最小二乘法在系统辨识中的应用

合集下载

递推最小二乘法原理

递推最小二乘法原理

递推最小二乘法原理递推最小二乘法(Recursive Least Squares, 简称RLS)是一种经典的参数估计方法,广泛应用于信号处理、通信系统、自适应滤波等领域。

它通过不断迭代更新参数,逐步逼近最优解,具有快速收敛、适应性强的特点。

本文将从最小二乘法出发,介绍递推最小二乘法的原理及其应用。

最小二乘法(Least Squares)是一种常见的参数估计方法,用于寻找一组参数,使得模型预测值与观测值之间的误差平方和最小。

对于线性模型,最小二乘法可以通过求解正规方程或者利用矩阵运算的方式得到最优参数。

然而,在实际应用中,数据通常是逐步到来的,因此需要一种能够动态更新参数的方法,于是递推最小二乘法应运而生。

递推最小二乘法的基本原理是利用递推的方式不断更新参数,以逼近最优解。

在每一时刻,根据当前的观测数据和先前的参数估计,通过递推公式计算出新的参数估计值,从而实现参数的动态更新。

这样的方法不仅能够适应数据的动态变化,还能够实现快速的收敛,适用于实时系统和非平稳环境下的参数估计。

递推最小二乘法的核心思想是利用指数加权的方式对历史数据进行处理,赋予近期数据更大的权重,从而更好地适应数据的变化。

通过引入遗忘因子(Forgetting Factor),可以控制历史数据对参数估计的影响程度,使得算法更具灵活性和适应性。

同时,递推最小二乘法还可以结合正交分解等技术,进一步提高计算效率和数值稳定性。

在实际应用中,递推最小二乘法被广泛应用于自适应滤波、信道均衡、系统辨识等领域。

例如,在自适应滤波中,递推最小二乘法可以根据接收信号的实际情况,动态调整滤波器的参数,实现信号的实时去噪和增强。

在通信系统中,递推最小二乘法可以用于自适应调制解调器的设计,提高系统的抗干扰能力和适应性。

此外,递推最小二乘法还被广泛应用于雷达跟踪、无线定位等领域,发挥着重要作用。

总之,递推最小二乘法作为一种经典的参数估计方法,具有快速收敛、适应性强的特点,在信号处理、通信系统、自适应滤波等领域有着重要的应用。

递推最小二乘法_协方差矩阵_概述说明以及解释

递推最小二乘法_协方差矩阵_概述说明以及解释

递推最小二乘法协方差矩阵概述说明以及解释1. 引言1.1 概述在统计学和计量经济学中,递推最小二乘法(Recursive Least Squares,简称RLS)是一种常用的参数估计方法。

它通过不断更新样本数据进行参数的估计,并且可以适用于非静态数据场景。

协方差矩阵是统计分析中重要的概念,它描述了变量之间的线性关系强度和方向,并且在许多领域具有广泛应用。

1.2 文章结构本文首先介绍递推最小二乘法的定义和原理,在此基础上详细解释算法的步骤以及其应用领域。

接着,我们将引入协方差矩阵的概念并介绍其计算方法,同时探讨了它在实际问题中所起到的作用和应用场景。

最后,我们将对递推最小二乘法与协方差矩阵之间的关系进行解释,并通过实例分析来说明它们如何相互影响。

1.3 目的本文旨在全面介绍递推最小二乘法和协方差矩阵,并深入探讨它们之间的联系。

通过对这两个概念及其应用的理解,我们可以更好地理解参数估计方法和变量间关系的描述与分析。

此外,我们还将展望相关领域未来可能的研究方向,以促进学术和实践的进一步发展。

2. 递推最小二乘法2.1 定义和原理:递推最小二乘法是一种用于估计线性模型参数的方法。

它可以通过历史数据的不断更新来逐步拟合模型,以使得估计值与观测值之间的误差达到最小化。

该方法可以被形式化地描述为以下步骤:1. 初始化模型参数的初始值。

2. 从历史数据中选择一个样本,并使用当前参数估计出该样本对应的输出值。

3. 计算该样本的预测误差。

4. 根据预测误差对参数进行调整,使得预测误差尽量减小。

5. 重复步骤2至4,直到所有样本都被处理过一遍,或者满足终止条件。

递推最小二乘法是基于最小二乘原理,即将真实观测值与模型预测值之间的差异平方求和并最小化这个目标函数。

通过迭代地更新参数,递推最小二乘法可以逐渐优化模型,并获得更准确的参数估计。

2.2 算法步骤:具体而言,在每次迭代中,递推最小二乘法按照以下步骤进行操作:1. 根据历史数据选择一个样本,并根据当前的参数估计出预测值。

基于广义最小二乘法的系统参数辨识与仿真

基于广义最小二乘法的系统参数辨识与仿真

基于广义最小二乘法的系统参数辨识与仿真摘要:系统辨识是自动控制学科的一个重要分支,由于其特殊作用,已经广泛应用于各种领域,尤其是复杂系统或参数不容易确定的系统的建模。

过去,系统辨识主要用于线性系统的建模,经过多年的研究,已经形成成熟的理论。

但随着社会、科学的发展,非线性系统越来越受到人们的关注,其控制与模型之间的矛盾越来越明显,因而非线性系统的辨识问题也越来越受到重视,其便是理论不断发展和完善。

本文重点介绍了系统参数辨识中广义最小二乘法的基本原理,具体说明了基于广义最小二乘法参数辨识在Matlab中的实现方法,结合实例给出相应的仿真程序及结果分析。

关键词:系统辨识;参数辨识;广义最小二乘法;Matlab1.引言所谓辨识就是通过测取研究对象在人为输入作用下的输出响应,或正常运行时的输入输出数据记录,加以必要的数据处理和数学计算,估计出对象的数学模型。

这是因为对象的动态特性被认为必然表现在它的变化着的输入输出数据之中,辨识只不过是利用数学的方法从数据序列中提炼出对象的数学模型而已。

在系统辨识领域中,最小二乘法是最基本最常用的方法。

可用于动态、静态、线性、非线性系统。

这种方法只适用于噪声是不相关随机序列时才是无偏估计,但大多数情况下噪声却是相关随机序列。

所以本文讨论克服最小二乘法有偏估计的一种方法—广义最小二乘法。

2.系统辨识一般而言,建立系统的数学模型有两种方法:激励分析法和系统辨识法。

前者是按照系统所遵循的物化(或社会、经济等)规律分析推导出模型。

后者则是从实际系统运行和实验数据处理获得模型。

如图1所示,系统辨识就是从系统的输入输出数据测算系统数学模型的理论和方法。

更进一步的定义是L.A.Zadeh曾经与1962年给出的,即“系统辨识是在输入和输出的基础上,从系统的一类系统范围内,确立一个与所实验系统等价的系统。

”另外,系统辨识还应该具有3个基本要素,即模型类、数据和准则。

被辨识系统模型根据模型形式可分为参数模型和非参数模型两大类。

系统辨识最小二乘法大作业 (2)

系统辨识最小二乘法大作业 (2)

系统辨识大作业最小二乘法及其相关估值方法应用学院:自动化学院学号:姓名:日期:基于最小二乘法的多种系统辨识方法研究一、实验原理1.最小二乘法在系统辨识中用得最广泛的估计方法是最小二乘法(LS)。

设单输入-单输出线性定长系统的差分方程为(5.1.1)式中:为随机干扰;为理论上的输出值。

只有通过观测才能得到,在观测过程中往往附加有随机干扰。

的观测值可表示为(5.1.2)式中:为随机干扰。

由式(5.1.2)得(5.1.3)将式(5.1.3)带入式(5.1.1)得(5.1.4)我们可能不知道的统计特性,在这种情况下,往往把看做均值为0的白噪声。

设(5.1.5)则式(5.1.4)可写成(5.1.6)在观测时也有测量误差,系统内部也可能有噪声,应当考虑它们的影响。

因此假定不仅包含了的测量误差,而且包含了的测量误差和系统内部噪声。

假定是不相关随机序列(实际上是相关随机序列)。

现分别测出个随机输入值,则可写成个方程,即上述个方程可写成向量-矩阵形式(5.1.7) 设则式(5.1.7)可写为(5.1.8)式中:为维输出向量;为维噪声向量;为维参数向量;为测量矩阵。

因此式(5.1.8)是一个含有个未知参数,由个方程组成的联立方程组。

如果,方程数少于未知数数目,则方程组的解是不定的,不能唯一地确定参数向量。

如果,方程组正好与未知数数目相等,当噪声时,就能准确地解出(5.1.9)如果噪声,则(5.1.10)从上式可以看出噪声对参数估计是有影响的,为了尽量较小噪声对估值的影响。

在给定输出向量和测量矩阵的条件下求系统参数的估值,这就是系统辨识问题。

可用最小二乘法来求的估值,以下讨论最小二乘法估计。

2.最小二乘法估计算法设表示的最优估值,表示的最优估值,则有(5.1.11)写出式(5.1.11)的某一行,则有(5.1.12) 设表示与之差,即-(5.1.13)式中成为残差。

把分别代入式(5.1.13)可得残差。

设则有(5.1.14) 最小二乘估计要求残差的平方和为最小,即按照指数函数(5.1.15) 为最小来确定估值。

系统辨识—最小二乘法

系统辨识—最小二乘法

最小二乘法参数辨识1 引言系统辨识是根据系统的输入输出时间函数来确定描述系统行为的数学模型。

现代控制理论中的一个分支。

通过辨识建立数学模型的目的是估计表征系统行为的重要参数,建立一个能模仿真实系统行为的模型,用当前可测量的系统的输入和输出预测系统输出的未来演变,以及设计控制器。

对系统进行分析的主要问题是根据输入时间函数和系统的特性来确定输出信号。

对系统进行控制的主要问题是根据系统的特性设计控制输入,使输出满足预先规定的要求。

而系统辨识所研究的问题恰好是这些问题的逆问题。

通常,预先给定一个模型类μ={M}(即给定一类已知结构的模型),一类输入信号u和等价准则J=L(y,yM)(一般情况下,J是误差函数,是过程输出y和模型输出yM的一个泛函);然后选择使误差函数J达到最小的模型,作为辨识所要求的结果。

系统辨识包括两个方面:结构辨识和参数估计。

在实际的辨识过程中,随着使用的方法不同,结构辨识和参数估计这两个方面并不是截然分开的,而是可以交织在一起进行的。

2 系统辨识的目的在提出和解决一个辨识问题时,明确最终使用模型的目的是至关重要的。

它对模型类(模型结构)、输入信号和等价准则的选择都有很大的影响。

通过辨识建立数学模型通常有四个目的。

①估计具有特定物理意义的参数有些表征系统行为的重要参数是难以直接测量的,例如在生理、生态、环境、经济等系统中就常有这种情况。

这就需要通过能观测到的输入输出数据,用辨识的方法去估计那些参数。

②仿真仿真的核心是要建立一个能模仿真实系统行为的模型。

用于系统分析的仿真模型要求能真实反映系统的特性。

用于系统设计的仿真,则强调设计参数能正确地符合它本身的物理意义。

③预测这是辨识的一个重要应用方面,其目的是用迄今为止系统的可测量的输入和输出去预测系统输出的未来的演变。

例如最常见的气象预报,洪水预报,其他如太阳黑子预报,市场价格的预测,河流污染物含量的预测等。

预测模型辨识的等价准则主要是使预测误差平方和最小。

系统辨识

系统辨识

最小二乘法的系统辨识摘要:在研究一个控制系统过程中,建立系统的模型十分必要。

因此,系统辨识在控制系统的研究中起到了至关重要的作用。

本文主要介绍了系统辨识的最小二乘方法,最小二乘法的一次完成过程进行了推导,最小二乘法的一次完成的缺陷在于对于有色噪声并没有很好的辨识效果。

其中系统辨识在工程中的应用非常广泛,系统辨识的方法有很多种,最小二乘法是一种应用极其广泛的系统辨识方法,阐述了动态系统模型的建立及其最小二乘法在系统辨识中的应用,并通过实例分析最小二乘法应用于直流调速系统的系统辨识。

关键词:系统辨识、最小二乘法一、系统辨识的定义系统辨识、状态估计和控制理论是现代控制理论三个相互渗透的环节。

1962年,L.A.zadeh给出“辨识”的定义为:系统辨识是在对输入和输出观测的基础上,在指定的一类系统中,确定一个与被识别的系统等价的系统。

[1]最先提出了系统辨识的定义。

随着科技的发展,数学建模对科学研究及指导及生产都有非常重要的意义。

给一个系统建立数学模型是一个比较复杂的工作,其中关键的一个环节是系统辨识。

系统辨识就是研究如何利用系统的输入、输出信号建立系统的数学模型。

[7]系统数学模型是系统输入、输出及其相关变量间的数学关系式,它描述系统输入、输出及相关变量之间相互影响、变化的规律性。

换句话说,系统辨识就是从系统的运算和实验数据建立系统的模型(模型结构和参数)。

系统辨识的三要素:数据、模型类和准则。

系统辨识的基本原理:在输入输出的基础上,从一类系统中确定一个与所测系统等价的系统。

[2]二、最小二乘法的引出最小二乘法是1795年高斯在预测星体运行轨道最先提出的,它奠定了最小二乘估计理论的基础.到了20世纪60年代瑞典学者Austron把这个方法用于动态系统的辨识中,在这种辨识方法中,首先给出模型类型,在该类型下确定系统模型的最优参数。

我们可以将所研究的对象按照对其了解的程度分成白箱、灰箱和黑箱。

于其内部结构、机制只了解一部分,对于其内部运行规律并不十分清楚,这样的研究对象通常称之为“灰箱”;如果我们对于研究对象的内部结构、内部机制及运行规律均一无所知的话,则把这样的研究对象称之为“黑箱”。

递归最小二乘法辨识参数

递归最小二乘法辨识参数

递归最小二乘法辨识参数递归最小二乘法(Recursive Least Squares, RLS)是一种参数辨识方法,它使用递归算法来求解最小二乘法中的参数。

在许多领域中,例如系统辨识、自适应控制、信号处理等,递归最小二乘法都是一个广泛使用的方法。

递归最小二乘法的基本思想是:通过递归迭代来更新参数估计值,使其逼近最优解。

在递归过程中,每一次迭代时,都会通过当前的测量值来更新参数的估计值,同时保留历史测量值的影响,从而获得更精确的估计值。

具体地说,在递归过程中,首先需要定义一个初始参数向量,然后通过观测数据序列来递归更新参数向量。

假设有一个如下所示的线性关系:y(k) = Φ(k) * θ + v(k)其中,y(k)是被观测到的输出值,Φ(k)是与该输出值相关的输入向量,θ是待辨识的参数向量,v(k)是误差项。

递归最小二乘法的目标就是通过观测数据来估计θ的值。

在递归最小二乘法中,首先需要定义一个初始的参数向量θ0,然后通过数据序列递归地更新θ的值。

每一次迭代时,都会用最新的观测数据来更新参数向量,使得估计值更接近真实值。

具体来说,每次观测到新的数据之后,都会根据当前参数估计值和新的观测值来计算估计误差,并更新参数向量。

具体的迭代步骤如下:1.从数据序列中读取观测值y(k)和输入向量Φ(k);2.计算估计值y(k)hat和估计误差e(k):y(k)hat = Φ(k) * θ(k-1)e(k) = y(k) - y(k)hat3.计算卡尔曼增益K(k)和参数估计值θ(k):K(k) = P(k-1) * Φ(k) / (λ + Φ(k)' * P(k-1) * Φ(k))θ(k) = θ(k-1) + K(k) * e(k)其中,P(k-1)是先前迭代步骤中的误差协方差矩阵,λ是一个小的正数,用于确保逆矩阵的存在性。

需要注意的是,递归最小二乘法的计算量相对较大,因此通常需要对算法进行优化,以提高计算效率和精度。

最小二乘法的原理及其应用

最小二乘法的原理及其应用

最小二乘法的原理及其应用一、研究背景在科学研究中,为了揭示某些相关量之间的关系,找出其规律,往往需要做数据拟合,其常用方法一般有传统的插值法、最佳一致逼近多项式、最佳平方逼近、最小二乘拟合、三角函数逼近、帕德(Pade)逼近等,以及现代的神经网络逼近、模糊逼近、支持向量机函数逼近、小波理论等。

其中,最小二乘法是一种最基本、最重要的计算技巧与方法。

它在建模中有着广泛的应用,用这一理论解决讨论问题简明、清晰,特别在大量数据分析的研究中具有十分重要的作用和地位。

随着最小二乘理论不断的完善,其基本理论与应用已经成为一个不容忽视的研究课题。

本文着重讨论最小二乘法在化学生产以及系统识别中的应用。

二、最小二乘法的原理人们对由某一变量t或多个变量t1…..tn 构成的相关变量y感兴趣。

如弹簧的形变与所用的力相关,一个企业的盈利与其营业额,投资收益和原始资本有关。

为了得到这些变量同y之间的关系,便用不相关变量去构建y,使用如下函数模型,q个相关变量或p个附加的相关变量去拟和。

通常人们将一个可能的、对不相关变量t的构成都无困难的函数类型充作函数模型(如抛物线函数或指数函数)。

参数x是为了使所选择的函数模型同观测值y相匹配。

(如在测量弹簧形变时,必须将所用的力与弹簧的膨胀系数联系起来)。

其目标是合适地选择参数,使函数模型最好的拟合观测值。

一般情况下,观测值远多于所选择的参数。

其次的问题是怎样判断不同拟合的质量。

高斯和勒让德的方法是,假设测量误差的平均值为0。

令每一个测量误差对应一个变量并与其它测量误差不相关(随机无关)。

人们假设,在测量误差中绝对不含系统误差,它们应该是纯偶然误差,围绕真值波动。

除此之外,测量误差符合正态分布,这保证了偏差值在最后的结果y上忽略不计。

确定拟合的标准应该被重视,并小心选择,较大误差的测量值应被赋予较小的权。

并建立如下规则:被选择的参数,应该使算出的函数曲线与观测值之差的平方和最小。

用函数表示为:用欧几里得度量表达为:最小化问题的精度,依赖于所选择的函数模型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最小二乘法在系统辨识中的应用
王文进
控制科学与控制工程学院 控制理论与控制工程专业 2009010211
摘要:在实际的工程中,经常要对一个系统建立数学模型。

很多时候,要面对一个未知的系统,对于这些未知系统,我们所知道的仅仅是它们的一些输入输出数据,我们要根据这些测量的输入输出数据,建立系统的数学模型。

由此诞生了系统辨识这门科学,系统辨识就是研究怎样利用对未知系统的输入输出数据建立描述系统的数学模型的科学。

系统辨识在工程中的应用非常广泛,系统辨识的方法有很多种,最小二乘法是一种应用及其广泛的系统辨识方法。

本文主要讲述了最小二乘估计在系统辨识中的应用。

首先,为了便于介绍,用一个最基本的单输入单输出模型来引入系统辨识中的最小二乘估计。

例如:y = ax + (1)
其中:y、x 可测,为不可测的干扰项,a未知参数。

通过N 次实验,得到测量数据y k和x k ,其中k=1、2、3、…,我们所需要做的就是通过这N次实验得到的数据,来确定未知参数a 。

在忽略不可测干扰项的前提下,基本的思想就是要使观测点y k和由式(1)确定的估计点y的差的平方和达到最小。

用公式表达出来就是要使J最小:
确定未知参数a的具体方法就是令: J a = 0 , 导出 a
通过上面最基本的单输入单输出模型,我们对系统辨识中的最小二乘法有了初步的了解,但在实际的工程中,系统一般为多输入系统,下面就用一个实际的例子来分析。

在接下来的表述中,为了便于区分,向量均用带下划线的字母表示。

水泥在凝固过程中,由于发生了一系列的化学反应,会释放出一定的热量。

若水泥成分及其组成比例不同,释放的热量也会不同。

水泥凝固放热量与水泥成分的关系模型如下:
y = a0+ a1x1+…+ a n x n +
其中,y为水泥凝固时的放热量(卡/克);x1~x2为水泥的几种成分。

引入参数向量: = [ a0,a1,…,a n ]T
经过N次试验,得出N个方程: y k = k T + k ; k=1、2…、N
其中:k = [ 1,x1,x2,…,x N ]T
方程组可用矩阵表示为: y = +
其中:y = [ y1,y2,…,y N ] T = [ 1,2,…,N ] T
估计准则:

=(y - )T( y - )
J = y T y + T T - y T - T T y
= y T y + T T - 2 T T y
假设:(T)满秩,由
根据矩阵值函数对矩阵变量的导数和数量函数对矩阵变量的导数可以得出以下两个公式:

有:

所以:
解出参数估计向量:
=(T)-1 T y
Ls
至此,水泥的凝固放热量与水泥的成分关系模型即建立起来了。

总结:在本文中,主要用到了矩阵里的最小二乘法思想,在具体求解过程中,还用到了矩阵值函数对矩阵变量的求导和数量函数对矩阵变量的求导。

虽然最小二乘问题在本学期所学的矩阵论里不是作为重点来讲,但最小二乘法在工程中的作用却是难以估计的。

有统计史家这样评价,“最小二乘法之于统计学,犹如微积分之于数学”。

在任何工程项目中,系统的线性模型永远是一个无法回避的问题,而正是最小二乘法误差分析的研究促进了线性理论模型的发展。

相关文档
最新文档