高考物理复习专题演练专题十万有引力与航天(含两年高考一年模拟).doc

合集下载

专题10航天和宇宙探测-2023年高考物理万有引力与航天常用模型最新模拟题精练(解析版)

专题10航天和宇宙探测-2023年高考物理万有引力与航天常用模型最新模拟题精练(解析版)

高考物理万有引力与航天专题最新模拟题精练专题10.航天和宇宙探测一.选择题1..(2023江苏盐城期中)2022年10月15日,遥感三十六号卫星发射成功!某遥感卫星的轨道为椭圆,1F 、2F 是椭圆的两个焦点,地球(图中没有画出)位于其中的一个焦点。

a 、b ,c 是椭圆上的三点,已知卫星从a 经过b 运动到c 速率不断增大,且ab 的长度与bc 的长度相等,则卫星()A.所受地球的引力始终指向1FB.所受地球的引力与向心力相等C.从a 到b 与b 到c 的时间一定相等D.由a 经过b 运动到c 的加速度逐渐增大【参考答案】D 【名师解析】卫星从a 经过b 运动到c 速率不断增大,说明万有引力做正功,地球应位于焦点2F ,卫星所受地球的引力始终指向2F ,故A 错误;卫星所受地球的引力与向心力不相等,因为卫星的速率在变化,故B 错误;根据开普勒第二定律,卫星从a 经过b 运动到c 速率不断增大,从a 到b 的时间大于b 到c 的时间,故C 错误;卫星从a 经过b 运动到c 的过程中,靠近地球,卫星受到的万有引力增大,根据牛顿第二定律可知由a 经过b 运动到c 的加速度逐渐增大,故D 正确。

2.(2021山东泰安三模)宇航员驾驶宇宙飞船绕一星球做匀速圆周运动,测得飞船线速度大小的二次方与轨道半径的倒数的关系图像如图中实线所示。

该图线的斜率为k ,图中r 0(该星球的半径)为已知量,引力常量为G ,下列说法正确的是A .该星球的密度为3034k Gr B 30r kC .该星球表面的重力加速度大小为k rD .该星球的第一宇宙速度为2k r 【参考答案】A【名师解析】由G 2Mm r =m 2v r 可知,v 2=GM 1r,对照飞船线速度大小的二次方与轨道半径的倒数的关系图像,可知该图线的斜率为k=GM ,该星球的密度为ρ=M/V=334kGr π,选项A 正确。

3.(2021安徽皖南八校第二次联考)2020年5月5日,长征五号B 火箭首飞成功,新一代载人飞船试验船和柔性充气式货物返回舱破送入预定轨道,中国空间站建造拉开序前。

高中物理万有引力与航天专项训练及答案及解析.docx

高中物理万有引力与航天专项训练及答案及解析.docx

高中物理万有引力与航天专项训练及答案及解析一、高中物理精讲专题测试万有引力与航天1. 据每日邮报 2014 年 4 月 18 日报道,美国国家航空航天局目前宣布首次在太阳系外发现“类地 ”行星 .假如宇航员乘坐宇宙飞船到达该行星,进行科学观测:该行星自转周期为T ;宇航员在该行星 “北极 ”距该行星地面附近 h 处自由释放 -个小球 ( 引力视为恒力 ),落地时间为 t. 已知该行星半径为 R ,万有引力常量为 G ,求:1 2该行星的第一宇宙速度;该行星的平均密度.【答案】 12h R ?2 ? 3h. t 2 2 R2Gt【解析】 【分析】根据自由落体运动求出星球表面的重力加速度,再根据万有引力提供圆周运动向心力,求 M 出质量与运动的周期,再利用,从而即可求解.V【详解】1 根据自由落体运动求得星球表面的重力加速度h1 gt 22解得: g 2ht2则由 mgm v 2R求得:星球的第一宇宙速度vgR2h 2 R ,t2 由 GMm mg m2h R 2t 2有: M2hR 2Gt2所以星球的密度M3hV2Gt 2R【点睛】本题关键是通过自由落体运动求出星球表面的重力加速度,再根据万有引力提供圆周运动向心力和万有引力等于重力求解.2. 宇宙中存在一些离其他恒星较远的三星系统,通常可忽略其他星体对它们的引力作用,三星质量也相同.现已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位于同一直线上,两颗星围绕中央星做囿周运动,如图甲所示;另一种是三颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的囿形轨道运行,如图乙所示.设这三个星体的质量均为m,且两种系统中各星间的距离已在图甲、图乙中标出,引力常量为G,则 :(1)直线三星系统中星体做囿周运动的周期为多少?(2)三角形三星系统中每颗星做囿周运动的角速度为多少?L3( 2)3Gm【答案】( 1)435Gm L【解析】【分析】(1)两侧的星由另外两个星的万有引力的合力提供向心力,列式求解周期;(2)对于任意一个星体,由另外两个星体的万有引力的合力提供向心力,列式求解角速度;【详解】(1)对两侧的任一颗星,其它两个星对它的万有引力的合力等于向心力,则:Gm2Gm2m( 2 )2L(2 L)2L2TT 4L35Gm(2)三角形三星系统中星体受另外两个星体的引力作用,万有引力做向心力,对任一颗Gm2L星,满足:2m (2)2 cos30cos30L解得:=3GmL33.一宇航员站在某质量分布均匀的星球表面上沿竖直方向以初速度v0抛出一个小球,测得小球经时间t 落回抛出点,已知该星球半径为,引力常量为,求:R G(1)该星球表面的重力加速度;(2)该星球的密度;(3)该星球的“第一宇宙速度”.【答案】 (1) g 2v0(2)3v0(3)2v0 R t2πRGtvt【解析】(1) 根据竖直上抛运动规律可知,小球上抛运动时间2v0 tg可得星球表面重力加速度: g2v0.tGMm (2)星球表面的小球所受重力等于星球对小球的吸引力,则有:mg R2gR22v0 R2得:MGtG4 R3因为V3M3v0则有:2πRGtV(3)重力提供向心力,故该星球的第一宇宙速度mg m v2Rv gR2v0Rt【点睛】本题主要抓住在星球表面重力与万有引力相等和万有引力提供圆周运动向心力,掌握竖直上抛运动规律是正确解题的关键.4.载人登月计划是我国的“探月工程”计划中实质性的目标.假设宇航员登上月球后,以初速度 v0竖直向上抛出一小球,测出小球从抛出到落回原处所需的时间为t. 已知引力常量为G,月球的半径为 R,不考虑月球自转的影响,求:(1)月球表面的重力加速度大小g月;(2)月球的质量 M;(3)飞船贴近月球表面绕月球做匀速圆周运动的周期T.【答案】 (1)2v0; (2)2R2v0; (3)2Rt t Gt2v0【解析】【详解】(1) 小球在月球表面上做竖直上抛运动,有2v0 tg月月球表面的重力加速度大小g月2v 0t (2)假设月球表面一物体质量为m,有MmGR2=mg月月球的质量M 2R2v0 Gt(3) 飞船贴近月球表面做匀速圆周运动,有G Mmm22RR 2T飞船贴近月球表面绕月球做匀速圆周运动的周期T 2Rt2v 05. 一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为 r ,周期为 T ,引力常量为 G ,行星半径为求:(1)行星的质量 M ;(2)行星表面的重力加速度 g ;(3)行星的第一宇宙速度v .【答案】 (1) ( 2) ( 3)【解析】【详解】(1)设宇宙飞船的质量为 m ,根据万有引力定律求出行星质量(2)在行星表面求出 :(3)在行星表面求出 :【点睛】本题关键抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.6. 如图所示, A 是地球的同步卫星.另一卫星B 的圆形轨道位于赤道平面内.已知地球自转角速度为0 ,地球质量为 M , B 离地心距离为 r ,万有引力常量为G , O 为地球中心,不考虑 A 和 B 之间的相互作用.(图中 R 、h 不是已知条件)(1)求卫星 A 的运行周期T A(2)求 B 做圆周运动的周期T B(3)如卫星 B 绕行方向与地球自转方向相同,某时刻A、B 两卫星相距最近(O、 B、 A 在同一直线上),则至少经过多长时间,它们再一次相距最近?2r3t2【答案】(1)T A(2) T B2( 3)GMGM r30【解析】【分析】【详解】(1) A 的周期与地球自转周期相同2T AGMm m(2)2 r(2)设 B 的质量为 m,对 B 由牛顿定律 :r 2T B解得:T Br 3 2GM(3) A、 B 再次相距最近时 B 比 A 多转了一圈,则有:(B0 ) t2t2GM解得:r 3点睛:本题考查万有引力定律和圆周运动知识的综合应用能力,向心力的公式选取要根据题目提供的已知物理量或所求解的物理量选取应用;第 3 问是圆周运动的的追击问题,距离最近时两星转过的角度之差为2π的整数倍.7.假设在月球上的“玉兔号”探测器,以初速度v0竖直向上抛出一个小球,经过时间t 小球落回抛出点,已知月球半径为R,引力常数为G.(1)求月球的密度.(2)若将该小球水平抛出后,小球永不落回月面,则抛出的初速度至少为多大?3v02Rv0【答案】(1)( 2)2 GRt t【解析】【详解】(1) 由匀变速直线运动规律:v0gt 2所以月球表面的重力加速度g 2v0 t由月球表面,万有引力等于重力得GMmmg R2gR 2 MG月球的密度M3v0=2 GRtV2(2) 由月球表面,万有引力等于重力提供向心力:mg m vR2Rv0可得: vt8.某行星表面的重力加速度为g ,行星的质量为M ,现在该行星表面上有一宇航员站在地面上,以初速度v0竖直向上扔小石子,已知万有引力常量为G .不考虑阻力和行星自转的因素,求:(1)行星的半径R;(2)小石子能上升的最大高度.GM v02【答案】 (1) R =( 2)hg2g【解析】GMm(1)对行星表面的某物体,有:mg-2R得: R =GM g(2)小石子在行星表面作竖直上抛运动,规定竖直向下的方向为正方向,有:0v022ghv02得: h2g9.“场”是除实物以外物质存在的另一种形式,是物质的一种形态.可以从力的角度和能量的角度来描述场.反映场力性质的物理量是场强.(1)真空中一个孤立的点电荷,电荷量为 +Q,静电力常量为 k,推导距离点电荷 r 处的电场强度E 的表达式.(2)地球周围存在引力场,假设地球是一个密度均匀的球体,质量为 M ,半径为 R ,引力常量为 G .a .请参考电场强度的定义,推导距离地心r 处(其中 r ≥R )的引力场强度E 引 的表达式.b .理论上已经证明:质量分布均匀的球壳对壳内物体的引力为零.推导距离地心r 处(其中 r <R )的引力场强度 E 引 的表达式.【答案】( 1)kQGM GMr2 ( 2) a . E 引r 2b . E 引R 3rE【解析】【详解】(1)由 EF , Fk qQ,得 EkQqr 2r 2(2) a .类比电场强度定义,E 引F 万 ,由 F 万GMm ,m r 2得 E 引 GMr2b .由于质量分布均匀的球壳对其内部的物体的引力为 0,当 r < R 时,距地心 r 处的引力场强是由半径为 r 的“地球 ”产生的.设半径为 r 的“地球 ”质量为 M r ,M r4 M4 r 3 r 3 M.R 33R 33得 E引GM r GM rr 2R 310. 2017 年 4 月 20 日 19 时 41 分天舟一号货运飞船在文昌航天发射中心由长征七号遥二运载火箭成功发射升空。

高考物理万有引力与航天专题训练答案及解析.docx

高考物理万有引力与航天专题训练答案及解析.docx

高考物理万有引力与航天专题训练答案及解析一、高中物理精讲专题测试万有引力与航天1.已知地球同步卫星到地面的距离为地球半径的 6 倍,地球半径为R,地球视为均匀球体,两极的重力加速度为g,引力常量为G,求:(1)地球的质量;(2)地球同步卫星的线速度大小.【答案】 (1)gR2gR M(2)vG7【解析】【详解】(1)两极的物体受到的重力等于万有引力,则GMmR2解得mgM gR2;G(2)地球同步卫星到地心的距离等于地球半径的7 倍,即为7R,则GMm v22m7R7R而 GM gR2,解得gRv.72.宇航员在某星球表面以初速度v0竖直向上抛出一个物体,物体上升的最大高度为h.已知该星球的半径为R,且物体只受该星球的引力作用.求:(1)该星球表面的重力加速度;(2)从这个星球上发射卫星的第一宇宙速度.【答案】(1)v2(2)R 2hv0 2h【解析】本题考查竖直上抛运动和星球第一宇宙速度的计算.(1) 设该星球表面的重力加速度为g ′,物体做竖直上抛运动,则v022g h 解得,该星球表面的重力加速度g v022hv2(2) 卫星贴近星球表面运行,则mg mRR解得:星球上发射卫星的第一宇宙速度v g R v02h3.某双星系统中两个星体A、 B 的质量都是m,且 A、 B 相距 L,它们正围绕两者连线上的某一点做匀速圆周运动.实际观测该系统的周期T 要小于按照力学理论计算出的周期理论值 T0,且k (),于是有人猜测这可能是受到了一颗未发现的星体 C 的影响,并认为 C 位于双星 A、 B 的连线中点.求:(1)两个星体 A、 B 组成的双星系统周期理论值;(2)星体 C 的质量.【答案】( 1);( 2)【解析】【详解】(1)两星的角速度相同 ,根据万有引力充当向心力知 :可得:两星绕连线的中点转动,则解得:(2) 因为 C 的存在 ,双星的向心力由两个力的合力提供,则再结合:k可解得:故本题答案是:(1);(2)【点睛】本题是双星问题,要抓住双星系统的条件:角速度与周期相同,再由万有引力充当向心力进行列式计算即可 .4.用弹簧秤可以称量一个相对于地球静止的小物体m 所受的重力,称量结果随地理位置的变化可能会有所不同。

最新高考物理 万有引力与航天 Word版含答案

最新高考物理 万有引力与航天 Word版含答案

第4讲 万有引力与航天一、明晰一个网络,破解天体运动问题二、“一种模型、两条思路、三个物体、四个关系”1.一种模型:无论自然天体(如地球、月亮)还是人造天体(如宇宙飞船、人造卫星)都可以看作质点,围绕中心天体(视为静止)做匀速圆周运动.2.两条思路:(1)万有引力提供向心力,即GMmr 2=ma 向. (2)天体对其表面的物体的万有引力近似等于重力,即GMmR 2=mg ,公式gR 2=GM 应用广泛,被称为“黄金代换”.3.三个物体:求解卫星运行问题时,一定要认清三个物体(赤道上的物体、近地卫星、同步卫星)的特点.4.四个关系:“四个关系”是指人造卫星的加速度、线速度、角速度、周期与轨道半径的关系.GMmr2=⎩⎪⎨⎪⎧ma →a =GM r 2 →a∝1r2m v 2r →v =GM r →v ∝1r mω2r →ω=GM r3→ω∝1r 3m 4π2T 2r →T =4π2r 3GM→T ∝r 3高频考点1 开普勒定律与万有引力定律1-1.(多选) (2017·全国卷Ⅱ)如图,海王星绕太阳沿椭圆轨道运动,P 为近日点,Q 为远日点,M 、N 为轨道短轴的两个端点,运行的周期为T 0.若只考虑海王星和太阳之间的相互作用,则海王星在从P 经M 、Q 到N 的运动过程中( )A .从P 到M 所用的时间等于T 0/4B .从Q 到N 阶段,机械能逐渐变大C .从P 到Q 阶段,速率逐渐变小D .从M 到N 阶段,万有引力对它先做负功后做正功解析:本题考查天体的运行规律.海王星绕太阳沿椭圆轨道运动,由开普勒第二定律可知,从P →Q 速度逐渐减小,故从P 到M 所用时间小于T 0/4.选项A 错误,C 正确;从Q 到N 阶段,只受太阳的引力,故机械能守恒,选项B 错误;从M 到N 阶段经过Q 点时速度最小,故万有引力对它先做负功后做正功,选项D 正确.答案:CD1-2.(2017·湖北省重点中学高三测试)如图所示,由中山大学发起的空间引力波探测工程“天琴计划”于2015年启动,拟采用三颗全同的卫星(SC1、SC2、SC3)构成一个边长约为地球半径27倍的等边三角形阵列,地球恰好处于三角形中心,卫星将在以地球为中心、高度约10万公里的轨道上运行,对一个周期仅有5.4分钟的超紧凑双白矮星系统RXJ0806.3+1527产生的引力波进行探测.若地球近地卫星的运行周期为T 0,则三颗全同卫星的运行周期最接近( )A .40T 0B .50T 0C .60T 0D .70T 0解析:由几何知识可知,每颗卫星的运转半径为:r =12×27R sin 60°=93R ,根据开普勒行星运动第三定律可知:R 3T 20=r 3T2,则T =r 3R 3T 0=61.5T 0,故选C . 答案:C1-3.(2017·辽宁省实验中学高三月考)由中国科学院、中国工程院两院士评出的2012年中国十大科技进展新闻,于2013年1月19日揭晓,“神九”载人飞船与“天宫一号”成功对接和“蛟龙”号下潜突破7 000米分别排在第一、第二.若地球半径为R ,把地球看作质量分布均匀的球体.“蛟龙”下潜深度为d ,天宫一号轨道距离地面高度为h ,“蛟龙”号所在处与“天官一号”所在处的加速度之比为( )A .R -d R +hB .(R -d )2(R +h )2C .(R -d )(R +h )R 2D .(R -d )(R +h )2R 3解析:令地球的密度为ρ,则在地球表面,重力和地球的万有引力大小相等,有:g =GMR 2,由于地球的质量为:M =ρ43πR 3,所以重力加速度的表达式可写成:g =GM R 2=Gρ43πR 3R 2=43πGρR .根据题意有,质量分布均匀的球壳对壳内物体的引力为零,故在深度为d 的地球内部,受到地球的万有引力即为半径等于(R -d )的球体在其表面产生的万有引力,故重力加速度g ′=43πGρ(R -d ).所以有g ′g =R -d R .根据万有引力提供向心力G Mm (R +h )2=ma ,“天宫一号”的加速度a =GM (R +h )2,所以a g =R 2(R +h )2,所以g ′a =(R -d )(R +h )2R 3,故D 正确,ABC 错误.答案:D1-4.假设地球可视为质量均匀分布的球体.已知地球表面重力加速度在两极的大小为g 0,在赤道的大小为g ;地球自转的周期为T ,引力常量为G .地球的密度为( )A .3π(g 0-g )GT 2g 0B .3πg 0GT 2(g 0-g )C .3πGT2D .3πg 0GT 2g解析:物体在地球的两极时,mg 0=GMm R 2,物体在赤道上时,mg +m (2πT )2R =G MmR2,以上两式联立解得地球的密度ρ=3πg 0GT 2(g 0-g ).故选项B 正确,选项A 、C 、D 错误.答案:B高频考点2 天体质量和密度的估算1.利用天体表面的重力加速度g 和天体半径R .由于G Mm R 2=mg ,故天体质量M =gR 2G ,天体密度ρ=M V =M 43πR 3=3g4πGR.2.通过观察卫星绕天体做匀速圆周运动的周期T 和轨道半径r .(1)由万有引力等于向心力,即G Mm r 2=m 4π2T 2r ,得出中心天体质量M =4π2r 3GT 2;(2)若已知天体半径R ,则天体的平均密度ρ=M V =M 43πR 3=3πr 3GT 2R 3;(3)若天体的卫星在天体表面附近环绕天体运动,可认为其轨道半径r 等于天体半径R ,则天体密度ρ=3πGT 2.可见,只要测出卫星环绕天体表面运动的周期T ,就可估算出中心天体的密度.2-1.(2017·北京卷)利用引力常量G 和下列某一组数据,不能计算出地球质量的是( ) A .地球的半径及重力加速度(不考虑地球自转)B .人造卫星在地面附近绕地球做圆周运动的速度及周期C .月球绕地球做圆周运动的周期及月球与地球间的距离D .地球绕太阳做圆周运动的周期及地球与太阳间的距离解析:根据G MmR 2=mg 可知,已知地球的半径及重力加速度可计算出地球的质量.根据G Mm R 2=m v 2R 及v =2πR T 可知,已知人造卫星在地面附近绕地球做圆周运动的速度及周期可计算出地球的质量.根据G Mm r 2=m 4π2T 2r 可知,已知月球绕地球做圆周运动的周期及月球与地球间的距离,可计算出地球的质量.已知地球绕太阳做圆周运动的周期及地球与太阳间的距离只能求出太阳的质量,不能求出地球的质量.答案:D2-2. (2017·保定市期末调研)两颗互不影响的行星P 1、P 2,各有一颗近地卫星S 1、S 2绕其做匀速圆周运动.图中纵轴表示行星周围空间某位置的引力加速度a ,横轴表示某位置到行星中心距离r 平方的倒数,a - 1r 2关系如图所示,卫星S 1、S 2的引力加速度大小均为a 0.则()A .S 1的质量比S 2的大B .P 1的质量比P 2的大C .P 1的第一宇宙速度比P 2的小D .P 1的平均密度比P 2的大解析:万有引力充当向心力,故有GMm r 2=ma ,解得a =GM 1r2,故图象的斜率k =GM ,因为G 是恒量,M 表示行星的质量,所以斜率越大,行星的质量越大,故P 1的质量比P 2的大,由于计算过程中,卫星的质量可以约去,所以无法判断卫星质量关系,A 错误,B 正确;因为两个卫星是近地卫星,所以其运行轨道半径可认为等于行星半径,根据第一宇宙速度公式v =gR 可得v =a 0R ,从图中可以看出,当两者加速度都为a 0时,P 2半径要比P 1小,故P 1的第一宇宙速度比P 2的大,C 错误;星球的密度ρ=M V =M 43πR 3=a 0R 2G 43πR 3=3a 04πGR,故星球的半径越大,密度越小,所以P 1的平均密度比P 2的小,D 错误.答案:B2-3.(多选)(2017·湖南省师大附中等四校联考)某行星外围有一圈厚度为d 的发光带(发光的物质),简化为如图甲所示模型,R 为该行星除发光带以外的半径.现不知发光带是该行星的组成部分还是环绕该行星的卫星群,某科学家做了精确的观测,发现发光带绕行星中心的运行速度v 与到行星中心的距离r 的关系如图乙所示(图中所标为已知),则下列说法正确的是( )A .发光带是该行星的组成部分B .该行星的质量M =v 20RGC .行星表面的重力加速度g =v 20RD .该行星的平均密度为ρ=3v 20R4πG (R +d )3解析:若发光带是该行星的组成部分,则其角速度与行星自转角速度相同,应有v =ωr ,v 与r 应成正比,与图象不符,因此发光带不是该行星的组成部分,故A 错误;设发光带是环绕该行星的卫星群,由万有引力提供向心力,则有:G Mmr 2=m v 2r ,得该行星的质量为:M =v 2r G ;由图乙知,r =R 时,v =v 0,则有:M =v 20R G ,故B 正确;当r =R 时有mg =m v 20R,得行星表面的重力加速度g =v 20R ,故C 正确;该行星的平均密度为ρ=M 43πR 3=3v 204πGR 2,故D错误.答案:BC高频考点3 人造卫星的运行参量分析3-1.(2017·莆田市质检)卫星A 和B 均绕地球做匀速圆周运动,其角速度之比ωA ∶ωB=1∶8,则两颗卫星的( )A .轨道半径之比r A ∶rB =64∶1 B .轨道半径之比r A ∶r B =1∶4C .运行速度之比v A ∶v B =1∶ 2D .运行速度之比v A ∶v B =1∶2 解析:根据公式GMm r2=mω2r 可得ω= GM r 3,故轨道半径之比为 r A r B =41,A 、B 错误;根据公式G Mmr 2=m v 2r可得v =GMr ,故可得v A B =12,C 错误,D 正确. 答案:D3-2.(2017·泰安一模)据报道:天文学家发现一颗新的系外类地行星,名为“HD85512b”,它的质量是地球的3.6倍,半径约是地球的1.6倍,它环绕一颗名叫“HD85512”的恒星运转,运行一周只需54天.根据以上信息可以确定( )A .恒星HD85512的质量比太阳大B .行星HD85512b 自转的周期小于24 hC .行星HD85512b 的第一宇宙速度大于7.9 km/sD .行星HD85512b 表面的重力加速度小于9.8 m/s 2解析:设地球的质量为m 0,半径为r 0,该类地行星的质量则为1.6m 0,半径为3.6r 0,该类地行星绕HD85512恒星运转,由万有引力定律G Mm r 2=m 4π2T 2r 可知,在地球和该类地行星公转半径都不知道的情况下,无法比较恒星HD85512与太阳的质量大小,A 错误;由于题目条件是类地行星的公转周期,所以无法判断其自转周期,B 错误;由万有引力定律G m 0mr 2=m v 20r 0,可得地球的第一宇宙速度v 0=Gm 0r 0≈7.9 km/s ,同理可得类地行星的第一宇宙速度v 1=G ·3.6m 01.6r 0=32Gm 0r 0=32v 0=11.85 km/s ,所以C 正确;由G m 0mr 20=mg 得地球表面重力加速度g =G m 0r 20,同理可得类地行星表面重力加速度为g ′=G 3.6m 0(1.6r 0)2=96.4 g ,所以D 错误.答案:C3-3.国务院批复,自2016年起将4月24日设立为“中国航天日”.1970年4月24日我国首次成功发射的人造卫星东方红一号,目前仍然在椭圆轨道上运行,其轨道近地点高度约为440 km ,远地点高度约为2 060 km ;1984年4月8日成功发射的东方红二号卫星运行在赤道上空35 786 km 的地球同步轨道上.设东方红一号在远地点的加速度为a 1,东方红二号的加速度为a 2,固定在地球赤道上的物体随地球自转的加速度为a 3,则a 1、a 2、a 3的大小关系为( )A .a 2>a 1>a 3B .a 3>a 2>a 1C .a 3>a 1>a 2D .a 1>a 2>a 3解析:卫星围绕地球运行时,万有引力提供向心力,对于东方红一号,在远地点时有G Mm 1(R +h 1)2=m 1a 1,即a 1=GM (R +h 1)2,对于东方红二号,有G Mm 2(R +h 2)2=m 2a 2,即a 2=GM (R +h 2)2,由于h 2>h 1,故a 1>a 2,东方红二号卫星与地球自转的角速度相等,由于东方红二号做圆周运动的轨道半径大于地球赤道上物体做圆周运动的半径,根据a =ω2r ,故a 2>a 3,所以a 1>a 2>a 3,选项D 正确,选项A 、B 、C 错误.答案:D3-4. (多选)如图所示,两质量相等的卫星A 、B 绕地球做匀速圆周运动,用R 、T 、E k 、S 分别表示卫星的轨道半径、周期、动能、与地心连线在单位时间内扫过的面积.下列关系式正确的有( )A .T A >TB B .E k A >E k BC .S A =S BD .R 3A T 2A =R 3B T 2B解析:根据开普勒第三定律,R 3A T 2A =R 3BT 2B,又R A >R B ,所以T A >T B ,选项A 、D 正确;由G MmR 2=m v 2R 得,v = GM R ,所以v A <v B ,则E k A <E k B ,选项B 错误;由G Mm R 2=mR 4π2T2得,T =2πR 3GM ,卫星与地心的连线在单位时间内扫过的面积S =1T πR 2=GMR2,可知S A >S B ,选项C 错误.答案:AD用好二级结论,速解运行参量比较问题天体做匀速圆周运动,由万有引力提供向心力. 基本关系式为:G Mm r 2=ma =m v 2r =mrω2=mr 4π2T 2.二级结论有:(1)向心加速度a ∝1r 2,r 越大,a 越小;(2)线速度v ∝ 1r,r 越大,v 越小; (3)角速度ω∝1r3,r 越大,ω越小;(4)周期T ∝r 3,r 越大,T 越大. 高频考点4 卫星的变轨问题分析4-1.(2017·全国卷Ⅲ)2017年4月,我国成功发射的天舟一号货运飞船与天宫二号空间实验室完成了首次交会对接,对接形成的组合体仍沿天宫二号原来的轨道(可视为圆轨道)运行.与天宫二号单独运行时相比,组合体运行的( )A .周期变大B .速率变大C .动能变大D .向心加速度变大解析:天宫二号单独运行时的轨道半径与组合体运行的轨道半径相同.由运动周期T =2πr 3GM,可知周期不变,A 项错误.由速率v = GMr,可知速率不变,B 项错误.因为(m 1+m 2)>m 1,质量增大,故动能增大,C 项正确.向心加速度a =v 2r不变,D 项错误.答案:C4-2.(2017·江西省九校高三联考)我国的“神舟十一号”载人航天飞船于2016年10月17日发射升空,入轨两天后,与“天宫二号”进行对接,假定对接前,“天宫二号”在图所示的轨道3上绕地球做匀速圆周运动,而“神舟十一号”在图中轨道1上的P 点瞬间改变其速度大小,使其运行的轨道变为椭圆轨道2,并在椭圆轨道2与轨道3的切点与“天宫二号”进行对接,图中P 、Q 、K 三点位于同一直线上,则( )A .“神舟十一号”在P 点轨道1的加速度大于轨道2的加速度B .如果“天宫二号”位于K 点时“神舟十一号”在P 点处变速,则两者第一次到达Q 点即可对接C .“神舟十一号”沿椭圆轨道2从P 点飞向Q 点过程中机械能不断增大D .为了使对接时两者的速度相同,“神舟十一号”到达Q 点时应稍微加速解析:根据a =GMr 2可知,“神舟十一号”在P 点轨道1的加速度等于轨道2的加速度,选项A 错误;由图示可知,在轨道3上运行时的周期大于在轨道2上运行时的周期,如果“天宫二号”位于K 点时“神舟十一号”在P 点处变速,“神舟十一号”要比“天宫二号”早到达Q 点,则两者第一次到达Q 点时不能对接,故B 错误;“神舟十一号”沿椭圆轨道2从P 点飞向Q 点过程中只有万有引力做功,其机械能守恒,故C 错误;为了使对接时两者的速度相同,“神舟十一号”到达Q 点时应稍微加速,使两者速度相等,然后实现对接.故D 正确.答案:D4-3.假设在赤道平面内有一颗侦察卫星绕地球做匀速圆周运动,某一时刻恰好处在另一颗同步卫星的正下方,已知侦察卫星的轨道半径为同步卫星的四分之一,则有( )A .同步卫星和侦察卫星的线速度之比为2∶1B .同步卫星和侦察卫星的角速度之比为8∶1C .再经过127 h 两颗卫星距离最远D .再经过67h 两颗卫星距离最远解析:两颗卫星都是由万有引力提供向心力,则GMm R 2=m v 2R =mR 4π2T 2=mRω2,可得线速度v =GMR,所以同步卫星和侦察卫星的线速度之比为1∶2,选项A 错误;角速度ω= GMR 3,同步卫星和侦察卫星的角速度之比为1∶8,选项B 错误;周期T =4π2R 3GM,可得侦察卫星的周期为3 h .若再经过时间t 两颗卫星距离最远,则有t ⎝⎛⎭⎫2πT 2-2πT 1=(2n +1)π(n =0,1,2,3,…),即t ⎝⎛⎭⎫13-124= 2n +12(n =0,1,2,3,…),可得时间t = 127(2n +1) h(n =0,1,2,3,…),选项C 正确,D 错误.答案:C从引力和向心力的关系分析变轨问题卫星在发射或运行过程中有时要经过多次变轨,过程简图如下. 较低圆轨道近地点向后喷气向前喷气椭圆轨道远地点向后喷气向前喷气较高圆轨道当卫星以某一速度v 沿圆轨道运动时,万有引力提供向心力,GMmr 2=m v 2r .如果卫星突然加速(通过发动机瞬间喷气实现,喷气时间不计),则万有引力不足以提供向心力,GMmr 2<m v ′2r ,卫星将做离心运动,变轨到更高的轨道.反之,当卫星突然减速时,卫星所需向心力减小,万有引力大于向心力,卫星变轨到较低的轨道.高频考点5 双星、多星模型模型一 双星系统之“二人转”模型双星系统由两颗相距较近的星体组成,由于彼此的万有引力作用而绕连线上的某点做匀速圆周运动(简称“二人转”模型).双星系统中两星体绕同一个圆心做圆周运动,周期、角速度相等;向心力由彼此的万有引力提供,大小相等.模型二 三星系统之“二绕一”和“三角形”模型三星系统由三颗相距较近的星体组成,其运动模型有两种:一种是三颗星体在一条直线上,两颗星体围绕中间的星体做圆周运动;另一种是三颗星体组成一个三角形,三星体以等边三角形的几何中心为圆心做匀速转动(简称“三角形”模型).最常见的“三角形”模型中,三星结构稳定,角速度相同,半径相同,任一颗星的向心力均由另两颗星对它的万有引力的合力提供.另外,也有三星不在同一个圆周上运动的“三星”系统.模型三 四星系统之“三绕一”和“正方形”模型四星系统由四颗相距较近的星体组成,与三星系统类似,通常有两种运动模式:一种是三颗星体相对稳定地位于三角形的三个顶点上,环绕另一颗位于中心的星体做圆周运动(简称“三绕一”模型);另一种是四颗星体相对稳定地分布在正方形的四个顶点上,围绕正方形的中心做圆周运动(简称“正方形”模型).5-1.(多选)(2016·三门峡市陕州中学专训)某国际研究小组观测到了一组双星系统,它们绕二者连线上的某点做匀速圆周运动,双星系统中质量较小的星体能“吸食”质量较大的星体的表面物质,达到质量转移的目的.根据大爆炸宇宙学可知,双星间的距离在缓慢增大,假设星体的轨道近似为圆,则在该过程中( )A .双星做圆周运动的角速度不断减小B .双星做圆周运动的角速度不断增大C .质量较大的星体做圆周运动的轨道半径减小D .质量较大的星体做圆周运动的轨道半径增大解析:设质量较小的星体质量为m 1,轨道半径为r 1,质量较大的星体质量为m 2,轨道半径为r 2.双星间的距离为L .转移的质量为Δm . 根据万有引力提供向心力对m 1:G (m 1+Δm )(m 2-Δm )L 2=(m 1+Δm )ω2r 1 ① 对m 2:G (m 1+Δm )(m 2-Δm )L 2=(m 2-Δm )ω2r 2 ②由①②得:ω=G (m 1+m 2)L 3,总质量m 1+m 2不变,两者距离L 增大,则角速度ω变小.故A 正确、B 错误.由②式可得r 2=G (m 1+Δm )ω2L 2,把ω的值代入得:r 2=G (m 1+Δm )G (m 1+m 2)L 3L 2=m 1+Δmm 1+m 2L ,因为L 增大,故r 2增大,即质量较大的星体做圆周运动的轨道半径增大,故C 错误、D 正确.答案:AD5-2.(多选)宇宙中有这样一种三星系统,系统由两个质量为m 的小星体和一个质量为M 的大星体组成,两个小星体围绕大星体在同一圆形轨道上运行,轨道半径为r .关于该三星系统的说法中正确的是( )A .在稳定运行的情况下,大星体提供两小星体做圆周运动的向心力B .在稳定运行的情况下,大星体应在小星体轨道中心,两小星体在大星体相对的两侧C .小星体运行的周期为T =4πr 32G (4M +m )D .大星体运行的周期为T =4πr 32G (4M +m )解析:该三星系统应该在同一直线上,并且两小星体在大星体相对的两侧,只有这样才能使某一小星体受到大星体和另一小星体的引力的合力提供向心力.由G Mm r 2+Gm 2(2r )2=mr ⎝⎛⎭⎫2πT 2,解得小星体运行的周期T =4πr 32G (4M +m ).答案:BC5-3.(多选)宇宙中存在一些质量相等且离其他恒星较远的四颗星组成的四星系统,通常可忽略其他星体对它们的引力作用.设四星系统中每个星体的质量均为m ,半径均为R ,四颗星稳定分布在边长为L 的正方形的四个顶点上,其中L 远大于R .已知万有引力常量为G .忽略星体自转效应,关于四星系统,下列说法正确的是( )A .四颗星圆周运动的轨道半径均为L2B .四颗星圆周运动的线速度均为 Gm L (2+24)C .四颗星圆周运动的周期均为2π2L 3(4+2)GmD .四颗星表面的重力加速度均为G mR2解析:四颗星均围绕正方形对角线的交点做匀速圆周运动,轨道半径均为r =22L .取任一顶点上的星体为研究对象,它受到相邻的两个星体与对角线上的星体的万有引力的合力为F 合=2G m 2L 2+G m 2(2L )2.由F 合=F 向=m v 2r =m 4π2T2r ,可解得v = Gm L (1+24), T =2π2L 3(4+2)Gm,故A 、B 项错误,C 项正确.对于星体表面质量为m 0的物体,受到的重力等于万有引力,则有m 0g =G mm 0R 2,故g =G mR2,D 项正确.答案:CD专题二 动量与能量 第5讲 功、功率与动能定理一、明晰功和功率的基本规律二、抓住机车启动问题解决关键1.机车输出功率:P =F v ,其中F 为机车牵引力.2.机车启动匀加速过程的最大速度v 1(此时机车输出的功率最大)和全程的最大速度v m (此时F 牵=F 阻)求解方法:(1)求v 1:由F 牵-F 阻=ma ,P =F 牵v 1可求v 1=PF 阻+ma .(2)求v m :由P =F 阻v m ,可求v m =P F 阻. 三、理解动能及动能定理的基本应用高频考点1 功和功率的计算1.求功的途径(1)用定义式(W =Fl cos α)求恒力功; (2)用动能定理W =12m v 22-12m v 21求功;(3)用F -l 图象所围的面积求功;(4)用平均力求功(力与位移呈线性关系,如弹簧的弹力); (5)利用W =Pt 求功. 2.求功率的途径(1)平均功率:P =W t ,P =F v -cos α.(2)瞬时功率:P =F v cos α.1-1. (2017·全国卷Ⅱ)如图,一光滑大圆环固定在桌面上,环面位于竖直平面内,在大圆环上套着一个小环.小环由大圆环的最高点从静止开始下滑,在小环下滑的过程中,大圆环对它的作用力( )A .一直不做功B .一直做正功C .始终指向大圆环圆心D .始终背离大圆环圆心解析:本题考查圆周运动、功.小环在固定的光滑大圆环上滑动,做圆周运动,其速度沿大圆环切线方向,大圆环对小环的弹力(即作用力)垂直于切线方向,与速度垂直,故大圆环对小环的作用力不做功,选项A 正确、B 错误.开始时大圆环对小环的作用力背离圆心,到达圆心等高点时弹力提供向心力,故大圆环对小环的作用力指向圆心,选项C 、D 错误.答案:A1-2.(多选)(2016·全国新课标Ⅱ卷)两实心小球甲和乙由同一种材质制成,甲球质量大于乙球质量.两球在空气中由静止下落,假设它们运动时受到的阻力与球的半径成正比,与球的速率无关.若它们下落相同的距离,则( )A .甲球用的时间比乙球长B .甲球末速度的大小大于乙球末速度的大小C .甲球加速度的大小小于乙球加速度的大小D .甲球克服阻力做的功大于乙球克服阻力做的功解析:两球的质量m =ρ·43πr 3,对两球由牛顿第二定律a =mg -f m =g -kr ρ·43πr 3=g -kρ·43πr 2,可得a 甲>a 乙,由h =12at 2知甲球的运动时间较短,选项A 、C 错误.由v =2ah 得v 甲>v 乙,故选项B 正确.因f 甲>f 乙,由W f =f ·h 知阻力对甲球做功较大,选项D 正确.答案:BD1-3.关于功率公式P =Wt 和P =F v 的说法正确的是( )A .由P =Wt 只能求某一时刻的瞬时功率B .从P =F v 知,汽车的功率与它的速度成正比C .由P =F v 只能求某一时刻的瞬时功率D .从P =F v 知,当汽车发动机功率一定时,牵引力与速度成反比解析:由P =Wt 能求某段时间的平均功率,当物体做功快慢相同时,也可求得某一时刻的瞬时功率,选项A 错误;从P =F v 知,当汽车的牵引力不变时,汽车的瞬时功率与它的速度成正比,选项B 错误;由P =F v 能求某一时刻的瞬时功率,若v 是平均速度,则也可求解平均功率,选项C 错误;从P =F v 知,当汽车发动机功率一定时,牵引力与速度成反比,选项D 正确.答案:D 1-4.(2017·上海静安区高三质检)物体在平行于斜面向上的拉力作用下,分别沿倾角不同斜面的底端,匀速运动到高度相同的顶端,物体与各斜面间的动摩擦因数相同,则( )A .沿倾角较小的斜面拉,拉力做的功较多B .沿倾角较大的斜面拉,克服重力做的功较多C .无论沿哪个斜面拉,拉力做的功均相同D .无论沿哪个斜面拉,克服摩擦力做的功相同 解析:设斜面倾角为θ,斜面高度h ,斜面长度L =hsin θ,物体匀速被拉到顶端,根据动能定理W F =mgh +μmg cos θ·L =mgh +μmg ·htan θ,则h 相同时,倾角较小则拉力做的功较多,选项A 正确,C 错误;重力做功为W G =mgh ,则重力做功相同,选项B 错误;克服摩擦力做的功W f =μmg cos θ·L =μmg ·htan θ,所以倾角越大,摩擦力做功越小,选项D 错误.答案:A高频考点2 机车启动问题机车的两类启动问题1.恒定功率启动(1)机车先做加速度逐渐减小的变加速直线运动,后做匀速直线运动,速度—时间图象如图所示,当F =F 阻时,v m =P F =PF 阻.(2)动能定理Pt 1-F 阻x =12m v 2m -0.2.恒定加速度启动(1)速度—时间图象如图所示.机车先做匀加速直线运动,当功率增大到额定功率后获得匀加速的最大速度v 1.之后做变加速直线运动,直至达到最大速度v m 后做匀速直线运动.(2)常用公式: ⎩⎪⎨⎪⎧F -F 阻=maP =F v P 额=F 阻v mv 1=at12-1. (2015·全国卷Ⅱ)一汽车在平直公路上行驶.从某时刻开始计时,发动机的功率P 随时间t 的变化如图所示.假定汽车所受阻力的大小f 恒定不变.下列描述该汽车的速度v 随时间t 变化的图线中,可能正确的是( )解析:由P -t 图象知:0~t 1内汽车以恒定功率P 1行驶,t 1~t 2内汽车以恒定功率P 2行驶.设汽车所受牵引力为F ,则由P =F v 得,当v 增加时,F 减小,由a =F -f m 知a 减小,又因速度不可能突变,所以选项B 、C 、D 错误,选项A 正确.答案:A2-2.(2017·南昌十所省重点中学二模)用一根绳子竖直向上拉一个物块,物块从静止开始运动,绳子拉力的功率按如图所示规律变化,已知物块的质量为m ,重力加速度为g,0~t 0时间内物块做匀加速直线运动,t 0时刻后功率保持不变,t 1时刻物块达到最大速度,则下列说法正确的是( )A .物块始终做匀加速直线运动B .0~t 0时间内物块的加速度大小为P 0mt 0C .t 0时刻物块的速度大小为P 0mgD .0~t 1时间内物块上升的高度为P 0mg ⎝⎛⎭⎫t 1-t 02-P 202m 2g3解析:0~t 0时间内物块做匀加速直线运动,t 0时刻后功率保持不变,根据P =F v 知,v 增大,F 减小,物块做加速度减小的加速运动,当加速度减小到零,物体做匀速直线运动,故A 错误;根据P 0=F v =Fat ,F =mg +ma 得P =(mg +ma )at ,可知图线的斜率k =P 0t 0=m (g+a )a ,可知a ≠P 0mt 0,故B 错误;在t 1时刻速度达到最大,F =mg ,则速度v =P 0mg,可知t 0时刻物块的速度大小小于P 0mg,故C 错误;P -t 图线围成的面积表示牵引力做功的大小,根据动能定理得,P 0t 02+P 0(t 1-t 0)-mgh =12m v 2,解得h =P 0mg ⎝⎛⎭⎫t 1-t 02-P 202m 2g3,故D 正确.答案:D2-3.(多选)(2017·衡阳市高三第二次联考)一辆汽车在平直的公路上运动,运动过程中先保持某一恒定加速度,后保持恒定的牵引功率,其牵引力和速度的图象如图所示.若已知汽车的质量m 、牵引力F 1和速度v 1及该车所能达到的最大速度v 3,运动过程中所受阻力恒定,则根据图象所给的信息,下列说法正确的是( )A .汽车行驶中所受的阻力为F 1v 1v 3B .汽车匀加速运动的过程中牵引力的冲量大小为m v 1v 3(v 3-v 1)C .速度为v 2时的加速度大小为F 1v 1m v 2D .若速度为v 2时牵引力恰为F 12,则有v 2=2v 1解析:根据牵引力和速度的图象和功率P =F v 得汽车运动中的最大功率为F 1v 1.该车所能达到的最大速度时加速度为零,所以此时阻力等于牵引力,所以阻力f =F 1v 1v 3,选项A 正确;根据牛顿第二定律,有恒定加速度时,加速度a ′=F 1-f m =F 1m -F 1v 1m v 3,匀加速的时间:t =v 1a ′=m v 1v 3F 1(v 3-v 1),则汽车匀加速运动的过程中牵引力的冲量大小为I =F 1t =m v 1v 3(v 3-v 1),故B 正确;速度为v 2时的牵引力是F 1v 1v 2,对汽车受力分析,受重力、支持力、牵引力和阻力,根据牛顿第二定律有,速度为v 2时加速度大小为a =F 1v 1m v 2-F 1v 1m v 3,故C 错误;若速度为v 2时牵。

高考物理专题汇编物理万有引力与航天(一)及解析

高考物理专题汇编物理万有引力与航天(一)及解析

高考物理专题汇编物理万有引力与航天(一)及解析一、高中物理精讲专题测试万有引力与航天1.如图所示,A 是地球的同步卫星,另一卫星B 的圆形轨道位于赤道平面内,离地面高度为h.已知地球半径为R ,地球自转角速度为ω0,地球表面的重力加速度为g ,O 为地球中心.(1)求卫星B 的运行周期.(2)如卫星B 绕行方向与地球自转方向相同,某时刻A 、B 两卫星相距最近(O 、B 、A 在同一直线上),则至少经过多长时间,它们再一次相距最近? 【答案】(1)32()2B R h T gR +=23()t gR R h ω=-+ 【解析】 【详解】(1)由万有引力定律和向心力公式得()()2224B MmGm R h T R h π=++①,2Mm G mg R =②联立①②解得:()322B R h T R g+=(2)由题意得()02B t ωωπ-=④,由③得()23B gR R h ω=+代入④得()203t R gR h ω=-+2.如图所示,质量分别为m 和M 的两个星球A 和B 在引力作用下都绕O 点做匀速圆周运动,星球A 和B 两者中心之间距离为L .已知A 、B 的中心和O 三点始终共线,A 和B 分别在O 的两侧,引力常量为G .求:(1)A 星球做圆周运动的半径R 和B 星球做圆周运动的半径r ; (2)两星球做圆周运动的周期.【答案】(1) R=m M M +L, r=m M m+L,(2)2π()3L G M m +【解析】(1)令A 星的轨道半径为R ,B 星的轨道半径为r ,则由题意有L r R =+两星做圆周运动时的向心力由万有引力提供,则有:2222244mM G mR Mr L T Tππ==可得 RMr m=,又因为L R r =+ 所以可以解得:M R L M m =+,mr L M m=+; (2)根据(1)可以得到:2222244mM MG m R m L L T T M m ππ==⋅+则:()()23342L L T M m GG m M ππ==++ 点睛:该题属于双星问题,要注意的是它们两颗星的轨道半径的和等于它们之间的距离,不能把它们的距离当成轨道半径.3.据报道,一法国摄影师拍到“天宫一号”空间站飞过太阳的瞬间.照片中,“天宫一号”的太阳帆板轮廓清晰可见.如图所示,假设“天宫一号”正以速度v =7.7km/s 绕地球做匀速圆周运动,运动方向与太阳帆板两端M 、N 的连线垂直,M 、N 间的距离L =20m ,地磁场的磁感应强度垂直于v ,MN 所在平面的分量B =1.0×10﹣5 T ,将太阳帆板视为导体.(1)求M 、N 间感应电动势的大小E ;(2)在太阳帆板上将一只“1.5V 、0.3W”的小灯泡与M 、N 相连构成闭合电路,不计太阳帆板和导线的电阻.试判断小灯泡能否发光,并说明理由;(3)取地球半径R =6.4×103 km ,地球表面的重力加速度g = 9.8 m/s 2,试估算“天宫一号”距离地球表面的高度h (计算结果保留一位有效数字). 【答案】(1)1.54V (2)不能(3)5410m ⨯ 【解析】 【分析】 【详解】(1)法拉第电磁感应定律E=BLv代入数据得E =1.54V(2)不能,因为穿过闭合回路的磁通量不变,不产生感应电流. (3)在地球表面有2MmGmg R= 匀速圆周运动22()Mm v G m R h R h=++ 解得22gR h R v=-代入数据得h ≈4×105m 【方法技巧】本题旨在考查对电磁感应现象的理解,第一问很简单,问题在第二问,学生在第一问的基础上很容易答不能发光,殊不知闭合电路的磁通量不变,没有感应电流产生.本题难度不大,但第二问很容易出错,要求考生心细,考虑问题全面.4.一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为r ,周期为T ,引力常量为G ,行星半径为求: (1)行星的质量M ;(2)行星表面的重力加速度g ; (3)行星的第一宇宙速度v . 【答案】(1) (2)(3)【解析】【详解】(1)设宇宙飞船的质量为m ,根据万有引力定律求出行星质量 (2)在行星表面求出:(3)在行星表面求出:【点睛】本题关键抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.5.我国发射的“嫦娥三号”登月探测器靠近月球后,经过一系列过程,在离月球表面高为h 处悬停,即相对月球静止.关闭发动机后,探测器自由下落,落到月球表面时的速度大小为v ,已知万有引力常量为G ,月球半径为R ,h R <<,忽略月球自转,求: (1)月球表面的重力加速度0g ; (2)月球的质量M ;(3)假如你站在月球表面,将某小球水平抛出,你会发现,抛出时的速度越大,小球落回到月球表面的落点就越远.所以,可以设想,如果速度足够大,小球就不再落回月球表面,它将绕月球做半径为R 的匀速圆周运动,成为月球的卫星.则这个抛出速度v 1至少为多大?【答案】(1)202v g h =(2)222v R M hG =(3)212v R v h=【解析】(1)根据自由落体运动规律202v g h =,解得202v g h=(2)在月球表面,设探测器的质量为m ,万有引力等于重力,02MmGmg R =,解得月球质量222v R M hG=(3)设小球质量为'm ,抛出时的速度1v 即为小球做圆周运动的环绕速度万有引力提供向心力212''v Mm G m R R =,解得小球速度至少为212v Rv h=6.已知地球同步卫星到地面的距离为地球半径的6倍,地球半径为R ,地球视为均匀球体,两极的重力加速度为g ,引力常量为G ,求: (1)地球的质量;(2)地球同步卫星的线速度大小.【答案】(1) GgR M 2= (2)7gRv = 【解析】 【详解】(1)两极的物体受到的重力等于万有引力,则2GMmmg R = 解得GgR M 2=; (2)地球同步卫星到地心的距离等于地球半径的7倍,即为7R ,则()2277GMmv m RR =而2GM gR =,解得7gRv =.7.宇航员来到某星球表面做了如下实验:将一小钢球以v 0的初速度竖直向上抛出,测得小钢球上升离抛出点的最大高度为h (h 远小于星球半径),该星球为密度均匀的球体,引力常量为G ,求:(1)求该星球表面的重力加速度;(2)若该星球的半径R ,忽略星球的自转,求该星球的密度. 【答案】(1)(2)【解析】(1)根据速度-位移公式得:,得(2)在星球表面附近的重力等于万有引力,有及联立解得星球密度8.已知火星半径为R ,火星表面重力加速度为g ,万有引力常量为G ,某人造卫星绕火星做匀速圆周运动,其轨道离火星表面高度等于火星半径R ,忽略火星自转的影响。

万有引力与航天 训练题——2023届高考物理一轮复习(word版含答案)

万有引力与航天 训练题——2023届高考物理一轮复习(word版含答案)

万有引力与航天 训练题一、选择题(本题共15个小题,每题5分,共75分)1、2021年4月,我国自主研发的空间站“天和”核心舱成功发射并入轨运行。

若核心舱绕地球的运行可视为匀速圆周运动,已知引力常量,由下列物理量能计算出地球质量的是( )A.核心舱的质量和绕地半径B.核心舱的质量和绕地周期C.核心舱的绕地角速度和绕地周期D.核心舱的绕地线速度和绕地半径2、2021年6月17日,神舟十二号载人飞船顺利将聂海胜、刘伯明、汤洪波3名航天员送入太空,随后与天和核心舱(空间站)进行对接,标志着中国人首次进入自己的空间站。

如图所示,若空间站在距地球表面高约430 km 的轨道上做匀速圆周运动,已知引力常量为11226.6710N m /kg G -=⋅ ⨯,地球半径约为6400 km ,则下列说法正确的是( )A.空间站的运行速度大于7.9 km/sB.空间站里所有物体的加速度均为零C.位于低轨道的飞船需减速才能与高轨道的空间站实现对接D.若已知空间站的运行周期,则可以估算出地球的平均密度3、如图甲所示,太阳系中有一颗“躺着”自转的蓝色“冷行星”——天王星,其周围存在着环状物质。

为了测定环状物质是天王星的组成部分,还是环绕该行星的卫星群,假设“中国天眼”对其做了精确的观测,发现环状物质线速度的二次方2v 与其到行星中心的距离的倒数1r - 关系如图乙所示。

已知天王星的半径为0r ,引力常量为G ,以下说法正确的是( )A.环状物质是天王星的组成部分B.天王星的自转周期为002πr v C.21v r --关系图像的斜率等于天王星的质量 D.天王星表面的重力加速度为200v r 4、假设在某星球上,一宇航员从距地面不太高的H 处以水平速度0v 抛出一小球,小球落地时在水平方向上发生的位移为s 。

已知该星球的半径为R ,且可看成球体,引力常量为G 。

忽略小球在运动过程中受到的阻力及星球自转的影响。

下列说法中正确的是( )A.B.该星球的质量为2202Hv R GsC.该星球的平均密度为20232πHv Gs RD.距该星球表面足够高的h 处的重力加速度为22022()h Hv R h s + 5、2020年1月,天文学界公布了一系列最新的天文学进展。

高中物理万有引力与航天专题训练答案及解析.docx

高中物理万有引力与航天专题训练答案及解析.docx

高中物理万有引力与航天专题训练答案及解析一、高中物理精讲专题测试万有引力与航天1. 如图所示,质量分别为m 和 M 的两个星球A 和B 在引力作用下都绕O 点做匀速圆周运动,星球A 和B 两者中心之间距离为L .已知A 、B 的中心和O 三点始终共线,A 和B 分别在 O 的两侧,引力常量为G .求:(1)A 星球做圆周运动的半径R 和B 星球做圆周运动的半径r ;(2)两星球做圆周运动的周期.M L, r= m L,( 2) 2πL 3【答案】 (1) R=m Mm MG M m【解析】(1)令 A 星的轨道半径为R , B 星的轨道半径为 r ,则由题意有 L r R两星做圆周运动时的向心力由万有引力提供,则有:GmM 4 2 4 2L 2mR2Mr2TT 可得 R =M,又因为 LR rrm所以可以解得: M L , rm L ;RMmMm(2)根据( 1)可以得到 : GmM4 2 4 2ML 2m2 Rm2MLTTm4 2L32L 3则: Tm GG m MM点睛:该题属于双星问题,要注意的是它们两颗星的轨道半径的和等于它们之间的距离,不能把它们的距离当成轨道半径 .2. 载人登月计划是我国的 “探月工程 ”计划中实质性的目标.假设宇航员登上月球后,以初速度 v 0 竖直向上抛出一小球,测出小球从抛出到落回原处所需的时间为 t. 已知引力常量为G ,月球的半径为 R ,不考虑月球自转的影响,求: (1) 月球表面的重力加速度大小g 月 ;(2) 月球的质量 M ;(3)飞船贴近月球表面绕月球做匀速圆周运动的周期T.2v 0 ; (2) 2R 2v 0 Rt【答案】 (1)Gt; (3) 2t 2v 0【解析】【详解】2v 0(1) 小球在月球表面上做竖直上抛运动,有tg 月月球表面的重力加速度大小g 月 2v 0t(2) 假设月球表面一物体质量为m ,有MmGR2=mg月月球的质量M2R 2v 0Gt(3) 飞船贴近月球表面做匀速圆周运动,有G Mmm22RR 2T飞船贴近月球表面绕月球做匀速圆周运动的周期T 2Rt2v 03.“嫦娥一号 ”的成功发射,为实现中华民族几千年的奔月梦想迈出了重要的一步.已知 “嫦娥一号 ”绕月飞行轨道近似为圆形,距月球表面高度为 H ,飞行周期为 T ,月球的半径为R ,引力常量为 G .求:(1) 嫦“娥一号 ”绕月飞行时的线速度大小; (2)月球的质量;(3)若发射一颗绕月球表面做匀速圆周运动的飞船,则其绕月运行的线速度应为多大.【答案】 (1)2 RH ( 2) 4 2R H32 R HR H ( 3) TGT 2TR【解析】( 1) “嫦娥一号 ”绕月飞行时的线速度大小 v 12π(R H ).T( 2 )设月球质量为M .“嫦娥一号”的质量为 m.2根据牛二定律得 G Mm m 4π (R H )(R H )2T 223解得 M4π (R H ).GT 2( 3)设绕月飞船运行的线速度为Mm0V2 V ,飞船质量为 m0,则G2m0又R R23 M4π (R 2 H ) .GT联立得 V 2π R H R H T R4.经过逾 6 个月的飞行,质量为 40kg 的洞察号火星探测器终于在北京时间2018 年 11 月27 日 03: 56 在火星安全着陆。

高考物理复习二年名校模拟·一年权威预测专题:万有引力与航天.docx

高考物理复习二年名校模拟·一年权威预测专题:万有引力与航天.docx

高中物理学习材料温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

二年名校模拟·一年权威预测【模拟演练】1.(2012·长春模拟)2011年9月29日,我国自行设计、制造的“天宫一号”空间实验室发射成功,开创了我国航天事业的新纪元.“天宫一号”经过变轨后在距地面355 km近圆轨道运行,关于“天宫一号”、同步通信卫星和赤道上随地球自转的物体,下列说法正确的是( )A.“天宫一号”的向心加速度最大B.“天宫一号”的角速度最大C.随地球自转物体速度最小D.“天宫一号”的速度大于7.9 km/s2.(2012·成都模拟)我国于2010年10月1日成功发射了月球探测卫星“嫦娥二号”CE-2,CE-2在椭圆轨道近月点Q完成近月拍摄任务后,到达椭圆轨道的远月点P变轨成圆形轨道,如图所示.忽略地球对CE-2的影响,则CE-2( )A.在由椭圆轨道变成圆形轨道过程中机械能不变B.在由椭圆轨道变成圆形轨道过程中线速度增大C.在Q点的线速度比沿圆轨道运动的线速度大D.在Q点的加速度比沿圆轨道运动的加速度大3.(2012·南通模拟)美国国家科学基金会2010年9月29日宣布,天文学家发现一颗迄今为止与地球最类似的太阳系外行星如图所示,这颗行星距离地球约20亿光年,公转周期约为37年,这颗名叫Gliese581 g的行星位于天秤座星群,它的半径大约是地球的1.9倍,重力加速度与地球相近.则下列说法正确的是( )A.在地球上发射航天器到达该星球,航天器的发射速度至少要达到第三宇宙速度B.该行星的公转速度比地球大C.该行星的质量约为地球质量的2.61倍D.要在该行星表面发射人造卫星,发射速度至少要达到7.9 km/s4.(2012·盐城模拟)如图所示,在圆轨道上运行的国际空间站里,一宇航员A静止(相对于空间舱)“站”在舱内朝向地球一侧的“地面”B上.则下列说法中正确的是( )A.宇航员A不受重力作用B.宇航员A所受重力与他在该位置所受的万有引力相等C.宇航员A与“地面”B之间的弹力大小等于重力D.宇航员A将一小球无初速度(相对空间舱)释放,该小球将落到“地面”B上5.(2012·郑州模拟)卫星电话在抢险救灾中能发挥重要作用.第一代、第二代海事卫星只使用地球同步卫星,不能覆盖地球上的高纬度地区.第三代海事卫星采用地球同步卫星和中轨道卫星结合的方案,它由4颗同步卫星与12颗中轨道卫星构成.中轨道卫星高度为10 354千米,分布在几个轨道平面上(与赤道平面有一定的夹角),在这个高度上,卫星沿轨道旋转一周的时间为6小时.则下列判断正确的是( )A.中轨道卫星的线速度小于地球同步卫星B.中轨道卫星的线速度大于地球同步卫星C.在中轨道卫星经过地面某点正上方的一天后,该卫星仍在地面该点的正上方D.如果某一时刻中轨道卫星、地球同步卫星与地球的球心在同一直线上,那么经过6小时它们仍在同一直线上6.(2012·长春模拟)两个人造地球卫星分别以v 1和v 2绕地球做半径分别为r 1和r 2的匀速圆周运动,运动周期分别为T 1和T 2,运动中所受向心力的大小分别为F 1和F 2,其加速度大小分别为a 1和a 2.若r 1<r 2,则必有( )A.v 1>v 2B.T 1>T 2C.a 1>a 2D.F 1>F 27.(2012·青岛模拟)不久前欧洲天文学家在太阳系外发现了一颗可能适合人类居住的行星,命名为“格利斯581c ”.该行星的质量是地球的5倍,直径是地球的1.5倍.设想在该行星表面附近绕行星沿圆轨道运行的人造卫星的动能为E k1,在地球表面附近绕地球沿圆轨道运行的相同质量的人造卫星的动能为E k2,则k1k2E E 为( )A.0.13B.0.3C.3.33D.7.58.(2011·吉林模拟)星球上的物体脱离星球引力所需要的最小速度称为第二宇宙速度.星球的第二宇宙速度v 2与第一宇宙速度v 1的关系是21v 2v . 已知某星球的半径为r ,它表面的重力加速度为地球表面重力加速度g 的1/6.不计其他星球的影响.则该星球的第二宇宙速度为( )A.gr 3B.gr 6C.gr 3D.gr 9.(2011·桂林模拟)据报道,2009年4月29日,美国亚利桑娜州一天文观测机构发现一颗与太阳系其他行星逆向运行的小行星,代号为2009HC82.该小行星直径为2~3千米,绕太阳一周的时间为T 年,而地球与太阳之间的距离为R 0,如果该行星与地球一样,绕太阳运动可近似看做匀速圆周运动,则小行星绕太阳运动的半径约为( )A.30R TB.301R TC.3021R TD.320R T 10.(2011·德州模拟)2010年10月1日,“嫦娥二号”卫星发射成功.作为我国探月工程二期的技术先导星,“嫦娥二号”的主要任务是为“嫦娥三号”实现月面软着陆开展部分关键技术试验,并继续进行月球科学探测和研究.如图所示,“嫦娥二号”卫星的工作轨道是100公里环月圆轨道Ⅰ,为对“嫦娥三号”的预选着陆区——月球虹湾地区(图中B 点正下方)进行精细成像,“嫦娥二号”在A 点将轨道变为椭圆轨道Ⅱ,使其近月点在虹湾地区正上方B 点,距月球表面大约15公里.下列说法正确的是( )A.“嫦娥二号”卫星在A 点的势能大于在B 点的势能B.“嫦娥二号”卫星在轨道Ⅰ上的速度大于月球的第一宇宙速度C.“嫦娥二号”卫星变轨前后的机械能不相等D.“嫦娥二号”卫星在轨道Ⅱ上A点的加速度大于在轨道Ⅰ上的加速度11.(2011·青岛模拟)在圆轨道上运动的质量为m的人造地球卫星,它到地面的距离等于地球半径R,地面上的重力加速度为g,忽略地球自转影响,则( )A.B.卫星运动的周期为4C.卫星运动的向心加速度大小为1g2D.卫星轨道处的重力加速度为1g412.(2011·佛山模拟)地球赤道上有一物体随地球自转而做圆周运动,所受到的向心力为F1,向心加速度为a1,线速度为v1,角速度为ω1;绕地球表面附近做圆周运动的人造卫星(高度忽略)所受到的向心力为F2,向心加速度为a2,线速度为v2,角速度为ω2;地球同步卫星所受到的向心力为F3,向心加速度为a3,线速度为v3,角速度为ω3;地球表面的重力加速度为g,第一宇宙速度为v,假设三者质量相等,则( )A.F1=F2>F3B.a1=a2=g>a3C.v1=v2=v>v3D.ω1=ω3<ω213.(2012·长沙模拟)2011年7月11日23时41分,我国在西昌卫星发射中心用长征三号丙运载火箭,成功将“天链一号02星”送入太空.火箭飞行约26分钟后,西安卫星测控中心传来的数据表明,星箭分离,卫星成功进入地球同步转移轨道.(1)已知地球半径R=6 400 km,地球表面的重力加速度g=10 m/s2,地球自转周期T=24 h0.7=,请你估算“天链一号02星”的轨道半径.(结果保留一位有效数字)(2)某次一个赤道地面基站发送一个无线电波信号,需要位于赤道地面基站正上方的“天链一号02星”把该信号转发到同轨道的一个航天器上,如果航天器与“天链一号02星”处于同轨道最远可通信距离的情况下,航天器接收到赤道地面基站的无线电波信号的时间是多少?(已知地球半径为R ,地球同步卫星轨道半径为r ,无线电波的传播速度为光速c.)14.(2012·泰州模拟)宇宙中存在由质量相等的四颗星组成的四星系统,四星系统离其他恒星较远,通常可忽略其他星体对四星系统的引力作用.已观测到稳定的四星系统存在两种基本的构成形式:一种是四颗星稳定地分布在边长为a 的正方形的四个顶点上,均围绕正方形对角线的交点做匀速圆周运动,其运动周期为T 1;另一种形式是有三颗星位于边长为a 的等边三角形的三个顶点上,并沿外接于等边三角形的圆形轨道运行,其运动周期为T 2,而第四颗星刚好位于三角形的中心不动.试求两种形式下,星体运动的周期之比12T T . 15.(2011·武汉模拟)已知某行星半径为R ,以第一宇宙速度运行的卫星的绕行周期为T ,该行星上发射的同步卫星的运行速率为v.求:(1)同步卫星距行星表面的高度为多少?(2)该行星的自转周期为多少?【高考预测】万有引力定律及其在天体运动、航天中的应用是高考的必考内容,主要的命题趋势为:(1)利用万有引力提供向心力,求中心天体的质量、密度、周期等物理量.(2)分析人造地球卫星(含同步卫星)的运行特点,比较其轨道半径变化时线速度、角速度、周期、向心加速度的变化情况.(3)对宇宙速度、发射速度、绕行速度的理解,还有变轨前后的能量分析等. 对该部分内容的命题预测点如下:考查知识及角度高考预测同步卫星1、3围绕中心天体运动的各物理量分析2、5变轨分析 4双星模型6、71.如图所示,A为静止于地球赤道上的物体,B为绕地球椭圆轨道运行的卫星,C为绕地球做圆周运动的卫星,P为B、C两卫星轨道的交点.已知A、B、C绕地心运动的周期相同.下列说法正确的是( )A.相对于地心,卫星C的运行速度等于物体A的速度B.相对于地心,卫星C的运行速度大于物体A的速度C.卫星B在P点的运行加速度等于卫星C在该点的运行加速度D.卫星B在P点的运行加速度大于卫星C在该点的运行加速度2.如果把水星和金星绕太阳的运动视为匀速圆周运动,从水星与金星在一条直线上开始计时,若天文学家测得在相同时间内水星转过的角度为θ1,金星转过的角度为θ2(θ1、θ2均为锐角),则由此条件可求得( )A.水星和金星绕太阳运动的周期之比B.水星和金星的密度之比C.水星和金星到太阳的距离之比D.水星和金星绕太阳运动的向心加速度大小之比3.2011年6月21号,我国发射了“中星10号”地球同步通信卫星,卫星的质量为5.22 t.下列说法中正确的是( )A.卫星可以定点在北京正上方B.卫星运行的向心加速度小于地球表面的重力加速度C.卫星的线速度大于第一宇宙速度D.卫星的角速度小于月球绕地球的角速度4.北京时间2011年9月29日21时39分中国载人航天工程总指挥常万全宣布:中国首个目标飞行器“天宫一号”发射成功.在30日凌晨1点58分,进行到第4圈的时候它会有一个变轨.并且“天宫一号”在未来的这24小时之内会两次“抬腿”,目标是抬高一个轨道,从而能够达到一个最舒服的状态,调整姿势,迎接“神八”和它的会合.关于“天宫一号”以下说法正确的是( )A.“天宫一号”“抬腿”到达更高轨道时运行的向心加速度变小B.“天宫一号”“抬腿”到达更高轨道时运行的速度变大C.“天宫一号”在预定轨道上运行的速度小于地球的第一宇宙速度D.“天宫一号”要“抬腿”,抬高它的轨道必须加速5.木星是太阳系中最大的行星,它有众多卫星.观察测出:木星绕太阳做圆周运动的半径为r1、周期为T1;木星的某一卫星绕木星做圆周运动的半径为r2、周期为T2.已知万有引力常量为G,则根据题中给定条件( )A.能求出木星的质量B.能求出木星与卫星间的万有引力C.能求出太阳与木星间的万有引力D.可以断定33122212r r T T 6.经长期观测,人们在宇宙中已经发现了“双星系统”,“双星系统”由两颗相距较近的恒星组成,每个恒星的线度远小于两个星体之间的距离,而且“双星系统”一般远离其他天体.如图所示,两颗星球组成的双星,在相互之间的万有引力作用下,绕连线上的O 点做周期相同的匀速圆周运动.现测得两颗星之间的距离为L ,质量之比为m 1∶m 2=3∶2.则可知( )A.m 1、m 2做圆周运动的角速度之比为2∶3B.m 1、m 2做圆周运动的线速度之比为3∶2C.m 1做圆周运动的半径为2L 5D.m 2做圆周运动的半径为L7.现根据对某一双星系统的光学测量确定,该双星系统中每个星体的质量都是M ,两者相距L ,它们正围绕两者连线的中点做圆周运动.万有引力常量为G.(1)试计算该双星系统的运动周期T.(2)若实验中观测到运动周期为T ′,且T ′∶T=1N >1),为了解释两者的不同,目前有一种流行的理论认为,在宇宙中可能存在一种望远镜观测不到的物质——暗物质,作为一种简化的模型,我们假定在以这两个星体连线为直径的球体内均匀分布着这种暗物质,不考虑其他暗物质的影响,试根据这一模型和上述观测结果确定该星系间这种暗物质的密度.提示:解答第(2)问时,可以将暗物质处理成两星连线中点的质点.答案解析【模拟演练】1.【解析】选A 、B 、C.“天宫一号”属于近地卫星,其轨道半径r 1小于同步通信卫星的轨道半径r 2,由2GM a r=得a 1>a 2,由ω=1>ω2,由v =得v 1>v 2,7.9 km/s 是第一宇宙速度,是最大的环绕速度,所以v 1<7.9 km/s ,D 错.对同步通信卫星和赤道上随地球自转的物体,具有相同的角速度,即ω2=ω3,B 对.由v=r ω知v 2>v 3,故C 对.由a=r ω2得a 2>a 3,A 对.2.【解析】选B 、C 、D.卫星在由椭圆轨道过渡到大圆轨道需要在P 点点火加速做离心运动,机械能增加,A 选项错误,B 选项正确;Q 点是卫星运行椭圆轨道的近月点,由开普勒行星运动第二定律可得近月点的线速度大于远月点的线速度,C 正确;由牛顿第二运动定律可得:22Mm GM Gma a r r =⇒=, Q 点距离月球较近,所以加速度大,D 选项正确.【方法技巧】变轨问题的两点提醒关于卫星的变轨问题,我们要结合圆周运动的知识进行分析:(1)卫星若要变轨到大圆轨道,则需要点火加速使卫星做离心运动.(2)卫星若变轨到小圆轨道,则需要点火减速做向心运动.3.【解析】选A.发射航天器到达该行星要飞离太阳系,发射速度要达到第三宇宙速度,A 选项正确;该行星的公转速度2r v T π=,我们只知道该行星的公转周期比地球的大,但不知道公转半径如何,所以无法确定该行星公转速度与地球公转速度的大小关系,B 选项错误;根据22M mM M m G mg G mg R R M ==行行地行地行地地;,解得3.61=,C 选项错误;要在该行星表面发射人造卫星,发射速度至少为v =该行星的重力加速度与地球相近,但半径比地球大,所以发射速度要大于7.9 km/s ,D 选项错误.4.【解析】选B.宇航员所受的万有引力等于该处宇航员的重力,万有引力提供该处做圆周运动的向心力,A 错误,B 正确;宇航员处于完全失重状态,和“地面”B 间没有相互作用,C 错误;将一小球无初速度释放,小球相对空间舱静止,不会落向“地面”B 上,D 错误.【误区警示】解答运动天体所受重力应注意的事项(1)宇航员所在处的万有引力即为宇航员在该处所受的重力,不能认为宇航员不受重力.(2)宇航员所受的万有引力完全提供向心力,飞船上的所有物体均如此,所以都处于完全失重状态,从而不存在相互挤压的弹力.5.【解析】选B 、C.根据地球卫星的特点,越向外的卫星,运行速度越小,运行周期越大,故可判断出中轨道卫星比地球同步卫星离地面近,运动的线速度大,A 项错误,B 项正确;在中轨道卫星经过地面某点正上方的一天后,中轨道卫星正好转了四圈,故该卫星仍在地面该点的正上方,C 项正确;如果某一时刻中轨道卫星、地球同步卫星与地球的球心在同一直线上,那么经过6小时,中轨道卫星回到原来位置,而同步卫星并没有回到原来位置,也没有到同一直线上相反的位置,故D 项错误.6.【解析】选A 、C.地球卫星绕地球做匀速圆周运动的向心力是由万有引力提供的,设地球质量为M ,卫星质量为m ,可以得到:22Mm v F G m r r==,解得运动的速度大小为v =A 项正确;半径越大,周长越长,速率越小,运动的周期越长,所以B 项错误;因为不知道两个卫星的质量关系,所以不能确定出向心力的大小关系,所以D 项错误;再根据向心加速度公式得到:2v a r=,所以半径越大,向心加速度越小,C 项正确.7.【解析】选C.由万有引力等于向心力22k12k2M R E Mm v GMG m v .R R R E M R ===行地地行可得则513.331.5⨯==,选项C 正确. 8.【解析】选A.该星球的第一宇宙速度:212v MmG m r r=在该星球表面处万有引力等于重力:2Mm gG m r 6=由以上两式得1v =则第二宇宙速度2v ==故A 正确. 9.【解析】选D.小行星和地球绕太阳做圆周运动,都是由万有引力提供向心力,有22GMm 2m()R R R T π==,则可知小行星绕太阳运行轨道半径为R R =R =D 正确. 10.【解析】选A 、C.卫星在远地点的势能大于近地点的势能,A 正确.卫星在轨道Ⅰ上的速度应小于月球的第一宇宙速度,B 错误.卫星变轨前后有其他力对卫星做功,故机械能不守恒,C 正确.卫星在轨道Ⅱ上A 点受到的万有引力和在轨道Ⅰ上受到的万有引力相同,故加速度相等,D 错误. 11.【解析】选B 、D.地面上万有引力等于重力,即2MmGmg R =,该卫星到地面的距离等于地球半径R ,则其轨道半径r=2R.其做匀速圆周运动的向心力由万有引力提供,根据牛顿第二定律:2222Mm v 4G m m r ma mg r r Tπ====',可求得卫星运动的速度大小v =故A 不正确.卫星运动的周期T 4=所以B 正确.卫星运动的向心加速度大小a=g ′=1g,4故C 不正确,D 正确. 12.【解题指南】解答该题应注意以下三点:(1)赤道上随地球自转的物体和绕地球表面做圆周运动的卫星,所需要的向心力不同.(2)同步卫星和赤道上的物体具有相同的角速度和周期. (3)近地卫星的线速度等于第一宇宙速度.【解析】选D.赤道上:2211214a R R .T π=ω=同步卫星轨道上:2233234a r r T π=ω=,其中ω1=ω3,可知a 3>a 1.由F=ma 得F 3>F 1.又由v=r ω,则v 3>v 1.绕地球表面附近做圆周运动的人造卫星,由GM v r =可知v 3<v 2.由3GMr ω=可知ω2>ω3.由n 2M a G r =可知a 2>a 3,另外222v m mg ma .R ==由2MmF G r=可知F 2>F 3.总之:F 2>F 3>F 1,故A 错误.a 2=g >a 3>a 1 ,故B 错误.v 2>v 3>v 1,故C 错误.ω2>ω3=ω1 ,所以D 正确.13.【解析】(1)从题目信息中可知:“天链一号02星”是地球的同步卫星,处于同步卫星的轨道上.它的周期与地球自转周期相等.222273222Mm 4gR T G m r,GM gR ,r ,r 410 m r T 4π====⨯π所以 (2)“天链一号02星”与同轨道的航天器的运行轨道都是同步卫星轨道,所以“天链一号02星”与同轨道的航天器绕地球运转的半径为r. “天链一号02星”与航天器之间最远时的示意图如图所示.由几何知识可知:“天链一号02星”与航天器之间的最远距离s =无线电波从发射到被航天器接收需要分两步.首先赤道地面基站发射的信号被“天链一号02星”接收,所用时间为1r Rt c -=;然后“天链一号02星”再把信号传递到同轨道的航天器,所用时间为2st c==所以共用时间:12r R t t t c -=+=+答案:()()7r R 1410 m 2c c-⨯+ 14.【解析】对于第一种形式,一个星体在其他三个星体的万有引力作用下围绕正方形对角线的交点做匀速圆周运动,其轨道半径为:1r 2=由万有引力定律、向心力公式和牛顿运动定律得:22212221m m 4G 2G cos45mr 2a a T π+︒=解得周期:1T 2=π对于第二种形式,其轨道半径为:2r a 3=由万有引力定律、向心力公式和牛顿运动定律得222222222m m 4G 2G cos30mr r a T π+︒=解得周期2T 2=π两种形式下,星体运动的周期之比12T T =答案15.【解析】(1)设同步卫星距行星表面高度为h ,则()22GMmv mR hR h =++ ① 以第一宇宙速度运行的卫星其轨道半径为R ,则222GMm 4m R R T π=g ② 由①②得:23224R h R T vπ=-(2)行星自转周期等于同步卫星的公转周期()33232R h 8R T v T vπ+π'==答案:()()233322234R 8R 1R 2T v T vππ-【高考预测】1.【解析】选B 、C.由于C 和A 周期相同,即角速度相同,由v=ωr 知,v C >v A ,A 错,B 对.卫星B 和C 的加速度都是由万有引力提供的,由牛顿第二定律可得2GMmma,r =故a B =a C ,C 对D 错. 2.【解析】选A 、C 、D.据2t t Tπθ=ω=可得ω水∶ω金=θ1∶θ2,T 水∶T 金=θ2∶θ1,选项A 正确;据2n 22Mm 4G m r ma r T π==可得33222221r r T T ==θθ金金水水∶∶∶,n 21a r∝,选项C 、D 正确;水星和金星绕太阳做匀速圆周运动,只可能求出中心天体的质量,而不能求出环绕星体水星和金星的质量,水星和金星密度间的关系无法求出,选项B 错误.3.【解析】选B.同步卫星在赤道的正上方,不可能在北京的正上方,A 错.对卫星()()()22222MmGMR Gma a GM gR a g g R h R h R h ====<+++,即,又,故,B 对.第一宇宙速度等于近地卫星的线速度,由v =C 错.由于同步卫星的周期小于月球的公转周期,故同步卫星的角速度大于月球绕地球的角速度,D 错.4.【解析】选A 、C 、D.由2MmG ma r=知,r 变大,a 变小.A 对.由22Mm v G m r r =知r 变大,v 变小,B 错C 对.“天宫一号”要“抬腿”使r 变大,必须做离心运动,故必须加速,D 对.5.【解析】选A 、C.木星绕太阳做匀速圆周运动所需向心力由万有引力提供:212211M m 4G m r r T π=太阳木木;卫星绕木星做匀速圆周运动所需向心力由万有引力提供:222222m m 4Gm r r T π=木,由此式可求得木星的质量,两式联立即可求出太阳与木星间的万有引力,所以A 、C 正确.由于不知道卫星的质量,不能求得木星与卫星间的万有引力,故B 不正确.又3312222212GM Gm r r ,T 4T 4=≠=ππ太阳木故D 不正确.6.【解析】选C.由于T 1=T 2,故2T πω=相同,A 错.根据F 万=F 向,对m 1得122m m G L2211111v m m r r ==ω ①对m 2得2212222222m m v G m m r L r ==ω ②又r 1+r 2=L ③ 由①②③得112221v r m 2v r m 3===,B 错.r 1=2L 5,23r L 5=, C 对D 错. 7.【解析】(1)求解两星体做圆周运动的周期.两星体围绕同一点O 做匀速圆周运动,其角速度一样,周期也一样,其所需向心力由两者间的万有引力提供,可知:对于双星系统每个星体M :2222M 4G M r L Tπ=其中:L r 2=,由以上两式可得:T =(2)设暗物质的密度为ρ,质量为m ,则:334L L m ()326=ρπ=πρg g由万有引力提供向心力有:22222GM GMm L 4M L L 2T ()2π+='g g 解得:2M T 1()M 4m T N'==+ 3L m ,6=πρg 又:代入上式解得:ρ=3(N-1)M/(2πL 3)答案:(2)3(N-1)M/(2πL 3)【方法技巧】解答双星问题的“两等”与“两不等” (1)双星问题的“两等”分别是: ①它们的角速度相等.②双星做匀速圆周运动的向心力由它们之间的万有引力提供,即它们运动的向心力大小总是相等的. (2)“两不等”分别是:①双星做匀速圆周运动的圆心是它们连线上的一点,所以双星做匀速圆周运动的半径与双星间的距离是不相等的,它们的轨道半径之和才等于它们间的距离.②由m1ω2r1=m2ω2r2知由于m1与m2一般不相等,故r1与r2一般也不相等.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点10万有引力与航天 两年高考真题演练1. (2015-新课标全国卷II, 16)由于卫星的发射场不在赤道上,同步卫星发射后需要从转移轨道 经过调整再进入地球同步轨道。

当卫星在转移轨道上飞经赤道上空时,发动机点火,给卫星一附加速 度,使卫星沿同步轨道运行。

已知同步卫星的环绕速度约为3.1 X103 m/s,某次发射卫星飞经赤道上空时的速度为1.55 X 103 m/s,此时卫星 的高度与同步轨道的高度相同,转移轨道和同步轨道的夹角为30° , 如图所示,发动机给卫星的附加速度的方向和大小约为()A.西偏北方向,1.9Xl ()3m/s B ・东偏南方向,1.9Xl (Pm/s C.西偏北方向,2.7X103 m/s D.东偏南方向,2.7X103 m/s2. (2015-福建理综,14)如图,若两颗人造卫星。

和b 均绕地球做 匀速圆周运动,b 到地心O 的距离分别为□、厂2,线速度大小分别为0、。

2,贝M厂2门n尸2)・■• a3. (2015-北京理综,16)假设地球和火星都绕太阳做匀速I 员I 周运动,已知地球到太'、、、.•…••阳的距离小于火星到太阳的距离,那么( )A.地球公转周期大于火星的公转周期B.地球公转的线速度小于火星公转的线速度 C ・地球公转的加速度小于火星公转的加速度 D.地球公转的角速度大于火星公转的角速度 4. (2015-新课标全国卷I , 21)(多选)我国发射的“嫦娥三号”登月探测器靠近月球后,先在月球 表面附近的近似圆轨道上绕月运行;然后经过一系列过程,在离月面4 m 高处做一次悬停(可认为是 相对于月球静止);最后关闭发动机,探测器自由下落。

已知探测器的质量约为1.3X103kg,地球质 量约为刀球的81倍,地球半径约为刀球的3.7倍,地球表面的重力加速度大小约为9.8 m/s 2o 则此探测器()A.在着陆前的瞬间,速度大小约为8.9 m/sB •悬停时受到的反冲作用力约为2X103NC ・从离开近月圆轨道到着陆这段时间内,机械能守恒D.在近月圆轨道上运行的线速度小于人造卫星在近地圆轨道上运行的线速度5. (2015-江苏单科,3)过去几千年来,人类对行星的认识与研究仅限于太阳系内,行星“51pegb” 的发现拉开了研究太阳系外行星的序幕。

“51pegb”绕其中心恒星做匀速圆周运动,周期约为4天,轨道半径约为地球绕太阳运动半径的寺,该屮心恒星与太阳的质量比约为() A.需 B. 1 C. 5 D. 106. (2015-海南单科,6)若在某行星和地球上相对于各自的水平地面附近相同的高度处、以相同的速率平抛一物体,它们在水平方向运动的距离z 比为2:羽,已知该行星质量约为地球的7倍,地球 的半径为R 。

由此可知,该行星的半径约为() B.^7?C.2RD.7. (2015-重庆理综,2)宇航员王亚平在“天宫1号”飞船内进行了我国首次太空授课,演示了一 些完全失重状态下的物理现彖。

若飞船质量为加,距地而高度为力,地球质量为半径为7?,引力 常量为G,则飞船所在处的重力加速度大小为()A. 0 GMm (R+h) 28.(2015-天津理综,8)(多选)戸、卩2为相距遥远的两颗行星,距各口表面相同高度处各冇一颗卫星幼、邑做匀速圆周运动。

图中纵坐标表示行星对周围空间各处物休的引力产生的加速度Q,横坐标表示物体到行星中心的距离r的平方,两条曲线分别表示尺、尸2周围的。

与,的反比关系,它们左端点横坐标相同。

贝|」()A.P|的平均密度比戶2的大B・P]的“第一宇宙速度”比B的小C・S1的向心加速度比S2的大 D. S1的公转周期比$2的大9.(2015-山东理综,15)如图,拉格朗日点厶位于地球和月球连线上,处在该点的物体在地球和月球引力的共同作用下,可与月球一起以相同的周期绕地球运动。

据此,科学家设想在拉格册口点厶建立空间站,使其与月球同周期绕地球运动。

以⑷、如分别表示该空间站和月球向心加速度的大小,如表示地球同步卫星向心加速度的大小。

以下判断正确的是()A.ai>ai>a\ B・ai>a\>a^ C. ai>a\>a^ D. ai>ai>ci\10.(2015-四川理综,5)登上火星是人类的梦想,“嫦娥之父”欧阳自远透霜:中国计划于2020 年行星半径/m质量/kg轨道半径/m地球 6.4 X106 6.4 X1024 1.5X1011火星 3.4X106 6.4 X1023 2.3X1011火星的公转周期较小火星做圆周运动的加速度较小C.火星表面的重力加速度较大D.火星的第一宇宙速度较大11.(2015-广东理综,20)(多选)在星球表面发射探测器,当发射速度为o时,探测器可绕星球表面做匀速圆周运动;当发射速度达到迈o吋,可摆脱星球引力朿缚脱离该星球,已知地球、火星两星球的质量比约为10 : 1,半径比约为2 : 1,下列说法正确的有()A.探测器的质量越大,脱离星球所需要的发射速度越大B.探测器在地球表面受到的引力比在火星表面的大C・探测器分别脱离两星球所需要的发射速度相等D.探测器脱离星球的过程中,势能逐渐增人12.(2014-江苏单科,2)己知地球的质量约为火星质量的10倍,地球的半径约为火星半径的2倍, 则航天器在火星表面附近绕火星做匀速圆周运动的速率约为()A. 3.5 km/s B・ 5.0 km/s C・ 17.7 km/s D. 35.2 km/s _13.(2014-广东理综,21)(多选)如图所示,飞行器P绕某星球做匀速岡周运动,厂星球相对飞行器的张角为〃,下列说法正确的是()/ 厂\ \A.轨道半径越大,周期越长\ D ;B.轨道半径越大,速度越大\ /C・若测得周期和张角,可得到星球的平均密度、-吟D.若测得周期和轨道半径,可得到星球的平均密度14.(201牛新课标全国卷II, 18)假设地球可视为质量均匀分布的球体。

已知地球表面重力加速度在两极的大小为go,在赤道的大小为g;地球自转的周期为八引力常量为G。

地球的密度为()人3 x go—g 口3 n g()5 go 5 go—g15.(2014-新课标全国卷I , 19)(多选)太阳系各行星几乎在同一平面内沿同一方向绕太阳做圆周运动。

当地球恰好运行到某地外行星和太阳之间,口三者几乎排成一条直线的现象,天文学称为“行星冲FT。

据报道,2014年各行星冲H时间分别是:1月6日木星冲日;4月9日火星冲日;5月11 FI土星冲Fh 8 H 29 R海王星冲10丿」8日天王星冲FU已知地球及各地外行星绕太阳运动的轨道半径如下表所地球火星木星土星天王星海王星轨道半径(AU) 1.0 1.5 5.29.51930A.各地外行星每年都会出现冲口现象B.在2015年内一定会出现木星冲日C.天土星相邻两次冲日的时间间隔为土星的一半D.地外行星屮,海王星相邻两次冲日的时间间隔最短5. (2015-湖南十三校联考)设地球的半径为7?,地球表面重力加速度为g,月球绕地球公转周期为 T,玉兔号月球车所拍摄的月面照片从月球以电磁波形式发送到北京航天飞行控制中心所用时间约为1 /朴g 1 3 //?Vg 」/4n2 J3 /4十 久•沁4兀2B.閱4.2C.R 予D.沁和6. (2015-四川自贡二诊)如图所示,a 是静止在地球赤道地面上的一个物体,b 是与 /:]、、 赤道共而的地球卫星,C 是地球同步卫星,对丁 Q 物体和b 、C 两颗卫星的运动情况,下! ' 列说法中正确的是()A. G 物体运动的周期小于b 卫星运动的周期 、、一/16. (2015-安徽理综,24)由三颗星体构成的系统,忽略其它星体对它们的作 用,存在着一种运动形式;三颗星休在相互之间的万有引力作用下,分别位于等 边三角形的三个顶点上,绕某一共同的圆心O 在三角形所在的平面内做相同角 速度的圆周运动(图示为/、B 、C 三颗星体质量不相同时的一般情况)。

若/星 体质量为2m 、B 、C 两星体的质量均为加,三角形的边长为a,求:(1M 星体所受合力大小F A ;(2) B 星体所受合力大小几; (3) C 星休的轨道半径&;(4) 三星体做圆周运动的周期几-年模拟试题精练1. (2015-安徽省宣城市八校高三联考)对于环绕地球做圆周运动的卫星,它们绕地 球做圆周运动的周期会随着轨道半径的变化而变化,某同学根据测得的不同卫星做圆 周运动的半径厂与周期厂的关系作出如图所示图象,则可求得地球质量为(已知引力常 量为G )()4 n 2/7D.Gb4兀咕2. (2015-江苏南通市高三期中)如图所示,从地面上/点发射一枚远程地对地弹道导 弹,仅在万有引力作用下沿椭圆轨道/BC 飞行击屮地而目标C,轨道远地点B 距地而高 度为刀口知地球的质量为M 、半径为R,引力常量为G.设导弹经/、B 点时速度大小分 别为©、物.下列说法屮正确的是()A.地心O 为导弹椭圆轨道的一个焦点B.速度^>11.2 km/s,如V7.9km/sC.导弹经B 点时加速度大小为GMD. 导弹经B 点时速度大小为/ GM\R+h3.(2015•石家庄市高三质检)2013年12月14 H 21吋许,嫦娥三号携带“玉 兔”探测器在月球虹湾成功软着陆,在实施软着陆过程中,嫦娥三号离月球表 面4 m 高时最后一次悬停,确认着陆点。

若总质量为M 的嫦娥三号在最后一 次悬停时,反推力发动机对其提供的反推力为F,已知引力常量为G,月球半 径为/?,则刀球的质量为()FR B'MG MG Cr FR MG D •示4. (2015-河北邯郸市高三月考)如图所示,飞船从轨道1变轨至轨道2。

若飞 船在两轨道上都做匀速圆周运动,不考虑质量变化,相对于在轨道1上,飞船在 轨道2上的()A.动能大B.向心加速度大C.运行周期短D.角速度小 (真空屮的光速为c, 月地距离远大丁•地球半径)(b T 2B地球 轨道1B.h卫星运动受到的万冇引力一定大于c卫星受到的万有引力C.。

物体运动的线速度小于c卫星运动的线速度D.b卫星减速后可进入c卫星轨道7.(2015-湖北省八校高三联考)2014年10月24仃,“嫦娥五号”在西昌卫星发才弋射中心发射升空,并在8天后以“跳跃式再入”方式成功返回地面。

“跳跃式再入” 十指航天器在关闭发动机后进入大气层,依靠大气升力再次冲出大气层,降低速度后再;; 进入大气层,如图所示,虚线为大气层的边界。

已知地球半径为地心到d点距离 \ 忘丿厂,地球表面重力加速度为g。

下列说法正确的是()'、、一》A. “嫦娥五号”在b点处于完全失重状态B. “嫦娥五号”在d点的加速度小于辭2//C.“嫦娥五号”在a点速率大于在c点的速率D. “嫦娥五号”在c点速率大于在幺点的速率8.(2015-河南省郑州市高三月考)(多选)宇宙中有这样一种三星系统,系统由两个质量为加的小星体和一个质量为M的大星体组成,两个小星体围绕大星体在同一圆形轨道上运行,轨道半径为厂。

相关文档
最新文档