这种方法通过建立药物与靶点相互作 用的数学模型,对大量化合物进行虚 拟筛选,快速找出具有潜在活性的化 合物。这大大缩短了新药研发的时间 和成本,提高了成功率。
先导化合物的优化
总结词
先导化合物优化是在找到具有初步活性的先 导化合物后,通过对其化学结构进行修饰和 优化,提高其药效、降低副作用的过程。
总结词
药物分子的极性影响其在体内的吸收、分布和代谢,从而影响药效。
详细描述
药物分子的极性与其化学结构密切相关,极性大小直接影响分 子在体内的溶解度和渗透性。一般来说,极性适中的药物分子 具有较好的水溶性和脂溶性,有利于其在体内的吸收和分布。 此外,药物的代谢过程也与其化学结构有关,某些结构特征可 以促进或抑制代谢酶的活性,从而影响药物的代谢速度和药效 持续时间。例如,某些药物分子中含有羟基或羧基等极性基团, 可以增加其在体内的溶解度和渗透性,从而提高药物的生物利 用度。
总结词
药物分子的电子分布影响其与靶点的相互作 用,从而影响药效。
详细描述
药物分子中的电子分布决定了其与靶点分子的相互作用方式, 如静电、共价键等。药物分子中的电子分布与其化学结构密切 相关,通过改变药物分子的电子分布,可以调整其与靶点的相 互作用,从而优化药效。例如,某些药物分子中的特定基团可 以通过电子转移与靶点分子形成共价键,从而提高药物的稳定 性。
氢键
总结词
氢键是一种相对较弱的相互作用力,但对药物与靶点的结合和药效的发挥具有重要影响。
详细描述
氢键的形成是由于药物分子中的氢原子与靶点分子中的电负性原子(如氧或氮)之间的 相互作用。这种相互作用虽然较弱,但能够使药物与靶点结合更加稳定,从而影响药物 的吸收、分布和代谢等过程。例如,某些药物通过与蛋白质的特定氨基酸残基形成氢键,

第一章 药物的化学结构与药效的关系

第一章 药物的化学结构与药效的关系

第一章药物的化学结构与药效的关系(一)药物的化学结构与药效的关系33分钟1.药物理化性质药物的溶解度、分配系数、解离度和官能团对药效的影响2.药物的电子云密度分布与立体结构电子云密度和立体结构对药效的影响3.键合特性药物和生物大分子作用时的键合形式对药效的影响药物具有不同的结构,具有不同的药效,结构决定功能。

影响药物产生药效的主要因素有两个方面:1.药物到达作用部位的浓度药物服用〉进入血液循环〉组织分布2.药物与受体的作用药物到达作用部位后,与受体形成复合物,产生生理和生化的变化,达到调节机体功能或治疗疾病的目的。

药物与受体的作用一方面依赖于药物特定的化学结构,以及该结构与受体的空间互补性,另一方面还取决于药物和受体的结合方式。

药物和受体的结合方式有化学方式和物理方式。

药物的作用有两种不同类型,一类是结构非特异性药物:药物的药效作用主要受药物的理化性质影响而与药物的化学结构类型关系较少;另一类是结构特异性药物:药物的作用依赖于药物分子特异的化学结构,该化学结构与受体相互作用后才能产生影响,因此化学结构的变化会直接影响其药效。

而大多数药物属于结构特异性药物。

结构特异性药物中,能被受体所识别和结合的三维结构要素的组合又称为药效团。

受体与药物的结合实际上是与药物结构中药效团的结合,这与药物结构上官能团的静电性、疏水性及基团的大小有关。

(钥匙和孔)第一节药物理化性质和药效的关系(药物的溶解度、分配系数、解离度和官能团对药效的影响,)在对于结构非特异性药物,药物的理化性质直接影响药物的活性。

药物的理化性质主要有药物的溶解度、分配系数和解离度。

一、药物的溶解度和分配系数对药效的影响在人体中,大部分的环境是水相环境,体液、血液和细胞浆液都是水溶液,药物要转运扩散至血液或体液,需要溶解在水中,要求药物有一定的水溶性(又称为亲水性)。

而药物在通过各种生物膜(包括细胞膜)时,这些膜是由磷脂所组成的,又需要其具有一定的脂溶性(称为亲脂性)。

药物化学结构和药效的关系

药物化学结构和药效的关系
式更易发挥作用。因此药物应有适宜的解离度.
例:
资料仅供参考,不当之处,请联系改正。
2.6 药物的电子云密度分布对药效的影响
如果药物分子中的电荷分布正好和其特定 受体相适应,药物与受体通过形成离子键、偶 极-偶极相互作用、范德华力、氢键等分子间引 力相互吸引,就容易形成复合物,而具有较高 活性。
资料仅供参考,不当之处,请联系改正。
下例为苯甲酸酯类局麻药分子与受体通过形成 离子键,偶极-偶极相互作用,范德华力相互作 用形成复合物的模型。
资料仅供参考,不当之处,请联系改正。
(2)增加药物分子的位阻:
抵抗青霉素酶得水解
资料仅供参考,不当之处,请联系改正。
(3)电性的影响:
资料仅供参考,不当之处,请联系改正。
2.卤素对药物生物活性的影响
强吸电子基,影响电荷分布
3.羟基、醚键对药物生物活性的影响
-OH增强与受体的结合力(氢键),增加水溶性,改变生物活性 -O-有利于定向排布,易于通过生物膜
资料仅供参考,不当之处,请联系改正。
药物的化学结构与生物活性(药效)间 的关系,通常称为构效关系(Structureactivity relationships, SAR),是药物化 学研究的主要内容之一。
资料仅供参考,不当之处,请联系改正。
本章内容
药物作用机制 受体学说 影响药物产生作用的主要因素 药物结构的官能团对药效的影响 药物的理化性质对药效的影响 药物的电子云密度分布对药效的影响 药物的立体结构对药效的影响
4.磺酸基、羧基与酯对药物生物活性的影响
-SO3H、-COOH使水溶性、解离度增大,不易通过生物膜, 生物活性减弱;
-COOR使脂溶性增大,生物活性增大
5.酰胺基与胺基对药物生物活性的影响

19章 药物的化学结构与药效关系

19章  药物的化学结构与药效关系
大多数药物属于后一种类型。
决定药效的主要因素
(一)药物发生药效的生物学基础
1、药物作用的体内靶点
与药物在体内发生相互作用的生物大分子被称为药物 的作用靶点,即致病基因编码的蛋白质和其他生物大 分子,如酶、受体、离子通道、核酸等。
2、药物发生药效的体内过程
药物的体内过程是吸收、分布、代谢和排泄,这中间 的每一个过程都影响药物的药效。 药物发生药效的决定因素有两个: 一:是药物必须以一定的浓度到达作用部位,药物的转 运过程(吸收、分布、排泄)将影响药物在作用部位的 浓度,而转运过程又受药物理化性质的影响。 二:是药物和受体的相互作用,这一因素与结构特异性 药物的生物活性有关。
根据药物在体内分子水平上的作用方式分类:
结构非特异性药物:生物活性主要受理化性质影响,与化学 结构关系不大。结构改变,对生物活性无明显影响。
结构特异性药物; 生物活性除与药物分子的理化性质相关外, 主要取决于药物的化学结构,即受药物分子和受体的相互作 用影响,药物结构稍加改变,就会直接产生药效学变化。
引入烷基、卤素、芳环、酯基和硝基等可以增加 药物的脂溶性。如要透过血脑屏障,作用于中枢 神经系统的药物,需要较强的亲脂性。
药物分子中如引入亲水性的磺酸基、羧基、羟基、 酰胺基、胺基等,一般导致水溶性增高。
2 解离度对药效的影响
多数药物具弱酸性或弱碱性,在体液中可部分解离。 药物的解离度取决于解离常数pKa和介质的pH。
第十九章
药物的化学结构与药效的关系
第一节
药物的构效关系概述
构效关系的概念
构效关系(Structure activity relationship SAR)是指药物的化学结构 与生物活性(包括药理与毒理作用)之间 的关系,是药物化学的中心内容之一,也 是药物化学和分子药理学长期以来所共同 探讨的问题。

药物的化学结构与药效

药物的化学结构与药效

第二章药物的化学结构与药效的关系本章以药物的化学结构为主线,重点介绍药物产生药效的决定因素、药物的构效关系、药物的结构与性质,药物的化学结构修饰和新药的开发途径及方法。

第一节药物化学结构的改造药物的化学结构与药效的关系(构效关系)是药物化学和分子药理学长期以来所探讨的问题。

由分子生物学、分子药理学、量子有机化学和受体学说等学科的进一步发展,促使药物构效关系的深入研究和发展一、生物电子等排原理在药物结构改造和构效关系的研究中,把具有外层电子相同的原子和原子团称为电子等排体,在生物领域里表现为生物电子等排,已被广泛用于药物结构的优化研究中。

所以把凡具有相似的物理性质和化学性质,又能产生相似生物活性的基团或分子都称为生物电子等排体。

利用药物基本结构的可变部分,以生物电子等排体的相互替换,对药物进行结构的改造,以提高药物的疗效,降低药物的毒副作用的理论称为药物的生物电子等排原理。

生物电子等排原理中常见的生物电子等排体可分为经典生物电子等排体和非经典生物电子等排体两大类。

(一)经典生物电子等排体1.一价原子和基团如F、Cl、OH、-NH2、-CH3等都有7个外层电子。

2.二价原子和基团如O、S、—NH—、—CH2—等都有6个外层电子。

3.三价原子和基团如—CH=、—N=等都有5个外层电子。

4.四价基团如=C=、=N+=、=P+=等都有四个外层电子。

这些电子等排体常以等价交换形式相互替换。

如普鲁卡因(3-1)酯键上的氧以NH取代,替换成普鲁卡因胺(3-2),二者都有局部麻醉作用和抗心律失常作用,但在作用的强弱和稳定性方面有差别。

(3-2)(3-1)O NHCH 2CH 2N(C 2H 5)2O C H 2N CH 2CH 2N(C 2H 5)2OCH 2N(二)非经典生物电子等排体常见可相互替代的非经典生物电子等排体,如—CH =、—S —、—O —、—NH —、—CH 2—在药物结构中可以通过基团的倒转、极性相似基团的替换、范德华半径相似原子的替换、开链成环和分子相近似等进行电子等排体的相互替换,找到疗效更高,毒性更小的新药。

1药物的化学结构与药效关系

1药物的化学结构与药效关系
• 理论上一个分子可以有无数构象式同时存在,但由于 分子中较大基因(或原子)的立体障碍,一些构象需 要克服的立体能垒大而存在的可能性较小,而以分子 势能最低的构象存在的可能性最大
• 我们称分子势能最低的构象为优势构象(preferential conformation)
• 一般由X-射线结晶学测定的构象为优势构象。
官能团的作用
• 酸性和碱性基团 • 烷基 • 卤素 • 羟基与巯基 • 磺酸基和羧基 • 氨基和酰胺 • 醚键
一、酸性和碱性基团
• 极性基团,对药物的物理化学性质影响 较大,因而对生物活性有决定性的影响
二、烃基
• 药物分子中引入烃基,可改变溶解度、 离解度、分配系数,还可增加位阻,从 而增加稳定性。
• 醚类化合物由于醚中的氧原子有孤对电 子,能吸引质子,具有亲水性,碳原子 具有亲脂性,使醚类化合物在脂-水交界 处定向排布,易于通过生物膜。
第四节 立体结构对药效的影响
一、原子间距离对药效的影响
• 1.化学键的作用 结构特异性药物与特定的靶 点,通常是生物大分子(例如受体或酶)发生 相互作用形成药物-受体复合物,才能产生药 理作用,各种各样的化学键能使这种药物-受 体复合物稳定。这些化学键可分为可逆和不可 逆两类。药物与受体以共价键结合是不可逆的,
• 药物中光学异构体生理活性的差异反映了药物与受体结 合时的较高的立体要求。一般认为,这类药物需要通过 三点与受体结合,如图中D-(-)- 肾上腺素通过下列 三个基团与受体在三点结合:①氨基;②苯环及其两个 酚羟基;③侧链上的醇羟基。而L-异构体只能有两点结
合。
• 有一些药物,左旋体和右旋体的生物活性类型都不一样
• 药物分子的基本结构不同,但可能会以相同的 作用机制引起相同的药理或毒理效应,这是由 于它们具有共同的药效构象,即构象等效性 (conformational equivalence),从而以相同的 作用方式与受体部位相互作用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 即使在化学结构上看来微小的改变, 也可导致药理作用方面的明显改变。
OH
Ex:拟肾上腺素药 N取代基的增大,效应 ,β效应
H N R2 X R1
R2 H
代表药物 去甲肾上腺素
效应 α
甲基 异丙基 叔丁基
肾上腺素 异丙肾上腺素 沙丁胺醇
α、β β β2
将一个有希望的“首选”化 合物的分子结构加以改造,是寻 找新药的重要途径。
ClCH2CH2 N ClCH2CH2
N CH2CHCOOH NHCHO
R
氮芥
ClCH2CH2 N ClCH2CH2 HO N N OH
N-甲酰溶肉瘤素
ClCH2CH2 N ClCH2CH2 p O H N O
尿嘧啶氮芥
环磷酰胺
二、结构改造
结构变化带来新的物理性质,也改 变了分子化学反应性,可导致药物在细 胞与组织中分布的改变,进而改变对酶 及受体作用部位的结合,改变对这些部 位的反应速率及排泄方式。
利多卡因
吡咯卡因
c. 极性相似基团的置换
H Cl H2 NO 2 S N S O NH O Cl H2 NO 2 S H N C O C 2 H5 NH
氢氯噻嗪
喹噻酮
d. 范德华半径相似原子的置换
O H O N N H H H O N N H O F
本章要求
1、掌握构效关系、脂水分配系数。
2、熟悉溶解度与分配系数、解离度对药效 的影响。 3、了解基团变化、立体结构对药效的影响。
构效关系(structure–activity
Байду номын сангаас
relationships,SAR)
药物的化学结构与药效的关系
据此将药物分为两类:
1.非特异性结构药物:药理作用受理化性质影响 不直接与化学结构相关 2.特异性结构药物:药理作用受化学结构影响
• 大多数药物为特异性结构药物,其结构上 细微的改变将会影响药效。 • 而非特异性结构药物,其结构上微小的改 变将不会改变生物活性。例如吸入型麻醉 药,药理活性主要与药物在周围空气中的 局部蒸气压与药物本身的蒸气压比率有关。
4、药物结构的微小变化可导致活 性的强烈变化 。 正常代谢物 (RNA合成原料)
磺胺脒
H2N
N SO2NH
O CH3
磺胺甲基异噁唑
4、拟肾上腺素药物
C C N
HO HO CHCH2NH2 OH
HO CH3 HO CHCH2NHCH OH CH3
去甲肾上腺素
Cl CH3 H2N Cl CHCH2NHC OH CH3 CH3
异丙肾上腺素
HOCH2 HO CHCH2NHC OH CH3 CH3 CH3
克仑特罗
舒喘宁
5、组胺H1 受体拮抗剂
CH3 O CH2CH2 N CH3
R1 X R2
CH3 N CH2CH2 N CH3 N
(C)n N
n = 2~3
苯海拉明
Cl
吡苄胺
CH3 N CH3 CH2CH2 N CH3 N
赛庚啶
氯非拉明
6、氮芥类烷化剂
ClCH2CH2 N ClCH2CH2 CH3 ClCH2CH2 ClCH2CH2
O H N O N H H H N O N H
抗代谢物 (抗肿瘤药)
O F
决定药效的主要因素
1、药物必须以一定的浓度到达作 用部位,并持续一定时间。 2、药物必须与体内生物大分子( 如受体、酶等)发生作用。
第一节
药物的基本结构
1909年,Ehrlich提出“药效团”概念 。
药效团:形成药物的药理作用或毒性的
δ
C O
O
CH2 CH2
H
N
C 2 H5 C 2 H5
δ
V
V D
V E
O N O C O O CH2 CH2 N
C 2 H5 C 2 H5
无局麻作用
O O H2N N .HCl
普鲁卡因的局麻作用似与分子极化有平行关系: ◆供e基甲氧基、乙氧基、二甲氨基取代-NH2, ED50减小
◆吸e基硝基取代-NH2,ED50增大
雷尼替丁和法莫替丁
• 以呋喃和噻唑置换西咪替丁的咪唑环得雷尼替丁 和法莫替丁 • 它们的H2受体拮抗作用均比西咪替丁强
非经典的电子等排置换 a. 基团的倒置
CH3 N CH3 N H CH3 OCOC2 H5
C 6 H5
COOC 2 H5
C6 H5
哌替啶
安那度尔
b. 开链成环
CH3 NHCOCH2N CH3 C2H5 C2H5 CH3 CH3 NHCOCH2N
环内等价 -CH=CH-
a. 一价原子或基团的取代
H2 N S O 2 NHCONHC4 H9
丁磺酰脲
H3 C
S O 2 NHCONHC4 H9
甲磺丁脲 氯磺丁脲
延长半衰期 减低毒性
Cl
S O2 NHCONHC4 H9
b. 二价原子或基团的交换
H2 N COOCH2 CH2 N C 2 H5 C 2 H5
某些特定的化学活性基团。
一、常见药物的基本结构
1、局部麻醉药
CH3 N O COCH3 OC O H2N
O Ar C X (C)n N
COOCH2CH2N(C2H5)2
H
可卡因
CH3 NHCOCH2N(C2H5)2 CH3
普鲁卡因
O C CH2CH2N
C3H7O
利多卡因
达克罗宁
普鲁卡因
H N H
普鲁卡因
H2 N
CONHCH2 CH2 N
C 2 H5 C 2 H5
普鲁卡因酰胺
c. 三价原子或基团的交换
CH3 N CH2 CH2 N CH3
安体根
N CH3 N CH2 CH2 N CH3
新安体根
2. 非经典的电子等排体 • 一些原子或原子团尽管不符合电子等排体 的定义,但在相互替代时同样可产生相似 或拮抗的活性。 • 最常见的相互替代有相似活性的基团有: -H、-F -CH=CH-、-S-、-O-、-NH-、-CH2-
(一)生物电子等排原理 1. 经典的生物电子等排体:
具有相同数目外层电子(同价)的原子、离子
一价 二价 三价 四价 F Cl Br I OH SH NH2 PH2 CH3 -O- -S- -Se- -Te- -NH- -CH2-N= -P= -As= Sb= -CH= =C= =N+= =P+= =As+= =Sb+= -S- -O- -NH-
◆在苯环和碳基间嵌入乙撑基, 共轭效应被阻, ED50增大
◆在苯环和碳基间嵌入乙烯基, 共轭效应不变, ED50不变
2、吗啡类药物
吗 啡 的 三 点 结 合 受 体
N
+
H
V
E
C A 镶嵌入C
B
3.磺胺 类药物
H2N SO2NH2
H2N
SO2NHR
H2N
SO2NHCOCH3
磺胺
磺胺醋酰
H2N
SO2NHCNH2 NH
相关文档
最新文档