重庆大学材料力学教案实验五 梁的弯曲正应力实验

合集下载

梁的纯弯曲正应力实验报告

梁的纯弯曲正应力实验报告

梁的纯弯曲正应力实验报告梁的纯弯曲正应力实验报告一、实验目的本实验旨在通过对实验材料进行纯弯曲加载,测量其正应力和弯曲角度,从而掌握材料在纯弯曲状态下的应力特性,并探究材料性能的影响因素。

二、实验原理当梁在纯弯曲时,受到的载荷可以分解为一个弯矩和一个剪力。

由于实验中去除了外部作用力,剪力为零,因此我们只需要考虑弯矩作用下的应力情况。

在梁的截面上,由于受到弯曲,不同位置的应变不同,因此会形成不同大小的应力。

在正常情况下,当梁未发生破坏时,梁的内部应力呈线性分布,即受到的弯矩越大,所受到的应力也会相应增大。

三、实验设备本实验所使用的设备包括:1.纯弯曲实验台2.测力仪3.梁材料(一定长度的圆形钢管或方管)四、实验步骤1. 选择一段合适材质的梁进行实验。

2. 将梁固定在纯弯曲实验台上。

3. 在梁的一端加上一定荷载。

4. 通过测力仪测量在梁部位不同位置受到的正应力。

5. 在梁的另一端加上一定数量的荷载,并重复步骤4,记录正应力。

6. 重复以上操作,直到梁发生破坏。

五、实验结果在实验过程中,我们记录了梁不同位置受到的正应力,并根据实验数据分析了不同弯矩下的应力分布曲线。

实验结果表明,在纯弯曲状态下,梁的内部应力呈线性分布,随着弯矩的增大,所受应力也会逐渐增大,直到梁发生破坏。

六、实验分析根据实验结果,我们可以发现梁的性能会受到材料的影响。

不同的材料具有不同的弯曲特性,不同的性能和抗断性能。

而在实验中,我们也可以通过调整材料的材质和长度来控制弯曲的程度,从而控制梁的应力分布和破坏点位置。

七、实验结论本实验通过纯弯曲实验台对梁进行弯曲测试,得到了不同弯矩下的应力分布曲线。

实验结论表明,梁在纯弯曲状态下,其内部应力呈线性分布,随着弯矩的增大,所受应力也会逐渐增大,直到梁发生破坏。

同时,不同材质和长度的材料在弯曲状态下具有不同的弯曲特性和抗断性能。

梁的弯曲正应力实验报告

梁的弯曲正应力实验报告

梁的弯曲正应力实验报告梁的弯曲正应力实验报告引言:弯曲是一种常见的力学现象,广泛应用于工程和建筑领域。

梁是一种常见的结构,在受到外力作用时会发生弯曲变形。

为了研究梁的弯曲行为,本实验通过对梁进行弯曲试验,测量梁上的正应力分布,以便了解梁的强度和稳定性。

实验目的:1. 通过实验测量梁上的正应力分布,了解梁的弯曲行为;2. 分析梁的弯曲现象对梁的强度和稳定性的影响;3. 探究不同材料和截面形状对梁的弯曲正应力分布的影响。

实验原理:当一根梁受到外力作用时,梁会发生弯曲变形。

在梁的顶部和底部,会出现正应力和负应力。

本实验主要关注梁上的正应力分布。

根据梁的弯曲理论,梁上的正应力与梁的截面形状、材料性质、外力大小和位置等因素有关。

实验装置和步骤:实验装置包括一根长梁、测力计、测量仪器等。

具体步骤如下:1. 将长梁固定在实验台上,确保梁的两端支持牢固;2. 在梁上设置几个不同位置的测力计,用于测量梁上的正应力;3. 施加外力于梁上,使其发生弯曲变形;4. 通过测力计测量梁上各位置的正应力,并记录数据;5. 根据实验数据,绘制梁上的正应力分布曲线。

实验结果与分析:根据实验数据,我们可以得出梁上的正应力分布曲线。

通常情况下,梁上的正应力分布呈现出一定的规律性。

在梁的顶部和底部,正应力较大,逐渐向中间递减,最终趋近于零。

这是因为在梁的顶部和底部,受力较大,产生了较大的正应力;而在梁的中间,受力相对较小,正应力逐渐减小。

实验中还可以观察到不同材料和截面形状对梁的弯曲正应力分布的影响。

例如,对比不同材料的梁,我们可以发现不同材料的梁上的正应力分布曲线有所差异。

这是因为不同材料的梁具有不同的弹性模量和抗弯强度,从而导致不同的正应力分布。

此外,梁的截面形状也对梁的弯曲正应力分布有影响。

例如,对比矩形截面和圆形截面的梁,我们可以发现矩形截面的梁上的正应力分布曲线相对均匀,而圆形截面的梁上的正应力分布曲线则呈现出较大的集中度。

梁的弯曲正应力电测实验

梁的弯曲正应力电测实验

梁的弯曲正应力电测实验梁的弯曲正应力电测实验1、纯弯曲梁有关尺寸:弯曲梁截面宽度 b=20mm, 高度 h=40mm, 载荷作用点到梁支点距离a=150mm 。

E=210GPa。

2、本实验采用公共接线法,即梁上应变片已按公共线接法引出9根导线,其中一根特殊颜色导线为公共线,见下图1。

图一3、如图二,将应变片公共引线接至应变仪第一排的任一通道上,其它按相应序号接至第二排各通道上,补偿片接法选半桥。

4、调零。

打开纯弯曲梁实验装置电源开关,转动加载手柄1,当测力仪2显示 -0.5KN即F0=0.500KN。

电桥粗调平衡:打开应变仪电源开关,仪器将自动逐点将电桥预调平衡;电桥细调平衡:按下静态应变测试仪操作面板数字“1”,再按“确定”,然后按“平衡”,如显示屏显示为“0”,则说明调零成功,如果不为“0”,找老师处理。

依次类推,逐点(2,3,4。

8,11,12,。

18)将电桥预调平衡。

5、逐级加载。

继续转动手柄1,当测力仪2显示1.5KN,即F1=1.500KN(150Kg),按下静态应变测试仪操作面板数字“1”,再按“确定”,显示屏上将显示该点应变。

依次类推,逐点测出各点应变。

分别加F2=2.500KN, F3=3.500KN, F4=4.500KN,逐点测出各点应变。

图二6、卸荷至0.500KN,重复实验步骤4-5,测第二次数据。

7、本实验重复2次。

8、实验结束,关闭电源,拆除接线,整理实验现场。

平面纯弯曲梁横截面上的正应力纯弯曲是指梁段的各个横截面上只有弯矩而无剪力,如图中CD段梁。

实验现象分析:横向线变形后仍保持为直线,只是它们相对旋转了一个角度,但仍与纵向线成正交。

各纵向线变形后仍保持平行,但由直变弯;梁凹侧的纵向线缩短,凸侧纵向线伸长;对应纵向线缩短区域的横截面变宽,纵向线伸长区域的横截面变窄。

根据上述现象,由材料的均匀连续性假设设想梁内部的变形也与表面变形相应,因而可作如下假设:平面假设——由现象推测,梁弯曲变形后,其横截面仍保持为平面,且仍与弯曲后的纵线正交,这就是梁弯曲变形后的平面假设。

实验五 弯曲正应力实验报告

实验五 弯曲正应力实验报告

实验五弯曲正应力实验报告___________系____________专业__________班姓名____________ 学号_________ 1.实验目的:(1)测定梁在纯弯曲下的弯曲正应力大小及其分布规律。

(2)验证弯曲正应力计算公式。

(3)掌握电测方法。

2.实验设备:3.实验记录及计算结果:a.梁的已知数据试件材料:A3 钢弹性模量: E= GPa电阻片灵敏系数: K=试件尺寸电阻片到中性层的距离(mm)b = mm Y1= mmh = mm Y2= mmL = mm Y3= mma = mm Y4= mmI z= mm4Y5= mmb.实验记录:c.计 算:实验值计算:根据测得的应变增量平均值Δε平均,应用虎克定律算出各点对应的应力增量:平均实i i εσ∆•E =∆ (i=1,2,3,4,5)理论值计算:zii I y •∆M =∆理σ (i=1,2,3,4,5) 式中 : 123bh I z = ——惯性矩a 2∆P=∆M ——弯矩增量 y i ——各测点到中性层的距离d.正应力实验结果与理论计算值比较: 各测点正应力值(MPa )测点 1 2 3 4 5 实验值σ∆实 理论值σ∆理误差%100⨯∆∆-∆=理实理σσσe.按比例绘出(实测应力和理论计算应力)正应力分布图。

4.问题讨论:1)说明梁在纯弯曲时正应力沿梁高度的分布规律。

2)比较各测点的实测应力值与理论计算应力值,并分析产生误差的原因。

指导教师:________________________年_______月______日。

梁的弯曲正应力实验报告

梁的弯曲正应力实验报告

一、实验目的1. 通过实验,了解梁在弯曲状态下的应力分布规律;2. 验证梁的弯曲正应力计算公式的准确性;3. 掌握应变电测法的基本原理和操作方法;4. 培养学生严谨的实验态度和科学的研究方法。

二、实验原理梁在弯曲状态下,其横截面上各点的正应力可以用以下公式计算:\[ \sigma = \frac{M y}{I_z} \]其中,\(\sigma\) 为正应力,\(M\) 为弯矩,\(y\) 为梁横截面上某点到中性轴的距离,\(I_z\) 为梁截面对中性轴的惯性矩。

实验中,通过测量梁横截面上不同位置的应变,根据虎克定律,可计算出相应位置的应力。

实验装置主要包括梁、应变片、静态数字电阻应变仪等。

三、实验仪器与设备1. 梁材料:矩形截面试件,尺寸为 \(b \times h\);2. 应变片:电阻应变片,用于测量梁横截面上的应变;3. 静态数字电阻应变仪:用于测量应变片输出的电阻变化,从而计算出应变;4. 加载装置:用于对梁施加弯矩;5. 游标卡尺:用于测量梁的尺寸;6. 计算器:用于计算实验数据。

四、实验步骤1. 准备实验装置,包括梁、应变片、应变仪等;2. 将应变片粘贴在梁的预定位置,确保应变片与梁表面紧密贴合;3. 接通应变仪电源,调整应变仪的量程和灵敏度;4. 使用游标卡尺测量梁的尺寸,记录数据;5. 在梁上施加预定的弯矩,确保梁处于弯曲状态;6. 使用应变仪测量梁横截面上不同位置的应变,记录数据;7. 根据实验数据和应变片的位置,计算出梁横截面上不同位置的应力;8. 比较实验测得的应力与理论计算值,分析误差原因。

五、实验结果与分析1. 实验数据:表1:梁横截面上不同位置的应变测量值| 测点位置 | 应变值(με) || -------- | ------------ || A点 | 120 || B点 | 100 || C点 | 80 || D点 | 60 |表2:梁横截面上不同位置的应力计算值| 测点位置 | 应力值(MPa) || -------- | ------------ || A点 | 12.00 || B点 | 10.00 || C点 | 8.00 || D点 | 6.00 |2. 结果分析:通过实验数据与理论计算值的比较,可以看出,在梁的弯曲状态下,应力在梁横截面上呈线性分布。

梁的纯弯曲正应力实验报告

梁的纯弯曲正应力实验报告

梁的纯弯曲正应力实验报告一、实验目的。

本实验旨在通过对梁的纯弯曲实验,了解在梁的弯曲变形中产生的正应力分布规律,并通过实验数据的处理和分析,验证梁的正应力分布与理论计算的结果是否一致。

二、实验原理。

梁的纯弯曲是指梁在外力作用下只产生弯曲变形,不产生轴向拉伸或压缩的情况。

在梁的弯曲变形中,梁的上表面产生拉应力,下表面产生压应力,且在梁的截面上,不同位置的应力大小不同。

根据梁的弯曲理论,梁在弯曲变形中的正应力分布规律可以通过理论计算得出。

三、实验装置和仪器。

本实验所使用的实验装置包括梁的支撑装置、加载装置、测力传感器、位移传感器等。

其中,测力传感器用于测量梁在加载过程中的受力情况,位移传感器用于测量梁在加载过程中的位移情况。

四、实验步骤。

1. 将梁放置在支撑装置上,并调整支撑装置,使梁能够自由地产生弯曲变形;2. 将加载装置与梁连接,并通过加载装置施加一定的加载力;3. 同时记录梁在加载过程中的受力情况和位移情况;4. 依据实验数据,计算梁在不同位置的正应力大小,并绘制出正应力分布图;5. 将实验数据与理论计算结果进行对比分析,验证梁的正应力分布规律。

五、实验数据处理和分析。

通过实验测得的数据,我们计算出了梁在不同位置的正应力大小,并绘制出了正应力分布图。

通过对比实验数据与理论计算结果,我们发现梁的正应力分布与理论计算的结果基本一致,验证了梁的正应力分布规律。

六、实验结论。

通过本次实验,我们了解了梁的纯弯曲正应力分布规律,并通过实验数据的处理和分析,验证了梁的正应力分布与理论计算的结果基本一致。

因此,本实验取得了预期的实验目的。

七、实验总结。

本次实验通过对梁的纯弯曲实验,加深了我们对梁的弯曲变形和正应力分布规律的理解,同时也提高了我们的实验操作能力和数据处理能力。

希望通过本次实验,能够对大家有所帮助。

八、参考文献。

[1] 《材料力学实验指导书》。

[2] 《材料力学实验讲义》。

以上为梁的纯弯曲正应力实验报告,谢谢阅读。

材料力学实验指导书§5梁弯曲正应力电测实验指导书【模板】

材料力学实验指导书§5梁弯曲正应力电测实验指导书【模板】

材料力学实验指导书§5 梁弯曲正应力电测实验指导书1、概述梁是工程中常用的受弯构件。

梁受弯时,产生弯曲变形,在结构设计和强度计算中经常要涉及到梁的弯曲正应力的计算,在工程检验中,也经常通过测量梁的主应力大小来判断构件是否安全,也可采用通过测量梁截面不同高度的应力来寻找梁的中性层。

2、实验目的1、用应变电测法测定矩形截面简支梁纯弯曲时,横截面上的应力分布规律。

2、验证纯弯梁的弯曲正应力公式。

3、观察纯弯梁在双向交变加载下的应力变化特点。

3、实验原理梁纯弯曲时,根据平面假设和纵向纤维之间无挤压的假设,得到纯弯曲正应力计算公式为:Z I My=σ式中:M —弯矩 Z I —横截面对中性层的惯性矩 y —所求应力点的纵坐标(中性轴为坐标零点)。

由上式可知梁在纯弯曲时,沿横截面高度各点处的正应力按线性规律变化,根据纵向纤维之间无挤压的假设,纯弯梁中的单元体处于单纯受拉或受压状态,由单向应力状态的胡克定律E *εσ=可知,只要测得不同梁高处的ε,就可计算出该点的应力σ,然后与相应点的理论值进行比较,以验证弯曲正应力公式。

4、实验方案4.1实验设备、测量工具及试件:YDD-1型多功能材料力学试验机(图1.8)、150mm 游标卡尺、四点弯曲梁试件(图5.1)。

YDD-1型多功能材料力学试验机由试验机主机部分和数据采集分析两部分组成,主机部分由加载机构及相应的传感器组成,数据采集部分完成数据的采集、分析等。

图5.1实验中用到的纯弯梁,矩形截面,在梁的两端有支撑圆孔,梁的中间段有四个对称半圆形分配梁加载槽,加载测试时,两半圆型槽中间部分为纯弯段,在纯弯段中间不同梁高部位、在离开纯弯图5.1 四点弯曲梁试件段中间一定距离的梁顶及梁底、在加工有长槽孔部位的梁顶及梁底均粘贴电阻应变片。

4.2 装夹、加载方案安装好的试件如图5.2所示。

试验时,四点弯曲梁通过销轴安装在支座的长槽孔内,形成滚动铰支座。

梁向下弯曲时,荷载通过分配梁等量地分配到梁上部两半圆形加载槽,梁向上弯曲时,荷载通过分配梁等量地分配到梁下部两半圆形加载槽,分配梁的两个加载支滚,一个为滚动铰支座,一个为滑动铰支座,这样就可保证梁在弯曲加载时不产生其它附加荷载。

梁的弯曲正应力实验

梁的弯曲正应力实验

梁的弯曲正应力实验引言在力学学科中,我们研究物体的形变和变形时,经常需要考虑应力的问题。

应力是物体内部的力分布情况,可以用来描述物体对外界施加力的能力。

弯曲正应力实验是一种常见的实验方法,用来研究材料在弯曲过程中产生的正应力分布情况。

本文将详细介绍梁的弯曲正应力实验的原理、实验装置、实验步骤以及实验结果的分析。

实验原理在材料力学中,当梁受到作用力而产生弯曲时,梁内部会产生正应力和剪应力。

弯曲的平面称为中性面,中性面附近的纤维受到压应力,而远离中性面的纤维则受到拉应力。

梁上不同位置的正应力大小不同,正应力随着距离中性面的距离增大而减小。

实验装置梁的弯曲正应力实验需要以下装置: 1. 实验梁:选择一块具有一定长度和宽度的梁作为实验梁。

梁的截面形状可以选择矩形、圆形等。

2. 支座:用于支撑实验梁的底部,使其能够固定在位置上。

3. 加载装置:通过施加作用力,使实验梁产生弯曲。

可以使用重物、液压等方式施加作用力。

4. 测力计:用于测量实验梁上的正应力大小。

5. 测量仪器:使用光学显微镜或拉伸计等设备来测量梁的形变情况。

实验步骤1.准备实验梁:选择一块长度和宽度适当的梁,使其能够适应实验要求。

可以根据需要对梁进行截割和加工。

2.搭建实验装置:将支座固定在实验台上,将实验梁放置在支座上,并调整支座的位置和角度,使实验梁能够产生弯曲。

3.施加作用力:根据实验要求,选择适当的加载装置施加作用力。

可以逐渐增加作用力的大小,以逐渐产生弯曲。

4.测量正应力:使用测力计测量实验梁上的正应力大小,并记录测得的数据。

5.测量形变:使用测量仪器测量梁的形变情况,可以测量梁的弯曲角度、梁的变形量等。

6.结束实验:根据实验要求,结束实验并记录实验数据。

实验结果分析在实验结束后,根据测得的数据进行结果分析。

可以绘制出梁上不同位置的正应力大小与距离中性面的距离的关系图,分析正应力随距离的变化规律。

还可以计算梁的弯曲刚度、弯曲变形等参数,以便进一步研究材料的力学性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验五 梁的弯曲正应力实验
一、实验目的和要求:
1) 用电测法测定纯弯曲梁受弯曲时A A -(或B B -)截面各点的正应力值,与理论计算
值进行比较。

2) 了解电阻应变仪的基本原理和操作方法
二、实验设备
CM-1C 型静态电阻应变仪,纯弯曲梁实验装置
三、弯曲梁简图:
图5-1
已知: mm 630=L 、mm 160=a 、mm 20=b 、mm 40=h 、6/h c =、GPa 200=E
在梁的纯弯曲段内A A -(或B B -)截面处粘贴七片电阻片,即1R 、2R 、3R 、4R 、
5R 、6R 、7R 。

4R 贴在中性层处,实验时依次测出1、2、3、4、5、6、7点的应变,计算
出应力。

四、测量电桥原理
构件的应变值一般均很小,所以,应变片电阻变化率也很小,需用专门仪器进行测量,测量应变片的电阻变化率的仪器称为电阻应变仪,其测量电路为惠斯顿电桥,如图所示。

如图所示,电桥四个桥臂的电阻分别为1R 、2R 、3R 和4R ,在A 、C 端接电源,B 、D 端为输出端。

设A 、C 间的电压降为U 则经流电阻1R 、
4R 的电流分别为2
11R R U
I +=
,、
4
34R R U
I +=
,所以1R 、4R 两端的电压降分
别为
U
R R R R I U 2
11
11AB +=
=,
U R R R U 4
34
AD +=
所以B 、D 端的输出电压为
U R R R R R R R R U R R R U R R R U U U )
)((43214231434
211AD AB ++-=+-+=
-=∆
当电桥输出电压0=∆U 时,称为电桥平衡。

故电桥平衡条件为4231R R R R =或
3
4
21R R R R =设电桥在接上电阻1R 、2R 、3R 和4R 时处于平衡状态,即满足平衡条件。

当上述电阻分别改变1R ∆、2R ∆、3R ∆和4R ∆时
)
)(()
)(())((4433221144223311R R R R R R R R R R R R R R R R U
U ∆++∆+∆++∆+∆+∆+-∆+∆+=∆略去高阶微量后可得
⎪⎪⎭⎫ ⎝⎛∆-∆+∆-∆+=∆4433121
22
2121)(R R R R R R R R R R R R U
U
⎪⎭⎫
⎝⎛∆-∆+∆-∆=
R R R R R R R
R U 43214
(当4321R R R R ===时)
上式代表电桥的输出电压与各臂电阻改变量的一般关系。

在进行电测实验时, 有时将粘贴在构件上的四个相同规格的应变片同时接入测量电桥,当构件受力后,设上述应变片感受到的应变分别为1ε、2ε、3ε、4ε相应的电阻改变量分别为1R ∆、2R ∆、3R ∆和4R ∆,应变仪的读数为
4321d 4εεεεε-+-=∆=
KU
U
以上为全桥测量的读数,如果是半桥测量,则读数为
21d 半4εεε-=∆=
KU
U
所谓半桥测量是将应变片3R 和4R 放入仪器内部,1R 和2R 测量片接入电桥,接入A 、
B 和B 、
C 组成半桥测量。

五、理论和实验计算
理论计算
Z
7
,1W M
=
σ、Z 26,2I c M ⋅=σ、Z 15,3I c M ⋅=σ、04=σ62Z bh W =、123Z bh J = 实验值计算:εσ⋅=E
图5-3。

相关文档
最新文档