基于最小二乘法的系统辨识
最小二乘法在系统辨识中的应用(包含相关的三种算法)

但是,数据向量)(kfh中的变量均需要按照(3.2.2)式计算,然而噪声模型)(1zC并不知道。
为此需要用迭代的方法来估计)(1zC。
令)()(1z)(1kvCke(3.2.5)置,2[k],)()]3(),2(),1([)(31ccckekekekeபைடு நூலகம்h(3.2.6)就把噪声模型(3.2.5)也化成最小二乘格式)()()(kvkkeeeh由于上式的噪声已是白噪声,所以再次利用最小二乘法可获得噪声模型参数e的无偏估计。
通过极小化(1.1.4)式来计算的方法称作最小二乘法,未知模型参数最可能的值是在实际观测值与计算值之累次误差的平方和达到最小处所得到的,这种模型输出能最好地接近实际过程的输出。
2、辨识原理考虑模型(1.1.2)式的辨识问题,其中)(kz和)(kh都是可观测的数据,是待估计参数,准则函数取(1.1.4)根据(1.1.3)的定义,准则函数)(J可写成二次型的形式)()()(HzHzllllJ(1.2.1)显然上式中的Hl代表模型的输出,或者说是过程的输出预报值。
)()() 1()()()()()(1111kkkkkiikkihhPhhhhP(2.2.3)令:
] ) 1(),2 (z),1 (z[1kzkz则:
] )i()()[1()() 1(1111111ikkkkkzikkhPzHHH于是有i111)()() 1() 1(kizikkhP(2.2.4)令] )k(),2 (z),1 (z[zkz利用(2.2.3)和(2.2.4)式,可得)]1()()()[()() 1()}()() 1()]()()(){[()]()() 1() 1()[(] )i()()[()()(1111ikkkzkkkkzkkkkkkkzkkkkzikkkkkkkhhphhhPPhPPhPzHHH(2.2.5)引进增益矩阵)(kK,定义为)()()(kkkhPK(2.2.6)则(2.2.5)式写成)]1()()()[() 1()(kkkzkkkhK(2.2.7)进一步把(2.2.3)式写成11)]()() 1([)(kkkkhhPP(2.2.8)为了避免矩阵求逆运算,利用矩阵反演公式可将(2.2.8)式演变成) 1()]()([)]()() 1([)(11kkkkkkkPhKIhhPP(2.2.9)将(2.2.9)式代入(2.2.6)式,整理后有1] 1)() 1()()[() 1()(kkkkkkhPhhPK(2.2.10)综合(2.2.7)、(2.2.9)、(2.2.10)式便得到最小二乘参数估计递推算法。
基于最小二乘法的永磁同步电机在线参数辨识的仿真研究

基于最小二乘法的永磁同步电机在线参数辨识的仿真研究摘要:较高性能的永磁同步电机矢量控制系统需要实时更新电机参数,文章中采用一种在线辨识永磁同步电机参数的方法。
这种基于最小二乘法参数辨识方法是在转子同步旋转坐标系下进行的,通过MA TLAB/SIMULINK对基于最小二乘法的永磁同步电机参数辨识进行了仿真,仿真结果表明这种电机参数辨识方法能够实时、准确地更新电机控制参数。
关键词:永磁同步电机;参数辨识;最小二乘法[b][align=center]Simulation of PMSM based on least squares on-line parameter identificationWANG Hong-shan , ZHANG Xing,XIE Zhen , Y ANG Shu-ying[/align][/b]Abstract:This paper presents a method to determine the parameters of PMSM on line which are necessary to implement the vector control strategy. The presented identification technique, based least-squares, reveals itself suitable to be applied to PMSM. The estimation is based on a standard model of PMSM, expressed in rotor coordinates. The method is suitable for online operation to continuously update the parameter values. The developed algorithm is simulated in MATLAB/SIMULINK. Simulation results are presented, and accurate parameters for PMSM is provided.KEY WORDS:PMSM; Parameter Identification; Least-Squares0 引言电机参数辨识方面的文献数量颇多,研究成果丰富。
系统辨识相关分析最小二乘

相关分析法辨识系统单位脉冲响应1辨识原理对于下图示的单输入单输出线性系统,其输入输出的因果关系可用卷积公式描述。
公式为:0()()()y t g x t d λλλ∞=-⎰把变量t 换成t +τ,上式两边同乘以x (t ),取时间的平均值,得11lim()(+)(){lim()(+)}22TTTTT T x t y t dt g x t x t dt d TTτλτλλ∞--→∞→∞=-⎰⎰⎰即 0()()()x y x R g R d τστλλ∞=-⎰上式即为维纳-霍夫方程,其给出了输入的自相关函数,输入、输出的互相关函数及脉冲响应函数三者之间的关系。
令x (t )为白噪声信号,则其自相关函数为:()(), ()()x x R k R k τδττλδτλ=-=-代入维纳-霍夫方程得:()()()()xy x R g R d kg τλτλλτ∞=-=⎰则有:()()xy R g kττ=这样,只要记录x(t)、y(t)的值,并计算它们的互相关函数,即可求得脉冲响应函数g(τ)。
在系统有正常输入的情形下,辨识脉冲响应的原理图如下图所示。
2辨识过程2.1预备实验以二阶系统22()2G s s s ++=作为辨识对象。
在实验前首先要进行预备实验,以了解系统特性。
通过简单阶跃响应确定系统过度过程时间T s 大约为11s ,如下图所示。
给系统施加不同周期的正弦信号,系统输出为输入的0.707倍时,确定截止频率f M 大约为0.318Hz 。
2.2选择二位式伪随机序列的参数(1)选择t 和N 由0.3Mt f ∆≤,得0.94t s ∆≤。
因为系统的时间常数1nT s ζω=,根据时间常数可按照0.050.1t T ∆= ()选择t ∆。
由二位式伪随机序列周期要大于系统过渡过程时间,若t ∆选择0.94s ,则由(1)s N t T -⨯∆≥,得12.7021N ≥;若t ∆选择0.195s ,则由(1)s N t T -⨯∆≥,得57.4103N ≥。
系统辨识之最小二乘法

系统辨识之最小二乘法方法一、最小二乘一次性算法:首先对最小二乘法的一次性辨识算法做简要介绍如下:过程的黑箱模型如图所示:其中u(k)和z(k)分别是过程的输入输出,)(1-z G 描述输入输出关系的模型,成为过程模型。
过程的输入输出关系可以描述成以下最小二乘格式:)()()(k n k h k z T +=θ (1)其中z(k)为系统输出,θ是待辨识的参数,h(k)是观测数据向量,n(k)是均值为0的随机噪声。
利用数据序列{z (k )}和{h (k )}极小化下列准则函数:∑=-=Lk T k h k z J 12])()([)(θθ (2)使J 最小的θ的估计值^θ,成为最小二乘估计值。
具体的对于时不变SISO 动态过程的数学模型为 )()()()()(11k n k u z B k z z A +=-- (3)应该利用过程的输入、输出数据确定)(1-z A 和)(1-Z B 的系数。
对于求解θ的估计值^θ,一般对模型的阶次a n ,b n 已定,且b a n n >;其次将(3)模型写成最小二乘格式)()()(k n k h k z T +=θ (4)式中=------=T n n T b a b a b b b a a a n k u k u n k z k z k h ],,,,,,,[)](,),1(),(,),1([)(2121 θ (5)L k ,,2,1 =因此结合式(4)(5)可以得到一个线性方程组L L L n H Z +=θ (6)其中==T L TL L n n n n L z z z z )](),2(),1([)](),2(),1([ (7)对此可以分析得出,L H 矩阵的行数为),max(b a n n L -,列数b a n n +。
在过程的输入为2n 阶次,噪声为方差为1,均值为0的随机序列,数据长度)(b a n n L +>的情况下,取加权矩阵L Λ为正定的单位矩阵I ,可以得出:L T L L T L z H H H 1^)(-=θ (8)其次,利用在Matlab 中编写M 文件,实现上述算法。
系统辨识最小二乘法—课设报告

课 程 设 计 报 告学 院: 专业名称: 学生姓名: 指导教师: 时 间:课程设计任务书一、设计内容SISO 系统的差分方程为:)()2()1()2()1()(2121k k u b k u b k z a k z a k z υ+-+-=-+-+参数取真值为:[]0.35 0.39 0.715 1.642=T θ,利用MATLAB 的M 语言辨识系统中的未知参数1a 、2a 、1b 、2b 。
二、主要技术要求用参数的真值及差分方程求出)(k z 作为测量值,)(k υ是均值为0,方差为0.1、0.5和0.01的不相关随机序列。
选取一种最小二乘算法利用MATLAB 的M 语言辨识参数。
三、进度要求2周(6月28日-7月11日)完成设计任务,撰写设计报告3000字以上,应包含设计过程、 计算结果、 图表等内容。
具体进度安排:◆ 6月28日,选好题目,查阅系统辨识相关最小二乘法原理的资料。
◆ 6月29日,掌握最小二乘原理,用MATLAB 编程实现最小二乘一次完成算法。
◆ 6月30日,掌握以最小二乘算法为基础的广义最小二乘递推算法。
◆ 7月1日,用MATLAB 编程实现广义最小二乘递推算法。
◆ 7月2日,针对题目要求进行参数辨识,并记录观察相关数据。
◆ 7月3日-7月5日,对参数辨识结果进行分析,找出存在的问题,提出改进方案,验证改进优化结果。
◆ 7月6日-7月7日,撰写课程设计报告。
◆ 7月8日,对课程设计报告进行校对。
◆ 7月9日,打印出报告上交。
学 生王景 指导教师 邢小军1. 设计内容设SISO 系统的差分方程为:)()2()1()2()1()(2121k k u b k u b k z a k z a k z υ+-+-=-+-+ 式(1-1) 参数取真值为:[]0.35 0.39 0.715 1.642=Tθ,利用MATLAB 的M 语言辨识系统中的未知参数1a 、2a 、1b 、2b 。
基于最小二乘支持向量机的传感器动态系统辨识方法

第2卷 0
・
第6 期
电子测量与仪器学报
J R A L T NI OU N L OF E EC RO C
M EAs UREMENT AND Ns l TRUMENT
l2 N . f 0 _ o6
3 ・ 6
20 0 6年 1 2月
ga r mmig n t e s me c n i o n .I a o d t n,t e s e d o e t c t n w s1 —1 t st a a f tn a d S h i h p e fi ni ai a 0 d i f o 0 i n t t a d VM t o me h h o s r me d, h
L — VM.2)h S S M ouin fl w d drcl rm ovn e fl e re u t n n ta fq a rt r— SS te L — V slt ol e i t f o o e y o slig a sto i a q ai sis d o u d ai p o n o e c
模 型进 行传感器动态系统辨识 的方法 , 并给出 了相应 的过 程和算法 。与标准 S M模 型 比较 , V 该方 法优点是 明显 的 : 1 用等 ()
式 约束 代替标准 S M 算法 中的不等式约束 ;2 将 求解 二次规划 问题转化 为直接 求解线性 矩阵方 程 , 得在相 同条件下 , V () 使 系
Ab tat B sdo nrd cn n o p r g s n ad sp o et ahn S M)ad l tsu e s c : ae nit u iga d cm ai t dr u pr vc rm cie( V r o n a t o n e q a s s a r sp o et c ie( SS M) a et ct nme o f e sr d n m css m s gL —V d l a u p r vc r t o mahn L —V , ni ni ai t do snos y a i yt s i S S M moe W d f o i h e un s
系统辨识最小二乘法大作业 (2)

系统辨识大作业最小二乘法及其相关估值方法应用学院:自动化学院学号:姓名:日期:基于最小二乘法的多种系统辨识方法研究一、实验原理1.最小二乘法在系统辨识中用得最广泛的估计方法是最小二乘法(LS)。
设单输入-单输出线性定长系统的差分方程为(5.1.1)式中:为随机干扰;为理论上的输出值。
只有通过观测才能得到,在观测过程中往往附加有随机干扰。
的观测值可表示为(5.1.2)式中:为随机干扰。
由式(5.1.2)得(5.1.3)将式(5.1.3)带入式(5.1.1)得(5.1.4)我们可能不知道的统计特性,在这种情况下,往往把看做均值为0的白噪声。
设(5.1.5)则式(5.1.4)可写成(5.1.6)在观测时也有测量误差,系统内部也可能有噪声,应当考虑它们的影响。
因此假定不仅包含了的测量误差,而且包含了的测量误差和系统内部噪声。
假定是不相关随机序列(实际上是相关随机序列)。
现分别测出个随机输入值,则可写成个方程,即上述个方程可写成向量-矩阵形式(5.1.7) 设则式(5.1.7)可写为(5.1.8)式中:为维输出向量;为维噪声向量;为维参数向量;为测量矩阵。
因此式(5.1.8)是一个含有个未知参数,由个方程组成的联立方程组。
如果,方程数少于未知数数目,则方程组的解是不定的,不能唯一地确定参数向量。
如果,方程组正好与未知数数目相等,当噪声时,就能准确地解出(5.1.9)如果噪声,则(5.1.10)从上式可以看出噪声对参数估计是有影响的,为了尽量较小噪声对估值的影响。
在给定输出向量和测量矩阵的条件下求系统参数的估值,这就是系统辨识问题。
可用最小二乘法来求的估值,以下讨论最小二乘法估计。
2.最小二乘法估计算法设表示的最优估值,表示的最优估值,则有(5.1.11)写出式(5.1.11)的某一行,则有(5.1.12) 设表示与之差,即-(5.1.13)式中成为残差。
把分别代入式(5.1.13)可得残差。
设则有(5.1.14) 最小二乘估计要求残差的平方和为最小,即按照指数函数(5.1.15) 为最小来确定估值。
基于最小二乘法的系统参数辨识

基于最小二乘法的系统参数辨识吴令红,熊晓燕,张涛太原理工大学机械电子研究所,太原 (030024)E-mail lhwu0818@摘要:系统辨识是自动控制学科的一个重要分支,由于其特殊作用,已经广泛应用于各种领域,尤其是复杂系统或参数不容易确定的系统的建模。
过去,系统辨识主要用于线性系统的建模,经过多年的研究,已经形成成熟的理论。
但随着社会、科学的发展,非线性系统越来越受到人们的关注,其控制与模型之间的矛盾越来越明显,因而非线性系统的辨识问题也越来越受到重视,其辨识理论不断发展和完善本。
文重点介绍了系统参数辨识中最小二乘法的基本原理,并通过悬臂梁模型的辨识实例,具体说明了基于最小二乘法参数辨识在Matlab 中的实现方法。
结果表明基于最小二乘法具有算法简单、精度较高等优点。
关键词:系统辨识;参数辨识;滑动平均模型(ARX);最小二乘法;Matlab中图分类号:TH-91. 引言所谓辨识就是通过测取研究对象在人为输入作用下的输出响应,或正常运行时的输入输出数据记录,加以必要的数据处理和数学计算,估计出对象的数学模型。
这是因为对象的动态特性被认为必然表现在它的变化着的输入输出数据之中,辨识只不过是利用数学的方法从数据序列中提炼出对象的数学模型而已[1]。
最小二乘法是系统参数辨识中最基本最常用的方法。
最小二乘法因其算法简单、理论成熟和通用性强而广泛应用于系统参数辨识中。
本文基于悬臂梁的实测数据,介绍了最小二乘法的参数辨识在Matlab中的实现。
2. 系统辨识一般而言,建立系统的数学模型有两种方法:激励分析法和系统辨识法。
前者是按照系统所遵循的物化(或社会、经济等)规律分析推导出模型。
后者则是从实际系统运行和实验数据处理获得模型。
如图1所示,系统辨识就是从系统的输入输出数据测算系统数学模型的理论和方法。
更进一步的定义是L.A.Zadeh曾经与1962年给出的,即“系统辨识是在输入和输出的基础上,从系统的一类系统范围内,确立一个与所实验系统等价的系统”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ξθ11--Φ-Φ=y
从上式可以看出噪声ξ对参数估计有影响,为了尽量减小噪声ξ对θ估值的影响,应取N>(2n+1),即方程数大于未知数数目。
在这种情况下,不能用解方程的办法来求θ,而要采用数理统计的办法,以便减小噪声对θ估值的影响。
在给定输出向量y 和测量矩阵Φ的条件下求系统参数θ的估值,这就是系统辨识问题。
可用最小二乘法来就θ的估值。
3最小二乘法的原理
3.1 最小二乘法一次完成推导
本文中以一个SISO 系统为例说明最小二乘法的原理。
假设一个SISO 系统如下图所示:
其离散传递函数为:
3.1
输入输出的关系为:
)()()()(1k y k e z G k u =+•- 3.2
进一步,我们可以得到:
)()()()()(11k e z B k u z A k y +⋅=⋅-- 3.3
其中,扰动量)(k e 为均值为0,不相关的白噪声。
将式3.3写成差分方程的形式:
)
()()2()1()()2()1()(2121k e n k u b k u b k u b n k y a k y a k y a k y n n +-⋯+-+-+--⋯-----= 3.4
令T n k u k u k u n k y k y k y k ])()2()1()()2()1([)(-⋯----⋯----=ϕ
n
n n n z a z a z a z b z b z b z A z B z G ---------+⋯++++⋯++==221122111111)()()(。