光学论文

合集下载

(整理)光学设计实验论文

(整理)光学设计实验论文

双棱镜干涉测波长的深入研究摘要:测定两虚光源间距与狭缝-双棱镜间距的关系,多种方法测两虚光源间距,测定双棱镜的角度及折射率,测定虚光源的位置,观察干涉条纹的疏密变化规律,测定白光波长,了解双棱镜干涉的空间相干性及条纹可见度。

关键词:双棱镜;虚光源像;折射率;楔角。

引言:双棱镜干涉实验是大学物理实验中重要的光学实验之一,它是利用棱镜使光波产生两束光波,并发生干涉,从而求出微米数量级的光波波长。

双棱镜干涉实验的装置简单,原理也易懂,对理解光的波动性具有重要的意义。

本文将在双棱镜干涉实验的基础上,通过对双棱镜成像进行分析,深入研究双棱镜干涉的特点及规律,探讨双棱镜楔角和折射率的测量方法。

实验原理(一)两虚光源间距与狭缝-双棱镜间距的关系双棱镜外形结构如图所示,将一块平玻璃板上表面加工成两楔形面,端面与棱脊垂直,楔角较小,一般在30′- 1°之间。

令双棱镜的材料折射率为 n, 楔角为 α。

一线光源置于双棱镜前L处经双棱镜折射后产生二虚光源像S1、S2,如图所示。

根据折射定律,光线SC经双棱镜上半部折射光线的折射角:β= nα由于双棱镜的楔角α很小,二虚光源像S1S2的间距 d 为:d=2( L'+h)( β- α) =2(L'+h) ( n- 1) α式中L'为二虚光源到双棱镜AB面的距离,h为双棱镜的厚度。

考虑到双棱镜的楔角很小,可利用平玻璃板成像公式得到双棱镜二虚光源像的位置:L-L'=(1-1/n)h L'=L-(1-1/n)h则 d=2(L+h/n)(n-1)α 式中L为线光源S到双棱镜AB面的距离。

则两虚光源间距与狭缝-双棱镜间距成线性关系。

(二)多种方法测两虚光源的间距d 1.两次成像法在用双棱镜干涉测量光波的波长时" 关键是测量两虚相干光源的间距! 目前使用的教科书中一般采用二次成像法测量两虚相干光源的间距" 其实验装置和光路图如图1所示:图1中狭缝光源" 发出的光波经双棱镜上下两部分折射后形成两虚相干光源S1和S2,d通过透镜L在两个不同位置的两次成像求得,即d=21d d ,d1为两虚相干光源通过透镜所成的放大实像间的距离d2为两虚相干光源通过透镜所成的缩小实像间的距离。

光学发展简史论文

光学发展简史论文

光学发展简史论文课程工程光学基础姓名杨宏达专业软件工程学号*********学院计算机科学技术学院二0一四年五月目录简介1萌芽时期 21.1中国光学萌芽及发展 2 1.1.1对光的直线传播的认识 2 1.1.2光的反射和镜的利用 3 1.1.3对大气光学现象的探讨 3 1.1.4对成影现象的认识 5 1.2西方光学及萌芽 62几何光学时期 63波动光学时期 74量子光学时期 85现代光学时期 96参考文献 10关键词:光学、萌芽、几何、波动、量子、现代光学简介光是一种重要的自然现象,我们所以能够看到客观世界中五彩缤纷、瞬息万变的景象,是因为眼睛接收物体发射、反射或散射的光。

据统计,人类感官收到外部世界的总信息量中,至少有90%以上通过眼睛。

光学是一门古老而又年轻的学科。

其悠久的历史几乎和人类文明史本身一样久远;近半个世纪以来它又以令人惊叹的发展速度、奇迹般层出不穷的研究成果、以及所蕴含的巨大潜力和希望,使自己跻身于现代科学技术的前沿。

在全面展开对光学基本知识的讨论之前,让我们简短地回顾人类获得今天的知识所走过的路程,以便对它的全貌有一概括的了解。

尽管这种介绍只能是相当粗糙而简略的。

它是物理学中最古老的一个基础学科,也是当前科学研究中最活跃的前沿阵地,具有强大的生命力和不可估量的前途。

光学的发展过程是人类认识客观世界的进程中一个重要的组成部分,是不断揭露矛盾和克服矛盾、从不完全和不确切的认识总部走向较完善和较确切认识的过程。

它的不少规律和理论是直接从从欧美和生产实践中总结出来的,也有相当多的发现来自长期的系统的科学实验。

光学的发展为生产技术提供了许多精密、快速的实验手段和重要的理论依据;而圣餐技术的发展,又反过来不断向光学提出许多要求解决的新课题,并为进一步深入研究光学准备了物质条件。

光学的发展大致可换分为5个时期:一、萌芽时期;二、几何光学时期;三、波动光学时期;四、量子光学时期;五、现代光学时期。

(光学专业优秀论文)光学材料的超快特性及测量研究

(光学专业优秀论文)光学材料的超快特性及测量研究
zero
intensities,where
main peak appears at
time delay and two rather weak side
positive time delay,respectively.The two side
peaks
locate symmetrically at the negative
Ill
知识水坝@pologoogle为您整理
光学材料的超快特性及测量研究
最后对本文的主要工作和今后的发展方向进行了总结和展望。
关键词:Sagnac干涉仪,简并四波混频,薄膜材料,掺铒碲酸盐玻璃,非线性 光学,飞秒
知识水坝@pologoogle为您整理
光学材料的超快特性及测量研究
Studies
oH
surface space electric field.Furthermore,as the time postpone,the intensity ofthe two
peaks become smaller.
Fourthly,time—resolved four—wave mixing rDFWM)experiments in 75NbzOs
at
the positive delay time derived from the
two
acoustic echoes
caused by the reflect of the longitudinal coherent phonon
between the
from
metal film and
reflect of the
use
of
modified time-resolved

深空探测中的光学(论文)

深空探测中的光学(论文)

目录一、引言 (2)二、深空通讯技术的概念及发展 (3)2.1、通讯技术的基本概念 (3)2.2、深空中光通信系统的结构及原理 (4)2.3、深空中光通讯的特点 (5)三、深空光通讯中主要技术 (7)3.1、光束准直及天线技术 (7)3.2、高码率调制、高能量转换效率的发射技术 (8)3.3、高灵敏度和高抗干扰性的光信号接收技术 (9)3.4、调制与编码技术 (9)3.5、捕获、瞄准和跟踪技术(APT) (10)3.6、深空光通讯中的其他技术 (11)四、深空光通讯的发展趋势和给我们的启示 (12)五、对未来深空光通信的展望 (13)参考文献 (14)一、引言当前,世界上正兴起一个深空探测的热潮,主要的目的是开发和利用空间资源,发展空间技术,进行科学研究,探索太阳系和宇宙的起源,扩展人类的生存空间,为人类社会的长期可持续发展服务。

我国以“嫦娥”探月工程为起点的深空探测也已经启动, 正逐步深入发展。

深空探测是指对2 ×106 km以远的天体和空间进行的探测。

在1988年以前,国际电信联盟( ITU)也曾将月球及月球以远的探测定义为深空探测,因此,目前这两种定义方法都在应用。

实施探测的航天器称为深空探测器,对其测控通信的系统称为深空测控通信系统,它包括深空测控通信地面站和空间应答机两大部分。

它的主要功能是:跟踪、遥测、指令控制和数传(TTC&DT) ,在深空探测器的整个飞行过程中,需要对其测控以保证其飞行轨道的准确,而在进入探测过程以后,需要传回探测信息。

它是深空探测的唯一信息线,至关重要,与其它测控系统相比其重要性更加突出。

不同于现有的地基测控系统、天基测控系统、遥感地面接收站和卫星通信站,深空测控通信系统有着自己的特点和特殊技术问题。

由于通信的距离很远,所以与此相关的技术问题总是处于测控通信技术发展的最前沿。

在建设深空测控系统以前,应对它的特点进行研究,比较它与现有系统的区别, 抓住它特殊的、主要技术问题,重点地开展研究工作。

(完整版)光学相干层析技术的图像信息处理毕业论文

(完整版)光学相干层析技术的图像信息处理毕业论文

毕业设计论文光学相干层析技术的图像信息处理【摘要】光学相干层析技术(Optical Coherence Tomography,简称OCT)是近年来继共焦扫描显微镜之后发展起来的光学成像技术,它利用弱相干光干涉仪的基本原理,检测生物组织不同深度层面对弱相干光的背向散射信号,通过扫描可得到生物组织的二维或三维图像。

由于OCT系统探测方法的特性以及被探测生物组织本身的高散射性,使得OCT图像存在各种噪声以及对比度低等特点,而OCT检测最终是通过图像信息进行诊断,因此提高OCT的成像质量非常重要。

本文主要对OCT图像处理做研究,具有实际的应用价值。

本论文在现有实验室OCT系统的基础上,从图像处理的角度,结合国内外研究现状,讨论了OCT技术的基本原理和图像处理技术,从图像的噪声着手,研究了减小图像噪声的算法。

小波变换在图像去噪中具有很好的效果,随着近几年的发展,双树复小波被广泛的应用于图像去噪。

双树复小波具有移不变性、多维取向、更小的冗余度,可以保持图像的相位信息不受损坏。

本论文讨论了双树复小波变换,并利用此算法消除噪声,大大改善了图像的质量,可以基本满足对OCT图像初步分析判断。

但是此算法不能有效的保护图像的边缘特征,需要进一步改进。

【关键词】光学相干层析技术;图像处理;去除噪声;双树复小波变换The Image Processing Techniques inOptical Coherence TomographyAbstract: Optical Coherence Tomography is a new developing optical image technique following the confocal scanning microscopy. It uses weak coherent basic principle of the interferometer to detect the feeble coherent light back-scattered from the different depths of biological tissue, and then the two or three-dimensional tomographic image can be obtained by the scanning.Owing to the weak inherent nature of the imaging system and the detection method, OCT system suffers from different noises which degrade the quality of the images. The OCT diagnosis is finally realized from the image information, therefore, there is a great significance in improving the quality of the image.Based on the experimental OCT system in our laboratory, the OCT image processing techniques are discussed in the thesis.With the discussion of the available image processing techniques and theories, the noise reduction and contrast enhancement methods have been proposed.Wavelet transform has a good effect on image denoising, with the development in recent years, double-tree complex wavelet transform(DTCWT) is widely used in image denoising. Double-tree complex wavelet transform possesses shift invariant, multi-dimensional approach, smaller redundancy and phase information preserving without image damage. The principle of the DTCWT algorithm is discussed and the validity of the algorithm is verified by the experiments. The algorithm of the DTCWT, however, can not effectively protect the image edge features, should be further improved.Keywords: Optical Coherence Tomography(OCT); image processing; noise reduction; double-tree complex wavelet transformation目录1. 绪论 ................................................................................................................1.1 OCT技术的国内外研究现状与发展趋势.................................................................1.2 OCT图像信息处理技术的研究意义与现状.............................................................1.3 本文的主要工作..........................................................................................................2. 光学相干层析技术 ........................................................................................2.1 OCT技术的基本原理.................................................................................................2.2 外差探测技术..............................................................................................................2.3 OCT系统的光源选择 (1)2.4 OCT系统的性能评价参数 (1)3. OCT图像的去噪 (1)3.1 OCT系统的噪声分析 (1)3.1.1 扫描噪声 (2)3.1.2 探测器噪声 (2)3.1.3 散斑噪声 (2)3.2 OCT图像去噪的算法及实现 (2)3.2.1 空间域滤波法 (2)3.2.2 变换域滤波 (2)3.2.3 OCT图像处理实验 (2)结论 (3)致谢 (3)参考文献 (3)1. 绪论OCT作为一种可靠的活体组织层析成像方法,它可以对活体组织内部微结构产生高分辨率层析图像,是继X射线CT、MRI、超声诊断技术之后的又一种新的医学层析成像方法,它集半导体激光技术、光学技术、超灵敏探测技术和计算机图像处理技术于一身,能够对人体、生物体进行无伤害的活体组织检测诊断,可获得生物组织内部微结构的高分辨截面图像。

光学技术优秀论文

光学技术优秀论文

光学技术优秀论文光学技术是新兴的技术,对于我们的生活科技有着重要的影响作用。

以下是小编为大家精心整理的光学技术优秀论文,欢迎大家阅读。

摘要:光学触摸技术最初是1970年代引入的,最新的突破带来了该技术的复苏。

研发者已经能够解决成本、亮环境光下的显示性能,以及组成要素等问题,这里只提及其中的一小部分。

本文详细介绍了这些问题是如何解决的;该技术的前景,包括深入了解一下光学触摸系统的几个崭新的发展。

关键词:光学触摸技术;发光二极管;光学传感器光学触摸技术最初是1970年代Caroll Touch公司(现在是Elo TouchSystems的一部分)发展起来的,现有不少供应商出售该项技术。

和其它的触摸技术相比,光学触摸技术具有很多优点。

工业界的很多人都认为,如果没有下面将要提到的两个相当大的缺点,光学触摸技术现在已经成为触摸技术的主流。

光学触摸屏技术的最新发展使得光学触摸技术复兴,为其成主流触摸技术奠定了基础。

引言传统的光学触摸系统是在显示器的两个相邻斜面上采用红外发光(IR)二极管(LED)阵列,并在相对的斜面边缘放置光敏元件,用于分析系统、确定触摸动作。

LED-光传感元件对在显示器上形成光束栅格。

当物体(例如手指或者钢笔)触摸屏幕遮断了光束,就会在相应光传感元件处引起光测量值的减弱。

光传感的输出测量值可以用于确定出触摸点的坐标。

通常控制器是扫描光传感阵列,而不是同时测量所有的光传感器,因此这项技术有时被称为"扫描IR"。

在这项技术的高级版本中,每个光传感器测量来自不止一个LED的光,这使得控制器可以补偿由于屏上不可移动的碎片而引起的光的阻断。

这项传统的光学触摸技术已经主要用于触摸市场中的相关领域。

过去,它的广泛应用由于两大原因曾经受到限制:技术成本比与之竞争的其他触摸技术要高,还有在亮环境光下的显示性能问题。

后一个问题是由于背光源放大了光传感元件的背景噪声。

在有些情况下,噪声大到无法检测到触摸屏的LED光,导致触摸屏的暂时失灵。

光学小论文

光学小论文
2、尼科耳棱镜结构。自然界中的方解石晶体在某一波长区具有天然双折射性质,具有电场振动方向互相垂直的e、o两个光轴。如按一定的晶体取向制成尼科耳棱镜,可使得e光透过,而让o光被大角度偏振,产生的透射光为纯的线偏振光。
3、介质表面反射。对于某一特定波长,当自然光以布儒斯特角入射到透明介质表面时,反射光中只有其振动方向与入射面垂直的成分,可产生纯的线偏振光,而折射光中平行于入射面振动的分量较强,为部分偏振光。
偏振光的应用
偏振光作为一种光学现象,在生活以及研究中都有着各种不同的作用,以下简略介绍几种。
1、在摄影镜头前加上偏振镜消除反光
在拍摄表面光滑的物体,如玻璃器皿、水面、陈列橱柜、油漆表面、塑料表面等,常常会出现耀斑或反光,这是由于光线的偏振而引起的。在拍摄时加用偏振镜,并适当地旋转偏振镜面,能够阻挡这些偏振光,借以消除或减弱这些光滑物体表面的反光或亮斑。要通过取景器一边观察一边转动镜面,以便观察消除偏振光的效果。当观察到被摄物体的反光消失时,既可以停止转动镜面。
偏振光显微镜通常用来检测生物体内某些有序结构、镜体的存在及其折射光学性质,同时也可用来检测某些组织中的化学成分等。
参考文献:
《光学》 吴强 科学出版社
《偏振光的研究、实验技术》 沈君百科baike.baຫໍສະໝຸດ
1808年,马吕斯在试验中发现了光的偏振现象。在进一步研究光的简单折射中的偏振时,他发现光在折射时是部分偏振的。马吕斯经实验一束光强为 的线偏振光,透过检偏器以后,透射光的光强为I= 。式中α是线偏振光的光振动方向与检偏器透振方向间的夹角,该式称为马吕斯定律。
1811年,布吕斯特在研究光的偏振现象时发现了光的偏振现象的经验定律。定律指出自然光在电介质界面上反射和折射时,一般情况下反射光和折射光都是部分偏振光,只有当入射角为某特定角时反射光才是线偏振光,其振动方向与入射面垂直,此特定角称为布儒斯特角或起偏角,用 表示。光以布儒斯特角入射时,反射光与折射光互相垂直。

光学论文

光学论文

浅谈光学概论【简介】光学已成为为现代科研的重要内容,传统的光学只研究可见光,现代光学已扩展到对全波段电磁波的研究。

光是一种电磁波,在物理学中,电磁波由电动力学中的麦克斯韦方程组描述;同时,光具有波粒二象性,需要用量子力学表达。

光学将成为今后光学工程学科的重要发展方向。

【英文译文】Optical has become the important contents for the modern scientific research, the traditional optical only research visible light, and modern optical already expanded to whole wavelength electromagnetic wave of research. Light is an electromagnetic wave, in physics, electromagnetic wave by electrodynamics of maxwell's equations describing, At the same time, the light has wave-particle duality, need to use the quantum mechanics expression. Optical will become future optical engineering discipline of important development direction.【关键词】光学、现代科技、应用、研究、历史、前景【正文】一、光学简介在早期,主要是基于几何光学和波动光学拓宽人的视觉能力,建立了以望远镜、显微镜、照相机、光谱仪和干涉仪等为典型产品的光学仪器工业。

这些技术和工业至今仍然发挥着重要作用。

本世纪中叶,产生了全息术和以傅里叶光学为基础的光学信息处理的理论和技术。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

理学院电子科学与技术120131326 刘玉光浅谈光学概论【简介】光学已成为为现代科研的重要内容,传统的光学只研究可见光,现代光学已扩展到对全波段电磁波的研究。

光是一种电磁波,在物理学中,电磁波由电动力学中的麦克斯韦方程组描述;同时,光具有波粒二象性,需要用量子力学表达。

光学将成为今后光学工程学科的重要发展方向。

【英文译文】Optical has become the important contents for the modern scientific research, the traditional optical only research visible light, and modern optical already expanded to whole wavelength electromagnetic wave of research. Light is an electromagnetic wave, in physics, electromagnetic wave by electrodynamics of maxwell's equations describing, At the same time, the light has wave-particle duality, need to use the quantum mechanics expression. Optical will become future optical engineering discipline of important development direction.【关键词】光学、现代科技、应用、研究、历史、前景【正文】一、光学简介在早期,主要是基于几何光学和波动光学拓宽人的视觉能力,建立了以望远镜、显微镜、照相机、光谱仪和干涉仪等为典型产品的光学仪器工业。

这些技术和工业至今仍然发挥着重要作用。

本世纪中叶,产生了全息术和以傅里叶光学为基础的光学信息处理的理论和技术。

特别是六十年代初第一台激光器的问世,实现了高亮度和高时一空相干度的光源,使光子不仅成为了信息的相干载体而且成为了能量的有效载体,随着激光技,本和光电子技术的崛起,光学工程已发展为光学为主的,并与信息科学、能源科学、材料科学。

生命科学、空间科学、精密机械与制造、计算机科学及微电子技术等学科紧密交叉和相互渗透的学科。

它包含了许多重要的新兴学科分支,如激光技术、光通信、光存储与记录、光学信息处理、光电显示、全息和三维成像薄膜和集成光学、光电子和光子技术、激光材料处理和加工、弱光与红外热成像技术、光电测量、光纤光学、现代光学和光电子仪器及器件、光学遥感技术以及综合光学工程技术等。

这些分支不仅使光学工程产生了质上的跃变,而且推动建立了一个规模迅速扩大的前所未有的现代光学产业和光电子产业。

近些年来,在一些重要的领域,信息载体正在由电磁波段扩展到光波段,从而使现代光学产业的主体集中在光信息获取、传输、处理、记录、存储、显示和传感等的光电信息产业上。

这些产业一般具有数字化、集成化和微结构化等技术特征。

在传统的光学系统经不断地智能化和自动化,从而仍然能够发挥重要作用的同时,对集传感、处理和执行功能于一体的微光学系统的研究和开拓光子在信息科学中作用的研究,将成为今后光学工程学科的重要发展方向。

二、光学的发现光学的起源在西方很早就有光学知识的记载,欧几里得的《反射光学》研究了光的反射;阿拉伯学者阿勒·哈增写过一部《光学全书》,讨论了许多光学的现象。

光学真正形成一门科学,应该从建立反射定律和折射定律的时代算起,这两个定律奠定了几何光学的基础。

17世纪,望远镜和显微镜的应用大大促进了几何光学的发展。

光的本性(物理光学)也是光学研究的重要课题。

微粒说把光看成是由微粒组成,认为这些微粒按力学规律沿直线飞行,因此光具有直线传播的性质。

19世纪以前,微粒说比较盛行。

但是,随着光学研究的深入,人们发现了许多不能用直进性解释的现象,例如干涉、衍射等,用光的波动性就很容易解释。

於是光学的波动说又占了上风。

两种学说的争论构成了光学发展史上的一根红线。

狭义来说,光学是关于光和视见的科学,光学这个词,早期只用于跟眼睛和视见相联系的事物。

而今天,常说的光学是广义的,是研究从微波、红外线、可见光、紫外线直到X射线的宽广波段范围内的,关于电磁辐射的发生、传播、接收和显示,以及跟物质相互作用的科学。

光学是物理学的一个重要组成部分,也是与其他应用技术紧密相关的学科。

三、光学的历史发展人类对光的研究,最初主要是试图回答“人怎么能看见周围的物体?”之类问题。

约在公元前400多年,中国的《墨经》中记录了世界上最早的光学知识。

它有八条关于光学的记载,叙述影的定义和生成,光的直线传播性和针孔成像,并且以严谨的文字讨论了在平面镜、凹球面镜和凸球面镜中物和像的关系。

自《墨经》开始,公元11世纪阿拉伯人伊本·海赛木发明透镜;公元1590年到17世纪初,詹森和李普希同时独立地发明显微镜;一直到17世纪上半叶,才由斯涅耳和笛卡儿将光的反射和折射的观察结果,归结为今天大家所惯用的反射定律和折射定律。

1665年,牛顿进行太阳光的实验,它把太阳光分解成简单的组成部分,这些成分形成一个颜色按一定顺序排列的光分布——光谱。

它使人们第一次接触到光的客观的和定量的特征,各单色光在空间上的分离是由光的本性决定的。

牛顿还发现了把曲率半径很大的凸透镜放在光学平玻璃板上,当用白光照射时,则见透镜与玻璃平板接触处出现一组彩色的同心环状条纹;当用某一单色光照射时,则出现一组明暗相间的同心环条纹,后人把这种现象称牛顿环。

借助这种现象可以用第一暗环的空气隙的厚度来定量地表征相应的单色光。

19世纪初,波动光学初步形成,其中托马斯·杨圆满地解释了“薄膜颜色”和双狭缝乾涉现象。

菲涅耳于1818年以杨氏乾涉原理补充了惠更斯原理,由此形成了今天为人们所熟知的惠更斯-菲涅耳原理,用它可圆满地解释光的干涉和衍射现象,也能解释光的直线传播。

在进一步的研究中,观察到了光的偏振和偏振光的干涉。

为了解释这些现象,菲涅耳假定光是一种在连续媒质中传播的横波。

为说明光在各不同媒质中的不同速度,又必须假定以太的特性在不同的物质中是不同的;在各向异性媒质中还需要有更复杂的假设。

此外,还必须给以太以更特殊的性质才能解释光不是纵波。

如此性质的以太是难以想象的。

1846年,法拉第发现了光的振动面在磁场中发生旋转;1856年,韦伯发现光在真空中的速度等于电流强度的电磁单位与静电单位的比值。

他们的发现表明光学现象与磁学、电学现象间有一定的内在关系。

1896年洛伦兹创立电子论,才解释了发光和物质吸收光的现象,也解释了光在物质中传播的各种特点,包括对色散现象的解释。

在洛伦兹的理论中,以太乃是广袤无限的不动的媒质,其唯一特点是,在这种媒质中光振动具有一定的传播速度。

1900年,普朗克从物质的分子结构理论中借用不连续性的概念,提出了辐射的量子论。

他认为各种频率的电磁波,包括光,只能以各自确定分量的能量从振子射出,这种能量微粒称为量子,光的量子称为光子。

量子论不仅很自然地解释了灼热体辐射能量按波长分布的规律,而且以全新的方式提出了光与物质相互作用的整个问题。

量子论不但给光学,也给整个物理学提供了新的概念,所以通常把它的诞生视为近代物理学的起点。

在20世纪初,一方面从光的干涉、衍射、偏振以及运动物体的光学现象确证了光是电磁波;而另一方面又从热辐射、光电效应、光压以及光的化学作用等无可怀疑地证明了光的量子性——微粒性。

1922年发现的康普顿效应,1928年发现的喇曼效应,以及当时已能从实验上获得的原子光谱的超精细结构,它们都表明光学的发展是与量子物理紧密相关的。

光学的发展历史表明,现代物理学中的两个最重要的基础理论——量子力学和狭义相对论都是在关于光的研究中诞生和发展的。

自20世纪50年代以来,人们开始把数学、电子技术和通信理论与光学结合起来,给光学引入了频谱、空间滤波、载波、线性变换及相关运算等概念,更新了经典成像光学,形成了所谓“博里叶光学”。

再加上由于激光所提供的相乾光和由利思及阿帕特内克斯改进了的全息术,形成了一个新的学科领域——光学信息处理。

光纤通信就是依据这方面理论的重要成就,它为信息传输和处理提供了崭新的技术。

在现代光学本身,由强激光产生的非线性光学现象正为越来越多的人们所注意。

激光光谱学,包括激光喇曼光谱学、高分辨率光谱和皮秒超短脉冲,以及可调谐激光技术的出现,已使传统的光谱学发生了很大的变化,成为深入研究物质微观结构、运动规律及能量转换机制的重要手段。

它为凝聚态物理学、分子生物学和化学的动态过程的研究提供了前所未有的技术。

四、光学的研究内容我们通常把光学分成几何光学、应用光学、物理光学和量子光学。

1、几何光学是从几个由实验得来的基本原理出发,来研究光的传播问题的学科。

它利用光线的概念、折射、反射定律来描述光在各种媒质中传播的途径,它得出的结果通常总是波动光学在某些条件下的近似或极限。

物理光学是从光的波动性出发来研究光在传播过程中所发生的现象的学科,所以也称为波动光学。

它可以比较方便的研究光的干涉、光的衍射、光的偏振,以及光在各向异性的媒质中传插时所表现出的现象。

2、量子光学量子光学是以辐射的量子理论研究光的产生、传输、检测及光与物质相互作用的学科。

1900年普朗克在研究黑体辐射时,为了从理论上推导出得到的与实际相符甚好的经验公式,他大胆地提出了与经典概念迥然不同的假设,即“组成黑体的振子的能量不能连续变化,只能取一份份的分立值”。

1905年,爱因斯坦在研究光电效应时推广了普朗克的上述量子论,进而提出了光子的概念。

他认为光能并不像电磁波理论所描述的那样分布在波阵面上,而是集中在所谓光子的微粒上。

在光电效应中,当光子照射到金属表面时,一次为金属中的电子全部吸收,而无需电磁理论所预计的那种累积能量的时间,电子把这能量的一部分用于克服金属表面对它的吸力即作逸出功,余下的就变成电子离开金属表面后的动能。

这种从光子的性质出发,来研究光与物质相互作用的学科即为量子光学。

它的基础主要是量子力学和量子电动力学。

光的这种既表现出波动性又具有粒子性的现象既为光的波粒二象性。

后来的研究从理论和实验上无可争辩地证明了:非但光有这种两重性,世界的所有物质,包括电子、质子、中子和原子以及所有的宏观事物,也都有与其本身质量和速度相联系的波动的特性。

3、物理光学的基础就是经典电动力学的麦克斯韦方程组。

波动光学不详论介电常数和磁导率与物质结构的关系,而侧重于解释光波的表现规律。

波动光学可以解释光在散射媒质和各向异性媒质中传播时现象,以及光在媒质界面附近的表现;也能解释色散现象和各种媒质中压力、温度、声场、电场和磁场对光的现象的影响。

相关文档
最新文档