2018年高考数学一轮复习精品试题第29讲 等比数列

合集下载

2018届高考数学(理)热点题型:数列(含答案解析)

2018届高考数学(理)热点题型:数列(含答案解析)

数列热点一 等差数列、等比数列的综合问题解决等差、等比数列的综合问题时,重点在于读懂题意,灵活利用等差、等比数列的定义、通项公式及前n 项和公式解决问题,求解这类问题要重视方程思想的应用.【例1】已知首项为32的等比数列{a n }不是递减数列,其前n 项和为S n (n∈N *),且S 3+a 3,S 5+a 5,S 4+a 4成等差数列. (1)求数列{a n }的通项公式;(2)设T n =S n -1S n (n∈N *),求数列{T n }的最大项的值与最小项的值.解 (1)设等比数列{a n }的公比为q , 因为S 3+a 3,S 5+a 5,S 4+a 4成等差数列, 所以S 5+a 5-S 3-a 3=S 4+a 4-S 5-a 5,即4a 5=a 3, 于是q 2=a 5a 3=14.又{a n }不是递减数列且a 1=32,所以q =-12.故等比数列{a n }的通项公式为a n =32×⎝ ⎛⎭⎪⎫-12n -1=(-1)n -1·32n .(2)由(1)得S n=1-⎝ ⎛⎭⎪⎫-12n =⎩⎪⎨⎪⎧1+12n,n 为奇数,1-12n,n 为偶数,当n 为奇数时,S n 随n 的增大而减小, 所以1<S n ≤S 1=32,故0<S n -1S n ≤S 1-1S 1=32-23=56.当n 为偶数时,S n 随n 的增大而增大, 所以34=S 2≤S n <1,故0>S n -1S n ≥S 2-1S 2=34-43=-712.综上,对于n∈N *,总有-712≤S n -1S n ≤56. 所以数列{T n }最大项的值为56,最小项的值为-712.【类题通法】解决等差数列与等比数列的综合问题,既要善于综合运用等差数列与等比数列的相关知识求解,更要善于根据具体问题情境具体分析,寻找解题的突破口.【对点训练】已知数列{a n }是公差不为零的等差数列,其前n 项和为S n ,满足S 5-2a 2=25,且a 1,a 4,a 13恰为等比数列{b n }的前三项. (1)求数列{a n },{b n }的通项公式; (2)设T n 是数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1的前n 项和,是否存在k∈N *,使得等式1-2T k =1b k成立?若存在,求出k 的值;若不存在,请说明理由. 解 (1)设等差数列{a n }的公差为d(d≠0), ∴⎩⎨⎧⎝ ⎛⎭⎪⎫5a 1+5×42d -2(a 1+d )=25,(a 1+3d )2=a 1(a 1+12d ),解得a 1=3,d =2,∴a n =2n +1. ∵b 1=a 1=3,b 2=a 4=9,∴等比数列{b n }的公比q =3,∴b n =3n . (2)不存在.理由如下:∵1a n a n +1=1(2n +1)(2n +3)=12⎝⎛⎭⎪⎫12n +1-12n +3, ∴T n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝⎛⎭⎪⎫12n +1-12n +3 =12⎝ ⎛⎭⎪⎫13-12n +3, ∴1-2T k =23+12k +3(k∈N *),易知数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫12k +3为单调递减数列,∴23<1-2T k ≤1315,又1b k =13k ∈⎝ ⎛⎦⎥⎤0,13,∴不存在k∈N *,使得等式1-2T k =1b k 成立.热点二 数列的通项与求和数列的通项与求和是高考必考的热点题型,求通项属于基本问题,常涉及与等差、等比的定义、性质、基本量运算.求和问题关键在于分析通项的结构特征,选择合适的求和方法.常考求和方法有:错位相减法、裂项相消法、分组求和法等.【例2】设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q =d ,S 10=100.(1)求数列{a n },{b n }的通项公式;(2)当d>1时,记c n =a nb n ,求数列{c n }的前n 项和T n .(1)解 由题意有⎩⎨⎧10a 1+45d =100,a 1d =2,即⎩⎨⎧2a 1+9d =20,a 1d =2, 解得⎩⎨⎧a 1=1,d =2或⎩⎨⎧a 1=9,d =29.故⎩⎨⎧a n =2n -1,b n=2n -1或⎩⎪⎨⎪⎧a n=19(2n +79),b n=9·⎝ ⎛⎭⎪⎫29n -1.(2)解 由d>1,知a n =2n -1,b n =2n -1, 故c n =2n -12n -1, 于是T n =1+32+522+723+924+…+2n -12n -1,①12T n =12+322+523+724+925+…+2n -12n .② ①-②可得12T n =2+12+122+…+12n -2-2n -12n =3-2n +32n, 故T n =6-2n +32n -1.【类题通法】用错位相减法解决数列求和的模板 第一步:(判断结构)若数列{a n ·b n }是由等差数列{a n }与等比数列{b n }(公比q)的对应项之积构成的,则可用此法求和.第二步:(乘公比)设{a n ·b n }的前n 项和为T n ,然后两边同乘以q. 第三步:(错位相减)乘以公比q 后,向后错开一位,使含有q k (k∈N *)的项对应,然后两边同时作差. 第四步:(求和)将作差后的结果求和,从而表示出T n .【对点训练】设数列{a n }的前n 项和为S n ,已知a 1=1,a 2=2,且a n +2=3S n -S n +1+3,n ∈N *.(1)证明:a n +2=3a n ; (2)求S 2n .(1)证明 由条件,对任意n∈N *,有a n +2=3S n -S n +1+3, 因而对任意n∈N *,n ≥2,有a n +1=3S n -1-S n +3. 两式相减,得a n +2-a n +1=3a n -a n +1, 即a n +2=3a n ,n ≥2.又a 1=1,a 2=2, 所以a 3=3S 1-S 2+3=3a 1-(a 1+a 2)+3=3a 1, 故对一切n∈N *,a n +2=3a n . (2)解 由(1)知,a n ≠0,所以a n +2a n=3.于是数列{a 2n -1}是首项a 1=1,公比为3的等比数列;数列{a 2n }是首项a 2=2,公比为3的等比数列. 因此a 2n -1=3n -1,a 2n =2×3n -1. 于是S 2n =a 1+a 2+…+a 2n=(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n ) =(1+3+…+3n -1)+2(1+3+…+3n -1) =3(1+3+…+3n -1)=32(3n -1).热点三 数列的综合应用 热点3.1 数列与函数的综合问题数列是特殊的函数,以函数为背景的数列的综合问题体现了在知识交汇点上命题的特点,该类综合题的知识综合性强,能很好地考查逻辑推理能力和运算求解能力,因而一直是高考命题者的首选.【例3-1】 设等差数列{a n }的公差为d ,点(a n ,b n )在函数f(x)=2x的图象上(n∈N *). (1)若a 1=-2,点(a 8,4b 7)在函数f(x)的图象上,求数列{a n }的前n 项和S n ;(2)若a 1=1,函数f(x)的图象在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n b n 的前n 项和T n .解 (1)由已知,b 7=2a 7,b 8=2a 8=4b 7, 有2a 8=4×2a 7=2a 7+2,解得d =a 8-a 7=2. 所以,S n =na 1+n (n -1)2d =-2n +n(n -1)=n 2-3n. (2)函数f(x)=2x 在(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2), 它在x 轴上的截距为a 2-1ln 2.由题意知,a 2-1ln 2=2-1ln 2,解得a 2=2.所以,d =a 2-a 1=1.从而a n =n ,b n =2n , 所以T n =12+222+323+…+n -12n -1+n2n ,2T n =11+22+322+…+n2n -1因此,2T n -T n =1+12+122+…+12n -1-n 2n=2-12n -1-n 2n =2n +1-n -22n. 所以,T n =2n +1-n -22n.热点3.2 数列与不等式的综合问题数列与不等式知识相结合的考查方式主要有三种:一是判断数列问题中的一些不等关系;二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,如果是证明题要灵活选择不等式的证明方法,如比较法、综合法、分析法等.如果是解不等式问题,要使用不等式的各种不同解法,如数轴法、因式分解法. 【例3-2】 在等差数列{a n }中,a 2=6,a 3+a 6=27. (1)求数列{a n }的通项公式;(2)记数列{a n }的前n 项和为S n ,且T n =S n3·2n -1,若对于一切正整数n ,总有T n ≤m 成立,求实数m 的取值范围.解 (1)设公差为d ,由题意得: ⎩⎨⎧a 1+d =6,2a 1+7d =27,解得⎩⎨⎧a 1=3,d =3,∴a n =3n. (2)∵S n =3(1+2+3+…+n)=32n(n +1),∴T n =n (n +1)2n ,T n +1=(n +1)(n +2)2n +1,∴T n +1-T n =(n +1)(n +2)2n +1-n (n +1)2n=(n +1)(2-n )2n +1,∴当n≥3时,T n >T n +1,且T 1=1<T 2=T 3=32,∴T n 的最大值是32,故实数m 的取值范围是⎣⎢⎡⎭⎪⎫32,+∞.。

2018届高三数学一轮复习课时作业(29)等比数列B理北师大版 精品

2018届高三数学一轮复习课时作业(29)等比数列B理北师大版 精品

课时作业(二十九)B [第29讲 等比数列][时间:35分钟 分值:80分]基础热身1.[2018·厦门外国语月考] 已知数列{a n }是由正数组成的等比数列,S n 表示{a n }的前n 项的和.若a 1=3,a 2a 4=144,则S 10的值是( )A .511B .1023C .1533D .30692.[2018·大连模拟] 在等比数列{a n }中,若a 2a 3a 6a 9a 10=32,则a 29a 12的值为( )A .4B .2C .-2D .-43.[2018·抚州二模] 等比数列{a n }的前n 项和为S n ,若S 1,S 3,S 2成等差数列,则数列{a n }的公比等于( )A .1 B.12 C .-12 D.1+524.[2018·汕头期末] 在△ABC 中,tan A 是以-4为第三项,4为第七项的等差数列的公差,tan B 是以13为第三项,9为第六项的等比数列的公比,则tan C =________.能力提升5.[2018·新余二模] 已知等比数列{a n }的前n 项和为S n ,且a 2018=3S 2018+2018,a 2018=3S 2009+2018,则公比q 等于( )A .3 B.13 C .4 D.146.[2018·巢湖一检] 在等比数列{a n }中,a 1=4,公比为q ,前n 项和为S n ,若数列{S n +2}也是等比数列,则q 等于( )A .2B .-2C .3D .-37.[2018·丰台一模] 设等差数列{a n }的公差d ≠0,a 1=4d .若a k 是a 1与a 2k 的等比中项,则k =( )A .3或-1B .3或1C .3D .18.[2018·琼海一模] 在数列{a n }中,a n +1=ca n (c 为非零常数),前n 项和为S n =3n+k ,则实数k 为( )A .0B .1C .-1D .29.[2018·东莞调研] 在等比数列{a n }中,a 1=1,且a 1+1,a 2+2,a 3+2依次成等差数列,则{a n }的前6项和等于________.10.[2018·盐城二模] 已知公差不为零的等差数列{a n }满足a 1,a 3,a 9成等比数列,{S n }为数列{a n }的前n 项和,则S 11-S 9S 7-S 6的值是________.11.[2018·福州质检] 在等比数列{a n }中,首项a 1=23,a 4=⎠⎛14(1+2x)d x ,则公比q为________.12.(13分)[2018·烟台二诊] 设数列{a n }的前n 项和为S n ,且S n =(λ+1)-λa n ,其中λ是不等于-1和0的常数.(1)证明:{a n }是等比数列;(2)设数列{a n }的公比q =f(λ),数列{b n }满足b 1=13,b n =f(b n -1)(n ∈N ,n ≥2),求数列⎩⎨⎧⎭⎬⎫1b n 的前n 项和T n .难点突破13.(12分)[2018·汕头一模] 设数列{a n }为等比数列,数列{b n }满足:b n =na 1+(n -1)a 2+…+2a n -1+a n ,n ∈N *,已知b 1=m ,b 2=3m 2,其中m ≠0.(1)求数列{a n }的首项和公比; (2)当m =1时,求b n ;(3)设S n 为数列{a n }的前n 项和,若对于任意的正整数n ,都有S n ∈[1,3],求实数m 的取值范围.课时作业(二十九)B【基础热身】1.D [解析] 由已知a 2a 4=144,得a 1q ·a 1q 3=144,则q 4=14432=16,即q =2,∴S 10=a 1-q 101-q =-2101-2=3069.2.B [解析] 根据等比数列的性质,有a 2a 10=a 3a 9=a 26,又已知a 2a 3a 6a 9a 10=32,则a 56=32,即a 6=2,a 1q 5=2,∴a 29a 12=a 1q 82a 1q11=a 1q 5=2. 3.C [解析] 由已知S 1,S 3,S 2成等差数列,得2S 3=S 1+S 2,即2(a 1+a 1q +a 1q 2)=a 1+a 1+a 1q ,化简,得2a 1(1+q +q 2)=a 1(2+q ),即2q 2+q =0,解得q =-12.4.1 [解析] 由已知,有⎩⎪⎨⎪⎧-4+4tan A =4,13tan 3B =9,解得⎩⎪⎨⎪⎧tan A =2,tan B =3,∴tan C =-tan(A +B )=-tan A +tan B1-tan A tan B=1.【能力提升】5.C [解析] 由已知,有a 2018=3S 2018+2018,a 2018=3S 2009+2018, 两式相减,得a 2018-a 2018=3a 2018,即a 2018=4a 2018, 则公比q =4.6.C [解析] 由已知,有S 1=a 1=4,S 2=a 1+a 2=4(1+q ),S 3=a 1+a 2+a 3=4(1+q +q 2),因为数列{S n +2}是等比数列,所以(S 2+2)2=(S 1+2)(S 3+2),即(4q +6)2=6(6+4q +4q 2),解得q =3.7.C [解析] 由数列{a n }是等差数列,得a k =a 1+(k -1)d ,a 2k =a 1+(2k -1)d . ∵a k 是a 1与a 2k 的等比中项, ∴a 2k =a 1a 2k ,即[a 1+(k -1)d ]2=a 1[a 1+(2k -1)d ],化简,得(k -1)2d 2-a 1d =0. 把a 1=4d 代入,得k =3.8.C [解析] 解法一:由S n =3n +k ,得a 1=S 1=3+k ,a 2=S 2-S 1=(32+k )-(3+k )=6,a 3=S 3-S 2=(33+k )-(32+k )=18.由a n +1=ca n (c 为非零常数),知数列{a n }是等比数列,则a 22=a 1a 3,即62=18(3+k ),解得k =-1.解法二:由题意知,数列{a n }是公比为c 的等比数列,且c ≠0,c ≠1.设a 11-q=t ,则 S n =a 1-q n 1-q=-tq n +t =3n+k ,∴k =t =-1.9.63 [解析] 设等比数列{a n }的公比为q ,则a 2=q ,a 3=q 2,由a 1+1,a 2+2,a 3+2依次成等差数列,得2(a 2+2)=(a 1+1)+(a 3+2),即2(q +2)=(1+1)+(q 2+2),化简,得q 2-2q =0,解得q =2.则数列{a n }的前6项和为S 6=1-261-2=63.10.3 [解析] 设等差数列的公差为d (d ≠0), 由a 1,a 3,a 9成等比数列,得a 23=a 1a 9,即(a 1+2d )2=a 1(a 1+8d ), 化简,得a 1=d .S 11-S 9S 7-S 6=a 11+a 10a 7=2a 1+19da 1+6d =3. 11.3 [解析] a 4=⎠⎛14(1+2x)d x =(x +x 2)⎪⎪ 41=(4+42)-(1+12)=18,又a 4=a 1q 3,a 1=23,则q 3=27,即q =3.12.[解答] (1)证明:∵S n =(λ+1)-λa n , ∴S n -1=(λ+1)-λa n -1(n≥2),∴a n =-λa n +λa n -1,即(1+λ)a n =λa n -1.又λ≠-1且λ≠0,∴a n a n -1=λ1+λ.又a 1=1,∴{a n }是以1为首项,λ1+λ为公比的等比数列.(2)由(1)知q =f(λ)=λ1+λ,∴b n =f(b n -1)=b n -11+b n -1(n≥2),故有1b n =1+b n -1b n -1=1b n -1+1,∴1b n -1b n -1=1(n≥2),∴⎩⎨⎧⎭⎬⎫1b n 是以3为首项,1为公差的等差数列. ∴T n =3n +-2=n 2+5n2.【难点突破】13.[解答] (1)由已知b 1=a 1,所以a 1=m ;b 2=2a 1+a 2,所以2a 1+a 2=32m ,解得a 2=-m2;所以数列{a n }的公比q =-12.(2)当m =1时,a n =⎝ ⎛⎭⎪⎫-12n -1,b n =na 1+(n -1)a 2+…+2a n -1+a n ,① -12b n =na 2+(n -1)a 3+…+2a n +a n +1,② ②-①得-32b n =-n +a 2+a 3+…+a n +a n +1,所以-32b n =-n +-12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n 1-⎝ ⎛⎭⎪⎫-12=-n -13⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n ,b n =2n 3+29-29⎝ ⎛⎭⎪⎫-12n =6n +2+-1-n9.(3)S n =m ⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n 1-⎝ ⎛⎭⎪⎫-12=2m 3·⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n ,因为1-⎝ ⎛⎭⎪⎫-12n>0,所以由S n ∈[1,3]得11-⎝ ⎛⎭⎪⎫-12n ≤2m 3≤31-⎝ ⎛⎭⎪⎫-12n ,注意到,当n 为奇数时,1-⎝ ⎛⎭⎪⎫-12n ∈⎝ ⎛⎦⎥⎤1,32; 当n 为偶数时,1-⎝ ⎛⎭⎪⎫-12n ∈⎣⎢⎡⎭⎪⎫34,1, 所以1-⎝ ⎛⎭⎪⎫-12n的最大值为32,最小值为34.对于任意的正整数n 都有11-⎝ ⎛⎭⎪⎫-12n ≤2m 3≤31-⎝ ⎛⎭⎪⎫-12n ,所以43≤2m3≤2,解得2≤m≤3.。

精编2018年高考数学理科考点过关习题第四章数列29和答案

精编2018年高考数学理科考点过关习题第四章数列29和答案

考点测试29 数列的概念与简单表示法一、基础小题1.已知数列{a n}的通项公式a n=1n n+(n∈N*),则1120是这个数列的( )A.第8项B.第9项C.第10项D.第12项答案 C解析由题意知1120=1n n+,n∈N*,解得n=10,即1120是这个数列的第10项,故选C.2.已知数列{a n}的前n项和为S n,且S n=2(a n-1),则a2等于( ) A.4 B.2C.1 D.-2答案 A解析由S n=2(a n-1),得a1=2(a1-1),即a1=2,又a 1+a 2=2(a 2-1),得a 2=4.3.已知数列{a n }满足a 1=0,a n +1=a n +2n -1,则数列{a n }的一个通项公式为( )A .a n =n -1B .a n =(n -1)2C .a n =(n -1)3D .a n =(n -1)4答案 B解析 a 1=0,a n +1=a n +2n -1,所以a 2=0+1=1,a 3=1+3=4,a 4=4+5=9,故数列{a n }的一个通项公式为a n =(n -1)2.4.设a n =-2n 2+29n +3,则数列{a n }的最大项是( ) A .107 B .108 C.8658 D .109答案 B解析 因为a n =-2n 2+29n +3=-2⎝⎛⎭⎪⎫n -2942+8658,n ∈N *,所以当n =7时,a n 取得最大值108.5.数列{a n }中,a 1=1,对于所有的n ≥2,n ∈N 都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5=( )A.6116 B.259 C.2516 D.3115答案 A解析 解法一:令n =2,3,4,5,分别求出a 3=94,a 5=2516,∴a 3+a 5=6116,故选A.解法二:当n ≥2时,a 1·a 2·a 3·…·a n =n 2. 当n ≥3时,a 1·a 2·a 3·…·a n -1=(n -1)2.两式相除得a n =⎝ ⎛⎭⎪⎫n n -12,∴a 3=94,a 5=2516,∴a 3+a 5=6116,故选A.6.已知在数列{a n }中,a 1=2,a 2=7,若a n +2等于a n a n +1(n ∈N *)的个位数,则a 2016的值为( )A .8B .6C .4D .2答案 B解析 因为a 1a 2=2×7=14,所以a 3=4;因为a 2a 3=7×4=28,所以a 4=8;因为a 3a 4=4×8=32,所以a 5=2;因为a 4a 5=8×2=16,所以a 6=6;因为a 5a 6=2×6=12,所以a 7=2;因为a 6a 7=6×2=12,所以a 8=2;依次计算得a 9=4,a 10=8,a 11=2,a 12=6,所以从第3项起,数列{a n }成周期数列,周期为6,因为2016=2+335×6+4,所以a 2016=6.7.已知S n 是数列{a n }的前n 项和,且有S n =n 2+1,则数列{a n }的通项a n =________.答案 ⎩⎪⎨⎪⎧n =,2n -n解析 当n =1时,a 1=S 1=1+1=2,当n ≥2时,a n =S n -S n -1=(n 2+1)-=2n -1.此时对于n =1不成立,故a n =⎩⎪⎨⎪⎧n =,2n -n8.数列{a n }满足13a 1+132a 2+…+13n a n =3n +1,n ∈N *,则a n =________.答案 ⎩⎪⎨⎪⎧12,n =1,3n +1,n ≥2解析 当n =1时,a 1=12.因为13a 1+132a 2+…+13n a n =3n +1,n ∈N *,①所以当n ≥2时,13a 1+132a 2+…+13n -1a n -1=3n -2.②所以①-②,得a n =3n +1.所以a n =⎩⎪⎨⎪⎧12,n =1,3n +1,n ≥2.二、高考小题9.根据下面框图,对大于2的整数N ,输出的数列的通项公式是( )A .a n =2nB .a n =2(n -1)C .a n =2nD .a n =2n -1答案 C解析 由程序框图可知:a 1=2×1=2,a 2=2×2=4,a 3=2×4=8,a 4=2×8=16,归纳可得:a n =2n ,故选C.10.设等差数列{a n }的公差为d ,若数列{2a 1a n }为递减数列,则( ) A .d <0 B .d >0 C .a 1d <0D .a 1d >0答案 C解析 ∵数列{2 a 1a n }为递减数列,∴2 a 1a n >2a 1a n +1,n ∈N *,∴a 1a n >a 1a n +1,∴a 1(a n +1-a n )<0.∵{a n }为公差为d 的等差数列,∴a 1d <0.故选C.11.数列{a n }满足a n +1=11-a n ,a 8=2,则a 1=________.答案 12解析 由a n +1=1n ,得a n =1-1n +1, ∵a 8=2,∴a 7=1-12=12,a 6=1-1a 7=-1,a 5=1-1a 6=2,……,∴{a n }是以3为周期的数列,∴a 1=a 7=12.12.设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1=________,S 5=________.答案 1 121解析 解法一:∵a n +1=2S n +1,∴a 2=2S 1+1,即S 2-a 1=2a 1+1,又∵S 2=4,∴4-a 1=2a 1+1,解得a 1=1.又a n +1=S n +1-S n ,∴S n +1-S n =2S n +1,即S n +1=3S n +1,由S 2=4,可求出S 3=13,S 4=40,S 5=121.解法二:由a n +1=2S n +1,得a 2=2S 1+1,即S 2-a 1=2a 1+1,又S 2=4,∴4-a 1=2a 1+1,解得a 1=1.又a n +1=S n +1-S n ,∴S n +1-S n =2S n +1,即S n +1=3S n +1,则S n +1+12=3⎝ ⎛⎭⎪⎫S n +12,又S 1+12=32,∴⎩⎨⎧⎭⎬⎫S n +12是首项为32,公比为3的等比数列,∴S n +12=32×3n -1,即S n =3n -12,∴S 5=35-12=121.13.设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.答案 2011解析 由已知得,a 2-a 1=1+1,a 3-a 2=2+1,a 4-a 3=3+1,…,a n -a n -1=n -1+1(n ≥2),则有a n -a 1=1+2+3+…+n -1+(n -1)(n ≥2),因为a 1=1,所以a n =1+2+3+…+n (n ≥2),即a n =n 2+n 2(n ≥2),又当n =1时,a 1=1也适合上式,故a n =n 2+n 2(n ∈N *),所以1a n =2n 2+n =2⎝ ⎛⎭⎪⎫1n -1n +1,从而1a 1+1a 2+1a 3+…+1a 10=2×⎝ ⎛⎭⎪⎫1-12+2×⎝ ⎛⎭⎪⎫12-13+2×⎝ ⎛⎭⎪⎫13-14+…+2×⎝ ⎛⎭⎪⎫110-111=2×⎝ ⎛⎭⎪⎫1-111=2011.三、模拟小题14.在数列{a n }中,a n +1-a n =2,S n 为{a n }的前n 项和.若S 10=50,则数列{a n +a n +1}的前10项和为( )A .100B .110C .120D .130答案 C解析 {a n +a n +1}的前10项和为a 1+a 2+a 2+a 3+…+a 10+a 11=2(a 1+a 2+…+a 10)+a 11-a 1=2S 10+10×2=120,故选C.15.设S n 为数列{a n }的前n 项和,且S n =32(a n -1)(n ∈N *),则a n =( )A .3(3n -2n )B .3n +2C .3nD .3·2n -1答案 C解析⎩⎨⎧a 1=S 1=32a 1-,a 1+a 2=32a 2-,解得⎩⎪⎨⎪⎧a 1=3,a 2=9,代入选项逐一检验,只有C符合.16.已知函数f (x )=⎩⎪⎨⎪⎧-a x +2,x ≤2,a 2x 2-9x +11,x >2(a >0,且a ≠1),若数列{a n }满足a n =f (n )(n ∈N *),且{a n }是递增数列,则实数a 的取值范围是( )A .(0,1) B.⎣⎢⎡⎭⎪⎫83,3 C .(2,3) D .(1,3)答案 C解析因为{a n }是递增数列,所以⎩⎪⎨⎪⎧3-a >0,a >1,-a+2<a 2.解得2<a <3,所以实数a 的取值范围是(2,3).17.已知数列{a n }满足a 1=2,a n +1=1+a n1-a n(n ∈N *),则该数列的前2017项的乘积a 1·a 2·a 3·…·a 2017=________.答案 2解析 由题意可得,a 2=1+a 11-a 1=-3,a 3=1+a 21-a 2=-12,a 4=1+a 31-a 3=13,a 5=1+a 41-a 4=2=a 1,∴数列{a n }是以4为周期的数列,而2017=4×504+1,a 1a 2a 3a 4=1,∴前2017项的乘积为1504·a 1=2.18.若数列{a n }满足a 1·a 2·a 3·…·a n =n 2+3n +2,则数列{a n }的通项公式为________.答案a n =⎩⎨⎧6,n =1,n +2n ,n ≥2,n ∈N *解析 a 1·a 2·a 3·…·a n =(n +1)(n +2),当n =1时,a 1=6;当n ≥2时,⎩⎪⎨⎪⎧a 1·a 2·a 3·…·a n -1·a n =n +n +,a 1·a 2·a 3·…·a n -1=n n +,故当n ≥2时,a n =n +2n,所以a n =⎩⎨⎧6,n =1,n +2n ,n ≥2,n ∈N *.一、高考大题1.设数列{a n }的前n 项和为S n .已知2S n =3n +3. (1)求{a n }的通项公式;(2)若数列{b n }满足a n b n =log 3a n ,求{b n }的前n 项和T n . 解 (1)因为2S n =3n +3,所以2a 1=3+3,故a 1=3, 当n >1时,2S n -1=3n -1+3,此时2a n =2S n -2S n -1=3n -3n -1=2×3n -1, 即a n =3n -1,所以a n =⎩⎪⎨⎪⎧3,n =1,3n -1,n >1,n ∈N *. (2)因为a n b n =log 3a n ,所以b 1=13,当n >1时,b n =31-n log 33n -1=(n -1)·31-n . 所以T 1=b 1=13;当n >1时,T n =b 1+b 2+b 3+…+b n =13+,所以3T n =1+,两式相减,得2T n =23+(30+3-1+3-2+…+32-n )-(n -1)×31-n=23+1-31-n 1-3-1-(n -1)×31-n =136-6n +32×3n =136-2n +12×3n -1, 所以T n =1312-6n +34×3n =1312-2n +14×3n -1.经检验,n =1时也适合.综上可得T n =1312-6n +34×3n =1312-2n +14×3n -1.2.已知数列{a n }满足a 1=12且a n +1=a n -a 2n (n ∈N *). (1)证明:1≤a na n +1≤2(n ∈N *);(2)设数列{a 2n }的前n 项和为S n ,证明:1n +≤S nn ≤1n +(n ∈N *).证明 (1)由题意得a n +1-a n =-a 2n ≤0,即a n +1≤a n ,故a n ≤12.由a n =(1-a n -1)a n -1,得a n =(1-a n -1)(1-a n -2)…(1-a 1)a 1>0. 由0<a n ≤12,得a n a n +1=a n a n -a 2n =11-a n ∈,即1≤a na n +1≤2.(2)由题意得a 2n =a n -a n +1,所以a na n +1=1a n +1-1a n,S n =a 1-a n +1.① 由a na n +1=1a n +1-1a n和1≤a na n +1≤2,得1≤1a n +1-1a n≤2,所以n ≤1a n +1-1a 1≤2n ,因此1n +≤a n+1≤1n+2(n∈N*).②由①②得1n +≤Snn≤1n +(n∈N*).二、模拟大题3.已知数列{a n}中,a n=1+1a +n -(n∈N*,a∈R,且a≠0).(1)若a=-7,求数列{a n}中的最大项和最小项的值;(2)若对任意的n∈N*,都有a n≤a6成立,求a的取值范围.解(1)∵a n=1+1a +n -(n∈N*,a∈R,且a≠0).又∵a=-7,∴a n=1+12n-9(n∈N*).结合函数f(x)=1+12x-9的单调性,可知1>a1>a2>a3>a4,a5>a6>a7>…>a n>1(n∈N*).∴数列{a n}中的最大项为a5=2,最小项为a4=0.(2)a n=1+1a +n -=1+12n-2-a2.∵对任意的n∈N*,都有a n≤a6成立,结合函数f(x)=1+12x-2-a2的单调性,∴5<2-a2<6,∴-10<a<-8.4.已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=4S n-1(n∈N*).(1)证明:a n+2-a n=4;(2)求数列{a n}的通项公式.解(1)证明:∵a n a n+1=4S n-1,∴a n+1a n+2=4S n+1-1,∴a n +1(a n +2-a n )=4a n +1.又a n ≠0,∴a n +2-a n =4.(2)由a n a n +1=4S n -1,a 1=1,得a 2=3.由a n +2-a n =4知数列{a 2n }和{a 2n -1}都是公差为4的等差数列, ∴a 2n =3+4(n -1)=2(2n )-1,a 2n -1=1+4(n -1)=2(2n -1)-1,∴a n =2n -1.5.已知S n 为正项数列{a n }的前n 项和,且满足S n =12a 2n +12a n (n ∈N *). (1)求a 1,a 2,a 3,a 4的值;(2)求数列{a n }的通项公式.解 (1)由S n =12a 2n +12a n (n ∈N *),可得 a 1=12a 21+12a 1,解得a 1=1,a 1=0(舍). S 2=a 1+a 2=12a 22+12a 2,解得a 2=2(负值舍去); 同理可得a 3=3,a 4=4.(2)因为S n =1a 2n +a n ,① 所以当n ≥2时,S n -1=12a 2n -1+a n -12,② ①-②得a n =12(a n -a n -1)+12(a 2n -a 2n -1),所以(a n -a n -1-1)(a n +a n -1)=0. 由于a n +a n -1≠0,所以a n -a n -1=1,又由(1)知a 1=1, 所以数列{a n }是首项为1,公差为1的等差数列,所以a n =n .6.在数列{a n }中,a 1=1,a 1+2a 2+3a 3+…+na n =n +12a n +1(n ∈N *).(1)求数列{a n }的通项a n ;(2)若存在n ∈N *,使得a n ≤(n +1)λ成立,求实数λ的最小值.解 (1)当n ≥2时,由题可得a 1+2a 2+3a 3+…+(n -1)a n -1=n 2a n ,① a 1+2a 2+3a 3+…+na n =n +12a n +1,② ②-①得na n =n +12a n +1-n 2a n ,即(n +1)a n +1=3na n ,n +1a n +1na n=3, ∴{na n }是以2a 2=2为首项,3为公比的等比数列(n ≥2). ∴na n =2·3n -2,∴a n =2n·3n -2(n ≥2). ∵a 1=1,∴a n =⎩⎨⎧ 1,n =1,2n ·3n -2,n ≥2.(2)a n ≤(n +1)λ⇔λ≥a nn +1,由(1)可知当n ≥2时,a n n +1=2·3n -2n n +, 设f (n )=n n +(n ≥2,n ∈N *),a n n =1·1f n ,则f (n +1)-f (n )=n +-n 2·3n +1<0,∴1f n +>1f n (n ≥2). 故n ≥2时,⎩⎨⎧⎭⎬⎫1f n 是递增数列. 又132·1f =13及a 12=12, ∴所求实数λ的最小值为13.。

普通高考数学一轮复习 第29讲 等比数列精品学案

普通高考数学一轮复习 第29讲 等比数列精品学案

第29讲 等比数列一.课标要求:1.通过实例,理解等比数列的概念;2.探索并掌握等差数列的通项公式与前n 项和的公式;3.能在具体的问题情境中,发现数列的等比关系,并能用有关知识解决相应的问题。

体会等比数列与指数函数的关系。

二.命题走向等比数列与等差数列同样在高考中占有重要的地位,是高考出题的重点。

客观性的试题考察等比数列的概念、性质、通项公式、求和公式等基础知识和基本性质的灵活应用,对基本的运算要求比较高,解答题大多以数列知识为工具。

预测2013年高考对本讲的考察为:(1)题型以等比数列的公式、性质的灵活应用为主的1~2道客观题目; (2)关于等比数列的实际应用问题或知识交汇题的解答题也是重点;(3)解决问题时注意数学思想的应用,象通过逆推思想、函数与方程、归纳猜想、等价转化、分类讨论等,它将能灵活考察考生运用数学知识分析问题和解决问题的能力。

三.要点精讲1.等比数列定义一般地,如果一个数列从第二项起....,每一项与它的前一项的比等于同一个常数..,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比;公比通常用字母q 表示(0)q ≠,即:1n a +:(0)n a q q =≠数列对于数列(1)(2)(3)都是等比数列,它们的公比依次是2,5,21-。

(注意:“从第二项起”、“常数”q 、等比数列的公比和项都不为零)2.等比数列通项公式为:)0(111≠⋅⋅=-q a q a a n n 。

说明:(1)由等比数列的通项公式可以知道:当公比1d =时该数列既是等比数列也是等差数列;(2)等比数列的通项公式知:若{}n a 为等比数列,则m n mna q a -=。

3.等比中项如果在b a 与中间插入一个数G ,使b G a ,,成等比数列,那么G 叫做b a 与的等比中项(两个符号相同的非零实数,都有两个等比中项)。

4.等比数列前n 项和公式 一般地,设等比数列123,,,,,n a a a a 的前n 项和是=n S 123n a a a a ++++,当1≠q 时,q q a S n n --=1)1(1 或11n n a a q S q-=-;当q=1时,1na S n =(错位相减法)。

最新-2018高三数学系列一轮复习 等比数列课件 理 新人教B版 精品

最新-2018高三数学系列一轮复习 等比数列课件 理 新人教B版 精品

2.等比数列的通项公式 已知等比数列{an}的首项为 a1,公比为 q,则等比数列{an}的通 项公式为 an=a1qn-1 (n∈N+)① 若已知等比数列{an}的第 m 项为 am,公比为 q,则等比数列{an} 的通项公式为 an=amqn-m (n,m∈N+)② 通项公式的意义不仅可以求通项,而且还可以利用通项公式①
aa11++4dd==9,21.
解得 a1=5,d=4.
∴{an}的通项公式为 an=4n+1. (2)由 an=4n+1 得 bn=24n+1,
所以{bn}是首项为 25,公比 q=24 的等比数列.
于是得{bn}的前 n 项和
Sn=
25×24n- 24-1
1=32×24n- 15
1 .
题型五 等比数列的综合应用
(5)若{an},{bn}为等比数列,则{λan}(λ≠0),{|an|},{a1n},{a2n}, {manbn}(m≠0)仍为等比数列.
(6)若等比数列{an},{bn}的公比分别是 q1、q2,则{k1an·k2bn}是 公比为 q1q2 的等比数列.
(7)若数列{an}是公比为 q 的等比数列,则 ①Sm+n=Sn+qnSm
4.用函数的观点审视等比数列 等比数列的通项公式 an=a1qn-1,可以化为
an=cqn(其中 c=aq1为常数). 当 q>0 且 q≠1 时,图象为分布在指数曲线 y=cqx 上横坐标为 正整数的一些孤立点.如图 1 所示.
当 q=1 时,等比数列{an}为常数列图象.为分布在平行于 x 轴 的直线 y=a1 上横坐标为正整数的一些孤立点,如图 2 所示.
解析 (1)由题意 2d=a3-a1=f(d+1)-f(d-1)=(d+1-1)2-

高三一轮复习等比数列课件

高三一轮复习等比数列课件

判断性质
根据通项公式判断等比数 列的性质,如公比、项数 等。
求解问题
利用通项公式解决等比数 列相关的问题,如求和、 判断单调性等。
特殊等比数列的通项公式
等差等比混合数列
该数列前n项中,有一部分是等差数列,一部分是等比数列,需要分别推导等 差部分和等比部分的通项公式,再结合得到混合数列的通项公式。
平方数列
算法优化
在计算机性。
05 等比数列的习题与解析
基础习题
基础习题
1. 题目:已知等比数列 { a_n } 中,a_1 = 2,a_3 = 8, 则 a_5 = _______.
3. 题目:已知等比数列 { a_n } 的前 n 项和为 S_n,且 S_3,S_9,S_6 成等差数列,则 a_2a_8 = _______.
高三一轮复习等比数列课件
目录
• 等比数列的定义与性质 • 等比数列的通项公式 • 等比数列的求和公式 • 等比数列在实际生活中的应用 • 等比数列的习题与解析
01 等比数列的定义与性质
等比数列的定义
等比数列的定义
等比数列是一种特殊的数列,其 中任意两个相邻项的比值都相等 ,记作 a_n/a_(n-1)=r(常数) 。
分段等比数列求和
对于一些分段等比数列,需要分段进行求和,并注意分段点处的连 续性。
04 等比数列在实际生活中的 应用
等比数列在金融中的应用
复利计算
等比数列可以用于计算复利,帮 助投资者了解投资收益的增长情
况。
保险计算
保险公司在计算保险费用和赔付 时,常常使用等比数列来计算未
来价值和赔偿金额。
股票分析
等比数列的表示
通常用英文字母q表示等比数列的 公比,用a_1表示第一项,用n表 示项数。

2018年高考理数: 数列 含答案

2018年高考理数: 数列 含答案

核心考点解读——数列考纲解读里的I,II的含义如下:I:对所列知识要知道其内容及含义,并能在有关问题中识别和直接使用,即了解和认识.II:对所列知识要理解其确切含义及与其他知识的联系,能够进行叙述和解释,并能在实际问题的分析、综合、推理和判断等过程中运用,即理解和应用.(以下同)1.(2017高考新课标I,理4)记错误!未找到引用源。

为等差数列错误!未找到引用源。

的前错误!未找到引用源。

项和.若错误!未找到引用源。

,错误!未找到引用源。

,则错误!未找到引用源。

的公差为A.1 B.2C.4 D.82.(2017高考新课标Ⅲ,理9)等差数列错误!未找到引用源。

的首项为1,公差不为0.若a2,a3,a6成等比数列,则错误!未找到引用源。

前6项的和为A.错误!未找到引用源。

B.错误!未找到引用源。

C.3 D.83.(2017高考新课标II,理15)等差数列错误!未找到引用源。

的前错误!未找到引用源。

项和为错误!未找到引用源。

,错误!未找到引用源。

,错误!未找到引用源。

,则错误!未找到引用源。

____________.4.(2016高考新课标I,理3)已知等差数列错误!未找到引用源。

前9项的和为27,错误!未找到引用源。

,则错误!未找到引用源。

A.100 B.99 C.98 D.975.(2016高考新课标II,理17)错误!未找到引用源。

为等差数列错误!未找到引用源。

的前n项和,且错误!未找到引用源。

记错误!未找到引用源。

,其中错误!未找到引用源。

表示不超过x的最大整数,如错误!未找到引用源。

.(Ⅰ)求错误!未找到引用源。

;(Ⅱ)求数列错误!未找到引用源。

的前1000项和.6.(2016高考新课标III,理17)已知数列错误!未找到引用源。

的前n项和错误!未找到引用源。

,其中错误!未找到引用源。

.(I)证明错误!未找到引用源。

是等比数列,并求其通项公式;(II)若错误!未找到引用源。

,求错误!未找到引用源。

高考数学一轮复习同步训练 第29讲《数列的概念与简单表示法》文 北师大版必修5

高考数学一轮复习同步训练 第29讲《数列的概念与简单表示法》文 北师大版必修5

课时作业(二十九) [第29讲 数列的概念与简单表示法][时间:45分钟 分值:100分]基础热身1.设数列{a n }的前n 项和为S n ,且S n =2(a n -1),则a 3=( ) A .8 B .4 C .2 D .12.若数列{a n }的前n 项和公式为S n =log 4(2n -1),则a 6等于( )A .log 497B .log 4119C .log 476D .log 413113.设数列{a n }的前n 项和S n =(n -1)2,则a 9+a 10=( ) A .16 B .24 C .32 D .484.已知数列{a n }的前4项为1,3,7,15,写出数列{a n }的一个通项公式a n =________. 能力提升5.数列5、7、3、11,…,则21是该数列的( ) A .第6项 B .第7项 C .第9项 D .第11项6.已知数列{a n }的前n 项和S n =n 2-16n ,第k 项满足6<a k <9,则k =( ) A .13 B .12 C .10 D .97.设数列{a n }的通项公式为a n =20-4n ,前n 项和为S n ,则S n 中最大的是( ) A .S 3 B .S 4或S 5 C .S 5 D .S 68.[2011·黄州区一中月考] 若数列{a n }满足a 1=5,a n +1=a 2n +12a n +a n 2(n ∈N *),则其前10项和为( )A .50B .100C .150D .2009.[2011·济南模拟] 设数列{a n }满足:a 1=2,a n +1=1-1a n,记数列{a n }的前n 项之积为∏n ,则∏2012的值为( )A .-12 B .-1C.12 D .110.数列{a n }的前6项为12,14,-58,1316,-2932,6164,则该数列的一个通项公式是________.11.设数列{a n }的前n 项和为S n ,对于所有n ∈N *,S n =a 1n -2,且a 4=54,则a 1=________.12.数列{a n }中,a n =1n +n +1,若S n =7,则n =________.13.数列{a n }中,a 1=3,a 2=7,当n ≥1时,a n +2等于a n ·a n +1的个位数字,则a 2012=________. 14.(10分)[2011·南京模拟] 设数列{a n }中,a 1=1,点(a n ,a n +1)(n =1,2,3,…)均在直线y =2x +1上.(1)求a2,a3,a4的值;(2)求数列{a n}的通项公式.15.(13分)已知数列{a n}的各项均为正数,S n为其前n项和,对于任意的n∈N*满足关系式2S n=3a n-3.(1)求数列{a n}的通项公式;(2)设数列{b n}的通项公式是b n=1log3a n·log3a n+1,前n项和为T n,求证:对于任意的正整数n,总有T n<1.难点突破16.(12分)设各项均为正数的数列{a n}的前n项和为S n,已知2a2=a1+a3,数列{S n}是公差为d(d≠0)的等差数列,求数列{a n}的通项公式(用n、d表示).课时作业(二十九)【基础热身】1.A [解析] 由S 1=2(a 1-1)得a 1=2;由S 2=2(a 2-1)得a 2=4;由S 3=2(a 3-1)得a 3=8.故选A.2.B [解析] a 6=S 6-S 5=log 411-log 49=log 4119.故选B.3.C [解析] a 9+a 10=S 9-S 8+S 10-S 9=S 10-S 8=92-72=32.故选C.4.2n -1 [解析] 因为1=2-1,3=4-1=22-1,7=8-1=23-1,15=16-1=24-1,…可以归纳出通项公式为a n =2n-1.【能力提升】5.C [解析] 原数列可写成5、7、9、11、…,可以看出根号内的数是从5开始的奇数构成的数列,所以21=5+(n -1)×2,所以n =9.故选C.6.B [解析] 当n ≥2时,a n =S n -S n -1=2n -17,当n =1时,a 1=-15,满足上式,所以通项公式是a n =2n -17.因为6<a k <9,所以6<2n -17<9,即11.5<n <13,又因为k ∈N *,所以k =12.故选B.7.B [解析] 该数列是单调递减数列,由a n =20-4n ≥0得n ≤5,故当n >5时,a n <0,所以S 4或S 5最大.故选B.8.A [解析] 由a n +1=a 2n +12a n +a n 2得a 2n +1-2a n a n +1+a 2n =0,∴a n +1=a n ,即{a n }为常数列,S 10=10a 1=50,选A.9.D [解析] 因为a n +2=1-1a n +1=1-a n a n -1=11-a n ,a n +3=1-1a n +2=a n ,所以{a n }是周期为3的周期数列.又a 1=2,a 2=1-12=12,a 3=1-112=-1,从而∏3=-1,所以∏2012=(-1)670×2×12=1.故选D.10.a n =(-1)n ·2n-32n [解析] 各项的分母分别满足2n,易看出第2,3,4项的分子分别比分母少3.因此把第1项变为-2-32,至此原数列已化为-21-321,22-322,-23-323,24-324,所以通项公式为a n =(-1)n·2n-32n .11.2 [解析] 因为a 4=S 4-S 3=40a 1-13a 1=27a 1=54,所以a 1=2.12.63 [解析] a n =1n +n +1=n +1-n ,所以S n =n +1-1,当S n =7时,有n +1-1=7,所以n =63.13.7 [解析] 由条件知,a 1=3,a 2=7,a 3=1,a 4=7,a 5=7,a 6=9,a 7=3,a 8=7,…,可见{a n }是周期为6的周期数列,故a 2012=a 2=7.14.[解答] (1)由已知可得a n +1=2a n +1,所以a 2=2a 1+1=3,a 3=2a 2+1=7,a 4=2a 3+1=15.(2)因为a n +1=2a n +1,所以可设a n +1+λ=2(a n +λ),得a n +1=2a n +λ,所以λ=1, 于是a n +1+1=2(a n +1),所以数列{a n +1}是等比数列,首项为2,公比为2,所以通项公式为a n +1=2×2n -1,即a n =2n-1.15.[解答] (1)由已知得⎩⎪⎨⎪⎧2S n =3a n -3,2S n -1=3a n -1-n故2(S n -S n -1)=3a n -3a n -1,故a n =3a n -1(n ≥2).故数列{a n }为等比数列,且公比q =3. 又当n =1时,2a 1=3a 1-3,所以a 1=3,所以a n =3n.(2)证明:b n =1n n +=1n -1n +1.所以T n =b 1+b 2+…+b n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1<1. 【难点突破】16.[解答] 由题意知d >0,S n =S 1+(n -1)d =a 1+(n -1)d , 由2a 2=a 1+a 3,得3a 2=S 3,所以3(S 2-S 1)=S 3,即3[(a 1+d )2-a 1]=(a 1+2d )2,化简得a 1-2a 1·d +d 2=0,所以a 1=d ,a 1=d 2.所以S n =d +(n -1)d =nd ,S n =n 2d 2,当n ≥2时,a n =S n -S n -1=n 2d 2-(n -1)2d 2=(2n -1)d 2,当n =1,a 1=d 2满足上式.所以所求的通项公式为a n =(2n -1)d 2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十九讲 等比数列
班级________ 姓名________ 考号________ 日期________ 得分________
一、选择题:(本大题共6小题,每小题6分,共36分,将正确答案的代号填在题后的括号内.)
1.在等比数列{a n }中,a 7·a 11=6,a 4+a 14=5,则a 20a 10
=( ) A.23
B.32
C.23或32 D .-23或-32
解析:在等比数列{a n }中,a 7·a 11=a 4·a 14=6①
又a 4+a 14=5②
由①、②组成方程组解得⎩⎪⎨⎪⎧ a 4=2a 14=3或⎩⎪⎨⎪⎧
a 4=3,a 14=2. ∴a 20a 10=a 14a 4=23或32
. 答案:C
2.在等比数列{a n }中a 1=2,前n 项和为S n ,若数列{a n +1}也是等比数列,则S n 等于( )
A .2n +1-2
B .3n
C .2n
D .3n -1 解析:要{a n }是等比数列,{a n +1}也是等比数列,则只有{a n }为常数列,故S n =na 1=2n .
答案:C
评析:本题考查了等比数列的性质及对性质的综合应用,抓住只有常数列有此性质是本题的关键,也是技巧;否则逐一验证,问题运算量就较大.
3.设等比数列{a n }的前n 项和为S n ,若S 6S 3=
,则S 9S 3等于( ) A .
. C .

解析:解法一:∵S 6S 3=
, ∴{a n }的公比q ≠1.
由a 1(1-q 6)1-q ÷a 1(1-q 3)1-q
=12, 得q 3=-12
, ∴S 9S 3=1-q 91-q 3=34
. 解法二:因为{a n }是等比数列,所以S 3,S 6-S 3,S 9-S 6也成等比数列,
即(S 6-S 3)2=S 3·(S 9-S 6),将S 6=12S 3代入得S 9S 3=34
,故选C.。

相关文档
最新文档