浙江省杭州市二中2015-2016学年高二上学期期终考试数学试卷
高中高二数学上学期开学试题(含解析)-人教版高二全册数学试题

2015-2016学年某某省某某市扶沟高中高二(上)开学数学试卷一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|x>2},B={x|1<x<3},则A∩B=()A.{x|x>2} B.{x|x>1} C.{x|2<x<3} D.{x|1<x<3}2.已知角α的终边经过点(﹣4,3),则cosα=()A.B.C.﹣D.﹣3.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的中年职工为5人,则样本容量为()A.7 B.15 C.25 D.354.下列函数在(0,+∞)上为减函数的是()A.y=﹣|x﹣1| B.y=e x C.y=ln(x+1)D.y=﹣x(x+2)5.设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.f(x)g(x)是偶函数 B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数6.设定义在R上的奇函数f(x)满足f(x)=x2﹣4(x>0),则f(x﹣2)>0的解集为()A.(﹣4,0)∪(2,+∞)B.(0,2)∪(4,+∞)C.(﹣∞,0)∪(4,+∞)D.(﹣4,4)7.将函数f(x)=sin(2x+φ)的图象向左平移个单位,所得到的函数图象关于y轴对称,则φ的一个可能取值为()A.B.C.0 D.8.给出下列关于互不相同的直线m、l、n和平面α、β的四个命题:①若m⊂α,l∩α=A,点A∉m,则l与m不共面;②若m、l是异面直线,l∥α,m∥α,且n⊥l,n⊥m,则n⊥α;③若l∥α,m∥β,α∥β,则l∥m;④若l⊂α,m⊂α,l∩m=A,l∥β,m∥β,则α∥β,其中为真命题的是()A.①③④B.②③④C.①②④D.①②③9.在区间[﹣,]上随机取一个数x,cosx的值介于0到之间的概率为()A.B.C.D.10.已知向量=(4,6),=(3,5),且⊥,∥,则向量等于()A.B.C.D.11.从五件正品,一件次品中随机取出两件,则取出的两件产品中恰好是一件正品,一件次品的概率是()A.1 B.C.D.12.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2﹣3x,则函数g(x)=f(x)﹣x+3的零点的集合为()A.{1,3} B.{﹣3,﹣1,1,3} C.{2﹣,1,3} D.{﹣2﹣,1,3}二、填空题:(本大题共4小题,每小题5分)13.求值cos600°=.14.阅读图所示的程序框图,运行相应地程序,输出的s值等于.15.在△ABC中,AB=2,AC=4.若P为△ABC的外心,则的值为.16.已知单位向量与的夹角为α,且cosα=,向量=3﹣2与=3﹣的夹角为β,则cosβ=.三、解答题:(解答应写出文字说明,证明过程或演算步骤)17.(10分)(2015春•某某期末)已知:tan(α+)=﹣,(<α<π).(1)求tanα的值;(2)求的值.18.(12分)(2014秋•隆化县校级期中)某校从高一年级期末考试的学生中抽出60名学生,其成绩(均为整数)的频率分布直方图如图所示:(1)依据频率分布直方图,估计这次考试的及格率(60分及以上为及格)和平均分;(2)已知在[90,100]段的学生的成绩都不相同,且都在94分以上,现用简单随机抽样方法,从95,96,97,98,99,100这6个数中任取2个数,求这2个数恰好是两个学生的成绩的概率.19.(12分)(2013•淄川区校级模拟)已知直线l过点P(1,1),并与直线l1:x﹣y+3=0和l2:2x+y﹣6=0分别交于点A、B,若线段AB被点P平分.求:(1)直线l的方程;(2)以O为圆心且被l截得的弦长为的圆的方程.20.(12分)(2015秋•某某月考)如图,四边形ABCD为矩形,DA⊥平面ABE,AE=EB=BC=2,BF⊥平面ACE于点F,且点F在CE上.(Ⅰ)求证:AE⊥BE;(Ⅱ)求三棱锥D﹣AEC的体积.21.(12分)(2013•某某一模)函数f(x)=Asin(ωx+φ)(A>0,ω>0,﹣<φ<)(x∈R)的部分图象如图所示.(1)求函数y=f(x)的解析式;(2)当x∈[﹣π,﹣]时,求f(x)的取值X围.22.(12分)(2015春•某某校级期末)已知函数f(x)=2cos2(x﹣)﹣sin2x+1 (Ⅰ)求f(x)的单调递增区间;(Ⅱ)当x∈(,)时,若f(x)≥log2t恒成立,求 t的取值X围.2015-2016学年某某省某某市扶沟高中高二(上)开学数学试卷参考答案与试题解析一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|x>2},B={x|1<x<3},则A∩B=()A.{x|x>2} B.{x|x>1} C.{x|2<x<3} D.{x|1<x<3}考点:交集及其运算.专题:集合.分析:直接利用交集运算求得答案.解答:解:∵A={x|x>2},B={x|1<x<3},∴A∩B={x|x>2}∩{x|1<x<3}={x|2<x<3}.故选:C.点评:本题考查交集及其运算,是基础的计算题.2.已知角α的终边经过点(﹣4,3),则cosα=()A.B.C.﹣D.﹣考点:任意角的三角函数的定义.专题:三角函数的求值.分析:由条件直接利用任意角的三角函数的定义求得cosα的值.解答:解:∵角α的终边经过点(﹣4,3),∴x=﹣4,y=3,r==5.∴cosα===﹣,故选:D.点评:本题主要考查任意角的三角函数的定义,两点间的距离公式的应用,属于基础题.3.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的中年职工为5人,则样本容量为()A.7 B.15 C.25 D.35考点:分层抽样方法.专题:概率与统计.分析:利用分层抽样知识求解.解答:解:设样本容量为n,由题意知:,解得n=15.故选:B.点评:本题考查样本容量的求法,是基础题,解题时要注意分层抽样知识的合理运用.4.下列函数在(0,+∞)上为减函数的是()A.y=﹣|x﹣1| B.y=e x C.y=ln(x+1)D.y=﹣x(x+2)考点:函数单调性的判断与证明.专题:函数的性质及应用.分析:根据函数解析式判断各自函数的单调区间,即可判断答案.解答:解:①y=﹣|x﹣1|=∴(0,+∞)不是减函数,故A不正确.②y=e x,在(﹣∞,+∞)上为增函数,故B不正确.③y=ln(x+1)在(﹣1,+∞)上为增函数,故C不正确.④y=﹣x(x+2)在(﹣1,+∞)上为减函数,所以在(0,+∞)上为减函数故D正确.故选:D.点评:本题考查了简单函数的单调性,单调区间的求解,掌握好常见函数的解析式即可,属于容易题.5.设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.f(x)g(x)是偶函数 B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数考点:函数奇偶性的判断;函数的定义域及其求法.专题:函数的性质及应用.分析:由题意可得,|f(x)|为偶函数,|g(x)|为偶函数.再根据两个奇函数的积是偶函数、两个偶函数的积还是偶函数、一个奇函数与一个偶函数的积是奇函数,从而得出结论.解答:解:∵f(x)是奇函数,g(x)是偶函数,∴|f(x)|为偶函数,|g(x)|为偶函数.再根据两个奇函数的积是偶函数、两个偶函数的积还是偶函数、一个奇函数与一个偶函数的积是奇函数,可得 f(x)|g(x)|为奇函数,故选:C.点评:本题主要考查函数的奇偶性,注意利用函数的奇偶性规律,属于基础题.6.设定义在R上的奇函数f(x)满足f(x)=x2﹣4(x>0),则f(x﹣2)>0的解集为()A.(﹣4,0)∪(2,+∞)B.(0,2)∪(4,+∞)C.(﹣∞,0)∪(4,+∞)D.(﹣4,4)考点:函数奇偶性的性质.专题:函数的性质及应用.分析:根据已知中定义在R上的奇函数f(x)满足f(x)=x2﹣4(x>0),先求出f(x)>0的解集,进而求出f(x﹣2)>0的解集.解答:解:∵f(x)=x2﹣4(x>0),∴当x>0时,若f(x)>0,则x>2,又由函数f(x)是定义在R上的奇函数,当x<0时,﹣x>0,若f(x)>0,则f(﹣x)<0,则0<﹣x<2,即﹣2<x<0,故f(x)>0的解集为(﹣2,0)∪(2,+∞),故f(x﹣2)>0时,x﹣2∈(﹣2,0)∪(2,+∞),x∈(0,2)∪(4,+∞),即f(x﹣2)>0的解集为(0,2)∪(4,+∞).故选:B.点评:本题主要考查不等式的解法,利用函数的奇偶性求出当x<0时,f(x)>0的解集,是解决本题的关键.7.将函数f(x)=sin(2x+φ)的图象向左平移个单位,所得到的函数图象关于y轴对称,则φ的一个可能取值为()A.B.C.0 D.考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:由条件利用y=Asin(ωx+φ)的图象变换规律,余弦函数的图象的对称性,求得φ的一个可能取值.解答:解:将函数f(x)=sin(2x+φ)的图象向左平移个单位,可得到的函数y=sin[2(x+)+φ)]=sin(2x++φ)的图象,再根据所得图象关于y轴对称,可得+φ=kπ+,即φ=kπ+,k∈z,则φ的一个可能取值为,故选:B.点评:本题主要考查y=Asin(ωx+φ)的图象变换规律,正弦函数、余弦函数的图象的对称性,属于基础题.8.给出下列关于互不相同的直线m、l、n和平面α、β的四个命题:①若m⊂α,l∩α=A,点A∉m,则l与m不共面;②若m、l是异面直线,l∥α,m∥α,且n⊥l,n⊥m,则n⊥α;③若l∥α,m∥β,α∥β,则l∥m;④若l⊂α,m⊂α,l∩m=A,l∥β,m∥β,则α∥β,其中为真命题的是()A.①③④B.②③④C.①②④D.①②③考点:命题的真假判断与应用.专题:空间位置关系与距离;简易逻辑.分析:①利用异面直线的定义即可判断出正误;②利用线面垂直的判定定理即可判断出正误;③由已知可得l与m不一定平行,即可判断出正误;④利用面面平行的判定定理可得:α∥β,即可判断出正误.解答:解:①若m⊂α,l∩α=A,点A∉m,则l与m不共面,正确;②若m、l是异面直线,l∥α,m∥α,且n⊥l,n⊥m,利用线面垂直的判定定理即可判断出:n⊥α正确;③若l∥α,α∥β,α∥β,则l与m不一定平行,不正确;④若l⊂α,m⊂α,l∩m=A,l∥β,m∥β,利用面面平行的判定定理可得:α∥β,正确.其中为真命题的是①②④.故选:C.点评:本题考查了线面平行与垂直的判定定理、异面直线的定义,考查了推理能力,属于中档题.9.在区间[﹣,]上随机取一个数x,cosx的值介于0到之间的概率为()A.B.C.D.考点:几何概型.专题:概率与统计.分析:求出所有的基本事件构成的区间长度;通过解三角不等式求出事件“cos x的值介于0到”构成的区间长度,利用几何概型概率公式求出事件的概率.解答:解:所有的基本事件构成的区间长度为∵解得或∴“cos x的值介于0到”包含的基本事件构成的区间长度为由几何概型概率公式得cos x的值介于0到之间的概率为P=故选A.点评:本题考查结合三角函数的图象解三角不等式、考查几何概型的概率公式.易错题.10.已知向量=(4,6),=(3,5),且⊥,∥,则向量等于()A.B.C.D.考点:平面向量的坐标运算.专题:计算题.分析:根据向量平行垂直的坐标公式X1Y2﹣X2Y1=0和X1X2+Y1Y2=0运算即可.解答:解:设C(x,y),∵,,联立解得.故选D.点评:本题考查两个向量的位置关系①平行②垂直,此种题型是高考考查的方向.11.从五件正品,一件次品中随机取出两件,则取出的两件产品中恰好是一件正品,一件次品的概率是()A.1 B.C.D.考点:古典概型及其概率计算公式.专题:计算题.分析:根据已知中五件正品,一件次品,我们易得共有6件产品,由此我们先计算出从中任取出两件产品的事件个数,及满足条件“恰好是一件正品,一件次品”的基本事件个数,然后代入古典概型概率公式,可求出答案.解答:解:由于产品中共有5件正品,一件次品,故共有6件产品从中取出两件产品共有:C62==15种其中恰好是一件正品,一件次品的情况共有:C51=5种故出的两件产品中恰好是一件正品,一件次品的概率P==故选C点评:本题考查的知识点是古典概型及其概率计算公式,计算出满足条件的基本事件总数及其满足条件的基本事件个数是解答此类题型的关键.12.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2﹣3x,则函数g(x)=f(x)﹣x+3的零点的集合为()A.{1,3} B.{﹣3,﹣1,1,3} C.{2﹣,1,3} D.{﹣2﹣,1,3}考点:函数奇偶性的性质.专题:函数的性质及应用.分析:首先根据f(x)是定义在R上的奇函数,求出函数在R上的解析式,再求出g(x)的解析式,根据函数零点就是方程的解,问题得以解决.解答:解:∵f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2﹣3x,令x<0,则﹣x>0,∴f(﹣x)=x2+3x=﹣f(x)∴f(x)=﹣x2﹣3x,∴∵g(x)=f(x)﹣x+3∴g(x)=令g(x)=0,当x≥0时,x2﹣4x+3=0,解得x=1,或x=3,当x<0时,﹣x2﹣4x+3=0,解得x=﹣2﹣,∴函数g(x)=f(x)﹣x+3的零点的集合为{﹣2﹣,1,3}故选:D.点评:本题考查函数的奇偶性及其应用,考查函数的零点,函数方程思想.二、填空题:(本大题共4小题,每小题5分)13.求值cos600°=﹣.考点:诱导公式的作用.专题:计算题.分析:由诱导公式知cos600°=cos240°,进一步简化为﹣cos60°,由此能求出结果.解答:解:cos600°=cos240°=﹣cos60°=﹣.故答案为:﹣.点评:本题考查诱导公式的性质和应用,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.14.阅读图所示的程序框图,运行相应地程序,输出的s值等于﹣3 .考点:循环结构.专题:计算题.分析:直接利用循环框图,计算循环的结果,当k=4时,退出循环,输出结果.解答:解:由题意可知第1次判断后,s=1,k=2,第2次判断循环,s=0,k=3,第3次判断循环,s=﹣3,k=4,不满足判断框的条件,退出循环,输出S.故答案为:﹣3.点评:本题考查循环结构的作用,注意判断框的条件以及循环后的结果,考查计算能力.15.在△ABC中,AB=2,AC=4.若P为△ABC的外心,则的值为 6 .考点:平面向量数量积的运算.专题:平面向量及应用.分析:作出边AB,AC的垂线,利用向量的运算将用和表示,利用向量的数量积的几何意义将向量的数量积表示成一个向量与另个向量的投影的乘积,即可求得的值.解答:解:若P为△ABC的外心,过P作PS⊥AB,PT⊥AC垂足分别为S,T,则S,T分别是AB,AC的中点,AS=1,AT=2.∴=•(﹣)=﹣=AT•AC﹣AS•AB=2×4﹣1×2=6,故答案为:6.点评:本题考查两个向量的运算法则及其几何意义、两个向量数量积的几何意义,属于中档题.16.已知单位向量与的夹角为α,且cosα=,向量=3﹣2与=3﹣的夹角为β,则cosβ=.考点:数量积表示两个向量的夹角.专题:平面向量及应用.分析:转化向量为平面直角坐标系中的向量,通过向量的数量积求出所求向量的夹角.解答:解:单位向量与的夹角为α,且cosα=,不妨=(1,0),=,=3﹣2=(),=3﹣=(),∴cosβ===.故答案为:.点评:本题考查向量的数量积,两个向量的夹角的求法,考查计算能力.三、解答题:(解答应写出文字说明,证明过程或演算步骤)17.(10分)(2015春•某某期末)已知:tan(α+)=﹣,(<α<π).(1)求tanα的值;(2)求的值.考点:同角三角函数基本关系的运用;两角和与差的正切函数.专题:计算题.分析:(1)利用两角和的正切公式,求出tanα的值.(2)利用二倍角公式展开,利用tanα求出cosα即可得到结果.解答:解:(1)由tan(α+)=﹣,得,解之得tanα=﹣3(5分)(2)==2cosα(9分)因为<α<π且tanα=﹣3,所以cosα=﹣(11分)∴原式=﹣(12分).点评:本题是基础题,考查两角和的正切函数公式的应用,同角三角函数的基本关系的应用,考查计算能力.18.(12分)(2014秋•隆化县校级期中)某校从高一年级期末考试的学生中抽出60名学生,其成绩(均为整数)的频率分布直方图如图所示:(1)依据频率分布直方图,估计这次考试的及格率(60分及以上为及格)和平均分;(2)已知在[90,100]段的学生的成绩都不相同,且都在94分以上,现用简单随机抽样方法,从95,96,97,98,99,100这6个数中任取2个数,求这2个数恰好是两个学生的成绩的概率.考点:频率分布直方图;古典概型及其概率计算公式.专题:计算题;概率与统计.分析:(1)求出频率,用频率估计概率;(2)列出所有的基本事件,求概率.解答:解:(1)由图知,60及以上的分数所在的第三、四、五、六组的频率和为(0.02+0.03+0.025+0.005)×10=0.80,所以,估计这次考试的及格率为80%;=45×0.05+55×0.15+65×0.2+75×0.3+8×0.25+95×0.05=72,则估计这次考试的平均分是72分.(2)从95,96,97,98,99,100这6个数中任取2个数共有=15个基本事件,而[90,100]的人数有3人,则共有基本事件C=3.则这2个数恰好是两个学生的成绩的概率P==.点评:本题考查了学生在频率分布直方图中读取数据的能力,同时考查了古典概型的概率求法,属于基础题.19.(12分)(2013•淄川区校级模拟)已知直线l过点P(1,1),并与直线l1:x﹣y+3=0和l2:2x+y﹣6=0分别交于点A、B,若线段AB被点P平分.求:(1)直线l的方程;(2)以O为圆心且被l截得的弦长为的圆的方程.考点:直线与圆相交的性质.专题:直线与圆.分析:(1)依题意可设A(m,n)、B(2﹣m,2﹣n),分别代入直线l1 和l2的方程,求出m=﹣1,n=2,用两点式求直线的方程.(2)先求出圆心(0,0)到直线l的距离d,设圆的半径为R,则由,求得R的值,即可求出圆的方程.解答:解:(1)依题意可设A(m,n)、B(2﹣m,2﹣n),则,即,解得m=﹣1,n=2.即A(﹣1,2),又l过点P(1,1),用两点式求得AB方程为=,即:x+2y﹣3=0.(2)圆心(0,0)到直线l的距离d==,设圆的半径为R,则由,求得R2=5,故所求圆的方程为x2+y2=5.点评:本题主要考查直线和圆相交的性质,点到直线的距离公式,弦长公式的应用,用两点式求直线的方程,属于中档题.20.(12分)(2015秋•某某月考)如图,四边形ABCD为矩形,DA⊥平面ABE,AE=EB=BC=2,BF⊥平面ACE于点F,且点F在CE上.(Ⅰ)求证:AE⊥BE;(Ⅱ)求三棱锥D﹣AEC的体积.考点:空间中直线与直线之间的位置关系;棱柱、棱锥、棱台的体积;直线与平面垂直的性质.专题:计算题.分析:(Ⅰ)由题意证明BC⊥平面ABE,得AE⊥BC,再结合条件证明AE⊥平面BCE,再证出AE⊥BE;(Ⅱ)利用题意得到平面ACD⊥平面ABE,作出交线的垂线,利用换低求三棱锥体积.解答:(Ⅰ)证明:由题意知,AD⊥平面ABE,且AD∥BC∴BC⊥平面ABE,∵AE⊂平面ABE∴AE⊥BC,∵BF⊥平面ACE,且AE⊂平面ABE∴BF⊥AE,又BC∩BF=B,∴AE⊥平面BCE,又∵BE⊂平面BCE,∴AE⊥BE.(Ⅱ)在△ABE中,过点E作EH⊥AB于点H,∵AD⊥平面ABE,且AD⊂平面ACD,∴平面ACD⊥平面ABE,∴EH⊥平面ACD.由已知及(Ⅰ)得EH=AB=,S△ADC=2.故V D﹣ABC=V E﹣ADC=×2×=.点评:本题主要考查垂直关系,利用线面垂直的定义和判定定理,进行线线垂直与线面垂直的转化;求三棱锥体积常用的方法:换底法.21.(12分)(2013•某某一模)函数f(x)=Asin(ωx+φ)(A>0,ω>0,﹣<φ<)(x∈R)的部分图象如图所示.(1)求函数y=f(x)的解析式;(2)当x∈[﹣π,﹣]时,求f(x)的取值X围.考点:由y=Asin(ωx+φ)的部分图象确定其解析式.专题:计算题;三角函数的图像与性质.分析:(1)由图象可求得A=1,由=可求得ω,f(x)过(,1)点可求得φ,从而可求得函数y=f(x)的解析式;(2)当x∈[﹣π,﹣]时,可求得x+的X围,利用正弦函数的单调性即可求得f(x)的取值X围.解答:解:(1)由图象得A=1,=﹣=,∴T=2π,则ω=1;将(,1)代入得1=sin(+φ),而﹣<φ<,所以φ=,因此函数f(x)=sin(x+);(6分)(2)由于x∈[﹣π,﹣],﹣≤x+≤,所以﹣1≤sin(x+)≤,所以f(x)的取值X围是[﹣1,].( 12分)点评:本小题主要考查三角函数解析式的求法与三角函数图象与性质的运用,以及三角函数的值域的有关知识,属于中档题.22.(12分)(2015春•某某校级期末)已知函数f(x)=2cos2(x﹣)﹣sin2x+1 (Ⅰ)求f(x)的单调递增区间;(Ⅱ)当x∈(,)时,若f(x)≥log2t恒成立,求 t的取值X围.考点:三角函数中的恒等变换应用;正弦函数的图象.专题:三角函数的图像与性质.分析:(Ⅰ)由三角函数中的恒等变换应用化简函数解析式可得f(x)=cos(2x+)+2,由2kπ﹣π≤2x+≤2kπ,k∈Z,即可解得f(x)的单调递增区间.(Ⅱ)由,可得,解得1≤cos(2x+)+2,求得f(x),f(x)min=1,由题意log2t≤1,从而解得t的取值X围.解答:解:(Ⅰ)∵f(x)=cos(2x﹣)﹣sin2x+2=cos2x﹣sin2x+2=cos(2x+)+2,…(3分)由2kπ﹣π≤2x+≤2kπ,k∈Z,得k≤x≤k,k∈Z,…(5分)∴f(x)的单调递增区间为[k,k],k∈Z,.…(6分)(或者:f(x)=﹣+2=cos2x﹣+2=﹣+2,…(3分)令+2kπ≤≤+2kπ,k∈Z.则+kπ≤x≤+kπ,k∈Z.…(5分)∴f(x)的单调递增区间为:[+kπ,+kπ],k∈Z.…6分)(Ⅱ)∵,∴,…(7分)∴﹣1≤cos()≤﹣,1≤cos(2x+)+2,…(8分)(或者:∵,∴…(7分)∴≤≤1∴1≤﹣+2≤…8分)∴f(x),f(x)min=1.…(9分)若f(x)≥log2t恒成立,∴则log2t≤1,∴0<t≤2,…(11分)即t的取值X围为(0,2].…(12分)点评:本题主要考查了三角函数中的恒等变换应用,正弦函数的图象和性质,属于基本知识的考查.。
2015-2016第一学期高二期末考试理科数学试题及答案

2015-2016学年度高二年级期末教学质量检测理科数学试卷一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.“0x >”是0>”成立的A .充分非必要条件B .必要非充分条件C .非充分非必要条件D .充要条件 2.抛物线24y x =的焦点坐标是A .(1,0)B .(0,1)C .1(,0)16 D .1(0,)163.与圆8)3()3(22=-+-y x 相切,且在y x 、轴上截距相等的直线有A .4条B .3条C .2条D .1条 4.设l 是直线,,αβ是两个不同的平面,则下列结论正确的是A .若l ∥α,l ∥β,则//αβB .若//l α,l ⊥β,则α⊥βC .若α⊥β,l ⊥α,则l ⊥βD .若α⊥β, //l α,则l ⊥β 5.已知命题p :∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≥0,则⌝p 是A .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0B .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0C .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0D .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<06.设(2,1,3)a x = ,(1,2,9)b y =-,若a 与b 为共线向量,则A .1x =,1y =B .12x =,12y =-C .16x =,32y =-D .16x =-,32y =7.已知椭圆2215x y m +=的离心率5e =,则m 的值为A .3B .3C D .253或38.如图,在正方体1111ABCD A BC D -中,,,M N P 分别是111,,B B B C CD 的中点,则MN 与1D P 所成角的余弦值为A. BCD .9.如图,G 是ABC ∆的重心,,,OA a OB b OC c ===,则OG =A .122333a b c ++B .221333a b c ++C .222333a b c ++D .111333a b c ++10.下列各数中,最小的数是A .75B .)6(210 C .)2(111111 D .)9(8511.已知双曲线22214x yb-=的右焦点与抛物线y 2=12x 的焦 点重合,则该双曲线的焦点到其渐近线的距离等于 A . B C .3 D .512、在如图所示的算法流程图中,输出S 的值为 A 、 11 B 、12 C 、1 D 、15二、填空题:本大题共4小题,每小题5分,满分20分13.若直线x +a y+2=0和2x+3y+1=0互相垂直,则a = 14.若一个圆锥的侧面展开图是面积为π2的半圆面,则该圆锥的体积为 。
2015-2016学年高二上学期期末考试数学(理)试卷及答案

2015-2016学年度 第一学期期末质量监测高二数学(理科)试卷一、选择题:本大题供8小题,每小题5分,供40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 直线023=+-y x 的倾斜角是A.6π B.3π C.23π D.56π 2. 直线l 过点(2,2)P -,且与直线032=-+y x 垂直,则直线l 的方程为 A. 220x y +-= B. 260x y --=C. 260x y --=D. 250x y -+=3. 一个几何体的三视图如图所示,如果该几何体的侧面面积为π12, 则该几何体的体积是A. π4B. 12πC. 16πD. 48π 4. 在空间中,下列命题正确的是 A. 如果直线m ∥平面α,直线α⊂n 内,那么m ∥n ;B. 如果平面α内的两条直线都平行于平面β,那么平面α∥平面βC. 如果平面α外的一条直线m 垂直于平面α内的两条相交直线,那么m α⊥D. 如果平面α⊥平面β,任取直线m α⊂,那么必有m β⊥5. 如果直线013=-+y ax 与直线01)21(=++-ay x a 平行.那么a 等于A. -1B.31 C. 3 D. -1或316. 方程)0(0222≠=++a y ax x 表示的圆A. 关于x 轴对称B. 关于y 轴对称C. 关于直线x y =轴对称D. 关于直线x y -=轴对称7. 如图,正方体1111ABCD A BC D -中,点E ,F 分别是1AA ,AD 的中点,则1CD 与EF 所成角为A. 0︒B. 45︒C. 60︒D. 90︒8. 如果过点M (-2,0)的直线l 与椭圆1222=+y x 有公共点,那么直线l 的斜率k 的取值范围是A.]22,(--∞ B.),22[+∞ C.]21,21[-D. ]22,22[-二、填空题:本大题共6小题,每小题5分,共30分.9. 已知双曲线的标准方程为116422=-y x ,则该双曲线的焦点坐标为,_________________渐近线方程为_________________.10. 已知向量)1,3,2(-=a,)2,,5(--=y b 且a b ⊥ ,则y =________.11. 已知点),2,(n m A -,点)24,6,5(-B 和向量(3,4,12)a =-且AB ∥a .则点A 的坐标为________.12. 直线0632=++y x 与坐标轴所围成的三角形的面积为________. 13. 抛物线x y 82-=上到焦点距离等于6的点的坐标是_________________.14. 已知点)0,2(A ,点)3,0(B ,点C 在圆122=+y x 上,当ABC ∆的面积最小时,点C 的坐标为________.三、解答题:本大题共6小题,共80分,解答应写出文字说明,演算步骤或证明过程.15. (本小题共13分)如图,在三棱锥A BCD -中,AB ⊥平面BCD ,BC CD ⊥,E ,F ,G 分别是AC ,AD ,BC 的中点. 求证:(I )AB ∥平面EFG ;(II )平面⊥EFG 平面ABC .16. (本小题共13分)已知斜率为2的直线l 被圆0241422=+++y y x 所截得的弦长为求直线l 的方程.17. (本小题共14分)如图,在四棱锥P ABCD -中,平面⊥PAB 平面ABCD ,AB ∥CD ,AB AD ⊥,2CD AB =,E 为PA 的中点,M 在PD 上(点M 与D P ,两点不重合).(I ) 求证:PB AD ⊥;(II )若λ=PDPM,则当λ为何值时, 平面⊥BEM 平面PAB ?(III )在(II )的条件下,求证:PC ∥平面BEM .18. (本小题共13分)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,平面PCD ⊥底面ABCD ,PD CD ⊥,PD CD =,E 为PC 的中点. (I ) 求证:AC ⊥PB ; (II ) 求二面角P --BD --E 的余弦值.19. (本小题共14分)已知斜率为1的直线l 经过抛物线22y px =(0)p >的焦点F ,且与抛物线相交于A ,B 两点,4=AB .(I ) 求p 的值;(II ) 设经过点B 和抛物线对称轴平行的直线交抛物线22y px =的准线于点D ,求证:DO A ,,三点共线(O 为坐标原点).20. (本小题共13分)已知椭圆2222:1(0)x y G a b a b +=>>的左焦点为F ,离心率为33,过点)1,0(M 且与x 轴平行的直线被椭圆G 截得的线段长为6. (I ) 求椭圆G 的方程;(II )设动点P 在椭圆G 上(P 不是顶点),若直线FP 的斜率大于2,求直线OP (O 是坐标原点)的斜率的取值范围.2015-2016学年度第一学期期末质量检测高二数学(理科)试卷参考答案2016.1一、ABB C BA CD二、9.(±52,0),2y x =±10. -411. (1,-2,0)12. 313. (-4,24±)14. (13133,13132) 说明:1.第9题,答对一个空给3分。
杭州高级中学2015-2016学年高一新生分班模拟考试数学试题(解析版)

浙江省杭州高级中学2015-2016学年高一新生分班模拟考试数学试题一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列结论正确的是()A.3a2b﹣a2b=2B.单项式﹣x2的系数是﹣1C.使式子有意义的x的取值范围是x>﹣2D.若分式的值等于0,则a=±12.在下列艺术字中既是轴对称图形又是中心对称图形的是()A.B.C.D.3.如图所示,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是()A.B.C.D.4.今年,我省启动了“关爱留守儿童工程”.某村小为了了解各年级留守儿童的数量,对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,20.对于这组数据,下列说法错误的是()A.平均数是15 B.众数是10 C.中位数是17 D.方差是5.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A.B.C.D.6.如图是自行车骑行训练场地的一部分,半圆O的直径AB=100,在半圆弧上有一运动员C 从B点沿半圆周匀速运动到M(最高点),此时由于自行车故障原地停留了一段时间,修理好继续以相同的速度运动到A点停止.设运动时间为t,点B到直线OC的距离为d,则下列图象能大致刻画d与t之间的关系是()A.B.C.D.7.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是()A.1 B.2 C.3 D.48.如图,分别过点P i(i,0)(i=1、2、…、n)作x轴的垂线,交的图象于点A i,交直线于点B i.则的值为()A.B.2 C.D.二、填空题9.如图,AB=AC,∠BAC=120°,AB的垂直平分线交BC于点D,那么∠ADC=度.10.定义新运算“*”规则:a*b=,如1*2=2,*=,若x2+x﹣1=0两根为x1,x2,则x1*x2=.11.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=1,给出下列结论:①abc >0;②b2=4ac;③4a+2b+c>0;④3a+c>0,其中正确的结论是.(写出正确命题的序号)12.已知两个正数a,b,可按规则c=ab+a+b扩充为一个新数c在a,b,c三个数中取两个较大的数,按上述规则扩充得到一个新数,依次下去,将每扩充一次得到一个新数称为一次操作,(1)若a=1,b=3,按上述规则操作三次,扩充所得的数是;(2)若p>q>0,经过6次操作后扩充所得的数为(q+1)m(p+1)n﹣1(m,n为正整数),则m+n的值为.三、解答题(本大题共5小题,共60分.解答应写出文字说明、证明过程或演算步骤.)13.先化简,再求值:( +)÷,其中a=﹣1.(2)已知关于x,y的二元一次方程的解满足x<y,求m的取值范围.14.2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答下列问题:(1)本次抽取的学生人数是;扇形统计图中的圆心角α等于;补全统计直方图;(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.15.已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.(1)求证:BD是⊙O的切线;(2)求证:CE2=EH•EA;(3)若⊙O的半径为5,sinA=,求BH的长.16.大学毕业生小王响应国家“自主创业”的号召,利用银行小额无息贷款开办了一家饰品店.该店购进一种今年新上市的饰品进行销售,饰品的进价为每件40元,售价为每件60元,每月可卖出300件.市场调查反映:调整价格时,售价每涨1元每月要少卖10件;售价每下降1元每月要多卖20件.为了获得更大的利润,现将饰品售价调整为60+x(元/件)(x>0即售价上涨,x<0即售价下降),每月饰品销量为y(件),月利润为w(元).(1)直接写出y与x之间的函数关系式;(2)如何确定销售价格才能使月利润最大?求最大月利润;(3)为了使每月利润不少于6000元应如何控制销售价格?17.如图,把两个全等的Rt△AOB和Rt△COD分别置于平面直角坐标系中,使直角边OB、OD在x轴上.已知点A(1,2),过A、C两点的直线分别交x轴、y轴于点E、F.抛物线y=ax2+bx+c经过O、A、C三点.(1)求该抛物线的函数解析式;(2)点P为线段OC上一个动点,过点P作y轴的平行线交抛物线于点M,交x轴于点N,问是否存在这样的点P,使得四边形ABPM为等腰梯形?若存在,求出此时点P的坐标;若不存在,请说明理由.(3)若△AOB沿AC方向平移(点A始终在线段AC上,且不与点C重合),△AOB在平移过程中与△COD重叠部分面积记为S.试探究S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.浙江省杭州高级中学2015-2016学年高一新生分班模拟考试数学试题参考答案与试题解析一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列结论正确的是()A.3a2b﹣a2b=2B.单项式﹣x2的系数是﹣1C.使式子有意义的x的取值范围是x>﹣2D.若分式的值等于0,则a=±1【考点】二次根式有意义的条件;合并同类项;分式的值为零的条件.菁优网版权所有【分析】根据二次根式有意义的条件、单项式、合并同类项、分式有意义的条件解答.【解答】解:3a2b﹣a2b=2a2b,A错误;单项式﹣x2的系数是﹣1,B正确;使式子有意义的x的取值范围是x≥﹣2,C错误;若分式的值等于0,则a=1,错误,故选:B.2.在下列艺术字中既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.菁优网版权所有【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,不是中心对称图形.故错误;C、不是轴对称图形,也不是中心对称图形.故错误;D、是轴对称图形,也是中心对称图形.故正确.故选D.3.如图所示,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是()A.B.C.D.【考点】剪纸问题.菁优网版权所有【分析】根据题意直接动手操作得出即可.【解答】解:找一张正方形的纸片,按上述顺序折叠、裁剪,然后展开后得到的图形如图所示:故选A.4.今年,我省启动了“关爱留守儿童工程”.某村小为了了解各年级留守儿童的数量,对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,20.对于这组数据,下列说法错误的是()A.平均数是15 B.众数是10 C.中位数是17 D.方差是【考点】方差;加权平均数;中位数;众数.菁优网版权所有【分析】根据方差、众数、平均数和中位数的计算公式和定义分别进行解答即可.【解答】解:平均数是:(10+15+10+17+18+20)÷6=15;10出现了2次,出现的次数最多,则众数是10;把这组数据从小到大排列为10,10,15,17,18,20,最中间的数是(15+17)÷2=16,则中位数是16;方差是: [2(10﹣15)2+(15﹣15)2+(17﹣15)2+(18﹣15)2+(20﹣15)2]==.则下列说法错误的是C.故选:C.5.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A.B.C.D.【考点】锐角三角函数的定义;旋转的性质.菁优网版权所有【专题】压轴题.【分析】过C点作CD⊥AB,垂足为D,根据旋转性质可知,∠B′=∠B,把求tanB′的问题,转化为在Rt△BCD中求tanB.【解答】解:过C点作CD⊥AB,垂足为D.根据旋转性质可知,∠B′=∠B.在Rt△BCD中,tanB==,∴tanB′=tanB=.故选B.6.如图是自行车骑行训练场地的一部分,半圆O的直径AB=100,在半圆弧上有一运动员C 从B点沿半圆周匀速运动到M(最高点),此时由于自行车故障原地停留了一段时间,修理好继续以相同的速度运动到A点停止.设运动时间为t,点B到直线OC的距离为d,则下列图象能大致刻画d与t之间的关系是()A.B.C.D.【考点】动点问题的函数图象.菁优网版权所有【专题】压轴题.【分析】设运动员C的速度为v,则运动了t的路程为vt,设∠BOC=α,当点C从运动到M 时,当点C从M运动到A时,分别求出d与t之间的关系即可进行判断.【解答】解:设运动员C的速度为v,则运动了t的路程为vt,设∠BOC=α,当点C从运动到M时,∵vt==,∴α=,在直角三角形中,∵d=50sinα=50sin=50sin t,∴d与t之间的关系d=50sin t,当点C从M运动到A时,d与t之间的关系d=50sin(180﹣t),故选:C.7.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是()A.1 B.2 C.3 D.4【考点】反比例函数综合题.菁优网版权所有【分析】作CE⊥y轴于点E,交双曲线于点G.作DF⊥x轴于点F,易证△OAB≌△FDA≌△BEC,求得A、B的坐标,根据全等三角形的性质可以求得C、D的坐标,从而利用待定系数法求得反比例函数的解析式,进而求得G的坐标,则a的值即可求解.【解答】解:作CE⊥y轴于点E,交双曲线于点G.作DF⊥x轴于点F.在y=﹣3x+3中,令x=0,解得:y=3,即B的坐标是(0,3).令y=0,解得:x=1,即A的坐标是(1,0).则OB=3,OA=1.∵∠BAD=90°,∴∠BAO+∠DAF=90°,又∵直角△ABO中,∠BAO+∠OBA=90°,∴∠DAF=∠OBA,∵在△OAB和△FDA中,,∴△OAB≌△FDA(AAS),同理,△OAB≌△FDA≌△BEC,∴AF=OB=EC=3,DF=OA=BE=1,故D的坐标是(4,1),C的坐标是(3,4).代入y=得:k=4,则函数的解析式是:y=.∴OE=4,则C的纵坐标是4,把y=4代入y=得:x=1.即G的坐标是(1,4),∴CG=2.故选:B.8.如图,分别过点P i(i,0)(i=1、2、…、n)作x轴的垂线,交的图象于点A i,交直线于点B i.则的值为()A.B.2 C.D.【考点】二次函数综合题.菁优网版权所有【专题】压轴题;规律型.【分析】根据A i的纵坐标与B i纵坐标的绝对值之和为A i B i的长,分别表示出所求式子的各项,拆项后抵消即可得到结果.【解答】解:根据题意得:A i B i=x2﹣(﹣x)=x(x+1),∴==2(﹣),∴++…+=2(1﹣+﹣+…+﹣)=.故选A二、填空题9.如图,AB=AC,∠BAC=120°,AB的垂直平分线交BC于点D,那么∠ADC=60度.【考点】线段垂直平分线的性质;三角形的外角性质.菁优网版权所有【专题】计算题.【分析】由三角形的外角性质知∠ADC=∠BAD+∠B,又已知∠BAC=120°,根据三角形内角和定理易得∠B,而AB的垂直平分线交BC于点D,根据垂直平分线的性质知∠BAD=∠B,从而得解.【解答】解:由AB=AC,∠BAC=120°,可得∠B=30°,因为点D是AB的垂直平分线上的点,所以AD=BD,因而∠BAD=∠B=30°,从而∠ADC=60度.10.定义新运算“*”规则:a*b=,如1*2=2,*=,若x2+x﹣1=0两根为x1,x2,则x1*x2=.【考点】根与系数的关系.菁优网版权所有【专题】新定义.【分析】根据公式法求得一元二次方程的两个根,然后根据新运算规则计算x1*x2的值则可.【解答】解:在x2+x﹣1=0中,a=1,b=1,c=﹣1,∴b2﹣4ac=5>0,所以x1=,x2=或x1=,x2=,∴x1*x2=*=,故答案为.11.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=1,给出下列结论:①abc >0;②b2=4ac;③4a+2b+c>0;④3a+c>0,其中正确的结论是①④.(写出正确命题的序号)【考点】二次函数图象与系数的关系.菁优网版权所有【分析】根据抛物线开口方向,对称轴的位置,与x轴交点个数,以及x=﹣1,x=2对应y 值的正负判断即可.【解答】解:由二次函数图象开口向上,得到a>0;与y轴交于负半轴,得到c<0,∵对称轴在y轴右侧,且﹣=1,即2a+b=0,∴a与b异号,即b<0,∴abc>0,选项①正确;∵二次函数图象与x轴有两个交点,∴△=b2﹣4ac>0,即b2>4ac,选项②错误;∵原点O与对称轴的对应点为(2,0),∴x=2时,y<0,即4a+2b+c<0,选项③错误;∵x=﹣1时,y>0,∴a﹣b+c>0,把b=﹣2a代入得:3a+c>0,选项④正确,故答案是:①④.12.已知两个正数a,b,可按规则c=ab+a+b扩充为一个新数c在a,b,c三个数中取两个较大的数,按上述规则扩充得到一个新数,依次下去,将每扩充一次得到一个新数称为一次操作,(1)若a=1,b=3,按上述规则操作三次,扩充所得的数是255;(2)若p>q>0,经过6次操作后扩充所得的数为(q+1)m(p+1)n﹣1(m,n为正整数),则m+n的值为21.【考点】推理与论证.菁优网版权所有【分析】(1)a=1,b=3,按规则操作三次,第一次:c=7;第二次c=31;第三次c=255;(2)p>q>0 第一次得:c1=pq+p+q=(q+1)(p+1)﹣1;第二次得:c2=(p+1)2(q+1)﹣1;所得新数大于任意旧数,故经过6次扩充,所得数为:(q+1)8(p+1)13﹣1,故可得结论.【解答】解:(1)a=1,b=3,按规则操作三次,第一次:c=ab+a+b=1×3+1+3=7;第二次,7>3>1所以有:c=3×7+3+7=31;第三次:31>7>3所以有:c=7×31+7+31=255;(2)p>q>0 第一次得:c1=pq+p+q=(q+1)(p+1)﹣1;因为c>p>q,所以第二次得:c2=(c1+1)(p+1)﹣1=(pq+p+q)p+p+(pq+p+q)=(p+1)2(q+1)﹣1;所得新数大于任意旧数,所以第三次可得c3=(c2+1)(c1+1)﹣1=(p+1)3(q+1)2﹣1第四次可得:c4=(c3+1)(c2﹣1)﹣1=(p+1)5(q+1)3﹣1;第五次可得:c5=(p+1)8(q+1)5﹣1;故经过6次扩充,所得数为:(q+1)8(p+1)13﹣1∴m=8,n=13,∴m+n=21.故答案为:255;21.三、解答题(本大题共5小题,共60分.解答应写出文字说明、证明过程或演算步骤.)13.(1)先化简,再求值:( +)÷,其中a=﹣1.(2)已知关于x,y的二元一次方程的解满足x<y,求m的取值范围.【考点】分式的化简求值;二元一次方程组的解;解一元一次不等式.菁优网版权所有【分析】(1)先将括号内通分,计算加法、同时将除法转化为乘法,再约分即可得;(2)先将m看做已知的常数解方程组,再根据x<y得出关于m的不等式,解之可得.【解答】解:(1)原式=[+]•=•=•=,当a=﹣1时,原式==;(2)解方程组得:,∵x<y,∴m﹣<﹣,解得:m<﹣.14.2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答下列问题:(1)本次抽取的学生人数是30;扇形统计图中的圆心角α等于144°;补全统计直方图;(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.【考点】列表法与树状图法;扇形统计图;利用频率估计概率.菁优网版权所有【分析】(1)根据题意列式求值,根据相应数据画图即可;(2)根据题意列表,然后根据表中数据求出概率即可.【解答】解:(1)6÷20%=30,(30﹣3﹣7﹣6﹣2)÷30×360=12÷30×26=144°,答:本次抽取的学生人数是30人;扇形统计图中的圆心角α等于144°;故答案为:30,144°;补全统计图如图所示:(2)根据题意列表如下:设竖列为小红抽取的跑道,横排为小花抽取的跑道,小红小花 1 2 3 4 51 (2,1)(3,1)(4,1)(5,1)2 (1,2)(3,2)(4,2)(5,2)3 (1,3)(2,3)(4,3)(5,3)4 (1,4)(2,4)(3,4)(5,4)5 (1,5)(2,5)(3,5)(4,5)记小红和小花抽在相邻两道这个事件为A,∴.15.已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.(1)求证:BD是⊙O的切线;(2)求证:CE2=EH•EA;(3)若⊙O的半径为5,sinA=,求BH的长.【考点】圆的综合题.菁优网版权所有【专题】证明题.【分析】(1)由圆周角定理和已知条件证出∠ODB=∠ABC,再证出∠ABC+∠DBF=90°,即∠OBD=90°,即可得出BD是⊙O的切线;(2)连接AC,由垂径定理得出,得出∠CAE=∠ECB,再由公共角∠CEA=∠HEC,证明△CEH∽△AEC,得出对应边成比例,即可得出结论;(3)连接BE,由圆周角定理得出∠AEB=90°,由三角函数求出BE,再根据勾股定理求出EA,得出BE=CE=6,由(2)的结论求出EH,然后根据勾股定理求出BH即可.【解答】(1)证明:∵∠ODB=∠AEC,∠AEC=∠ABC,∴∠ODB=∠ABC,∵OF⊥BC,∴∠BFD=90°,∴∠ODB+∠DBF=90°,∴∠ABC+∠DBF=90°,即∠OBD=90°,∴BD⊥OB,∴BD是⊙O的切线;(2)证明:连接AC,如图1所示:∵OF⊥BC,∴,∴∠CAE=∠ECB,∵∠CEA=∠HEC,∴△CEH∽△AEC,∴,∴CE2=EH•EA;(3)解:连接BE,如图2所示:∵AB是⊙O的直径,∴∠AEB=90°,∵⊙O的半径为5,sin∠BAE=,∴AB=10,BE=AB•sin∠BAE=10×=6,∴EA===8,∵,∴BE=CE=6,∵CE2=EH•EA,∴EH==,在Rt△BEH中,BH===.16.大学毕业生小王响应国家“自主创业”的号召,利用银行小额无息贷款开办了一家饰品店.该店购进一种今年新上市的饰品进行销售,饰品的进价为每件40元,售价为每件60元,每月可卖出300件.市场调查反映:调整价格时,售价每涨1元每月要少卖10件;售价每下降1元每月要多卖20件.为了获得更大的利润,现将饰品售价调整为60+x(元/件)(x>0即售价上涨,x<0即售价下降),每月饰品销量为y(件),月利润为w(元).(1)直接写出y与x之间的函数关系式;(2)如何确定销售价格才能使月利润最大?求最大月利润;(3)为了使每月利润不少于6000元应如何控制销售价格?【考点】二次函数的应用.菁优网版权所有【分析】(1)直接根据题意售价每涨1元每月要少卖10件;售价每下降1元每月要多卖20件,进而得出等量关系;(2)利用每件利润×销量=总利润,进而利用配方法求出即可;(3)利用函数图象结合一元二次方程的解法得出符合题意的答案.【解答】解:(1)由题意可得:y=;(2)由题意可得:w=,化简得:w=,即w=,由题意可知x应取整数,故当x=﹣2或x=﹣3时,w<6125,x=5时,W=6250,故当销售价格为65元时,利润最大,最大利润为6250元;(3)由题意w≥6000,如图,令w=6000,将w=6000带入﹣20≤x<0时对应的抛物线方程,即6000=﹣20(x+)2+6125,解得:x1=﹣5,将w=6000带入0≤x≤30时对应的抛物线方程,即6000=﹣10(x﹣5)2+6250,解得x2=0,x3=10,综上可得,﹣5≤x≤10,故将销售价格控制在55元到70元之间(含55元和70元)才能使每月利润不少于6000元.17.如图,把两个全等的Rt△AOB和Rt△COD分别置于平面直角坐标系中,使直角边OB、OD在x轴上.已知点A(1,2),过A、C两点的直线分别交x轴、y轴于点E、F.抛物线y=ax2+bx+c经过O、A、C三点.(1)求该抛物线的函数解析式;(2)点P为线段OC上一个动点,过点P作y轴的平行线交抛物线于点M,交x轴于点N,问是否存在这样的点P,使得四边形ABPM为等腰梯形?若存在,求出此时点P的坐标;若不存在,请说明理由.(3)若△AOB沿AC方向平移(点A始终在线段AC上,且不与点C重合),△AOB在平移过程中与△COD重叠部分面积记为S.试探究S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.【考点】二次函数综合题.菁优网版权所有【专题】压轴题.【分析】方法一:(1)抛物线y=ax2+bx+c经过点O、A、C,利用待定系数法求抛物线的解析式;(2)根据等腰梯形的性质,确定相关点的坐标以及线段长度的数量关系,得到一元二次方程,求出t的值,从而可解.结论:存在点P(,),使得四边形ABPM为等腰梯形;(3)本问关键是求得重叠部分面积S的表达式,然后利用二次函数的极值求得S的最大值.解答中提供了三种求解面积S表达式的方法,殊途同归,可仔细体味.方法二:(1)略.(2)因为四边形ABPM为等腰梯形,只需AM=BP,且AM与BP不平行,利用两点间距离公式可求解.(3)设A’参数坐标,利用直线方程分别求出R,Q,K,T的参数坐标,根据S=S△QOT﹣S △ROK,求出S的面积函数,并求出S的最大值.【解答】方法一:解:(1)∵抛物线y=ax2+bx+c经过点O、A、C,可得c=0,∴,解得a=,b=,∴抛物线解析式为y=x2+x.(2)设点P的横坐标为t,∵PN∥CD,∴△OPN∽△OCD,可得PN=∴P(t,),∵点M在抛物线上,∴M(t,t2+t).如解答图1,过M点作MG⊥AB于G,过P点作PH⊥AB于H,AG=y A﹣y M=2﹣(t2+t)=t2﹣t+2,BH=PN=.当AG=BH时,四边形ABPM为等腰梯形,∴t2﹣t+2=,化简得3t2﹣8t+4=0,解得t1=2(不合题意,舍去),t2=,∴点P的坐标为(,)∴存在点P(,),使得四边形ABPM为等腰梯形.(3)如解答图2,△AOB沿AC方向平移至△A′O′B′,A′B′交x轴于T,交OC于Q,A′O′交x 轴于K,交OC于R.求得过A、C的直线为y AC=﹣x+3,可设点A′的横坐标为a,则点A′(a,﹣a+3),易知△OQT∽△OCD,可得QT=,∴点Q的坐标为(a,).解法一:设AB与OC相交于点J,∵△A′RQ∽△AOJ,相似三角形对应高的比等于相似比,∴=∴HT===2﹣a,KT=A′T=(3﹣a),A′Q=yA′﹣yQ=(﹣a+3)﹣=3﹣a.S四边形RKTQ=S△A′KT﹣S△A′RQ=KT•A′T﹣A′Q•HT=••(3﹣a)﹣•(3﹣a)•(﹣a+2)=a2+a﹣=(a﹣)2+由于<0,∴当a=时,S四边形RKTQ最大=,∴在线段AC上存在点A′(,),能使重叠部分面积S取到最大值,最大值为.解法二:过点R作RH⊥x轴于H,则由△ORH∽△OCD,得①由△RKH∽△A′O′B′,得②由①,②得KH=OH,OK=OH,KT=OT﹣OK=a﹣OH ③由△A′KT∽△A′O′B′,得,则KT=④由③,④得=a﹣OH,即OH=2a﹣2,RH=a﹣1,所以点R的坐标为R(2a﹣2,a﹣1)S四边形RKTQ=S△QOT﹣S△ROK=•OT•QT﹣•OK•RH=a•a﹣(1+a﹣)•(a﹣1)=a2+a﹣=(a﹣)2+由于<0,∴当a=时,S四边形RKTQ最大=,∴在线段AC上存在点A′(,),能使重叠部分面积S取到最大值,最大值为.解法三:∵AB=2,OB=1,∴tan∠O′A′B′=tan∠OAB=,∴KT=A′T•tan∠O′A′B′=(﹣a+3)•=a+,∴OK=OT﹣KT=a﹣(a+)=a﹣,过点R作RH⊥x轴于H,∵cot∠OAB=tan∠RKH==2,∴RH=2KH又∵tan∠OAB=tan∠ROH===,∴2RH=OK+KH=a﹣+RH,∴RH=a﹣1,OH=2(a﹣1),∴点R坐标R(2a﹣2,a﹣1)S四边形RKTQ=S△A′KT﹣S△A′RQ=•KT•A′T﹣A′Q•(x Q﹣x R)=••(3﹣a)﹣•(3﹣a)•(﹣a+2)=a2+a﹣=(a﹣)2+由于<0,∴当a=时,S四边形RKTQ最大=,∴在线段AC上存在点A′(,),能使重叠部分面积S取到最大值,最大值为.方法二:(1)略.(2)∵C(2,1),∴l OC:y=x,设P(t,),M(t,),∵四边形ABPM为等腰梯形,∴AM=BP且AM不平行BP,∴(t﹣1)2+(2+)2=(t﹣1)2+()2,∴2+=(无解)或2+=﹣,t1=2(舍),t2=,∴P(,).(3)∵A(1,2),C(2,1),∴l AC:y=﹣x+3,设A′(t,3﹣t),Q(t,),T(t,0),∵O′A′∥OA,∴K O′A′=K OA=2,∴l O′A′:y=2x+3﹣3t,∵l OC:y=x,∴R(2t﹣2,t﹣1),K(,0),∵S=S△QOT﹣S△ROK==﹣,∴t=时,S有最大值.。
浙江省杭州二中2015届高三上学期第一次月考数学理试题 Word版含答案

杭州二中2014学年第一学期高三年级第一次月考数学试卷(理科)第I卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知函数的定义域为,值域为,则=A.B.C.D.2.为了得到函数的图象,只需将函数的图象A.向右平移个单位B.向右平移个单位C.向左平移个单位D.向左平移个单位3.若“”是“”的充分而不必要条件,则实数的取值范围是A. B.C.D.4.设,满足约束条件且的最小值为7,则A.-5B.3C.-5或3D.5或-35.如图,P是正方体ABCD—A1B1C1D1对角线AC1上一动点,设AP的长度为x,若△PBD的面积为f(x),则f(x)的图象大致是6.若关于的不等式在区间上有解,则实数的取值范围为A. B.C.(1,+∞)D.7.已知两点,,若直线上存在点满足,则实数的取值范围是A. B.C. D.8.已知为抛物线的焦点,点A,B在该抛物线上且位于x轴的两侧,(其中O为坐标原点),则△AFO与△BFO面积之和的最小值是A.B.C.D.9.德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数被称为狄利克雷函数,其中R为实数集,Q为有理数集,则关于函数有如下四个命题:①;②函数是偶函数;③任取一个不为零的有理数T, 对任意的恒成立;④存在三个点,使得为等边三角形.其中真命题的个数是A.1 B.2 C.3 D.410.如图为函数的部分图象,ABCD是矩形,A,B在图像上,将此矩形绕x轴旋转得到的旋转体的体积的最大值为A.B.C.D.第II卷(共100分)二、填空题:本大题共7小题,每小题4分,共28分.11.设sin,则___________.12.已知是定义在上的奇函数,当时,. 则函数的零点的集合为.13.点A在单位正方形的边上运动,与的交点为,则的最大值为.14.设数列是等差数列,前n项和为,是单调递增的等比数列,是与的等差中项,,,若当时,恒成立,则的最小值为.15.已知的三边长成等差数列,且则实数b的取值范围是.16.关于的不等式的解集为.17.设,,令,若关于的方程有且仅有四个不等实根,则的取值范围为.数学答题纸(理科)姓名:▲▲▲2014学年杭州二中高三年级第一次月考数学试卷(理科答案)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.二、填空题:本大题共7小题,每小题4分,共28分.17.解:关于对称,且在上为定值,故方程等价于或或对于,解得,若解集是一个区间,则不符题意;若解集为离散的点,则满足,且,这含在前两种情况中.于是只需令,各有两根,且交集为空.,,又为空集,得到,从而.当,的根相等时,得到.三、解答题:本大题共5小题,共72分.解答应写出文字说明,证明过程或演算步骤.18.(本题满分14分)解:(1)由题意,,故.(2)当,,于是当时,,得到;当时,,得到;所以.19.(本小题满分15分)解(1) 等价于,故.(2)首先在上恒成立,即,故;其次,,,,于是,于是20.(本小题满分14分)解法一:(1)设CE中点为M,连BM,MF 则,由可知∵平面∴即∴,又∵,∴平面平面(2)过M作MD⊥EF于P,∵∴BD⊥EF即是二面角的平面角的补角∵,∴.即二面角的余弦值为.解法二:设,建立如图所示的坐标系,则.∵为的中点,∴.(1) 证明: ∵,∴,∴.∴平面,又平面,∴平面平面.(2) 解: 设平面的法向量,由,可得:同理可求得平面的法向量,二面角的余弦值为.21.(本小题满分14分)解:(1)因为离心率为,所以,当m=0时,的方程为,代入中,整理得到,设,则,于是,所以,.椭圆方程为.(2)设,的方程为,代入并整理得到..则,同理则,所以为定值.22. (本小题满分15分)解:(1)当时,在[1,4]上单调递增;证明:当时,,任取,且,则因为,,故,,所以即故当时,f(x)在[1,4]上单调递增.(2)当时,,当时,,(i)当时,若,;若,(ii)当时,故当,由,,,当时,当时,,综上:.(3) ,当时,有一根为4,在上必有两根,得到或,于是,于是,解得,因为舍去;当时,有两根为-1和4,故令在上有且仅有一根,得到,于是,于是,得到. 综上:或.。
2016届浙江省杭州二中高一下学期期中考试数学试题

1 ,则 y 的值为 2 D. ± 1
D. 2
(
)
2.已知数列 {an } 的前 n 项和为 S n ,且 S n = 2an - 2 则 a2 等于 A.4 B.2 C.1
(
)
3.已知 tan x = 2, 则 1 + 2 sin 2 = A.
( C.
)
5 3
B.
7 3
9 4
D.
13 5
( )
式,其中 w 、 j 均为实数,且 w > 0 , j < 17.各项均为正数的等比数列 {an } 中, a1 =
p ,则 w = ________, j = 2
.
1 , a1 × a2 × ... × am = 8m ( m > 2, m Î N + ) ,若从中抽掉一项后,余下 8
项.
的 m 1 项之积为 (4 2) m -1 ,则被抽掉的是第
10.将偶数按如图所示的规律排列下去,且用 amn 表示位于从上到下第 m 行,从左到 右 n 列的数,比如 a22 = 6, a43 = 18 ,若 amn = 2014 ,则有( A. m = 44, n = 16 B. m = 44, n = 29
第 1 页 共 7 页
)
C. m = 45, n = 16
第 2 页 共 7 页
杭州二中 2013 学年第二学期高一年级期中考试数学答题卷
一、 选择题(本大题共 10 小题,每小题 3 分,共 30 分) 题号 答案 二、填空题(本大题共 7 小题,每小题 4 分,共 28 分) 11. 15. . . 12. 16. . . 13. 17. . . 14. . 1 2 3 4 5 6 7 8 9 10
浙江省杭州二中2015届高三第二次月考数学理试卷

浙江省杭州二中2015届高三第二次月考数学理试卷第I 卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、若集合{|2}-==xM y y,{|==P y y ,则M P =A .}1|{>y yB .}1|{≥y yC .}0|{>y yD .}0|{≥y y2、实数等比数列{}n a 中,01>a ,则“41a a <”是“53a a <” 的( )A.充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件3、已知圆22:21C x y x +-=,直线:(1)1l y k x =-+,则与C 的位置关系是 A .一定相离 B ..一定相切 C .相交且一定不过圆心 D .相交且可能过圆心4、已知实数等比数列{}n a 公比为q ,其前n 项和为n S ,若3S 、9S 、6S 错误!未找到引用源。
成等差数列,则3q 等于( )A .错误!未找到引用源。
B .1C .错误!未找到引用源。
或1D .错误!未找到引用源。
5、已知x 、y 满足2y x x y x a ≥⎧⎪+≤⎨⎪≥⎩,且2z x y =+的最大值是最小值的4倍,则a 的值是( )A .34B .14C .211D .4 6、等差数列{}n a 前n 项和为n S ,已知254523335,25S S a a ==,则6543Sa =( ) A .125 B .85 C .45 D .357、若正数a ,b 满足111a b +=,则1911a b +--的最小值为( ) A .1 B .6 C .9 D .168、已知12,F F 分别是椭圆的左,右焦点,现以2F 为圆心作一个圆恰好经过椭圆中心并且交椭圆于点,M N ,若过1F 的直线1MF 是圆2F 的切线,则椭圆的离心率为 A .13- B .32- C .22 D .239、若等差数列{}n a 满足2211010a a +=,则101119...S a a a =+++的最大值为 ( ) A .60 B .50 C . 45 D .40 10、已知函数()f x 是定义在R 上的奇函数,在(0,2]上是增函数,且(4)()f x f x -=-,给出下列结论:①若1204x x <<<且124x x +=,则12()()0f x f x +>;②若1204x x <<<且125x x +=,则12()()f x f x >;③若方程()f x m =在[8,8]-内恰有四个不同的实根1234,,,x x x x ,则12348x x x x +++=-或8;④函数()f x 在[8,8]-内至少有5个零点,至多有13个零点其中结论正确的有( )A .1个B .2个C .3个D .4个第II 卷(共100分)二、填空题:本大题共7小题,每小题4分,共28分.11、如图为了测量A ,C 两点间的距离,选取同一平面上B ,D 两点,测出四边形ABCD 各边的长度(单位:km ):AB=5,BC=8,CD=3,DA=5,如图所示,且A 、B 、C 、D 四点共圆,则AC 的长为_________km . 12、在△ABC 中,6A π=,D 是BC 边上任意一点(D 与B 、C 不重合),且22||||AB AD BD DC =+⋅,则角B 等于 .13、函数21()log 0x x f x xx +≤⎧=⎨>⎩,则函数[()]1y f f x =+的所有零点所构成的集合为________.14、已知正三棱柱111ABC A B C -体积为94.若P 为底面ABC 的中心,则1PA 与平面111A B C 所成角的大小为15、已知sin ,cos αα是关于x 的方程20x ax a -+=的两个根,则1cos 2sin 21sin 2cos 21sin 2cos 21cos 2sin 2a a a aa a a a+---+=--+- .16、已知O 是ABC ∆外心,若2155AO AB AC =+,则cos BAC ∠= . 17、已知函数()af x x x=-,对(0,1)x ∀∈,有()(1)1f x f x ⋅-≥恒成立,则实数a 的取值范围为 .三、解答题:本大题共5小题,共72分.解答请写在答卷纸上,应写出文字说明,证明过程或演算步骤.18、在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 0b C C a c +--=. (Ⅰ)求B ;(Ⅱ)若b =2a c +的取值范围.19、如图,在三棱锥P ABC -中,BC ⊥平面PAB .已知PA AB =,点D ,E 分别为PB ,BC 的中点.(Ⅰ)求证:AD ⊥平面PBC ;(Ⅱ)若F 在线段AC 上,满足//AD 平面PEF ,求AFFC的值.20、已知数列{}n a 的首项为(0)a a ≠,前n 项和为n S ,且有1(0)n n S tS a t +=+≠,1n n b S =+. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)当1t =时,若对任意*n N ∈,都有5n b b ≥,求a 的APBCD EF取值范围;(Ⅲ)当1t ≠时,若122...n n c b b b =++++,求能够使数列{}n c 为等比数列的所有数对(,)a t .21、如图,已知圆2220G x y x +-=:,经过椭圆)0(12222>>=+b a by a x 的右焦点F及上顶点B ,过圆外一点))(0,(a m m >倾斜角为65π的直线交椭圆于C ,D 两点, (Ⅰ)求椭圆的方程;(Ⅱ)若右焦点F 在以线段CD 为直径的圆E 的外部,求m 的取值范围.22、已知函数2()1,()|1|f x x g x a x =-=-.(Ⅰ)若当x ∈R 时,不等式()()f x g x ≥恒成立,求实数a 的取值范围; (Ⅱ)求函数()|()|()h x f x g x =+在区间[2,2]-上的最大值.2014学年杭州二中高三年级第二次月考数学试卷(理科)参考答案一、选择题 1-10 CACAB CBABC 二、填空题 11、7;12、512π; 13、113,,24⎧--⎨⎩; 14、3π;151;16 17、14a ≤-或1a ≥ 三、解答题18、解:(1)由正弦定理知:sin cos sin sin sin 0B C B C A C --=sin sin()sin cos cos sin A B CA C A C =+=+代入上式sin cos sin sin 0B C B C C --=sin 0C >,cos 10B B --=.即1sin()62B π-=,(0,)B π∈,3B π∴= (2)由(1)得:22sin bR B==222(2sin sin )2[2sin sin()]5sin )3a c R A C A A A A A πθ∴+=+=+-=+=+ 2(0,)3A π∈,2)a c A θ∴+=+∈ 19、(1)证明:BC ⊥平面PAB BC AD ∴⊥ PA AB =,D 为PB 中点AD PB ∴⊥,PB BC B ⋂=,AD ∴⊥平面PBC(2)连接DC 交PE 于G ,连接FG//AD 平面PEF ,平面ADC ⋂平面PEF=FG//AD FG ∴,又G 为PBC ∆重心,12AF DG FC GC ∴== 20、解:(1)当1n =时,由21S tS a =+解得2a at = 当2n ≥时,1n n S tS a -=+,11()()n n n n S S t S S +-∴-=-,即1n n a ta +=又10a a =≠,综上有1(*)n na t n N a +=∈,即{}n a 是首项为a ,公比为t 的等比数列,1n n a at -∴= (2)当1t =时,,1n n S anb an ==+,当0a >时,{}n b 单调递增,且0n b >,不合题意; 当0a <时,{}n b 单调递减,由题意知:460,0b b >< ,且4565||||b b b b ≥⎧⎨-≥⎩解得22911a -≤≤-, 综上a 的取值范围为22[,]911-- (3)1t ≠,11nn a at b t-∴=+-22(1)2(1)(...)2(1)111(1)n nn a a a at t c n t t t n t t t t -∴=++-+++=++-----1222(1)(1)1(1)n at a at n t t t +=-+++---由题设知{}n c 为等比数列,所以有,220(1)101at t t a t⎧-=⎪-⎪⎨-+⎪=⎪-⎩,解得12a t =⎧⎨=⎩,即满足条件的数对是(1,2).(或通过{}n c 的前3项成等比数列先求出数对(,)a t ,再进行证明)21、解:(Ⅰ)∵圆G :02222=--+y x y x 经过点F 、B .∴F (2,0),B (0,2),∴2=c ,2=b . ∴62=a .故椭圆的方程为12622=+y x .(Ⅱ)设直线的方程为)6)((33>--=m m x y .由⎪⎪⎩⎪⎪⎨⎧--==+)(3312622m x y y x 消去y 得0)6(2222=-+-m mx x .设),(11y x C ,),(22y x D ,则m x x =+21,26221-=m x x ,∴3)(331)](33[)](33[221212121m x x m x x m x m x y y ++-=--⋅--=.∵),2(11y x -=,),2(22y x -=,∴⋅=2121)2)(2(y y x x +-- 43)(3)6(3422121+++-=m x x m x x=3)3(2-m m . ∵点F 在圆G 的外部, ∴0FC FD ⋅>,即2(3)03m m ->,解得0m <或3m >.由△=0)6(8422>--m m ,解得3232<<-m .又6>m ,326<<m .∴3m <<.22、解:(1)不等式()()f x g x ≥对x ∈R 恒成立,即2(1)|1|x a x --≥(*)对x ∈R 恒成立,①当1x =时,(*)显然成立,此时a ∈R ;②当1x ≠时,(*)可变形为21|1|x a x -≤-,令21,(1),1()(1),(1).|1|x x x x x x x ϕ+>⎧-==⎨-+<-⎩ 因为当1x >时,()2x ϕ>,当1x <时,()2x ϕ>-,所以()2x ϕ>-,故此时2a -≤. 综合①②,得所求实数a 的取值范围是2a -≤.(2)因为2()|()|()|1||1|h x f x g x x a x =+=-+-=2221,(1),1,(11),1,(1).x ax a x x ax a x x ax a x ⎧+--⎪--++-<⎨⎪-+-<-⎩≤≥…10分①当1,22aa >>即时,结合图形可知()h x 在[2,1]-上递减,在[1,2]上递增, 且(2)33,(2)3h a h a -=+=+,经比较,此时()h x 在[2,2]-上的最大值为33a +. ②当01,22a a 即0≤≤≤≤时,结合图形可知()h x 在[2,1]--,[,1]2a -上递减,在[1,]2a --,[1,2]上递增,且(2)33,(2)3h a h a -=+=+,2()124a a h a -=++,经比较,知此时()h x 在[2,2]-上的最大值为33a +.③当10,02a a -<<即-2≤≤时,结合图形可知()h x 在[2,1]--,[,1]2a-上递减, 在[1,]2a --,[1,2]上递增,且(2)33,(2)3h a h a -=+=+,2()124a a h a -=++,经比较,知此时()h x 在[2,2]-上的最大值为3a +.④当31,222a a -<-<-即-3≤≤时,结合图形可知()h x 在[2,]2a -,[1,]2a-上递减, 在[,1]2a ,[,2]2a-上递增,且(2)330h a -=+<, (2)30h a =+≥,经比较,知此时()h x 在[2,2]-上的最大值为3a +. 当3,322a a <-<-即时,结合图形可知()h x 在[2,1]-上递减,在[1,2]上递增, 故此时()h x 在[2,2]-上的最大值为(1)0h =.综上所述,当0a ≥时,()h x 在[2,2]-上的最大值为33a +; 当30a -<≤时,()h x 在[2,2]-上的最大值为3a +; 当3a <-时,()h x 在[2,2]-上的最大值为0.。
浙江省杭州市第二中学2018-2019学年高二上学期期末考试 数学 PDF版无答案

杭州二中2018学年第一学期高二年级期末考数学试卷考试时间:100分钟;总分100分一、单选题(共8题,每题4分,在每小题给出的四项中,只有一项是符合题目要求的)1.复数ii--13等于()A.1+2iB.12i- C.2+iD.2i-2.双曲线221x my -=的一个焦点坐标为,则双曲线的渐近线方程为()A.14y x =±B.12y x =±C.2y x =±D.4y x=±3.用反证法证明“,,a b c 中至少有一个大于0”,下列假设正确的是()A.假设,,a b c 都大于0B.假设,,a b c 都不大于0C.假设,,a b c 都小于0D.假设,,a b c 至多有一个大于04.已知直线l ⊥平面α,直线m //平面β,则“α//β”是“l ⊥m ”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既非充分也非必要条件5.已知椭圆)0(12222>>=+b a by a x 与抛物线)0(22>=p py x 的交点为,A B .,A B 连线经过抛物线焦点F ,且线段AB 的长度等于椭圆的短轴长,则椭圆的离心率为()A.2B.12C.2D.26.设直线)(01)1(:R m y m mx l ∈=--+,圆4)1(:22=+-y x C ,则下列说法中正确的是()A.直线l 与圆C 有可能无公共点B.若直线l 的一个方向向量为(1,2)a =-,则1m =-C.若直线l 平分圆C 的周长,则0m =D.若直线l 与圆C 有两个不同交点,M N ,则线段MN 的长的最小值为327.在正方体11111CC E D C B A ABCD 是棱中,-的中点,11B BCC F 是侧面内的动点,且AE D F A 11//平面,记F A 1与平面11B BCC 所成的角为θ,下列说法正确的个数是()①点F 的轨迹是一条线段②F A 1与E D 1不可能平行③F A 1与BE 是异面直线④22tan ≤θA.1B.2C.3D.48.已知21,F F 为椭圆与双曲线的公共焦点,P 为它们的一个公共点,且︒=∠6021PF F ,则该椭圆与双曲线的离心率之积的最小值为()A.33 B.23 C.1D.3二、填空题(共7题,每题4分)9.抛物线22x y =的焦点坐标为.10.设平面α的法向量为()2,2,11-=n ,平面β的法向量为()4,,22λ=n ,若βα⊥,则=n .11.用数学归纳法证明:()112131211n ><-+⋯⋯++n n ,在第二步证明从1+==k n k n 到成立时,左边增加的项是.(用含有k 的式子作答)12.一个几何体的三视图如图所示,则该几何体的体积为.13.圆082422=---+y x y x 关于直线)0,(022>=-+b a by ax 对称,则ba 41+的最小值为.14.已知F 是双曲线)0,0(12222>>=-b a b y a x 的右焦点,A 是双曲线上位于第一象限内的一点,满足2OA OF OF = ,直线OA 的方程为x y 332=,则双曲线的离心率为.15.如图,在直角梯形ABCD 中,//AB CD ,=90ABC ∠,1AB =,2AC CD DA ===,M 是边DC 上的动点(不同于D 点),P 为边AB 上任意一点,沿AM 将ADM ∆翻折成AD M '∆,当平面AD M '垂直于平面ABC 时,线段PD '长度的最小值为.三、解答题(共40分)16.(本小题满分9分)已知命题p :方程02224222=+-++-+m m my x y x 表示圆;命题q :方程15122=-+-ay m x 表示焦点在y 轴上的椭圆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
杭州二中2015学年第一学期高二年级期终考数学试卷 命题、审核、校对:黄宗巧 徐存旭 李 鸽本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共100分,考试时间100分钟. 一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把答案填在答卷相应空格中)1.双曲线221169x y -=的焦距是( )A.B.5C. 10D.2.设a R ∈,则“2a =”是“直线1:0l x ay a +-=与直线2:(23)10l ax a y --+=垂直”的( )A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分也不必要的条件3.设n m ,是两条不同的直线,,αβ是两个不同的平面,则下列命题中正确的是( )A. 若//,,,m n αβαβ⊂⊂则//m nB. 若//,//,//,m n αβαβ则//m nC. 若,//,,m n m n αβ⊥⊥则//αβD. 若//,,,m m n αβαβ⊂= 则//m n4. 已知不等式210mx nx m +-<的解集为1{|2}2x x x <->或.则m n -=( )A. 12B. 52-C. 52D. 12-5.直线3+=x y 与曲线1492=-x x y 的公共点的个数是( )A. 1B.2 C .3 D. 46. 把正方形ABCD 沿对角线AC 折起,当以A 、B 、C 、D 四点为顶点的棱锥体积最大时,直线BD 和平面ABC 所成的角的大小为( ) A. 90° B .60° C. 45° D.30°7.过抛物线2:4C y x =的焦点F 作直线l 交抛物线C 于,A B ,若BF AF 3=,则l 的斜率是( )A.B.C.D.8.已知实数x ,y 满足⎩⎪⎨⎪⎧y≥1y≤2x -1x +y≤m ,如果目标函数z =x -y 的最小值为-1,则实数m 等于( )A.7B.5C.4D.39.如图,在长方形ABCD中,AB=3,BC=1,E为线段DC上一动点,现将∆AED沿AE折起,使点D在面ABC上的射影K在直线AE上,当E从D运动到C,则K所形成轨迹的长度为()BAA.23B.332C.2πD.3π10.已知0x>,0y>,若不等式()a x y x+≥+恒成立,则a的最小值为()A. B. 2+ D. +二、填空题(本大题共6小题,每小题4分,共24分,把答案填在答卷中相应横线上)11.一个几何体的三视图如右图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的表面积是.12. 设,,,P A B C是一个球面上的四个点,,,PA PB PC两两垂直,且1PA PB PC===,则该球的体积为. .13. 已知双曲线22221(00)x ya ba b-=>>,的左、右焦点分别为12F F,,过2F作斜率为2-的直线交双曲线的渐近线于P Q,两点,M为线段P Q的中点.若直线1M F平行于其中一条渐近线,则该双曲线的离心率为.14.如图,直线lα⊥平面,垂足为O,已知ABC∆中,ABC∠为直角,AB=2,BC=1,该直角三角形做符合以下条件的自由运动:(1)A l∈,(2)Bα∈.则C、O两点间的最大距离为______.15.已知00x y>>,,且满足18102yxx y+++=,则2x y+的最大值为.正视图侧视图俯视图16. 在平面直角坐标系内,设),(11y x M 、),(22y x N 为不同的两点,直线l 的方程为0=++c by ax , 设c by ax cby ax ++++=2211δ 有下列四个说法:①存在实数δ,使点N 在直线l 上;②若1=δ,则过M 、N 两点的直线与直线l 平行;③若1-=δ,则直线l 经过线段MN 的中点;④若1>δ,则点M 、N 在直线l 的同侧,且直线l 与线段MN 的延长线相交.在上述说法中,所有正确说法的序号是 .三、解答题(本大题共4小题,共46分,解答应写出文字说明,证明过程或演算步骤)17. (本小题满分8分)关于y x ,的方程C :04222=+--+m y x y x . (1)若方程C 表示圆,求实数m 的范围;(2)在方程C 表示圆时,若该圆与直线042:=-+y x l 相交于N M ,两点,且 554||=MN ,求实数m 的值.18.(本小题满分12分) 如图,在三棱锥P AB C -中,BC ⊥平面APC ,AB = 2A P P CC B ===.C AP(1)求证:AP ⊥平面PBC ;(2)求二面角P A B C --的大小.19.(本小题满分12分) 已知圆22:(1)(1)2C x y -+-=经过椭圆2222:1(0)x y a b a b Γ+=>>的右焦点F 和上顶点B ,如图所示.(1)求椭圆Γ的方程;(2)过原点O 的射线l 与椭圆Γ在第一象限的交点为Q ,与 圆C 的交点为P ,M 为OP 的中点, 求OM OQ ⋅的最大值.20.(本小题满分14分)已知函数()axf xx b=+,且(1)1f=,(2)4f-=.(1)求a、b的值;(2)已知定点(1,0)A,设点(,)P x y是函数()(1)y f x x=<-图象上的任意一点,求||AP的最小值;(3)当[1,2]x∈时,不等式2()(1)||mf xx x m≤+-恒成立,求实数m的取值范围.RQCBAP参考答案一、选择题:CADBC ,CCBDA二、填空题: 11.2+;12. . 13. 17. 14.1+. 15. 18.16.②③④三、解答题(本大题共4小题,共46分,解答应写出文字说明,证明过程或演算步骤)17. 【解析】(Ⅰ)方程可化为m y x -=-+-5)2()1(22 若方程C 表示圆只需05>-m ,所以m 的范围是)5,(-∞ -----3分由(Ⅰ)圆的圆心C (1,2)半径为m -5,过圆心C 作直线l 的垂线CD ,D 为垂足,则55||=CD ,又554||=MN ,知552||=MD -----6分则222)552()55()5(+=-m ,解得4=m -----8分18. (本小题满分12分)【解析】(Ⅰ)因为BC ⊥面APC ,A C ,AP ⊂面APC , 所以B C A P ⊥, B C A C ⊥ -----2分因为AB =2CB =,所以AC =.又因为2A P P C ==,所以222A C P A P C =+,故 AP P C ⊥ -----4分 因为PC B C C = ,所以AP ⊥平面PBC -----6分 (Ⅱ)因为BC ⊥平面APC ,所以面APC ⊥平面ABC . 在面APC 内作P Q A C ⊥于Q ,则P Q ⊥平面ABC . 过Q 作Q R A B ⊥于R ,连接P R ,则PRQ ∠即为二面角P A B C --的平面角 -----9分在Rt APC V 中,AP PCPQ AC ⋅==,(第17题图)CBAP在Rt ABC V中,QR =故tan PQPRQ QR ∠==.从而二面角P A B C --的大小为3π-----12分19.(本小题满分12分)【解析】(Ⅰ)在22:(1)(1)2C x y -+-=中,令0y =得(2,0)F ,即2c =,令0x =,得(0,2)B ,即2b =, -------------------2分 由2228a b c =+=,∴椭圆Γ:22184x y +=. ------------------4分(Ⅱ)法一:依题意射线l 的斜率存在,设:(0,0)l y kx x k =>>,设1122(,),(,)P x kx Q x kx 22184y kx x y =⎧⎪⎨+=⎪⎩得:22(12)8k x +=,∴2x = ---------------6分 ()OM OQ OC CM OQ OC OQ ⋅=+⋅=⋅=222(1,1)(,)(1)x kx k x ⋅=+=0)k > ---------------9分=.设1(1)t k t =+>,则222222(1)1131112212243224()3()3[()]33k t k t t t t t +===≤+-+-+-+.当且仅当12,3t =即max []OM OQ ⋅= . ---------------12分法二:设点00(,)Q x y ,000,0x y >>,()OM OQ OC CM OQ OC OQ ⋅=+⋅=⋅=0000(1,1)(,)x y x y ⋅=+ . -----------------7分又2200184x y +=,设00b x y =+与2200184x y +=联立得:220034280x bx b -+-= . --------------9分令2201612(28)0b b b ∆=⇔--=⇒=±又点00(,)Q x y在第一象限,∴当0x =时,OM OQ ⋅取最大值. ----------12分 20.(本小题满分14分)【解析】 (1)由⎧⎨⎩(1)1(2)4f f =-=,得⎧⎨⎩122a b a b =+-=-, 解得:⎧⎨⎩21a b == ----------2分(2)由(1)2()1x f x x =+,所以22222||(1)(1)4()1x AP x y x x =-+=-++,令t x =+1,0t <,则22222142||(2)4(1)4()8AP t t t t t t =-+-=+-++ 22222()4()4(2)t t t t t t =+-++=+-22||22()2AP t t t t ∴=+-=-+≥+即||AP的最小值是2,此时t = ---------------8分【另解】221[(1)1]1||1(1)x x AP x x ++-+====+-+2||2[(1)]2)11()AP x x x ∴=-++≥+<-+ ---------------8分(3)问题即为221(1)||x m x x x m ≤++-对[1,2]x ∈恒成立,也就是||m x x m ≤-对[1,2]x ∈恒成立,要使问题有意义,即x m ≠,则01m <<,或2m >. ----------10分法一:在01m <<或2m >下,问题化为||mx m x -≤对[1,2]x ∈恒成立,即m m m x m x x -≤≤+对[1,2]x ∈恒成立,即2mx m x mx m -≤≤+对[1,2]x ∈恒成立,①当1x =时,112m ≤<或2m >,②当1x ≠时,21x m x ≥+且21x m x ≤-对(1,2]x ∈恒成立, 对于21x m x ≥+对(1,2]x ∈恒成立,等价于2max()1x m x ≥+,令1t x =+,(1,2]x ∈,则1x t =-,(2,3]t ∈,22(1)121x t t x t t -==+-+,(2,3]t ∈递增,2max 4()13x x ∴=+,43m ≥,结合01m <<或2m >,2m ∴> 对于21x m x ≤-对(1,2]x ∈恒成立,等价于2min()1x m x ≤- 令1t x =-,(1,2]x ∈,则1x t =+,(0,1]t ∈,22(1)121x t t x t t +==++-,(0,1]t ∈递减,2min ()41x x ∴=-,4m ∴≤,0124m m ∴<<<≤或,综上:24m <≤ ----------14分法二:故问题转化为||x x m m -≤对[1,2]x ∈恒成立, 其中01m <<或2m > 令()||g x x x m =-①若01m <<时,由于[1,2]x ∈,故2()()g x x x m x mx =-=-, ()g x 在[1,2]x ∈时单调递增,依题意(2)g m ≤,43m ≥,舍去;11 ②若2m >,由于[1,2]x ∈,故22()()()24m m g x x m x x =-=--+, 考虑到12m >,再分两种情形:(ⅰ)122m <≤,即24m <≤,()g x 的最大值是2()24m m g =, 依题意24m m≤,即4m ≤,24m ∴<≤;(ⅱ)22m >,即4m >,()g x 在[1,2]x ∈时单调递增,故(2)g m ≤,2(2)m m ∴-≤,4m ∴≤,舍去。综上可得,24m <≤ ----------14分【另解】问题即为221(1)||x m x x x m ≤++- 对[1,2]x ∈恒成立,也就是||m x x m ≤- 对[1,2]x ∈恒成立, 要使问题有意义,即x m ≠,则01m <<或2m >.(*)----------10分 此时,问题转化为||x x m m -≤对[1,2]x ∈恒成立,令()||g x x x m =-,则max ()g x m ≤ 首先4(2)2|2|43g m m m =-≤∴≤≤,则由(*)得 24m <≤(缩小范围,避免讨论!)此时 22()()(),24122m g x x m x m m x =---<=+≤2max2 4.()(),24m m x m g g m ∴==∴<≤≤ ----------14分。