由连续几个数构平方和关系
七年级数学上册第五章代数式与函数的初步认识5

运算顺序的符号表达数量关系的语言称符号语言。通过 数 时
例1我们把文字语言转化成符号语言。可以看出在描述 学 ,
问题时数学语言比自然语言更简单明确。
数学应用
1.选择题:
(1)下列结论中正确的是( D )
A.a是代数式,1不是代数式 B.1是代数式,a不是代数式
C.1与a都不是代数式
D.1与a都是代数式
则剩下的钱为(166-5n)元,他最多能买这种钢笔33支.
像5n+2 、4n、ab+ c、2 s、166-5n 、33的这样式子叫
t
代数式.
一般地,用运算符号加、减、乘、除、乘方、开方把数或者 表示数的字母连接起来,所得到的式子叫做代数式。
注意:
重探要索结发现论
1. 单独一个数或一个字母也是代数式。
⑵ 如何用代数式表示一个三位数?
4.(1) a、b两数的平方和减去他们乘积的2倍; (2) a、b两数的和的平方减去他们的差的平方; (3) a、b两数的和与他们的差的乘积
课堂小结
今
天 这
1、什么是代数式?怎么书写?
节 2.怎样列代数式?
课 ,
3.列代数式的关键是什么?我 于较复杂的数量关系,应按下述规律列代数式:
s
(2) t (4) x=2
(5) 3×4 -5
(6) 3×4 -5 =7
(7) x-1≤0
(8) x+2>3
(9) 10x+5y=15
(10) a +c
b
答: (1)、(2)、(3)、(5)、(10)是代数式;
(4)、(6)、(7)、(8)、(9)不是。
典型例题
语只解
言要答
例1 用代数式表示:
第三十一讲 完全平方数和完全平方式

第三十一讲完全平方数和完全平方式设n是自然数,若存在自然数m,使得n=m2,则称n是一个完全平方数(或平方数).常见的题型有:判断一个数是否是完全平方数;证明一个数不是完全平方数;关于存在性问题和其他有关问题等.最常用的性质有:(1)任何一个完全平方数的个位数字只能是0,1,4,5,6,9,个位数字是2,3,7,8的数一定不是平方数;(2)个位数字和十位数字都是奇数的两位以上的数一定不是完全平方数,个位数字为6,而十位数字为偶数的数,也一定不是完全平方数;(3)在相邻两个平方数之间的数一定不是平方数;(4)任何一个平方数必可表示成两个数之差的形式;(5)任何整数平方之后,只能是3n或3n+1的形式,从而知,形如3n+2的数绝不是平方数;任何整数平方之后只能是5n,5n+1,5n+4的形式,从而知5n+2或5n+3的数绝不是平方数;(6)相邻两个整数之积不是完全平方数;(7)如果自然数n不是完全平方数,那么它的所有正因数的个数是偶数;如果自然数n是完全平方数,那么它的所有正因数的个数是奇数;(8)偶数的平方一定能被4整除;奇数的平方被8除余1,且十位数字必是偶数.例题求解【例1】n是正整数,3n+1是完全平方数,证明:n+l是3个完全平方数之和.【例2】一个正整数,如果加上100是一个平方数,如果加上168,则是另一个平方数,求这个正整数.【例3】一个正整数若能表示为两个正整数的平方差,则称这个正整数为“智慧数”,比如16=52—32,16就是一个“智慧数”.在正整数中从1开始数起,试问第1998个“智慧数”是哪个数?并请你说明理由.【例4】(太原市竞赛题)已知:五位数abcde满足下列条件:(1)它的各位数字均不为零;(2)它是一个完全平方数;(3)它的万位上的数字a是一个完全平方数,干位和百位上的数字顺次构成的两位数bc以及十位和个位上的数字顺次构成的两位数de也都是完全平方数.试求出满足上述条件的所有五位数.【例5】(2002年北京)能够找到这样的四个正整数,使得它们中任两个数的积与2002的和都是完全平方数吗?若能够,请举出一例;若不能够;请说明理由.【例6】使得(n2—19n+91)为完全平方数的自然数n的个数是多少?【例7】 (“我爱数学”夏令营)已知200221a a a ,,, 的值都是1或—1,设m 是这2002个数的两两乘积之和.(1)求m 的最大值和最小值,并指出能达到最大值、最小值的条件;(2)求m 的最小正值,并指出能达到最小正值的条件.例8】 (全国竞赛题)如果对一切x 的整数值,x 的二次三项式c bx ax ++2都是平方数(即整数的平方),证明: (1) 2a 、2b 都是整数; (2)a 、b 、c 都是整数,并且c 是平方数.反过来,如果(2)成立,是否对一切x 的整数值,c bx ax ++2的值都是平方数?学力训练(A 级)1.(山东省竞赛题)如果a -是整数,那么a 满足( )A .a>0,且a 是完全平方数B .a<0,且-a 是完全平方数C .a ≥0,且a 是完全平方数D .a ≤0,且—a 是完全平方数2.设n 是自然数,如果n 2的十位数字是7,那么n 2的末位数字是( )A .1B .4C .5D .63.(五羊杯,初二)设自然数N 是完全平方数,N 至少是3位数,它的末2位数字不是00,且去掉此2位数字后,剩下的数还是完全平方数,则N 的最大值是 .4.使得n 2—19n+95为完全平方数的自然数n 的值是 .5.自然数n 减去52的差以及n 加上37的和都是整数的平方,则n= .6.两个两位数,它们的差是56,它们的平方数的末两位数字相同,则这两个数分别是.7.是否存在一个三位数abc (a ,b ,c 取从1到9的自然数),使得cab bca abc ++为完全平方数?8.求证:四个连续自然数的积加l ,其和必为完全平方数.(B 级)1.若x 是自然数,设1222234++++=x x x x y ,则 ( )A .y 一定是完全平方数B .存在有限个,使y 是完全平方数C .y 一定不是完全平方数D .存在无限多个,使y 是完全平方数2.已知a 和b 是两个完全平方数,b 的个位数字为l ,十位数字为x ;b 的个位数为6,十位数字为y ,则( )A .x ,y 都是奇数B .x ,y 都是偶数C .x 是奇数,y 是偶数D .x 为偶数,y 为奇数3.若四位数xxyy 是一个完全平方数,则这个四位数是 .4.设m 是一个完全平方数,则比m 大的最小完全平方数是 .5.(全国联赛题)设平方数y 2是11个连续整数的平方和,则y 的最小值是 .6.(北京市竞赛,初二)p 是负整数,且2001+p 是—个完全平方数,则p 的最大值为 .7.有若干名战士,恰好组成一个八列长方形队列.若在队列中再增加120人或从队列中减去120人后,都能组成一个正方形队列.问原长方形队列共有多少名战士?8.证明:10006999309个各n n 是一个完全平方数.。
数据结构说课ppt课件

基本概念与术语
据结构。
数据的逻辑结构是从数据元素之间存在的逻辑关系上描述数据与数据的存储无关,是独立于计算机的。
依据数据元素之间的关系,可以把数据的逻辑结构分成以下几种:
1.集合:数据中的数据元素之间除了“同属于一个集合“的关系以外,没有其他关系。
单链表
链表操作算法:初始化、插入、输出、删除、遍历
8. 在一个单链表中删除q所指结点时,应执行如下操作:
q=p->next;
p->next=( p->next->next );
free(q);//这种题目靠一根指针是没有办法完成的,必须要借助第二根指针。
9. 在一个单链表中p所指结点之后插入一个s所指结点时,应执行:
(2) 若表的总数基本稳定,且很少进行插入和删除,但要求以最快的速度存取表中的元
问答题
素,这时,应采用哪种存储表示?为什么?
应采用顺序存储表示。因为顺序存储表示的存取速度快,但修改效率低。若表的总数基本稳定,且很少进行插入和删除,但要求以最快的速度存取表中的元素,这时采用顺序存储表示较好。
03
栈和队列
数据结构说课ppt课件
演讲人
数据结构概述
01
线性表
02
栈和队列
03
目录
01
数据结构概述
基本概念与术语
2.数据元素:数据元素是数据的基本单位,是数据这个集合中的个体,也称之为元素,结点,顶点记录。
(补充:一个数据元素可由若干个数据项组成。数据项是数据的不可分割的最小单位。)
在右侧编辑区输入内容
顺序表的存储效率高,存取速度快。此,不易扩充。同时,由于在插入或删除时,为保持原有次序,平均需要移动一半(或近一半)元素,修改效率不高。
数字推理技巧四

1.数字推理数字推理题给出一个数列,但其中缺少一项,要求考生仔细观察这个数列各数字之间的关系,找出其中的排列规律,然后从4个供选择的答案中选出自己认为最合适、合理的一个,来填补空缺项,使之符合原数列的排列规律。
在解答数字推理题时,需要注意的是以下两点:一是反应要快;二是掌握恰当的方法和规律。
一般而言,先考察前面相邻的两三个数字之间的关系,在关脑中假设出一种符合这个数字关系的规律,并迅速将这种假设应用到下一个数字与前一个数字之间的关系上,如果得到验证,就说明假设的规律是正确的,由此可以直接推出答案;如果假设被否定,就马上改变思路,提出另一种数量规律的假设。
另外,有时从后往前推,或者“中间开花”向两边推也是较为有效的。
两个数列规律有时交替排列在一列数字中,是数字推理测验中一种较为常见的形式。
只有当你把这一列数字判断为单数项与双数项交替排列在一起时,才算找到了正确解答这道题的方向,你的成功就已经是80%了。
由此可见,即使一些表面看起来很复杂的排列数列,只要我们对其进行细致的分析和研究,就会发现,具体来说,将相邻的两个数相加或相减,相乘或相除之后,它们也不过是由一些简单的排列规律复合而成的。
只要掌握它们的排列规律,善于开动脑筋,就会获得理想的效果。
需要说明一点:近年来数字推理题的趋势是越来越难,即需综合利用两个或者两个以上的规律。
因此,当遇到难题时,可以先跳过去做其他较容易的题目,等有时间再返回来解答难题。
这样处理不但节省了时间,保证了容易题目的得分率,而且会对难题的解答有所帮助。
有时一道题之所以解不出来,是因为我们的思路走进了“死胡同”,无法变换角度思考问题。
此时,与其“卡”死在这里,不如抛开这道题先做别的题。
在做其他题的过程中也许就会有新的解题思路,从而有助于解答这些少量的难题。
在做这些难题时,有一个基本思路:“尝试错误”。
很多数字推理题不太可能一眼就看出规律、找到答案,而是要经过两三次的尝试,逐步排除错误的假设,最后找到正确的规律。
常用平方立方和公式整理

常用平方立方和公式整理在数学中,平方和和立方和是两个常见的数学概念。
平方和是指一系列相关数值的平方值的总和,而立方和则是指一系列相关数值的立方值的总和。
这两个概念在许多数学应用中非常有用,包括代数、几何和统计学等领域。
在本文中,我们将整理一些常用的平方和和立方和公式,以便读者更好地理解和应用这些概念。
一、平方和公式1.平方和公式平方和公式是一个用于计算一些数列平方和的公式。
假设我们有一个由n个连续整数构成的数列,首项为a,公差为d。
那么这个数列的平方和可以通过以下公式计算:平方和=n(a^2)+n(n-1)d^2/2例如,如果我们有一个由1到5的连续整数构成的数列,那么我们可以使用平方和公式来计算该数列的平方和。
首项a为1,公差d为1,n 为5、将这些值代入公式中,我们可以得到:平方和=5(1)^2+5(5-1)(1)^2/2=5+20/2=5+10=15所以,由1到5的连续整数的平方和为152.平方差公式平方差公式是一个用于计算两个数的平方差的公式。
假设我们有两个数a和b,那么它们的平方差可以通过以下公式计算:平方差=(a+b)(a-b)例如,如果我们有两个数3和5,那么我们可以使用平方差公式来计算它们的平方差。
将这两个数代入公式中,我们可以得到:平方差=(3+5)(3-5)=8(-2)=-16所以,3和5的平方差为-16二、立方和公式1.立方和公式立方和公式是一个用于计算一些数列立方和的公式。
假设我们有一个由n个连续整数构成的数列,首项为a,公差为d。
那么这个数列的立方和可以通过以下公式计算:立方和=[n*(n+1)/2]^2例如,如果我们有一个由1到5的连续整数构成的数列,那么我们可以使用立方和公式来计算该数列的立方和。
首项a为1,公差d为1,n 为5、将这些值代入公式中,我们可以得到:立方和=[5*(5+1)/2]^2=[5*(6)/2]^2=[15]^2=225所以,由1到5的连续整数的立方和为2252.立方差公式立方差公式是一个用于计算两个数的立方差的公式。
求连续自然数平方和的公式精品

求连续自然数平方和的公式前面,在“求连续自然数立方和的公式”一中,介绍了用列表法推导公式的过程。
这种方法浅显易懂,有它突出的优越性。
在“有趣的图形数”一文中, 也曾经用图形法推出过求连续自然数平方和的公式:12+ 22+ 3一+ n2二n(n 1)(2n 1)6这里用列表法再来推导一下这个公式,进一步体会列表法的优点。
首先,算出从1开始的一些连续自然数的和与平方和,列出下表:n 1 2 3 4 5 r\61 +2 + 3+^+ n 13 6 10 15 2112+ 22+ 32+…+ n2 1 5 14 30 55 91然后,以连续自然数的平方和为分子,连续自然数的和为分母,构成分数,2 小2小2 21 2 3nn—-------------------- ,1 2 3 n既然人=匚上3------- ,而它的通项公式是•红」,于是大胆猜想1 2 3 n 32 2 2 21 2 3 n 2n 1------------- = ----- 。
1 2 3 n 3因为分母1+2+ 3+…+ n= n(n 1),所以22 2 2 21 2 3 n 2n 1------------- = ----- 。
n(n 1) 32再根据表中的数据,算出分数A的值,列出下表:3由此得到12+ 22 + 32...+ n 2= n(n 1) % 2n 1 = n(n 1)(2n 1)。
236。
用数学归纳法很容易证明等式的正确性,这样就轻而易举地推出了求连续 自然数平方和的公式。
这个妙不可言的推导过程是数学家波利亚的杰作,关键之处是他运用了 “猜 想一证明”的思路。
联想到当年著名文学家胡适也曾经有过“大胆假设,小心 求证”的名言。
看来,无论数学也好,文学也好,追求真理的道路是相通的。
这件事对我们教师有什么启示吗?有,那就是:切莫轻视了对学生观察、 类比和猜想能力的培养,这往往是培育创新思维的有效途径。
,2小2 亠21 +2 +3 …+n(n 1)(2 n 1) 。
学习知识点058完全平方公式定理(解答)

1、已知n是正整数,1++是一个有理式A的平方,那么,A= ±.考点:完全平方式。
专题:计算题。
分析:先通分,分母n2(n+1)2是完全平方的形式,然后把分子整理成完全平方式的形式,从而即可得解.解答:解:1++=,分子:n2(n+1)2+(n+1)2+n2=n2(n+1)2+n2+2n+1+n2,=n2(n+1)2+2n(n+1)+1,=[n(n+1)+1]2,∴分子分母都是完全平方的形式,∴A=±.故答案为:±.点评:本题考查了完全平方式,先通分,然后把分子整理成完全平方公式的形式是解题的关键,难度较大,灵活性较强.2、关于x的二次三项式:x2+2mx+4﹣m2是一个完全平方式,求m的值.考点:完全平方式。
专题:计算题。
分析:这里首末两项是x和m这两个数的平方,那么中间一项为加上或减去x和m积的2倍.解答:解:∵x2+2mx+4﹣m2是完全平方式,∴x2+2mx+4﹣m2=(x±m)2,∴4﹣m2=m2,∴m=±,即m1=,m2=﹣.点评:本题是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.3、x,y都是自然数,求证:x2+y+1和y2+4x+3的值不能同时是完全平方.考点:完全平方式。
专题:证明题。
分析:先假设x2+y+1和y2+4x+3的值能同时是完全平方,那么就可写成完全平方式,从而可求y=2x,x=y,而xy是自然数,则必是无理数,那么就与已知相矛盾,故可得证.解答:解:设x2+y+1和y2+4x+3的值能同时是完全平方,那么有x2+y+1=(x+1)2,y2+4x+3=(y+)2,∴y=2x,4x=2y,即y=2x,x=y,又∵x、y是自然数,∴y必是无理数,∴与已知矛盾,故x2+y+1和y2+4x+3的值不能同时是完全平方.点评:本题考查了完全平方式、无理数、自然数的定义.两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.4、(2003•黄石)若x2+2xy+y2﹣a(x+y)+25是完全平方式,求a的值.考点:完全平方式。
自然数平方和公式及证明

自然数平方和公式证明1:此式对于任何自然数n都成立。
依次把n=1,2,3,...,n-1,n代入止式可得把这n个等式的左边与右边对应相加,则n个等式的左边各项两两相消,最后只剩下;而前n个等式的右边各项,我们把它们按三列相加,提取公因数后,第一列出现我们所要计算的前n个自然数的平方和,第二列出现我们在上一段已经算过的前n个自然数的和,第三列是n个1。
因而我们得到。
现在这里对这个结果进行恒等变形可得移项,合并同类项可得即证明2:设12+ 22 + … + n 2 =An 3+Bn 2+Cn+D,令n=1,2,3,4得关于A ,B ,C 。
D 的四元一次方程组,可解得A=C=16 ,B=12 ,D=0,再用数学归纳法证明。
证明3:设f(x)=(1+x)2+ (1+x)3 +… +(1+x)n ,则x 2的系数和为 C 22 + C 23 +… + C 2n=12 [12+ 22 + … + n 2]-12 (1+2+… + n) = 12 [12+ 22 + … + n 2]- -14n(n+1) 又f(x)=(1+x)2-(1+x)n+1x,其中x 2的系数为C 3n+1 ,于是有12 [12+ 22 + … + n 2]- -14 n(n+1)= C 3n+1 ,解得 12+ 22 + … + n 2 = n(n+1)(2n+1)6关于自然数平方和的几个模型归纳法、变换数学公式、组合恒等式等证明外,还可以构造模型来证明示k 个k 之和(图1(1)).旋转此三角形数阵得到另两个三角形数阵(图1(2)、1(3)),每一线段上的数字顺序成等差数列,再重叠三个数阵,则每一点上的数字和为(2n +1).于是透了运动的思想,动静结合,相得益彰.割补、数形结合来证明.(n-1)(2n-1)个单位正方形;再给前n-2层各补(2n-3)个单位正方形,共补(n-2)(2n-3)个;……,最后给第一层补3个,这样添补的单位正模型2数形结合,以形助数,比较直观.而应用映射方法将求和问题映射成几何上的求堆垒总数问题,再利用几何体的割补求和,也体现了化归思想.而添补的立方体个数为1×3+2×5+…+n(2n+1),原有立方体个数以上三个均属构造的数学模型,另外还可以构造物理模型,从物理意义上进行探讨.垂线段上分别等距离地放1个,2个,…,n个重量为1个单位的质点.则这些质点对原点的力矩数学知识结构之间的相互联系,为我们解决问题提供了丰富的源泉.数学问题的模型是多样的.通过对不同模型的探讨,将有助于开阔我们的视野,有助于提高我们的分析问题和解决问题的能力.前n 个连续自然数的平方和公式的最新证明方法关于前n 个连续自然数的平方和: )12)(1(61 (222)2321++=++++n n n n 的证明方法很多,这里不再一一列举了.为了让小学生掌握住这个公式,我现在用一种比较合适的方法,方便孩子们理解和掌握,同时发现这个方法教学效果很好. 我们先来计算:321222++=1×1+2×2+3×3,即1个1与2个2与3个3的和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几个连续数构平方和关系
---涂强
一个由3个连续正整数组成,前2个数平方和等于后1个数的平方和。
32+42=52
一个由5个连续正整数组成,前3个数平方和等于后2个数的平方和。
102+112+122=132+142
一个由7个连续正整数组成,前4个数平方和等于后3个数的平方和。
212+222+232+242=252+262+272
一个由9个连续正整数组成,前5个数平方和等于后4个数的平方和。
362+372+382+392+402=412+422+432++442
一个由2n+1个连续正整数组成,前n+1个数平方和等于后n个数的平方和。
(x+i)2= n+1
i=1
(x+i)2 2n+1
i=n+1
对此通过解方程求出x的数值,可以求出任何一个连续多个数的平方和的关系。
对于上述平方和的个数必需是奇数个才能成立。
平方和的个数必需是偶数个能否成立,有待于读者研究探讨。