工程问题和行程问题中的周期问题

合集下载

“工程问题”和“行程问题

“工程问题”和“行程问题

“工程问题”和“行程问题”是国家公务员考试和联考的重中之重,也是绝大多数地方公务员考试的必考点。

“行程问题”很容易出难题、新题,但“工程问题”解题方式却容易把握。

本文将“工程问题”解题方式流程化、固定化,养成解决“工程问题”的机械思维,帮*****生彻底解决“工程问题”。

本文将“工程问题”分为三个层级处理:第一个层级:设总量为“最小公倍数”型处理方式:设总量为最小公倍数,然后求出效率。

【例1】一个游泳池,甲管注满需水需要6小时,甲、乙同时注水,注满需要4小时,如果只用乙管注水,注满水需要()小时?【河南招警08】A.14B.12C.10D.8【段伟解析】设总量为12(6和4的最小公倍数),然后求出甲的效率为2,甲和乙的效率为3;因此乙的效率为1;所以最后乙需要的时间=12÷1=12;答案选B【例2】一项工程,甲一人做完需30天,甲、乙合作完成需18天,乙、丙合作完成需15天,甲、乙、丙三人共同完成该工程需:【联考2012-65】A. 10天B. 12天C. 8天D. 9天【段伟解析】设总量为90(30、18、15的最小公倍数),然后求出甲的效率=90÷30=3;甲和乙合作的效率=90÷18=5;乙和丙合作的效率=90÷15=6;所以甲乙丙合作的效率=3+6=9;因此答案=90÷9=10,选A【例3】甲、乙两队开挖一条水渠。

甲队单独挖要8天,乙队单独挖要12天。

现在两个队同时挖了几天后,乙队调走,余下的甲队在3天内挖完。

乙队挖的天数是()。

【福建事业单位2012-68】 A. 3 B. 4 C. 6 D. 7【段伟解析】设总量为24(8、12的最小公倍数),然后求出甲的效率=24÷8=3;乙的效率=24÷12=2;假设乙队挖了x天,则有方程:(3+2)×x+3×3=24,解得x=3,答案选A 【总结】:如果以恒定不变的搭配将工程干完时,即可以设出最小公倍数为工程总量;设完总量后根据时间求出效率。

行测数量关系的常用公式

行测数量关系的常用公式

行测常用数学公式工作量=工作效率×工作时间;工作效率=工作量÷工作时间;工作时间=工作量÷工作效率;总工作量=各分工作量之和;注:在解决实际问题时,常设总工作量为1或最小公倍数1方阵问题:1.实心方阵:方阵总人数=最外层每边人数2=外圈人数÷4+12=N2最外层人数=最外层每边人数-1×42.空心方阵:方阵总人数=最外层每边人数2-最外层每边人数-2×层数 2=最外层每边人数-层数×层数×4=中空方阵的人数;★无论是方阵还是长方阵:相邻两圈的人数都满足:外圈比内圈多8人;边行每边有a人,则一共有Na-1人;4.实心长方阵:总人数=M×N 外圈人数=2M+2N-45.方阵:总人数=N2 N排N列外圈人数=4N-4例:有一个3层的中空方阵,最外层有10人,问全阵有多少人解:10-3×3×4=84人(2)排队型:假设队伍有N人,A排在第M位;则其前面有M-1人,后面有N-M人(3)爬楼型:从地面爬到第N层楼要爬N-1楼,从第N层爬到第M层要爬NM-层;线型棵数=总长/间隔+1环型棵数=总长/间隔楼间棵数=总长/间隔-11单边线形植树:棵数=总长÷间隔+1;总长=棵数-1×间隔2单边环形植树:棵数=总长÷间隔;总长=棵数×间隔3单边楼间植树:棵数=总长÷间隔-1;总长=棵数+1×间隔4双边植树:相应单边植树问题所需棵数的2倍;5剪绳问题:对折N 次,从中剪M 刀,则被剪成了2N×M +1段⑴ 路程=速度×时间; 平均速度=总路程÷总时间 平均速度型:平均速度=21212v v v v + 2相遇追及型:相遇问题:相遇距离=大速度+小速度×相遇时间 追及问题:追击距离=大速度—小速度×追及时间 背离问题:背离距离=大速度+小速度×背离时间 3流水行船型:顺水速度=船速+水速; 逆水速度=船速-水速; 顺流行程=顺流速度×顺流时间=船速+水速×顺流时间 逆流行程=逆流速度×逆流时间=船速—水速×逆流时间 4火车过桥型:列车在桥上的时间=桥长-车长÷列车速度列车从开始上桥到完全下桥所用的时间=桥长+车长÷列车速度 列车速度=桥长+车长÷过桥时间 (5)环形运动型:反向运动:环形周长=大速度+小速度×相遇时间 同向运动:环形周长=大速度—小速度×相遇时间(6)扶梯上下型:扶梯总长=人走的阶数×1±人梯u u ,顺行用加、逆行用减顺行:速度之和×时间=扶梯总长 逆行:速度之差×时间=扶梯总长(7)队伍行进型:对头→队尾:队伍长度=u 人+u 队×时间 队尾→对头:队伍长度=u 人-u 队×时间 (8)典型行程模型:等距离平均速度:21212u u u u u +=U 1、U 2分别代表往、返速度 等发车前后过车:核心公式:21212t t t t T +=,1212t t t t u u -+=人车 等间距同向反向:2121u u u u t t -+=反同 不间歇多次相遇:单岸型:2321s s s += 两岸型:213s s s -= s 表示两岸距离无动力顺水漂流:漂流所需时间=顺逆顺逆t t t t -2其中t 顺和t 逆分别代表船顺溜所需时间和逆流所需时间浓度=溶质÷溶液 溶质=溶液×浓度 溶液=溶质÷浓度⑵ 浓度分别为a%、b%的溶液,质量分别为M 、N,交换质量L 后浓度都变成c%,则 ⑶ 混合稀释型等溶质增减溶质核心公式:313122r r r r r += 其中r 1、r 2、r 3分别代表连续变化的浓度1利润=销售价卖出价-成本; 利润率=成本利润=成本销售价-成本=成本销售价-1;2销售价=成本×1+利润率; 成本=+利润率销售价1;3利息=本金×利率×时期; 本金=本利和÷1+利率×时期;本利和=本金+利息=本金×1+利率×时期=期限利率)(本金+⨯1;月利率=年利率÷12; 月利率×12=年利率;例:某人存款2400元,存期3年,月利率为10.2‰即月利1分零2毫,三年到期后,本利和共是多少元”∴2400×1+10.2%×36 =2400×1.3672 =3281.28元关键是年龄差不变;①几年后年龄=大小年龄差÷倍数差-小年龄 ②几年前年龄=小年龄-大小年龄差÷倍数差⑴两集合标准型:满足条件I 的个数+满足条件II 的个数—两者都满足的个数=总个数—两者都不满足的个数⑵三集合标准型:C B A =C B A C A C B B A C B A +---++ ⑶三集和图标标数型:⑷三集和整体重复型:假设满足三个条件的元素分别为ABC,而至少满足三个条件之一的元素的总量为W;其中:满足一个条件的元素数量为x,满足两个条件的元素数量为y,满足三个条件的元素数量为z,可以得以下等式:①W=x+y+z ②A+B+C=x+2y+3z核心公式:y=N —xT原有草量=牛数-每天长草量×天数,其中:一般设每天长草量为X 注意:如果草场面积有区别,如“M 头牛吃W 亩草时”,N 用WM代入,此时N 代表单位面积上的牛数;如果有一个量,每个周期后变为原来的A 倍,那么N 个周期后就是最开始的A N 倍,一个周期前应该是当时的A1;调和平均数公式:21212a a a a a +=等价钱平均价格核心公式:21212p p p p p +=P 1、P 2分别代表之前两种东西的价格 等溶质增减溶质核心公式:313122r r r r r += 其中r 1、r 2、r 3分别代表连续变化的浓度核心公式: 2121a a a a a +=核心口诀:“余同取余、和同加和、差同减差、公倍数做周期” 注意:n 的取值范围为整数,既可以是负值,也可以取零值; 闰年被4整除的2月有29日,平年不能被4整除的2月有28日,记口诀:一年就是1,润日再加1;一月就是2,多少再补算;★星期推断:一年加1天;闰年再加1天;注意:星期每7天一循环;“隔N 天”指的是“每N+1天”; 1一元二次方程求根公式:ax 2+bx+c=ax-x 1x-x 2其中:x 1=a ac b b 242-+-;x 2=aac b b 242---b 2-4ac ≥0根与系数的关系:x 1+x 2=-a b,x 1·x 2=ac 2ab b a 2≥+ ab b a ≥+2)2(ab b a 222≥+ abc c b a ≥++3)3( 3abc c b a 3222≥++ abc c b a 33≥++ 推广:n n n x x x n x x x x ......21321≥++++4一阶导为零法:连续可导函数,在其内部取得最大值或最小值时,其导数为零; 5两项分母列项公式:)(a m m b +=m 1—a m +1×ab6三项分母裂项公式:)2)((a m a m m b ++=)(1a m m +—)2)((1a m a m ++×ab21排列公式:P m n =nn -1n -2…n-m +1,m≤n ; 56737⨯⨯=A 2组合公式:C m n =P m n ÷P m m =规定0n C =1;12334535⨯⨯⨯⨯=c 3错位排列装错信封问题:D 1=0,D 2=1,D 3=2,D 4=9,D 5=44,D 6=265,4N 人排成一圈有N N A /N 种; N 枚珍珠串成一串有NN A /2种;十七、等差数列 (1)s n =2)(1n a a n +⨯=na 1+21nn-1d ; 2a n =a 1+n -1d ; 3项数n =d a a n 1-+1;4若a,A,b 成等差数列,则:2A =a+b ; 5若m+n=k+i,则:a m +a n =a k +a i ; 6前n 个奇数:1,3,5,7,9,…2n —1之和为n 2 其中:n 为项数,a 1为首项,a n 为末项,d 为公差,s n 为等差数列前n 项的和十八、等比数列 1a n =a 1qn -1; 2s n =qq a n -11 ·1)-(q ≠1 3若a,G,b 成等比数列,则:G 2=ab ;4若m+n=k+i,则:a m ·a n =a k ·a i ; 5a m -a n =m-nd 6nm a a =q m-n其中:n 为项数,a 1为首项,a n 为末项,q 为公比,s n 为等比数列前n 项的和 十九、典型数列前N 项和平方数底数 1 2 3 4 5 6 7 8 9 10 11 平方 1 4 9 16 25 36 49 64 81 100 121 底数 12 13 14 15 16 17 18 19 20 21 22 平方 144 169 196 225 256 289 324 361 400 441 484 底数 23 24 25 26 27 28 29 30 31 32 33 平方 529576625676729784841900961 1024 1089立方数底数 1 2 3 4 5 6 7 8 9 10 11 立方182764125216343512729 1000 1331★1既不是质数也不是合数以内质数 2 3 5 7 101 103 10911 13 17 19 23 29 113 127 13131 37 41 43 47 53 59 149 151 157 163 16761 67 71 73 79 83 89 97 173 179 181 191 193 197 1993.常用“非唯一”变换①数字0的变换:)0(00≠=N N②数字1的变换:)0()1(1120≠-===a a N N③特殊数字变换:244216== 23684264===249381== 281642256=== ④个位幂次数字:12424== 13828== 12939== 1.勾股定理:a 2+b 2=c 2其中:a 、b 为直角边,c 为斜边2.面积公式:正方形=2a 长方形= b a ⨯ 三角形=c ab ah sin 2121= 梯形=h b a )(21+ 圆形=πR 2 平行四边形=ah 扇形=0360n πR 23.表面积:正方体=62a 长方体=)(2ac bc ab ++⨯ 圆柱体=2πr 2+2πrh 球的表面积=4πR 2 4.体积公式正方体=3a 长方体=abc 圆柱体=Sh =πr 2h 圆锥=31πr 2h 球=334R 5.若圆锥的底面半径为r,母线长为l ,则它的侧面积:S 侧=πr l ; 6.图形等比缩放型:一个几何图形,若其尺度变为原来的m 倍,则:1.所有对应角度不发生变化;2.所有对应长度变为原来的m 倍;3.所有对应面积变为原来的m 2倍;4.所有对应体积变为原来的m 3倍; 7.几何最值型:1.平面图形中,若周长一定,越接近与圆,面积越大;2.平面图形中,若面积一定,越接近于圆,周长越小;3.立体图形中,若表面积一定,越接近于球,体积越大;4.立体图形中,若体积一定,越接近于球,表面积越大;数量关系归纳分析一、等差数列:两项之差、商成等差数列1. 60, 30, 20, 15, 12,2. 23, 423, 823,3. 1, 10, 31, 70, 123二、“两项之和差、积商等于第三项”型基本类型: ⑴ 两项之和差、积商=第3项; ⑵ 两项之和差、积商±某数=第3项; 4. -1,1, ,1,1,2 5. ,, ,,0, 6. 1944, 108, 18, 6, 7. 2,4,2, ,, 三、平方数、立方数1) 平方数列;1,4,9,16,25,36,49,64,81,100,121;;; 2) 立方数列; 1,8,27,64,125,216,343;;;8. 1, 2, 3, 7, 46, 9. -1, 0, -1, , -2, -5,-33四、升、降幂型10. 24, 72, 216, 648, A. 1296 C. 2552 D. 324011. , , 1, 2, , 24 A. 3 C. 7 D. 10八、跳跃变化数列及其变式13. 9, 15, 22, 28, 33, 39,55, A. 60 C. 66 D. 58九、分数数列分子、分母各成不相关的数列或分子、分母交叉看16. , , , , A. B. C. 1 D.17. ,,,, , A. B. C. D.十、阶乘数列18. 1, 2, 6, 24, , 720 A. 109 B. 120 C. 125 D. 169十一、余数数列19. 15, 18, 54, , 210 A. 106 B. 107 C. 123 D. 112技巧方法:(一)观察数列的变化趋势;1、单调上升或下降的数列; “先减加,再除乘,平方立方增减项”2、波动性的数列; “隔项相关”3、先升后降的数列;“底数上升,指数下降的幂数列”“最后一项为分子为1的分数,倒数第二项为1”1、1^6,2^5,3^4,4^3,5^2,6^1,7^0,8^-1,即 1,32,81,64,25,6,1,1/8;整除判定基本法则1.能被2、4、8、5、25、125整除的数的数字特性能被2或5整除的数余数,末一位数字能被2或5、0整除余数;能被4或25整除的数余数,末两位数字能被4或 25整除余数;能被8或125整除的数余数,末三位数字能被8或125整除余数;2.能被3、9整除的数的数字特性能被3或9整除的数余数,各位数字和能被3或9整除余数;3.能被11整除的数的数字特性能被11整除的数,奇数位的和与偶数位的和之差,能被11整除;4.能被6:能被2和3整除;能被10:末位是0;能被12:能被3和4整除数量关系公式1.两次相遇公式:单岸型S=3S1+S2/2两岸型S=3S1-S2例题:两艘渡轮在同一时刻垂直驶离 H 河的甲、乙两岸相向而行,一艘从甲岸驶向乙岸,另一艘从乙岸开往甲岸,它们在距离较近的甲岸 720 米处相遇;到达预定地点后, 每艘船都要停留 10 分钟,以便让乘客上船下船,然后返航;这两艘船在距离乙岸 400 米处又重新相遇;问:该河的宽度是多少A. 1120 米B. 1280 米C. 1520 米D. 1760 米典型两次相遇问题,这题属于两岸型距离较近的甲岸 720 米处相遇、距离乙岸 400 米处又重新相遇代入公式3720-400=1760选D 如果第一次相遇距离甲岸X米,第二次相遇距离甲岸Y米,这就属于单岸型了,也就是说属于哪类型取决于参照的是一边岸还是两边岸2.漂流瓶公式: T=2t逆t顺/ t逆-t顺例题:AB两城由一条河流相连,轮船匀速前进,A――B,从A城到B城需行3天时间,而从B城到A城需行4天,从A城放一个无动力的木筏,它漂到B城需多少天A、3天B、21天C、24天D、木筏无法自己漂到B城解:公式代入直接求得243.沿途数车问题公式:发车时间间隔T=2t1t2/ t1+t2 车速/人速=t1+t2/ t2-t1例题:小红沿某路公共汽车路线以不变速度骑车去学校,该路公共汽车也以不变速度不停地运行,没隔6分钟就有辆公共汽车从后面超过她,每隔10分钟就遇到迎面开来的一辆公共汽车,公共汽车的速度是小红骑车速度的倍A. 3C. 5解:车速/人速=10+6/10-6=4 选B4.往返运动问题公式:V均=2v1v2/v1+v2例题:一辆汽车从A地到B地的速度为每小时30千米,返回时速度为每小时20千米,则它的平均速度为多少千米/小时解:代入公式得23020/30+20=24选A5.电梯问题:能看到级数=人速+电梯速度顺行运动所需时间顺6.能看到级数=人速-电梯速度逆行运动所需时间逆7.6.什锦糖问题公式:均价A=n /{1/a1+1/a2+1/a3+1/an}8.例题:商店购进甲、乙、丙三种不同的糖,所有费用相等,已知甲、乙、丙三种糖9.每千克费用分别为元,6 元, 元,如果把这三种糖混在一起成为什锦10.糖,那么这种什锦糖每千克成本多少元11. A.元 B.5 元 C.元 D.元12.7.十字交叉法:A/B=r-b/a-r13.例:某班男生比女生人数多80%,一次考试后,全班平均成级为75 分,而女生的平均分比男生的平均分高20% ,则此班女生的平均分是:14.析:男生平均分X,女生15. 75-X116. 75=17.X 得X=70 女生为849.一根绳连续对折N次,从中剪M刀,则被剪成2的N次方M+1段10.方阵问题:方阵人数=最外层人数/4+1的2次方N排N列最外层有4N-4人例:某校的学生刚好排成一个方阵,最外层的人数是96人,问这个学校共有学生析:最外层每边的人数是96/4+1=25,则共有学生2525=62511.过河问题:M个人过河,船能载N个人;需要A个人划船,共需过河M-A/ N-A次例题广东05有37名红军战士渡河,现在只有一条小船,每次只能载5人,需要几次才能渡完 B. 8 解:37-1/5-1=915.植树问题:线型棵数=总长/间隔+1环型棵数=总长/间隔楼间棵数=总长/间隔-1例题:一块三角地带,在每个边上植树,三个边分别长156M 186M 234M,树与树之间距离为6M,三个角上必须栽一棵树,共需多少树A 93B 95C 96D 9912.星期日期问题:闰年被4整除的2月有29日,平年不能被4整除的2月有28日,记口诀:一年就是1,润日再加1;一月就是2,多少再补算例:2002年 9月1号是星期日 2008年9月1号是星期几因为从2002到2008一共有6年,其中有4个平年,2个闰年,求星期,则:4X1+2X2=8,此即在星期日的基础上加8,即加1,第二天;例:2004年2月28日是星期六,那么2008年2月28日是星期几4+1=5,即是过5天,为星期四;08年2 月29日没到13.复利计算公式:本息=本金{1+利率的N次方},N为相差年数例题:某人将10万远存入银行,银行利息2%/年,2年后他从银行取钱,需缴纳利息税,税率为20%,则税后他能实际提取出的本金合计约为多少万元两年利息为1+2%的平方10-10= 税后的利息为1-20%约等于,则提取出的本金合计约为万元14.牛吃草问题:草场原有草量=牛数-每天长草量天数例题:有一水池,池底有泉水不断涌出,要想把水池的水抽干,10台抽水机需抽8小时,8台抽水机需抽12小时,如果用6台抽水机,那么需抽多少小时A、16B、20C、24D、28解:10-X8=8-X12 求得X=410-48=6-4Y 求得答案Y=24 公式熟练以后可以不设方程直接求出来16:比赛场次问题:淘汰赛仅需决冠亚军比赛场次=N-1淘汰赛需决前四名场次=N单循环赛场次为组合N人中取2双循环赛场次为排列N人中排2人传接球M次公式:次数=N-1的M次方/N 最接近的整数为末次传他人次数,第二接近的整数为末次传给自己的次数例题:四人进行篮球传接球练习,要求每人接球后再传给别人;开始由甲发球,并作为第一次传球,若第五次传球后,球又回到甲手中,则共有传球方式;A. 60种B. 65种C. 70种D. 75种公式解题: 4-1的5次方 / 4= 最接近的是61为最后传到别人次数,第二接近的是60为最后传给自己的次数。

小学数学必考的四类行程问题,解题就按这个思路来!

小学数学必考的四类行程问题,解题就按这个思路来!

小学数学必考的四类行程问题,解题就按这个思路来!行程问题是小学数学考试的四大题型之一(计算、数论、几何、行程)。

今天我们一起学习一下如何解决这一类问题!1【一般相遇追及问题】包括一人或者二人时(同时、异时)、地(同地、异地)、向(同向、相向)的时间和距离等条件混合出现的行程问题。

建议熟练应用标准解法,即s=v×t结合标准线段画图(基本功)解答。

由于只用到相遇追及的基本公式即可解决,在解题的时候,一旦出现比较多的情况变化时,结合自己画出的图分段去分析情况。

例题甲乙两人相距200米,甲每分钟走45米,乙每分钟行55米。

几分钟后两人相距500米?分析与解:1.反方向运动:相背:(500-200)÷(45+55)=300/100=3(分钟)相遇再相背:(500+200)÷(45+55)=700/100=7(分钟)2.同方向运动:追上再超过:(500+200)÷(55-45)=700/10=70(分钟)追不上:(500-200)÷(55-45)=300/10=30(分钟)展开剩余84%2【复杂相遇追及问题】(1)多人相遇追及问题多人相遇追及问题,即在同一直线上,3个或3个以上的对象之间的相遇追及问题。

比一般相遇追及问题多了一个运动对象,即一般我们能碰到的是三人相遇追及问题。

解题思路完全一样,只是相对复杂点,关键是标准画图的能力能否清楚表明三者的运动状态。

例题有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇. 那么,东、西两村之间的距离是多少米?(2)多次相遇追及问题即两个人在一段路程中同时同地或者同时异地反复相遇和追及,俗称“反复折腾型问题”。

分为标准型(如已知两地距离和两者速度,求n次相遇或者追及点距特定地点的距离或者在规定时间内的相遇或追及次数)和纯周期问题(少见,如已知两者速度,求一个周期后,即两者都回到初始点时相遇、追及的次数)。

行程问题与周期问题

行程问题与周期问题

行程问题1、小明和小强两人玩一个追及游戏,小强让小明先走10秒,保证在距离终点1000米的地方追上他,已知小明的步行速度为每分钟50米,问小强骑自行车的速度是多少?2、李明和张虎在300米的环形跑道上练习跑步,李明每秒跑5米,张虎每秒跑3秒,两人同时从起跑点出发同向而行,问出发后李明第一次追上张虎时,张虎跑了多少米?3、在第二题的条件中,在李明和张虎出发1分钟后,张虎决定在1分30秒的时候追上李明,问这时候张虎需要将速度提高到多少?4、从甲地到乙地,先是上坡路,然后就是下坡路,一辆汽车上坡速度为每小时20千米,下坡路速度为每小时35千米。

车从甲地到乙地共用9小时,从乙地返回到甲地共用7.5小时。

求去时上坡路和下坡路分别为多少千米?5、一列客车从甲站开往乙站,每小时行65千米;一列货车从乙站开往甲站,每小时行60千米。

已知货车比客车早开出5分钟,两车相遇地点距甲乙两站中点10千米。

求甲乙两站之间的路程?6、甲乙两队学生从相隔18千米的两地同时出发,相向而行,一个同学骑自行车以每小时15千米的速度在两队间不停地往返联络。

甲队每小时行5千米,乙队每小时行4千米,两队相遇时,骑自行车的同学共行多少千米?7、甲乙两个车队同时从相隔330千米的两地相向而行,甲队每小时行60千米,乙队每小时行50千米,一个人骑摩托车每小时行80千米在两车队中间往返联络,问两车队相遇时,摩托车行驶了多少千米?平均数问题思维训练题1.在一次登山活动中,梓涵上山每分钟行50米,18分钟到达山顶.然后按原路下山,每分钟行75米.梓涵上山和下山平均每分钟行多少米?2.四年级有60名同学去栽树,平均每人栽4棵,恰好栽完.随后又派来一部分同学,这时平均每人栽树3棵就可完成任务,又派来几名同学?3.有几位同学一起计算他们语文考试的平均分,梓涵的得分如果再提高13分,他们的平均分就达到90分,梓涵的得分如果降低5分,他们的平均分就只有87分,那么这些同学共有多少人?4.九湖中心小学有100名学生参加数学竞赛,平均得分63分,其中男学生平均分是60分,女学生平均分是70分,男女生各有多少人?5.甲、乙的平均数是26,乙、丙的平均数是28,甲、丙的平均数是21,求甲、乙、丙三数的平均数.6.梓涵参加体育达标测试,五项平均成绩是85分,如果投掷成绩不算在内,平均成绩是83分,梓涵投掷得了多少分?7.如果四个人的平均年龄是23岁,且没有小于18岁的,那么年龄最大的可能多少岁?8.五个数的平均数是45,将5个数从小到大排列,前三个数的平均数是39,后三个数的平均数是53,第三个数是多少?9. 梓涵参加了三次数学竞赛,平均分是84分,已知前两次平均分是82分,求他的三次得了多少分?10. 梓涵期末考试时,数学成绩公布前他四门功课的平均分数是92分,数学成绩公布后,他的平均成绩下降了1分.梓涵数学考了多少分?11. 如果三个人的平均年龄是22岁,且没有小于18岁的,那么年龄最大的可能是多少岁?12. 如果四个人的平均年龄是25岁,且没有小于16岁的,且这四个人的年龄互不相等,那么年龄最大的可能是多少岁?年龄最小的可能是多少岁?13. 在一次登山活动中,梓涵上山每分钟行50米,然后按原路下山,每分钟行75米.梓涵上山和下山平均每分钟行多少米?14. 一个同学读一本故事书,前4天每天读25页,以后每天读40页,又读了6天正好读完.这个同学平均每天读多少页?15. 梓涵同学读一本故事书,前4天每天读25页,以后6天又读了200页正好读完.这个同学平均每天读多少页?16.琦涵五次考试平均分为96分(满分100分),那么她每次考试的分数不得低于多少分?。

行测数量关系的常用公式讲解

行测数量关系的常用公式讲解

行测常用数学公式工作效率=工作量÷工作时间; 工作时间=工作量÷工作效率; 总工作量=各分工作量之和; 设总工作量为1或最小公倍数(1)方阵问题:1.实心方阵:方阵总人数=(最外层每边人数)2=(外圈人数÷4+1)2=N 2最外层人数=(最外层每边人数-1)×42.空心方阵:方阵总人数=(最外层每边人数)2-(最外层每边人数-2×层数)2=(最外层每边人数-层数)×层数×4=中空方阵的人数。

★无论是方阵还是长方阵:相邻两圈的人数都满足:外圈比内圈多8人。

3.N 边行每边有a 人,则一共有N(a-1)人。

4.实心长方阵:总人数=M ×N 外圈人数=2M+2N-45.方阵:总人数=N 2N 排N 列外圈人数=4N-4例:有一个3层的中空方阵,最外层有10人,问全阵有多少人? 解:(10-3)×3×4=84(人) (2)排队型:假设队伍有N 人,A 排在第M 位;则其前面有(M-1)人,后面有(N-M )人 (3)爬楼型:从地面爬到第N 层楼要爬(N-1)楼,从第N 层爬到第M 层要爬N M -层。

线型棵数=总长/间隔+1 环型棵数=总长/间隔 楼间棵数=总长/间隔-1 (1)单边线形植树:棵数=总长÷间隔+1;总长=(棵数-1)×间隔 (2)单边环形植树:棵数=总长÷间隔; 总长=棵数×间隔(3)单边楼间植树:棵数=总长÷间隔-1;总长=(棵数+1)×间隔 (4)双边植树:相应单边植树问题所需棵数的2倍。

(5)剪绳问题:对折N 次,从中剪M 刀,则被剪成了(2N×M +1)段⑴ 路程=速度×时间; 平均速度=总路程÷总时间 平均速度型:平均速度=21212v v v v +(2)相遇追及型:相遇问题:相遇距离=(大速度+小速度)×相遇时间 追及问题:追击距离=(大速度—小速度)×追及时间 背离问题:背离距离=(大速度+小速度)×背离时间 (3)流水行船型:顺水速度=船速+水速; 逆水速度=船速-水速。

工程问题和行程问题

工程问题和行程问题
3
行全程的 3 ,如果两车从两地同时对开,
5
几小时相遇?
2、一辆车从甲地出发到乙地,行完全程需要 8小时,行了5小时后,距乙地还有150千米。 甲地到乙地的距离是多少千米?
3、甲乙两车从A、B两地同时相对开出,3小
1
程的 3
5
1
这时两车相距80千米的 ,A、B两地2间的距离
是多少千米?
一批零件,张师傅独做20时完成,王师傅独 做30时完成.如果两人同时做,那么完成 任务时张师傅比王师傅多做60个零件.这 批零件共有多少个?
3
3小时可以行全程的几分之几 ?
修一条路,甲队独修要12天,乙队独修要15天。
(1)两队合修,多少天可以完成? (2)甲队先修4天后,剩下的由乙队来修,
还要多少天才能修完? (3)两队合修5天后,剩下的由甲队来修,
还要多少天才能修完?
我来试一试
想挑战吗?
1、甲车4小时可行全程的 1 ,乙车6小时可
2、一辆车从甲地到乙地,平均每小时行 1 ,
行完全程需要几小时?
5
3、做200个零件,平均每天做50个,几天可 以完成任务?
4、做一批零件,平均每天做 1 ,几天可以
完成任务?
4
我 1.一项工程,10天完成。
能 行
平均每天完成工程的几分之几?
3天可以完成工程的几分之几?
完成工程的
1 2
需要几天?
2.一辆汽车从甲地到乙地,行完全程 需要6小时。平均每小时行全程的 几分之几?行全程的 2 需要几小时?
典型应用题
——工程问题与行程问题
几种常用的等量关系
工程问题:工作总量、工作时间、工作效率
工作总量=工作效率×工作时间 工作效率=工作总量÷工作时间 工作时间=工作总量÷工作效率

小学六年级行程和工程问题

小学六年级行程和工程问题

小学中经常遇到的行程问题行程问题是小学数学中经常遇到的,解决起来往往有些困难,因为还没有学习方程,所以有些题目很不好理解,利用单位1解决问题,这里举一些例子,由浅入深,结合方程的解法,同学们自己比较一下。

我们先来了解一下,关于行程问题的公式:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。

基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题:确定行程过程中的位置相遇问题:速度和×相遇时间=相遇路程相遇路程÷速度和=相遇时间相遇路程÷相遇时间= 速度和相遇问题:(直线):甲的路程+乙的路程=总路程相遇问题:(环形):甲的路程+乙的路程=环形周长追及问题:追及时间=路程差÷速度差速度差=路程差÷追及时间追及时间×速度差=路程差追及问题:(直线):距离差=追者路程-被追者路程=速度差X追击时间追及问题:(环形):快的路程-慢的路程=曲线的周长流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2 水速:(顺水速度-逆水速度)÷2流水速度+流水速度÷2 水速:流水速度-流水速度÷2关键是确定物体所运动的速度,参照以上公式。

列车过桥问题:关键是确定物体所运动的路程,参照以上公式。

我们由浅入深看一些题目:一、相遇问题1、一列客车从甲地开往乙地,同时一列货车从甲地开往乙地,当货车行了180千米时,客车行了全程的七分之四;当客车到达乙地时,货车行了全程的八分之七。

甲乙两地相距多少千米?2、甲、乙两车同时从A、B两地相对开出,2小时相遇。

相遇后两车继续前行,当甲车到达B 地时,乙车离A地还有60千米,一直两车速度比是3:2。

求甲乙两车的速度。

行程问题的公式和工程问题的公式

行程问题的公式和工程问题的公式

文章标题:深度探讨行程问题的公式与工程问题的公式一、前言在数学中,行程问题的公式和工程问题的公式是两个重要的概念。

它们在实际生活和工作中有着广泛的应用,并且对于深入理解数学和物理学的原理有着重要的作用。

本文将就行程问题的公式和工程问题的公式进行全面的评估,为读者提供深度、广度兼具的知识。

二、行程问题的公式1. 行程问题的定义行程问题是数学中一个重要的概念,它描述了物体在一定时间内的运动情况。

常见的行程问题包括匀速直线运动、加速直线运动等。

在行程问题中,最重要的是要确定物体的位移、速度和加速度之间的关系。

2. 行程问题的公式在行程问题中,位移、速度和加速度之间有着一定的关系。

根据物体的运动情况,可以得到一些重要的公式,如匀速直线运动的位移公式:$s=vt$,加速直线运动的位移公式:$s=vt+\frac{1}{2}at^2$等。

这些公式在实际生活和工作中都有着重要的应用,可以帮助人们更准确地描述物体的运动情况。

3. 个人观点和理解对于行程问题的公式,我个人认为它们是数学在实际生活中的重要应用。

通过这些公式,我们可以更好地理解物体的运动规律,为工程和科学研究提供重要的参考。

行程问题的公式也可以帮助我们更好地解决一些实际问题,如交通规划、物流运输等。

三、工程问题的公式1. 工程问题的定义工程问题是指在工程实践中常见的一些数学问题。

这些问题往往涉及到力学、热力学、流体力学等领域,对工程师和科学家有着重要的指导作用。

工程问题的公式是解决这些问题的重要工具之一。

2. 工程问题的公式在工程问题中,常见的公式包括动力学公式、热力学公式、流体力学公式等。

这些公式帮助工程师和科学家更好地理解和解决工程实践中的问题,如牛顿第二定律$F=ma$、热传导方程$q=ks\frac{\Delta T}{\Delta x}$等。

这些公式的应用使工程实践更加科学和高效。

3. 个人观点和理解工程问题的公式是解决工程实践中的重要工具,它们对于工程师和科学家来说是不可或缺的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工程问题和行程问题中的周期问题
例1:蓄水池有一进水管和出水管。

单开进水管5小时注满一池水,单开排水管3小时排光一池水。

现在池内有半池水,如果按进水,排水,进水,排水。

顺序轮流开一小时。

多长后排光水?
分析:一个周期是2小时。

在一个周期内可以排出1/3-1/5=2/15的水
我们看在几个周期可以完成任务1/2÷2/15=3.75(个)周期我们考虑整数个周期
3个周期也就是6小时还有1/2-2/15⨯3=1/10没完成
接下来一小时进水所以7小时后池内有1/5+1/10=3/10
要用3/10÷1/3=9/10(小时)
一共要7+9/10=7.9(小时)
练习:一项工程,甲独做要12小时完成,乙独做要18小时完成。

甲先做一小时然后乙做一小时。

如此交替工作,一共要多久完成任务?
例2:李和小张同时开始制作同一种零件,每人每分钟能制作1个零件,但小李每制作3个零件要休息1分钟,小张每制作4个零件要休息1.5分钟。

现在他们要共同完成制作300个零件的任务,需要_________分钟。

分析:小李的周期是4分钟,小张的周期是5.5分钟。

他们最小周期是44分钟小李一个周期能完成3个,44分钟他完成33个零件,小张44分钟完成4⨯8=32个零件,在44分钟内他们完成33+32=65个零件,300÷65=4。

40
所以在4个44分钟后还余下40个零件,也就是说完成260个零件要176分钟我们只要计算二人合作40个零件要多久?我们先大概估计下,如果2人不休息则要40÷2=20(分钟)小李20分钟只有15分钟在干活共完成15个,小张完成的计算不太方便。

我们先算小张4个周期也就是22分钟完成了16个,小李干了5个周期完成了15个,另外2分钟完成了2个,所以22分钟两人共完成了16+17=33个零件,余下7个第23分钟一共完成2个,第24分钟小李休息所以只完成了1个,第25和第26分钟各完成2个。

所以26分钟能完成这40个。

所以完成300个零件一共要176+26=202(分钟)
练习1甲乙同时做一种零件,他们的速度都是每分钟生产1个,甲每做3分钟休息一分钟,乙每做5分钟休息2分钟,两人合做200个零件要多少分钟?
2甲乙丙三队完成一项工程分别要3,8,10小时,三个队每个队轮流做一小时完成这项工作要多久?
例3:小明和小李分别从相距22千米的甲乙两地同时出发相向而行,小明的速度是4千米每小时,他每走一小时休息5分钟,小李的速度是每小时6千米,他每走50分钟休息10分钟,他们从出发到相遇要多久?
分析:如果他们都不休息就要22÷(6+4)=2.2小时。

小李的周期是1小时,小明的周期是65分钟。

我们先考虑小明2个周期130分钟两人共走了多远。

小明走了4⨯2+5⨯2+6⨯1/6=19(千米)还余下22-19=3(千米)
还要3÷(6+0.4)=0.3小时,不难得到他们走最后3千米没休息。

所以一共要130+18=148(分钟)
练习:1一辆汽车从甲地开往乙地,每分钟行750米,预计50分钟到达。

但汽车行驶到3/5路程时,出了故障。

用5分钟修理完毕。

如果仍需在预定时间内到达乙地,汽车行驶余下的路程时,每分钟必须比原来快多少米?
2甲和乙两地相距100千米,张先骑摩托车从甲出发,1小时后李驾驶汽车从甲出发,两人同时到达乙地。

摩托车开始速度是50千米/小时,中途减速为40 千米/小时。

汽车速度是80千米/小时。

汽车曾经在途中停驶10分钟,那么张驾驶的摩托车减速时在他出发后的__________小时。

例4甲乙两车同时从A出发同向而行,甲车速度是每小时60千米,甲走50分钟停10分钟,乙车速度是52千米每小时一车一直前进,问中途两车相遇几次?(不算出发)
分析:甲的周期是一小时,乙追上甲必定在甲休息时,而甲追上乙必须在50分钟内。

在第一小时甲休息时乙追上甲一次。

甲一小时走50千米,乙走52千米第二小时甲追乙要2÷(60-52)=0.25小时
第二小时乙还会追上甲,所以第二小时会相遇2次。

第三小时追击路程变为
2⨯2=4千米,追击时间要4÷(60-52)=0.5小时
第三小时甲车休息的时候乙车又会追上甲第三小时会相遇2次
第四小时追击路程变为2⨯3=6(千米)追击时间6÷(60-52)=0.75小时
第四小时甲车休息时候乙车又会追上甲。

第五小时此时追击路程变为8千米要8÷(60-52)=1小时,而给甲的追击时间最多是50分钟,这不可能。

所以甲车追上乙车3次,乙车追上甲车4次一共相遇7次。

练习:甲乙两车同时从A出发同向而行,甲车速度是每小时72千米,甲走50分钟停10分钟,乙车速度是62千米每小时一车一直前进,问中途两车相遇几次?(不算出发那次)
例3:龟兔赛跑全程5.2千米,兔子20千米每小时,乌龟时速3千米,乌龟不停地跑兔子跑1分钟玩20分钟,又跑2分钟玩20分钟,再跑3分钟玩20分钟。

谁先到终点?先到多久?
乌龟共用5.2÷3=26/15小时=104分,假设兔子不停则要5.2÷20=0.26小时=15.6分1+2+3+4+5=15分,所以兔子经历了5个周期第五次休息后再跑0.6分钟就可以到终点兔子用的总时间是15.6+20⨯5=115.6分钟,所以乌龟早到
115.6-104=11.6分钟
小结:解决此类问题关键是找准周期,最后余下的一个周期内的离散情况只有把它们单独算,在做此类题目的时候要细心和耐心。

作业:
1一项工程甲独做要30天完成,乙独做要40天完成,甲乙二人合作这项工作,甲做5天休息一天,乙做3天休息一天,多少天后他们完成了这项工程?
2一项工程甲乙合作6天完成了了5/6,甲做一天乙做一天这样轮流要29/2天完成,求甲做3天后两人合作还要多少天完成?
3一项工作甲做2天乙做4天可以完成3/10.如果甲做8天乙做10天可以完成这项工程。

如果甲做一天乙做一天轮流做要多少天完成这项工作?
4甲每分钟可以加工3个零件,乙每分钟可以加工2个零件,甲做3分钟休息1分钟,乙做4分钟休息1分钟,他们合作278个零件要多少分钟?
5某乡镇小学到县城参观,规定汽车从县城出发于上午7点到校,接学生立即出发去县城,由于汽车中途抛锚,不得不停车修理,师生等到7点10分的时候仍然未见汽车来接,就步行去县城,在途中遇到了修好的车,立即上车去县城,结果比预定时间晚了半小时。

汽车速度是步行的6倍,汽车中途排除故障花了多少分钟?
6龟兔赛跑,兔子的速度是乌龟的5倍。

兔子跑了一段路后就睡觉。

当他醒来时,乌龟已经快到终点,于是兔子去追乌龟,但乌龟到终点的时候兔子还有100米。

求兔子睡觉的时候乌龟走了多少米?。

相关文档
最新文档