大数据分析概述专题培训课件
合集下载
大数据培训课件ppt

欧盟《通用数据保护条例》(GDPR)
01
对个人数据的收集、存储和使用进行严格规定,违反者将面临
重罚。
中国《网络安全法》
02
强调保护个人信息安全,对网络运营者、用户等各方责任和义
务进行明确规定。
美国《加州消费者隐私法》(CCPA)
03
赋予消费者对个人信息的更多权利,对企业的数据收集和使用
进行限制。
隐私保护技术与实践案例分享
利用大数据技术对交易数据、客户行为等进行分析,以识别和预防 金融欺诈和洗钱行为。
医疗行业大数据应用实践案例分享
精准医疗与个性化治疗
通过对大量医疗数据的挖掘和分析,为患者提供更精准、个性化 的治疗方案。
疾病预测与预防
通过对历史病例、流行病学数据等进行分析,预测疾病的发生和传 播趋势,为预防措施提供科学依据。
大数据培训课件
汇报人:可编辑
2023-12-22
CATALOGUE
目 录
• 大数据概述 • 大数据处理技术 • 大数据挖掘与分析 • 大数据安全与隐私保护 • 大数据应用实践与案例分析
01
CATALOGUE
大数据概述
大数据的定义与特点
定义
大数据是指数据量巨大、复杂度 高、处理速度快的数据集合。
医疗健康
利用大数据进行疾病预防、诊 断和治疗方案的优化。
商业智能
通过大数据分析,提高企业决 策效率和准确性。
智慧城市
通过大数据实现城市资源优化 配置,提高城市管理效率。
科研领域
大数据在科研领域的应用包括 数据挖掘、知识发现和科研协 作等方面。
02
CATALOGUE
大数据处理技术
数据采集与清洗
数据采集
大数据分析全面讲解及应用课件

2
发展历程
大数据分析的发展经历了三个阶段:数据获取和存储、数据处理和分析、数据可 视化和应用。随着科技的不断革新,大数据的应用越来越广泛。
3
重要性和应用范围
大数据分析可以应用于各个领域,如商业、医疗、科学研究等。它可以帮助企业 做出更好的决策,为人们提供更好的服务,推动各行业的发展。
大数据分析的基本原理
准确性,推动医学研究的进一步深入。
3
商业行业
通过大数据分析,我们可以更好地了解 消费者需求,预测市场趋势和未来走势, 为企业制定更加有效的营销策略,提供 更优质的服务。
社交媒体
通过大数据分析,我们可以更好地了解 用户的偏好、兴趣,提供更加符合他们 需求的服务和产品。
大数据分析的挑战和未来发展
1 数据隐私和安全
随着数据处理和存储技术 的发展,数据泄露和安全 问题也随之增加。如何保 证数据的安全和隐私将成 为大数据分析发展的一个 关键瓶颈。
2 技术人才短缺
3 未来的发展势头
大数据分析涉及多个领域, 需要掌握多种技能,如编 程、算法等,而这种全面 的技能组合比较少见,导 致技术人才在市场上价格 高企。
大数据分析的未来发展将 更加多元化和个性化,从 数据收集到分析再到应用, 将会出现更多新的技术和 应用场景。
数据收集和清理
数据收集包括传感器、网络、 采集装置等技术手段,清理 则包括数据的去重、缺失值 的填充等处理方式。
数据存储和处理
数据存储和处理是大数据分 析的重要环节,传统关系型 数据库已经无法满足大数据 的存储需求。为了解决这个 问题,如Hadoop、NoSQL等 新型数据库应运而生。
数据分析和可视化
数据挖掘算法
k-means、Apriori、SVM等算法可 以让我们更好的处理数据挖掘络等技术 可以让我们在更高的精度和效率 上进行数据分析和预测。
大数据专题(共43张PPT)

应用
MapReduce广泛应用于大数据处理领域,如日志分析、数据挖掘、机器学习等。
分布式数据库HBase
概述
HBase(Hadoop Database)是一个高可扩展性的列存储系统,构建在Hadoop分布 式文件系统之上。它提供了对大规模结构化数据的随机、实时读写访问能力。
特点
HBase采用列式存储,支持动态扩展,具有良好的伸缩性和高性能。它支持ACID事务 ,提供了高可用性和数据一致性保证。
Hadoop的核心组件之一,为大 数据应用提供了一个高度容错、
可扩展的分布式文件系统。
架构
HDFS采用主从架构,包括一个 NameNode和多个DataNode 。NameNode负责管理文件系 统的元数据,而DataNode负责
存储实际的数据。
特点
HDFS支持大规模数据存储,具 有高度的容错性和可扩展性。它 采用流式数据访问模式,适合处
云计算发展
云计算技术的发展为大数据处理提供了强大的计 算能力和存储空间,使得大数据处理成为可能。
大数据发展趋势
数据驱动决策
未来企业将更加依赖数据进行决 策,大数据技术将发挥更加重要 的作用。
数据共享与开放
政府和企业将更加注重数据的共 享和开放,促进数据的流通和利 用,推动经济社会发展。
人工智能融合
应用
HBase适用于非结构化或半结构化数据的存储和查询,如用户画像、推荐系统、时序数 据等场景。
数据仓库Hive
01
概述
Hive是基于Hadoop的一个数据仓库 工具,可以将结构化的数据文件映射 为一张数据库表,并提供简单的SQL 查询功能。
02
特点
Hive支持类SQL查询语言HiveQL, 使得数据分析人员可以方便地使用 SQL语言对大规模数据进行查询和分 析。Hive还支持自定义函数和存储过 程等功能,增强了其数据处理能力。
MapReduce广泛应用于大数据处理领域,如日志分析、数据挖掘、机器学习等。
分布式数据库HBase
概述
HBase(Hadoop Database)是一个高可扩展性的列存储系统,构建在Hadoop分布 式文件系统之上。它提供了对大规模结构化数据的随机、实时读写访问能力。
特点
HBase采用列式存储,支持动态扩展,具有良好的伸缩性和高性能。它支持ACID事务 ,提供了高可用性和数据一致性保证。
Hadoop的核心组件之一,为大 数据应用提供了一个高度容错、
可扩展的分布式文件系统。
架构
HDFS采用主从架构,包括一个 NameNode和多个DataNode 。NameNode负责管理文件系 统的元数据,而DataNode负责
存储实际的数据。
特点
HDFS支持大规模数据存储,具 有高度的容错性和可扩展性。它 采用流式数据访问模式,适合处
云计算发展
云计算技术的发展为大数据处理提供了强大的计 算能力和存储空间,使得大数据处理成为可能。
大数据发展趋势
数据驱动决策
未来企业将更加依赖数据进行决 策,大数据技术将发挥更加重要 的作用。
数据共享与开放
政府和企业将更加注重数据的共 享和开放,促进数据的流通和利 用,推动经济社会发展。
人工智能融合
应用
HBase适用于非结构化或半结构化数据的存储和查询,如用户画像、推荐系统、时序数 据等场景。
数据仓库Hive
01
概述
Hive是基于Hadoop的一个数据仓库 工具,可以将结构化的数据文件映射 为一张数据库表,并提供简单的SQL 查询功能。
02
特点
Hive支持类SQL查询语言HiveQL, 使得数据分析人员可以方便地使用 SQL语言对大规模数据进行查询和分 析。Hive还支持自定义函数和存储过 程等功能,增强了其数据处理能力。
大数据培训课件

金融行业
通过大数据分析市场趋势、投资风险和信用状况,为银行、证券和保险等金 融机构提供精准的决策支持和风控手段,提高收益和降低风险。
医疗与教育行业
医疗行业
通过大数据分析疾病趋势、医疗资源分布和医疗质量,为医疗机构提供全面的数 据分析支持,提高医疗效率和医疗服务质量。
教育行业
通过大数据分析学生学习情况、兴趣爱好和职业规划,为学校提供个性化的教育 方案和教学资源,提高教育质量和学生学习效果。
MapReduce
YARN
分布式计算模型,将大数据集拆分成小数据 集,并利用集群进行并行处理和计算。
资源管理系统,负责分配和管理集群中的计 算资源。
Spark生态系统
Spark
MLlib
Spark SQL
Spark Streaming
分布式计算框架,提供快速、通 用、分布式计算能力,支持 Scala、Java、Python等编程语 言。
大数据算法与应用
推荐算法
介绍协同过滤、基于内容的推荐等推荐 算法原理及实现。
聚类算法
介绍K-means、DBSCAN等聚类算法原 理及实现。
分类算法
介绍决策树、朴素贝叶斯等分类算法原 理及实现。
回归算法
介绍线性回归、岭回归等回归算法原理 及实现。
大数据安全与隐私保护
1 2
数据加密
介绍对称加密、非对称加密等加密技术,保障 数据安全传输和存储。
Samza
分布式流处理框架,提供可扩展、高可靠性的数据处理能力。
Apache Beam
统一的编程模型和API,用于构建包括批处理和流处理在内的通用数据处理管道。
05
大数据开发实践
大数据开发平台介绍
01
通过大数据分析市场趋势、投资风险和信用状况,为银行、证券和保险等金 融机构提供精准的决策支持和风控手段,提高收益和降低风险。
医疗与教育行业
医疗行业
通过大数据分析疾病趋势、医疗资源分布和医疗质量,为医疗机构提供全面的数 据分析支持,提高医疗效率和医疗服务质量。
教育行业
通过大数据分析学生学习情况、兴趣爱好和职业规划,为学校提供个性化的教育 方案和教学资源,提高教育质量和学生学习效果。
MapReduce
YARN
分布式计算模型,将大数据集拆分成小数据 集,并利用集群进行并行处理和计算。
资源管理系统,负责分配和管理集群中的计 算资源。
Spark生态系统
Spark
MLlib
Spark SQL
Spark Streaming
分布式计算框架,提供快速、通 用、分布式计算能力,支持 Scala、Java、Python等编程语 言。
大数据算法与应用
推荐算法
介绍协同过滤、基于内容的推荐等推荐 算法原理及实现。
聚类算法
介绍K-means、DBSCAN等聚类算法原 理及实现。
分类算法
介绍决策树、朴素贝叶斯等分类算法原 理及实现。
回归算法
介绍线性回归、岭回归等回归算法原理 及实现。
大数据安全与隐私保护
1 2
数据加密
介绍对称加密、非对称加密等加密技术,保障 数据安全传输和存储。
Samza
分布式流处理框架,提供可扩展、高可靠性的数据处理能力。
Apache Beam
统一的编程模型和API,用于构建包括批处理和流处理在内的通用数据处理管道。
05
大数据开发实践
大数据开发平台介绍
01
大数据的分析课件ppt

THANK YOU
感谢观看
总结词
通过大数据分析,深入了解用户在电商平台上的行为模 式和偏好,优化产品推荐和营销策略。
详细描述
收集用户在电商平台上的浏览、搜索、购买、评价等数 据,运用数据分析工具进行挖掘和分析。识别用户的购 买习惯、兴趣爱好和消费趋势,为产品开发和营销提供 有力支持。
社交媒体情绪分析
总结词
利用大数据分析社交媒体上的文本、图片和视频,了 解公众的情绪和态度,为企业决策提供依据。
预测性分析
预测模型建立
利用回归分析、时间序列分析、机器学习等技术,建 立数据预测模型,对未来数据进行预测。
模型评估与优化
通过交叉验证、调整参数等方法,评估模型的预测精 度和稳定性,并进行优化和改进。
预测结果解读
对预测结果进行解释和说明,帮助用户理解预测的意 义和价值。
规范性分析
01
数据关联分析
通过关联规则挖掘、相关性分析 等技术,发现数据之间的关联和 规律,为决策提供支持。
数据清洗
在数据存储之前,需要对数据进行清洗,去除重 复、错误或不完整的数据。
数据整合
将来自不同数据源的数据进行整合,以便进行更 全面的分析。
数据分析
利用统计分析、机器学习等技术对大数据进行深 入分析,以揭示数据中的模式和趋势。
数据可视化
数据可视化是将大数据以图形、图表 等形式呈现出来,以便更好地理解和 解释数据。
数据泄露风险
大数据的收集和处理涉及到大量的个人隐私信息,需要采取有效 的安全措施,防止数据泄露和滥用。
访问控制和权限管理
建立完善的访问控制和权限管理制度,对数据进行分级管理,确 保只有经过授权的人员能够访问相关数据。
加密与脱敏技术
《数据分析培训》PPT课件

交互式图表制作
利用工具提供的功能,增加图表交互性,如鼠标悬停提示、筛选器 、动态效果等。
数据报告制作流程与注意事项
数据报告制作流程
明确报告目标、收集并整理数据、设计报告结构、制作可视化图表、编写文字 说明、校对并调整格式、分享并演示报告。
注意事项
确保数据准确性和完整性、统一数据格式和度量单位、保持报告逻辑性和连贯 性、使用清晰简洁的语言和图表、注意报告排版和美观度、考虑受众背景和需 求等。
大数据处理技术与
05
应用
大数据概念、特点及处理技术概述
大数据概念
大数据是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是 需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和 多样化的信息资产。
大数据特点
大数据具有数据量大、处理速度快、数据类型多、价值密度低等特点。
推断性统计分析方法及应用案例
参数估计
利用样本数据对总体参数进行估计, 包括点估计和区间估计。
假设检验
提出原假设和备择假设,通过检验统 计量和P值判断假设是否成立。
方差分析
研究不同因素对因变量的影响程度, 如单因素方差分析和多因素方差分析 。
相关与回归分析
探讨变量之间的相关关系和因果关系 ,建立回归模型进行预测和控制。
Spark
Spark是加州大学伯克利分校AMP实验室开发的通用大数据处理框架, 具有处理速度快、易用性好、通用性强和随处运行等特点。
03
其他大数据处理框架
除了Hadoop和Spark外,还有Flink、Storm等大数据处理框架,它们
各有特点,适用于不同的应用场景。
大数据在各行各业的应用案例
金融行业
利用工具提供的功能,增加图表交互性,如鼠标悬停提示、筛选器 、动态效果等。
数据报告制作流程与注意事项
数据报告制作流程
明确报告目标、收集并整理数据、设计报告结构、制作可视化图表、编写文字 说明、校对并调整格式、分享并演示报告。
注意事项
确保数据准确性和完整性、统一数据格式和度量单位、保持报告逻辑性和连贯 性、使用清晰简洁的语言和图表、注意报告排版和美观度、考虑受众背景和需 求等。
大数据处理技术与
05
应用
大数据概念、特点及处理技术概述
大数据概念
大数据是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是 需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和 多样化的信息资产。
大数据特点
大数据具有数据量大、处理速度快、数据类型多、价值密度低等特点。
推断性统计分析方法及应用案例
参数估计
利用样本数据对总体参数进行估计, 包括点估计和区间估计。
假设检验
提出原假设和备择假设,通过检验统 计量和P值判断假设是否成立。
方差分析
研究不同因素对因变量的影响程度, 如单因素方差分析和多因素方差分析 。
相关与回归分析
探讨变量之间的相关关系和因果关系 ,建立回归模型进行预测和控制。
Spark
Spark是加州大学伯克利分校AMP实验室开发的通用大数据处理框架, 具有处理速度快、易用性好、通用性强和随处运行等特点。
03
其他大数据处理框架
除了Hadoop和Spark外,还有Flink、Storm等大数据处理框架,它们
各有特点,适用于不同的应用场景。
大数据在各行各业的应用案例
金融行业
大数据分析讲稿课件

药物研发
通过大数据分析,药物研发过程可以更有效地进 行药物挑选和优化,缩短药物研发周期。
3
公共卫生管理
大数据可以帮助公共卫生部门更好地监测和预测 疾病流行趋势,及时采取有效措施。
电子商务领域
商品推举与营销
01
通过大数据分析,电子商务平台可以更好地了解用户需求和行
为,从而提供更精准的商品推举和营销活动。
提供了重要的参考信息。
案例三:微软的天气预测系统
微软的天气预测系统是利用大数据和人工智能技术进行天气预报的案例 。
微软的天气预测系统采用了多种机器学习和深度学习算法,包括时间序 列分析、回归分析、神经网络等,以预测天气状况。
微软的天气预测系统还提供了高分辨率的天气数据和可视化界面,方便 用户了解未来几天的天气情况。
02
大数据分析技术
数据发掘技术
数据发掘的定义
数据发掘是从大量数据中 提取有用信息的过程,通 常用于发现隐藏在数据中 的模式和关系。
数据发掘的步骤
数据预处理、数据探索、 模型构建和评估是数据发 掘的主要步骤。
数据发掘的应用
数据发掘广泛应用于商业 智能、风险管理、医疗保 健等领域。
机器学习技术
机器学习的定义
优化并行计算和任务调度策略,提高数据处理效率。
数据存储优化
采用合适的数据存储方式,减少数据处理时间。
缺乏合适的数据科学家与技能
01
培养和引进数据科学家
通过教育和培训,培养更多的本土数据科学家人才。
02
建立完善的数据科学家职业发展路径
为数据科学家提供良好的职业发展空间。
03
加强校企合作
通过校企合作,培养更多具备实践能力的数据科学人才。
通过大数据分析,药物研发过程可以更有效地进 行药物挑选和优化,缩短药物研发周期。
3
公共卫生管理
大数据可以帮助公共卫生部门更好地监测和预测 疾病流行趋势,及时采取有效措施。
电子商务领域
商品推举与营销
01
通过大数据分析,电子商务平台可以更好地了解用户需求和行
为,从而提供更精准的商品推举和营销活动。
提供了重要的参考信息。
案例三:微软的天气预测系统
微软的天气预测系统是利用大数据和人工智能技术进行天气预报的案例 。
微软的天气预测系统采用了多种机器学习和深度学习算法,包括时间序 列分析、回归分析、神经网络等,以预测天气状况。
微软的天气预测系统还提供了高分辨率的天气数据和可视化界面,方便 用户了解未来几天的天气情况。
02
大数据分析技术
数据发掘技术
数据发掘的定义
数据发掘是从大量数据中 提取有用信息的过程,通 常用于发现隐藏在数据中 的模式和关系。
数据发掘的步骤
数据预处理、数据探索、 模型构建和评估是数据发 掘的主要步骤。
数据发掘的应用
数据发掘广泛应用于商业 智能、风险管理、医疗保 健等领域。
机器学习技术
机器学习的定义
优化并行计算和任务调度策略,提高数据处理效率。
数据存储优化
采用合适的数据存储方式,减少数据处理时间。
缺乏合适的数据科学家与技能
01
培养和引进数据科学家
通过教育和培训,培养更多的本土数据科学家人才。
02
建立完善的数据科学家职业发展路径
为数据科学家提供良好的职业发展空间。
03
加强校企合作
通过校企合作,培养更多具备实践能力的数据科学人才。
大数据分析ppt课件完整版

数据质量与可信度问题
数据质量问题
大数据中包含了大量不准确、不完整或格式不统一的 数据,如何保证数据质量是数据分析的关键。
数据可信度挑战
虚假数据、误导性信息等可能影响数据分析结果的准 确性,如何提高数据可信度是重要议题。
数据治理与标准化
通过建立数据治理机制和标准化流程,提高数据质量 和可信度,保证数据分析结果的准确性。
数据仓库
构建数据仓库,实现数据的整合、管理和优化,提供统一的数据视图。
数据湖
利用数据湖技术,实现多源异构数据的集中存储和管理。
数据安全与隐私保护
制定数据安全策略,采用加密、脱敏等技术手段保护数据安全与隐私。
数据分析与挖掘
描述性分析
运用统计学方法对数据进行描述性分析,如数据 分布、集中趋势、离散程度等。
NoSQL数据库
如HBase、Cassandra等 ,适用于非结构化数据存 储和大规模数据处理。
云存储服务
如AWS S3、阿里云OSS 等,提供高可用、高扩展 性的在线存储服务。
数据挖掘算法
分类算法
如决策树、随机森林等,用于预测离 散型目标变量。
聚类算法
如K-means、DBSCAN等,用于发 现数据中的群组结构。
诊断性分析
通过数据挖掘技术,如关联规则挖掘、聚类分析 等,发现数据中的异常和模式。
ABCD
预测性分析
运用回归分析、时间序列分析等方法对数据进行 预测性分析,揭示数据间的潜在关系。
处方性分析
基于诊断结果,提供针对性的解决方案和优化建 议。
数据可视化呈现
数据可视化工具
运用Tableau、Power BI等数据可视化工具 ,将数据以图表、图像等形式呈现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大数据的4V特征 体量Volume 多样性Variety
价值密度Value
非结构化数据的超大规模和增长 • 占总数据量的80~90% • 比结构化数据增长快10倍到50倍 • 是传统数据仓库的10倍到50倍
大数据的异构和多样性 • 很多不同形式(文本、图像、视频、机器数据) • 无模式或者模式不明显 • 不连贯的语法或句义
大数据的技术与应用
大数据的技术与应用
1
大数据技术要解决的问题
大数据怎么用 2
大数据的相关技术
Variety 多样性
•企业内部的经营交易信息;物联网世界中商品,物流信息;互联 网世界中人与人交互信息,位置信息等是大数据的主要来源. •文本/图片/视频 等非结构化/半结构化数据 •能够在不同的数据类型中,进行交叉分析的技术,是大数据的 核心技术之一.语义分析技术,图文转换技术,模式识别技术,地 理信息技术等,都会在大数据分析时获得应用.
大数据的构成
大数据包括: 交易数据和交互数据 集在内的所有数据集
大数据 = 海量数据 + 复杂类型的数据
海量交易数据: 企业内部的经营交易信息主要包括联机交易数据 和联机分析数据,是结构化的、通过关系数据库 进行管理和访问的静态、历史数据。通过这些数 据,我们能了解过去发生了什么。
海量交互数据: 源于各种网络和社交媒体。它包括了呼叫详细记 录、设备和传感器信息、GPS和地理定位映射数 据、通过管理文件传输协议传送的海量图像文件、 Web文本和点击流数据、评价数据、科学信息、 电子邮件等等。可以告诉我们未来会发生什么。
全球每秒钟发送 2.9 百万封电子邮件,一分钟读一篇的话, 足够一个人昼夜不息的读5.5 年… 每天会有 2.88 万个小时的视频上传到Youtube,足够一个 人昼夜不息的观看3.3 年… 推特上每天发布 5 千万条消息,假设10 秒钟浏览一条信息, 这些消息足够一个人昼夜不息的浏览16 年… 每天亚马逊上将产生 6.3 百万笔订单… 每个月网民在Facebook 上要花费7 千亿分钟,被移动互联 网使用者发送和接收的数据高达1.3EB… Google 上每天需要处理24PB 的数据…
非结构化数据
相对于结构化数据而言,不方便用数据库二维逻辑表来表现的 数据即称为非结构化数据,包括所有格式的办公文档、文本、 图片、XML、HTML、各类报表、图像和音频/视频信息等等
。
Velocity 速度
• 1s 是临界点.
• 对于大数据应用而言,必须要在1秒钟内形成答案,否则处理 结果就是过时和无效的.
大数据时代的背景
数据量增加
数据结构日趋复杂
大量新数据源的出现则导致了非结构化、 半结构化数据爆发式的增长
根据IDC 监测,人类产生的数据量正在呈指数级 增长,大约每两年翻一番,这个速度在2020 年之 前会继续保持下去。这意味着人类在最近两年产生 的数据量相当于之前产生的全部数据量。
TB
PB
EB
ZB
覆性的价值
指数型增长的海量数据
所有研究都表明,未来数年数据量会呈现指数增长。根据麦肯 锡全球研究院(MGI)估计,全球企业2010年在硬盘上存储了 超过7EB(1EB等于10亿GB)的新数据,而消费者在PC和笔 记本等设备上存储了超过6EB新数据。1EB数据相当于美国国 会图书馆中存储的数据的4000多倍。事实上,我们如今产生如 此多的数据,以至于根本不可能全部存储下来。例如,医疗卫 生提供商会处理掉他们所产生的90%的数据(比如手术过程中 产生的几乎所有实时视频图像)。
Value 价值
• 挖掘大数据的价值类似沙里淘金,从海量数据中挖掘稀疏但珍贵的信息. • 价值密度低,是大数据的一个典型特征.
• 2010年海地地震,海地人散落在全国各地,援助人员为 弄清该去哪里援助手忙脚乱。传统上,他们只能通过飞往 灾区上空来查找需要援助的人群。
• 一些研究人员采取了一种不同的做法:他们开始跟踪 海地人所持手机内部的SIM卡,由此判断出手机持有人所 处的位置和行动方向。正如一份联合国(UN)报告所述,此 举帮助他们“准确地分析出了逾60万名海地人逃离太子港 之后的目的地。”后来,当海地爆发霍乱疫情时,同一批 研究人员再次通过追踪SIM卡把药品投放到正确的地点, 阻止了疫情的蔓延。
• 实时处理的要求,是区别大数据引用和传统数据仓库技术 ,BI技术的关键差别之一.
Volume 数据量
PB是大数据層次的临界点. KB->MB->GB->TB->PB->EB->ZB->YB>NB->DB
大数据不仅仅是“大”
多大? PB 级
比大更重要的是 数据的复杂性, 有时甚至大数据 中的小数据如一 条微博就具有颠
大数据分析概述
大数据的定义理解
大数据的定义理解
1
大数据时代的背景
什么是大数据 2
大数据的“4V”特征
3大数据的构成来自大数据时代的背景半个世纪以来,随着计算机技术全面融入社会生活,信息爆炸已经积累到 了一个开始引发变革的程度。它不仅使世界充斥着比以往更多的信息,而且其 增长速度也在加快。互联网(社交、搜索、电商)、移动互联网(微博)、物 联网(传感器,智慧地球)、车联网、GPS、医学影像、安全监控、金融(银 行、股市、保险)、电信(通话、短信)都在疯狂产生着数据。
这些由我们创造的信息背后产生的这些数据早已经远远超越了目前人力所能处理 的范畴
大数据时代正在来临…
大数据时代的背景
20世纪90年代,数据仓库之父的Bill Inmon就经常 提及Big Data。
2011年5月,在“云计算相遇大数据”为主题的EMC World 2011 会议中,EMC 抛出了Big Data概念。
• 大量的不相关信息 • 对未来趋势与模式的可预测分析 • 深度复杂分析(机器学习、人工智能Vs传统商务
智能(咨询、报告等)
速度Velocity
实时分析而非批量式分析 • 数据输入、处理与丢弃 • 立竿见影而非事后见效
“大量化(Volume)、多样化(Variety)、快速化(Velocity)、价值密度低(Value)”就是 “大数据”的显著特征,或者说,只有具备这些特点的数据,才是大数据。