“工程问题”和“行程问题

合集下载

小升初专题复习-行程问题和工程问题(课件)人教版六年级下册数学

小升初专题复习-行程问题和工程问题(课件)人教版六年级下册数学
1 要考虑工作效率和。由题中条件可知,甲队每天完成工作总量的10,乙
队每天完成工作总量的115,也就是说甲、乙的工作效率分别是110、115。 工作总量减去甲、乙两队合干的工作量得到剩下的工作量,再除以乙队 的工作效率得到乙队单独干剩下的工作量所需的时间。 【答案】 [1-(110+115)×2]÷115=10(天) 答:剩下的工程由乙队单独完成还需要 10 天。
用了 1 小时,小刚往返的平均速度是每小时( B )。
A.5 km B.10 km C.430 km D.30 km
5.(广东·深圳)在比例尺 1∶6000000 的地图上,甲、乙两地相距 8 cm,
一列客车和一列货车分别从甲、乙两地同时开出,相向而行,4 小时后相 遇。已知客车与货车的速度比是 8∶7,货车的速度是( A )千米/时。
解:设乙每小时生产 x 个零件。 18∶x=3∶5 x=30 12×30=360(个)
3 360×3+5=135(个) 答:甲一共生产了 135 个零件。

3.甲、乙两个码头相距 130 km,汽船从乙码头逆水行驶 6.5 小时到达甲 码头,汽船在静水中每小时行驶 23 km。汽船从甲码头顺流开到乙码头需
要几小时?
23-130÷6.5=3(千米/时) 130÷(23+3)=5(小时) 答:汽船从甲码头顺流开到乙码头需要 5 小时。
工程问题 (北京)单独干某项工程,甲队需要 10 天完成,乙队需要 15 天完成。 甲、乙两队合干 2 天后,剩下的工程由乙队单独完成还需要多少天? 思路点拨:解决工程问题时,把工作总量看作单位“1”,理解工作总量、 工作时间和工作效率的对应关系。如果这项工作由几个人共同完成,则
答:这段路甲队单独修需要 36 天完成。

行测数量关系常见题型与答题技巧

行测数量关系常见题型与答题技巧

行测数量关系常见题型与答题技巧在公务员考试的行政职业能力测验(简称行测)中,数量关系一直是让众多考生感到头疼的模块。

但只要我们掌握了常见的题型和有效的答题技巧,就能在考试中轻松应对,提高得分。

一、常见题型1、工程问题工程问题是研究工作效率、工作时间和工作总量之间关系的问题。

通常会给出不同人员或团队完成某项工作的时间,要求计算工作效率或完成工作所需的时间。

例如:一项工程,甲单独做需要 10 天完成,乙单独做需要 15 天完成,两人合作需要多少天完成?答题技巧:工程问题一般采用“设工作总量为1”的方法,然后根据工作效率=工作总量÷工作时间,求出各自的工作效率,再根据合作时间=工作总量÷合作工作效率来计算。

2、行程问题行程问题主要涉及速度、时间和路程之间的关系。

包括相遇问题、追及问题、流水行船问题等。

比如:甲、乙两人分别从 A、B 两地同时出发相向而行,甲的速度为 5 千米/小时,乙的速度为 3 千米/小时,经过 2 小时相遇,A、B 两地相距多远?解题技巧:对于相遇问题,路程=(甲的速度+乙的速度)×相遇时间;追及问题,路程差=(快的速度慢的速度)×追及时间;流水行船问题,顺水速度=船速+水速,逆水速度=船速水速。

3、利润问题利润问题与商品的成本、售价、利润、利润率等有关。

常见的例子:某商品进价为 100 元,按 20%的利润率定价,然后打9 折出售,该商品的利润是多少?答题要点:利润=售价成本,售价=定价×折扣,利润率=利润÷成本×100% 。

4、排列组合问题排列组合问题是研究从给定元素中选取若干元素进行排列或组合的方式。

例如:从 5 个不同的元素中选取 3 个进行排列,有多少种排列方式?解题思路:排列用 A 表示,组合用 C 表示。

排列时考虑顺序,组合不考虑顺序。

要准确区分是排列还是组合问题,然后运用相应的公式进行计算。

5、容斥问题容斥问题是研究集合之间重叠部分的问题。

行程问题工程问题

行程问题工程问题

工程问题+行程问题典型应用题工程问题+行程问题首先给大家讲下分数工程问题,这种题一般不给出总量。

这种题的解法重点是:1 把总工作量看做单位“1”2 工作效率*工作时间=工作量3 变式关系式:工作量÷工作效率=工作时间;工作量÷工作时间=工作效率4 比如一项工程甲单独做需要6天完成,乙单独做需要10天完成,那么甲的工作效率就是可1/6,乙的为1/10(即1天工作全部工程1/6或1/10)例题1一项工程,甲、乙队合作20天可以完成。

共同做了8天后,甲离开了,由乙继续做了18天才完成。

如果这项工程单独由甲队或乙队单独完成,各需要几天?思路导航:设这项工程为单位“1”,当甲离开后,乙做的工作量为:1-1/20*8=3/5乙单独做这项工程的时间为18除以3/5 18÷3/5=30天甲单独做的时间:1÷(1/20-1/30)=60天例题2师傅和徒弟合做一件工作要15天才能完成。

若让师傅先做10天,则剩下的工作,徒弟单独做还需要17天才能完成。

徒弟单独做这件工作需要多少天才能完成?思路导航:由于给出条件是“合做15天完成”,所以,将分开做的转化成为合做10天共做多少:1/15*10;还剩下多少:1-1/15*10=1/3。

徒弟单独做几天完成:(17-10)/1/3=21天。

写下解析就是:1-1/15*10=1/317-10=77÷1/3=21当然可以解方程,但是比较麻烦:1/X+1/Y=1/1510/X+17/Y=1例题3一批稿件,甲单独做20分钟打完;乙单独30分钟打完。

现在两人合打这批稿件,合做中,甲因有事离开了5分钟,乙休息了若干分钟,这样共用了16分钟打完。

乙休息了多少分钟?思路导航:由于不知16分钟有多少是在合作,也不知道甲、乙各自单独做了几分钟,因此,假设既没有离开也没有休息,16分钟全部在工作,次题就好做了。

甲、乙合作不休息16分钟能打:(1/20+1/30)*16=4/34/3-1=1/3-------表示甲5分钟打的加上乙为休息做的甲5分钟能打多少?5*1/20=1/4乙休息的时间能打多少?1/3-1/4=1/12乙休息了多少时间?1/12÷1/30=5/2即乙休息了5/2分钟。

实际问题与一元一次方程(工程与行程问题)

实际问题与一元一次方程(工程与行程问题)

60×
28 60
+60x+80x=448
解得:x=3
答:快车开出3小时后,两车相遇。
例4、A、B两站间的路程为448千米,一列慢车从A站出发,每小 时行驶60千米,一列快车从B站出发,每小时行驶80千米,问: (3)两车同时、同向而行,如果慢车在前,出发后多长时间快 车追上慢车?
画图分析 快车行驶路程
顺水航行速度= 水流速度 +静水航行速度.
逆水航行速度=静水航行速度-水流速度.
解:设船在静水中的平均速度为x千米/小时,则船顺水的速 度为(x+3)千米/小时,而逆水的速度为(x-3)千米/小时。 则依题意可得: 2(x+3)=2.5(x-3) 解得:x=27
答:该船在静水中的速度为27千米/小时。
工程问题 与
行程问题
一元一次 方程应用
(二)
探究1:工程问题
1.一件工作,若甲单独做2小时完成,那么
1
甲单独做1小时完成全部工作量的2 .
2.一件工作,若甲单独做a小时完成,则甲单独做
1
1小时,完成全部工作量的 a ,m小时完成全部
m
工作量的 a .a小时完成全部工作量的 1 .
3.一件工作,若甲单独做7天完成,乙单
①几小时后两车相遇? ②若吉普车先开40分钟,那么客车开出多长时间两车相遇?

相 遇
丙 40分钟 乙
分析:若吉普车先出发40分钟(即2/3小时),则等量 关系为:吉普车先行的路程+吉普车后行路程+客车 的路程=1500
例1 甲、乙两地相距1 500千米,两辆汽车同时从两地相向而 行,其中吉普车每小时行60千米,是另一辆客车的1.5倍.

工程问题和行程问题

工程问题和行程问题
3
行全程的 3 ,如果两车从两地同时对开,
5
几小时相遇?
2、一辆车从甲地出发到乙地,行完全程需要 8小时,行了5小时后,距乙地还有150千米。 甲地到乙地的距离是多少千米?
3、甲乙两车从A、B两地同时相对开出,3小
1
程的 3
5
1
这时两车相距80千米的 ,A、B两地2间的距离
是多少千米?
一批零件,张师傅独做20时完成,王师傅独 做30时完成.如果两人同时做,那么完成 任务时张师傅比王师傅多做60个零件.这 批零件共有多少个?
3
3小时可以行全程的几分之几 ?
修一条路,甲队独修要12天,乙队独修要15天。
(1)两队合修,多少天可以完成? (2)甲队先修4天后,剩下的由乙队来修,
还要多少天才能修完? (3)两队合修5天后,剩下的由甲队来修,
还要多少天才能修完?
我来试一试
想挑战吗?
1、甲车4小时可行全程的 1 ,乙车6小时可
2、一辆车从甲地到乙地,平均每小时行 1 ,
行完全程需要几小时?
5
3、做200个零件,平均每天做50个,几天可 以完成任务?
4、做一批零件,平均每天做 1 ,几天可以
完成任务?
4
我 1.一项工程,10天完成。
能 行
平均每天完成工程的几分之几?
3天可以完成工程的几分之几?
完成工程的
1 2
需要几天?
2.一辆汽车从甲地到乙地,行完全程 需要6小时。平均每小时行全程的 几分之几?行全程的 2 需要几小时?
典型应用题
——工程问题与行程问题
几种常用的等量关系
工程问题:工作总量、工作时间、工作效率
工作总量=工作效率×工作时间 工作效率=工作总量÷工作时间 工作时间=工作总量÷工作效率

行程问题的公式和工程问题的公式

行程问题的公式和工程问题的公式

文章标题:深度探讨行程问题的公式与工程问题的公式一、前言在数学中,行程问题的公式和工程问题的公式是两个重要的概念。

它们在实际生活和工作中有着广泛的应用,并且对于深入理解数学和物理学的原理有着重要的作用。

本文将就行程问题的公式和工程问题的公式进行全面的评估,为读者提供深度、广度兼具的知识。

二、行程问题的公式1. 行程问题的定义行程问题是数学中一个重要的概念,它描述了物体在一定时间内的运动情况。

常见的行程问题包括匀速直线运动、加速直线运动等。

在行程问题中,最重要的是要确定物体的位移、速度和加速度之间的关系。

2. 行程问题的公式在行程问题中,位移、速度和加速度之间有着一定的关系。

根据物体的运动情况,可以得到一些重要的公式,如匀速直线运动的位移公式:$s=vt$,加速直线运动的位移公式:$s=vt+\frac{1}{2}at^2$等。

这些公式在实际生活和工作中都有着重要的应用,可以帮助人们更准确地描述物体的运动情况。

3. 个人观点和理解对于行程问题的公式,我个人认为它们是数学在实际生活中的重要应用。

通过这些公式,我们可以更好地理解物体的运动规律,为工程和科学研究提供重要的参考。

行程问题的公式也可以帮助我们更好地解决一些实际问题,如交通规划、物流运输等。

三、工程问题的公式1. 工程问题的定义工程问题是指在工程实践中常见的一些数学问题。

这些问题往往涉及到力学、热力学、流体力学等领域,对工程师和科学家有着重要的指导作用。

工程问题的公式是解决这些问题的重要工具之一。

2. 工程问题的公式在工程问题中,常见的公式包括动力学公式、热力学公式、流体力学公式等。

这些公式帮助工程师和科学家更好地理解和解决工程实践中的问题,如牛顿第二定律$F=ma$、热传导方程$q=ks\frac{\Delta T}{\Delta x}$等。

这些公式的应用使工程实践更加科学和高效。

3. 个人观点和理解工程问题的公式是解决工程实践中的重要工具,它们对于工程师和科学家来说是不可或缺的。

列方程中常见的实际问题中的等量关系

列方程中常见的实际问题中的等量关系

列方程中常见的实际问题中的等量关系:
1.行程问题: 路程=时间×速度
2.工程问题: 工作总量=工作效率×工作时间
3.浓度问题: 溶质质量=溶液质量×溶液浓度
4.营销问题: 商品利润=商品进价×商品利润率
(或商品利润=商品售价-商品进价)
5.水上航行中的有关量之间的关系:
逆水速度=船在静水中的速度-水速
顺水速度=船在静水中的速度+水速
6.数字数位问题: 数字×数位=数
7.和倍差倍问题: 因实际问题具体处理
8.相遇时,分段距离和等于相距.追及时,快者路程=慢者路程与相距之和
列方程解应用题的步骤:
1.审题:理解题意,弄清已知量、未知量及它们之间的关系
2.设元:选择适当的未知数,可直接设元,也可间接设元(设元的语句必须完整,并包括元素名称及单位)
3.列方程:用含未知数的式子表示问题中的相等关系
4.解方程:解所列方程,准确求出未知数的值
5.写答案:检验所列方程的解,符合题意后,写出答案,并注明单位名称。

行程问题的公式和工程问题的公式

行程问题的公式和工程问题的公式

行程问题的公式和工程问题的公式行程问题的公式和工程问题的公式一、行程问题的公式:行程问题是运用数学知识来解决关于时间、速度和距离之间关系的问题。

在行程问题中,我们经常需要根据已知的速度和时间,计算出距离;或者根据已知的速度和距离,计算出时间;又或者根据已知的时间和距离,计算出速度。

为了解决这些问题,我们可以利用行程问题的公式。

1. 速度、时间、距离的关系公式:在行程问题中,速度、时间和距离的关系可以用以下公式表达:距离 = 速度× 时间时间 = 距离÷ 速度速度 = 距离÷时间这些公式是解决行程问题的基础,通过灵活运用这些公式,我们可以轻松解决各种与行程有关的数学问题。

2. 示例分析:如果一辆汽车以每小时60英里的速度行驶,我们可以通过以上公式计算出,这辆汽车行驶100英里需要的时间是多少。

根据时间 = 距离÷ 速度的公式,可以得出时间= 100 ÷ 60 = 1.67小时。

二、工程问题的公式:工程问题是指在实际工程实践中,通过数学公式和方法来解决各种与工程相关的问题。

工程问题的公式通常涉及到面积、体积、力学、热力学等方面的计算。

在工程问题中,我们需要根据已知的条件,利用数学方法来计算出所需的参数,以便解决实际工程中遇到的各种问题。

1. 面积和体积的计算公式:在工程问题中,我们经常需要计算各种形状的面积和体积。

常见的面积和体积的计算公式包括:矩形的面积 = 长× 宽圆的面积= π × 半径的平方立方体的体积 = 长× 宽× 高球体的体积= (4/3)π × 半径的立方通过这些公式,我们可以有效地解决各种与面积和体积有关的工程问题。

2. 力学和热力学的公式:在工程问题中,力学和热力学方面的公式也占据重要的地位。

牛顿第二定律 F = ma,能量守恒定律 E = mc^2,热传导公式 Q =kAΔT/Δx 等,这些公式在解决各种工程问题时发挥着重要作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“工程问题”和“行程问题”是国家公务员考试和联考的重中之重,也是绝大多数地方公务员考试的必考点。

“行程问题”很容易出难题、新题,但“工程问题”解题方式却容易把握。

本文将“工程问题”解题方式流程化、固定化,养成解决“工程问题”的机械思维,帮*****生彻底解决“工程问题”。

本文将“工程问题”分为三个层级处理:
第一个层级:设总量为“最小公倍数”型
处理方式:设总量为最小公倍数,然后求出效率。

【例1】一个游泳池,甲管注满需水需要6小时,甲、乙同时注水,注满需要4小时,如果只用乙管注水,注满水需要()小时?【河南招警08】
A.14
B.12
C.10
D.8
【段伟解析】设总量为12(6和4的最小公倍数),然后求出甲的效率为2,甲和乙的效率为3;因此乙的效率为1;所以最后乙需要的时间=12÷1=12;答案选B
【例2】一项工程,甲一人做完需30天,甲、乙合作完成需18天,乙、丙合作完成需15天,甲、乙、丙三人共同完成该工程需:【联考2012-65】
A. 10天
B. 12天
C. 8天
D. 9天
【段伟解析】设总量为90(30、18、15的最小公倍数),然后求出甲的效率=90÷30=3;甲和乙合作的效率=90÷18=5;乙和丙合作的效率=90÷15=6;所以甲乙丙合作的效率=3+6=9;因此答案=90÷9=10,选A
【例3】甲、乙两队开挖一条水渠。

甲队单独挖要8天,乙队单独挖要12天。

现在两个队同时挖了几天后,
乙队调走,余下的甲队在3天内挖完。

乙队挖的天数是()。

【福建事业单位2012-68】 A. 3 B. 4 C. 6 D. 7
【段伟解析】设总量为24(8、12的最小公倍数),然后求出甲的效率=24÷8=3;乙的效率=24÷12=2;假设乙队挖了x天,则有方程:(3+2)×x+3×3=24,解得x=3,答案选A 【总结】:如果以恒定不变的搭配将工程干完时,即可以设出最小公倍数为工程总量;设完总量后根据时间求出效率。

第二个层级:设总量为“1”型
处理方式:设总量为1,然后设效率为未知数。

【例4】一项工程,甲做5小时后,乙继续做,3个小时做完。

乙做9小时,甲继续做,3个小时做完。

问:甲做1小时后乙接着做,几小时可以做完?()
A. 12
B. 14
C. 15
D. 20
【段伟解析】设总量为1,然后设甲的效率为x;乙的效率为y;因此有方程5x+3y=1,9y+3x=1;解得x=1/6
,y=1/18;甲做1小时做了1/6×1=1/6,剩余5/6,所以乙还需要做5/6÷1/18=15小时,答案选C
【例5】某动漫开发公司的一项开发工作,甲组做3个月,乙组做4个月可完成,乙组做3个月,甲组做4个月可完成,则甲、乙合做需要()个月才能完成该项工作。

【四川招警2008-8】
A. 7
B. 8
C. 9
D. 10
【段伟解析】设总量为1,然后设甲的效率为x;乙的效率为y;因此有方程3x+4y=1/2,3y+4x=1/2;两式
相加可得7x+7y=1,所以如果甲和乙合作7小时可完成,答案选A
【例6】三个快递员进行一堆快件的分拣工作,乙和丙的效率都是甲的1.5倍。

如果乙和丙一起分拣所有的快件,将能比甲和丙一起分拣提前36分钟完成。

问如果甲乙丙三人一起工作,需要多长时间能够完成所有快件的分拣工作?()【北京2012-83】
A.1小时45分
B.2小时
C.2小时15分
D.2小时30分
【段伟解析】设总量为1,然后设甲的效率为x;乙的效率为1.5x;丙的效率为1.5x;因此有方程1/(x+1.5x)-1/(1.5x+1.5x)=36/60;解得x=1/9,所以甲乙丙合作的效率=4x=4/9,因此合作所需时间=1÷4/9=9/4小时,答案选C。

【总结】:如果中途换搭配,则不能设出总量为最小公倍数,设总量为1即可,然后设出效率为未知数,列出方程。

第三个层级:蒙题型
处理方式:利用常识排除法或者是数字特征法,进行题目的快速蒙题,主要解决的是难题或者是非常费时间的题目。

【例7】甲、乙两车运一堆货物。

若单独运,则甲车运的次数比乙车少5次;如果两车合运,那么各运6次就能运完,甲车单独运完这堆货物需要()次【北京2009上-19】
A.9
B.10
C.13
D.15
【段伟解析】该题“甲车运的次数比乙车少5次”表现出一个常识,即甲运的快。

两车合运时,各运6次运完,即运了12次,所以如果该货物单独甲来运,不需要12次即可运完,排除CD选项,排除两个大的选项,蒙剩下两个里面比较大的选项即可,因此答案蒙C。

【例8】甲、乙、丙三人合修一条公路,甲、乙合修6天修好公路的1/3,乙、丙合修2天修好余下的1/4,剩余的三人又修了5天才完成。

共得收入1800元,如果按工作量计酬,则乙可获得收入为?()【江苏2008A-21】
A.330元
B.910元
C.560元
D.980元
【段伟解析】法一:该题“甲、乙合修6天修好公路的1/3,乙、丙合修2天修好余下的1/4,剩余的三人又修了5天才完成。

”表现出一个常识,即乙每天都干活,没有休息。

因此按常理来说,乙赚的钱应该多一些,超过平均数。

1800÷3=600,因此乙赚的应该超过600,排除AC,排除两个小的选项,蒙剩下两个里面比较小的选项即可,因此答案蒙B。

法二:该题可以用数字特征法的因子法来解决。

乙赚的钱=乙工作的天数×每天赚的钱=13×每天赚的钱。

因此答案应该能被13整除。

只有答案B选项可以被13整除,因此答案选B。

【例9】王明抄写一份报告,如果每分钟抄写30个字,则用若干小时可以抄完。

当抄完2/5时,将工作效率提高40%,结果比原计划提前半小时完成。

问这份报告共有多少字?() 【天津事业单位2012-13】
A. 6025字
B. 7200字
C. 7250字
D. 5250字
【段伟解析】该题问总字数,由“每分钟抄写30个字”可以得知总字数应该能被30整除,排除AC。

工作效率提高40%,即提高为140%,出现7因子,因此报告文字应能被7整除,所以蒙D即可。

【总结】:如果工程问题找不到总量或者难找到效率时,题目一般比较难,可以选择蒙题或者直接放弃。

但工程问题中的难题一般会出现在国考中,地方性省考工程问题一般属于第一个层级或者第二个层级,因此工程问题属于考试中的拿分题目。

相关文档
最新文档