解三角形知识点及习题
解三角形练习题及答案

解三角形练习题及答案一、解三角形练习题1. 已知三角形ABC,AB=5cm,AC=8cm,BC=7cm,求角A的大小。
2. 已知三角形DEF,DE=6cm,EF=9cm,DF=12cm,求角D的大小。
3. 已知三角形GHI,GH=5cm,HI=5cm,GI=7cm,求角G的大小。
4. 已知三角形JKL,JK=8cm,KL=10cm,JL=12cm,求角K的大小。
5. 已知三角形MNO,MN=4cm,NO=6cm,MO=8cm,求角M的大小。
二、解三角形练习题答案1. 解题过程:根据已知条件,我们可以使用余弦定理来求解角A的大小。
余弦定理公式为:cos(A) = (b^2 + c^2 - a^2) / (2b*c)其中,a、b、c分别表示三角形对应边的长度。
代入已知条件可得: cos(A) = (7^2 + 8^2 - 5^2) / (2*7*8)= (49 + 64 - 25) / 112= 88 / 112≈ 0.786通过查表或计算器的反余弦函数,可以得到角A的近似值为38°。
2. 解题过程:同样利用余弦定理,我们可以求解角D的大小。
代入已知条件可得:cos(D) = (9^2 + 12^2 - 6^2) / (2*9*12)= (81 + 144 - 36) / 216= 189 / 216≈ 0.875通过反余弦函数,可以得到角D的近似值为 30°。
3. 解题过程:同理,利用余弦定理求解角G的大小。
代入已知条件可得:cos(G) = (5^2 + 7^2 - 5^2) / (2*5*7)= (25 + 49 - 25) / 70= 49 / 70≈ 0.7通过反余弦函数,可以得到角G的近似值为 45°。
4. 解题过程:利用余弦定理求解角K的大小。
代入已知条件可得:cos(K) = (10^2 + 12^2 - 8^2) / (2*10*12)= (100 + 144 - 64) / 240= 180 / 240= 3 / 4= 0.75通过反余弦函数,可以得到角K的近似值为 41.4°。
中考《解直角三角形》复习练习题及答案

中考数学复习专题练习解直角三角形一、选择题:1、在△ABC中,若cosA=,tanB=,则这个三角形一定是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形2、在直角△ABC中,∠C=90°,∠A、∠B与∠C的对边分别是a、b和c,那么下列关系中,正确的是()A.cosA= B.tanA= C.sinA= D.cosA=3、如图,在平面直角坐标系中,直线OA过点(2,1),则tanα的值是( )A.2 B. C. D.4、在Rt ABC中,∠C=90°,sinB=,则tanA的值为( )A. B. C. D.5、在正方形网格中,△ABC的位置如图所示,则cosB的值为()A. B. C. D.6、在等腰直角三角形ABC中,∠C=90°,AC=6,D是AC上一点,若tan∠DBA=,则AD的长是()A. B.2 C.1 D.27、如图,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形顶点上,则tan∠ACB值为( )A. B. C. D.8、如图所示,河堤横断面迎水坡AB的坡比是1:,堤高BC=5m,则坡面AB的长是()A.10mB.mC.15m D.m9、如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1:2,则斜坡AB的长为( )A.4米B.6米C.12米D.24米10、如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为( )A. B.-1 C.2- D.11、如图,已知的三个顶点都在方格图的格点上,则的值为( )A. B. C. D.12、如图,在四边形ABCD中,E、F分別是AB、AD的中点,若EF=2,BC=5,CD=3,则tanC等于()A. B. C. D.二、填空题:13、在△ABC中,∠A,∠B都是锐角,若sinA=,cosB=,则∠C=________.14、已知在Rt△ABC中,∠C=90°,AB=15,cosB=,则BC= .15、如图,先锋村准备在坡角为α=30°山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB为______米.16、如图,菱形ABCD的边长为15,sin∠BAC=,则对角线AC的长为______.17、如图,正方形ABCD的边长为4,点M在边DC上,M、N两点关于对角线AC对称,若DM=1,则tan∠ADN= .18、如图,△ABC的三个顶点分别在边长为1的正方形网格的格点上,则tan(+) tan+tan.(填“>”“=”“<”)19、如图在四边形ABCD中,∠ACB=∠BAD=105°,∠B=∠D=45°若 AD=,则AB=__________20、如图所示的半圆中,是直径,且,,则的值是.21、如图,在菱形ABCD中,DE⊥AB,,BE=2,则________.22、如图,在中,是边边上的中线,如果,tanB值是________23、如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行100米到达C处,再测得山顶A的仰角为45°,那么山高AD为米.24、如图,在顶角为30°的等腰三角形ABC中,AB=AC,若过点C作CD⊥AB于点D,则∠BCD=15°.根据图形计算tan15°= .三、简答题:25、在△ABC中,a,b,c分别是∠A,∠B,∠C的对边,且c=,若关于x的方程(+b)x2+2ax+(-b)=0有两个相等的实数根,方程2x2-(10sin A)x+5sin A=0的两个实数根的平方和为6,求△ABC的面积.26、已知:如图,正方形ABCD中,点E为AD边的中点,联结CE. 求cos∠ACE和tan∠ACE的值.27、如图,一艘海轮在A点时测得灯塔C在它的北偏东42°方向上,它沿正东方向航行80海里后到达B处,此时灯塔C在它的北偏西55°方向上.(1)求海轮在航行过程中与灯塔C的最短距离(结果精确到0.1);(2)求海轮在B处时与灯塔C的距离(结果保留整数).(参考数据:sin55°≈0.819,cos55°≈0.574,tan55°≈1.428,tan42°≈0.900,tan35°≈0.700,tan48°≈1.111)28、如图,河流两岸a,b互相平行,C,D是河岸a上间隔50m的两个电线杆.某人在河岸b上的A处测得∠DAB=30°,然后沿河岸走了100m到达B处,测得∠CBF=60°,求河流的宽度CF的值.(结果精确到个位)29、张老师利用休息时间组织学生测量山坡上一棵大树CD的高度,如图,山坡与水平面成30°角(即∠MAN=30°),在山坡底部A处测得大树顶端点C的仰角为45°,沿坡面前进20米,到达B处,又测得树顶端点C的仰角为60°(图中各点均在同一平面内),求这棵大树CD的高度(结果精确到0.1米,参考数据:≈1.732)30、如图,在正方形ABCD中,点E、F分别是BC、CD的中点,DE交AF于点M,点N为DE的中点.(1)若AB=4,求△DNF的周长及sin∠DAF的值;(2)求证:2AD•NF=DE•DM.31、中考英语听力测试期间T需要杜绝考点周围的噪音.如图,点A是某市一中考考点,在位于考点南偏西15°方向距离500米的C点处有一消防队.在听力考试期间,消防队突然接到报警电话,消防车需沿北偏东75°方向的公路CF前往救援.已知消防车的警报声传播半径为400米,若消防车的警报声对听力测试造成影响,则消防车必须改道行驶.试问:消防车是否需要改道行驶?说明理由.(≈1.732)参考答案1、A.2、C.3、B.4、D.5、B.6、B.7、B.8、A.9、B.10、A.11、D.12、B.13、答案为:60°14、答案为:9.15、答案为:(米).16、答案为24.17、答案为:4.3 18、答案为:>. 19、答案为:.20、答案为: ;21、答案为:2 ;22、答案为:23、答案为:137.24、答案为:2﹣.25、解:∵方程(5+b)x2+2ax+(5-b)=0有两个相等的实数根,且c=5,∴△=(2a)2-4(c+b)(c-b)=0,∴a2+b2=c2,则△ABC为直角三角形,且∠C=90°.设x1,x2是方程2x2-(10sin A)x+5sin A=0的两个根,则根据根与系数的关系有x1+x2=5sin A,x1·x2=sin A.∴x12+x22=(x1+x2)2-2x l·x2=(5sin A)2-2×sin A=6,解得sinA=或sinA=-(舍去),∴a=csin A=3,b==4,S△ABC=ab==18.26、解:过点作于点,∵四边形是正方形,∴平分,.∴,.∵是中点,∴.设,则,,.在Rt△AEF中,,.∴.∴,.27、【解答】解:(1)过C作AB的垂线,设垂足为D,根据题意可得:∠1=∠2=42°,∠3=∠4=55°,设CD的长为x海里,在Rt△ACD中,tan42°=,则AD=x•tan42°,在Rt△BCD中,tan55°=,则BD=x•tan55°,∵AB=80,∴AD+BD=80,∴x•tan42°+x•tan55°=80,解得:x≈34.4,答:海轮在航行过程中与灯塔C的最短距离是34.4海里;(2)在Rt△BCD中,cos55°=,∴BC=≈60海里,答:海轮在B处时与灯塔C的距离约为60海里.28、【解答】解:过点C作CE∥AD,交AB于E∵CD∥AE,CE∥AD∴四边形AECD是平行四边形∴AE=CD=50m,EB=AB﹣AE=50m,∠CEB=∠DAB=30°又∠CBF=60°,故∠ECB=30°∴CB=EB=50m∴在Rt△CFB中,CF=CB•sin∠CBF=50•sin60°≈43m答:河流的宽度CF的值为43m.29、解:如图,过B作BE⊥CD交CD延长线于E,∵∠CAN=45°,∠MAN=30°,∴∠CAB=15°∵∠CBD=60°,∠DBE=30°,∴∠CBD=30°,∵∠CBE=∠CAB+∠ACB,∴∠CAB=∠ACB=15°,∴AB=BC=20,在Rt△BCE中,∠CBE=60°,BC=20,∴CE=BCsin∠CBE=20×BE=BCcos∠CBE=20×0.5=10,在Rt△DBE中,∠DBE=30°,BE=10,∴DE=BEtan∠DBE=10×,∴CD=CE﹣DE=≈11.5,答:这棵大树CD的高度大约为11.5米.30、:(1)解:∵点E、F分别是BC、CD的中点,∴EC=DF=×4=2,由勾股定理得,DE==2,∵点F是CD的中点,点N为DE的中点,∴DN=DE=×2=,NF=EC=×2=1,∴△DNF的周长=1++2=3+;在Rt△ADF中,由勾股定理得,AF===2,所以,sin∠DAF===;(2)证明:在△ADF和△DCE中,,∴△ADF≌△DCE(SAS),∴AF=DE,∠DAF=∠CDE,∵∠DAF+∠AFD=90°,∴∠CDE+∠AFD=90°,∴AF⊥DE,∵点E、F分别是BC、CD的中点,∴NF是△CDE的中位线,∴DF=EC=2NF,∵cos∠DAF==,cos∠CDE==,∴=,∴2AD•NF=DE•DM.31、【解答】解:过A作AD⊥CF于D,由题意得∠CAG=15°,∴∠ACE=15°,∵∠ECF=75°,∴∠ACD=60°,在Rt△ACD中,sin∠ACD=,则AD=AC•sin∠ACD=250≈433米,433米>400米,∴不需要改道.答:消防车不需要改道行驶.。
高中数学必修五第一章解三角形知识点总结及练习题复习课程

第一章 解三角形1、正弦定理:在C 中, a 、 b 、 c 分别为角 、 、 C 的对边, R 为 C 的外接圆的半径,则有: a b c 2R .sin sin sinC2、正弦定理的变形公式:① a2Rsin , b 2Rsin , c 2Rsin C ;② sin a , sin bc2R , sin C ;2R 2R③ a : b : c sin :sin :sin C ;④a b c a b csinsin C sinsin.sinsin C注意: 正弦定理主要用来解决两类问题: 1、已知两边和此中一边所对的角,求其他的量。
2、已知两角和一边,求其他的量。
⑤关于已知两边和此中一边所对的角的题型要注意解的状况。
(一解、 两解、无解三中状况)如:在三角形ABC 中,已知 a 、b 、 A ( A 为锐角)求B 。
详细的做法是: 数形联合思想画出图:法一:把 a 扰着 C 点旋转,看所得轨迹以 AD 有无交点:当无交点则 B 无解、 C当有一个交点则 B 有一解、当有两个交点则B 有两个解。
a法二:是算出 CD=bsinA, 看 a 的状况: bbsinA当 a<bsinA ,则 B 无解 当 bsinA<a ≤ b, 则 B 有两解AD当 a=bsinA 或 a>b 时, B 有一解注:当 A 为钝角或是直角时以此类推既可。
3、三角形面积公式:SC1bcsin1 ab sin C 1acsin.2224、余弦定理:在C 中,有 a 2b 2c 2 2bc cosc 2a 2b 2 2ab cosC, b 2 a 2 c 2 2ac cos ,.5、余弦定理的推论:b 2c 2a 2cos2bc ,a 2 c 2b 2cos2ac ,a 2b 2c 2cosC2ab .16、怎样判断三角形的形状:设 a 、b、 c 是 C 的角、、 C 的对边,则:①若 a2b2c2,则 C90o;②若a2b2c2,则 C90o;③若a 2b22,则 C90o.B cA7、正余弦定理的综合应用:如下图:隔河看两目标A、B,但不可以抵达,在岸边选用相距 3 千米的C、D两点,O O O并测得∠ ACB=75,∠ BCD=45,∠ADC=30,O、B、 C、 D在同一平面内) ,求两目标C D∠ADB=45(A A、 B 之间的距离。
(完整版)高一数学必修5解三角形,正弦,余弦知识点和练习题(含答案),推荐文档

C . a=1,b=2, / A=100C . b=c=1, / B=451 .正弦定理abc2R 或变a ・ A ・ c ain △・ain R ・ain C■ K/ ■ vzn u i L M / ・ w iii sin A sin B sinC222bc acco AUUo / v2a 2 2b c 2bccosA 92bc 92.余弦定理:b 22 2 a c 2accosB 或c a QCO l-< c b 22ac2cb 2 a2bacosC.2 22ba ccos C2ab3.( 1)两类正弦定理解三角形的问题:1、已知两角和任意一边,求其他的两边及一角 2、已知两角和其中一边的对角,求其他边角 (2)两类余弦定理解三角形的问题:1、已知三边求三角•2、已知两边和他们的夹角,求第三边和其他两角4•判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式〔、△ ABC 中,a=1,b= 3 , / A=30 °,则/ B 等于A . 60°B . 60° 或 120°2、符合下列条件的三角形有且只有一个的是A . a=1,b=2 ,c=3 ( )C . 30° 或 150°D . 120°( )B . a=1,b= .2,/A=30 °3、在锐角三角形 ABC 中,有( )A . cosA>sinB 且 cosB>sinAC . cosA>sinB 且 cosB<sinAB . cosA<sinB 且 cosB<sinA D . cosA<sinB 且 cosB>sinA4、若(a+b+c)(b+c — a)=3abc ,且 sinA=2sinBcosC,那么△ ABC 是A .直角三角形D .等腰直角三角形1、在厶ABC 中,已知内角 A —,边BC 2.3.设内角B(1)求函数y f (x)的解析式和定义域;(2)求y 的最大值.2、在VABC 中,角A,B,C 对应的边分别是a,b,c ,若si nAsi nBB .等边三角形C .等腰三角形 5、C 为三角形的三内角,且方程(sinB—si nA)x 2+(si nA — sinC)x+(si nC — sin B)=0有等根,那么角 B6、 满足A=45 B>60 ° C . B<60 D . B w 60°,c= , 6 ,a=2的厶ABC 的个数记为 m,则a m 的值为B .D .不定7、如图:D,C,B 三点在地面同一直线上,DC=a,从C,D 两点测得A 点仰角分别是B ,点离地面的高度AB等于asin sin A .sin( )B .asin sin cos( )asin cos C .sin( )a cos sin D .cos( )9、A 为 ABC 的一个内角,且 sinA+cosA = 172,肌 ABC 是三角形•11、在4 ABC 1 中,若 S ABC = (a 2+b 2 — c 2),那么角/ C=412、在4 ABC 13、在4 ABC① B=60 亠31 中,a =5,b = 4,cos(A — B)= 一,则 cosC= _____ .32中,求分别满足下列条件的三角形形状:,b 2=ac ; ② b 2ta nA=a 2ta nB ;sin A sin B ③ sin C=cos A cos Bx ,周长为—求 a:b:c2 ,3、在锐角三角形ABC中,有( )23、在 VABC 中 a, b, c 分别为 A, B, C 的对边,若 2sinA(cosB cosC) 3(sinB sinC), (1)求A 的大小;(2)若a .61,b c 9,求b 和c 的值。
辅导解直角三角形概念及复习教案及习题附答案

解直角三角形一、知识点讲解:1.解直角三角形的依据在直角三角形ABC中,如果∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c,那么(1)三边之间的关系为(勾股定理)(2)锐角之间的关系为∠A+∠B=90°(3)边角之间的关系为2.其他有关公式面积公式:(hc为c边上的高)3.解直角三角形的条件在除直角C外的五个元素中,只要已知其中两个元素(至少有一个是边)就可以求出其余三个元素。
4.解直角三角形的关键是正确选择关系式在直角三角形中,锐角三角函数是勾通三角形边角关系的结合部,只要题目中已知加未知的三个元素中有边,有角,则一定使用锐角三角函数,应如何从三角函数的八个公式中迅速而准确地优选出所需要的公式呢?(1)若求边:一般用未知边比已知边,去寻找已知角的某三角函数(2)若求角:一般用已知边比已知边(斜边放在分母),去寻找未知角的某三角函数。
(3)在优选公式时,尽量利用已知数据,避免“一错再错”和“累积误差”。
5.解直角三角形时需要注意的几个问题(1)在解直角三角形时,是用三角知识,通过数值计算,去求出图形中的某些边的长度或角的大小,这是数形结合为一种形式,所以在分析问题时,一般先根据已知条件画出它的平面或截面示意图,按照图中边角之间的关系去进行计算,这样可以帮助思考,防止出错。
(2)有些图形虽然不是直角三角形,但可添加适当的辅助线把它们分割成一些直角三角形和矩形,从而把它们转化为直角三角形的问题来解决。
(3)按照题目中已知数据的精确度进行近似计算二、例题解析:例1、已知直角三角形的斜边与一条直角边的和是16cm,另一条直角边为8cm,求它的面积,解:设斜边为c,一条直角边为a,另一条直角边b=8cm,由勾股定理可得,由题意,有c+a=16 ,b=8例2、在△ABC中,求:a、b、c的值及∠A。
解:,由直角三角形的边角关系,得,即又∵a+b=3+例3、已知△ABC中,∠C=90°,若△ABC的周长为30,它的面积等于30,求三边长。
高中数学解三角形知识点总结与练习

解三角形一、知识点总结1. 内角和定理:在ABC ∆中,A B C ++=π;sin()A B +=sin C ;cos()A B +=cos C -;sin cos cos sin tan cot 222222A B C A B C A B C +++===;;. 2.面积公式:1sin 2ABC S ab C ∆== 1sin 2bc A =1sin 2ca B 3.正弦定理:在一个三角形中,各边和它的所对角的正弦的比相等.形式一:R Cc B b A a 2sin sin sin ===或变形:::sin :sin :sin a b c A B C = (解三角形的重要工具) 形式二:⎪⎩⎪⎨⎧===C R c B R b A R a sin 2sin 2sin 2 (边角转化的重要工具)4.余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍..形式一:2222cos a b c bc A =+-2222cos b c a ca B =+- (解三角形的重要工具)2222cos c a b ab C =+-形式二:cos A =bc a c b 2222-+ ; cos B =ca b a c 2222-+ ; cos C =abc b a 2222-+ 5.(1)两类正弦定理解三角形的问题:1、已知两角和任意一边,求其他的两边及一角.2、已知两角和其中一边的对角,求其他边角.(2)两类余弦定理解三角形的问题:1、已知三边求三角.2、已知两边和他们的夹角,求第三边和其他两角.6.判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.7. 已知条件定理应用 一般解法 一边和两角(如a 、B 、C )正弦定理 由A+B+C=180˙,求角A ,由正弦定理求出b 与c ,在有解时 有一解。
两边和夹角(如a 、b 、c)余弦定理 由余弦定理求第三边c ,由正弦定理求出小边所对的角,再 由A+B+C=180˙求出另一角,在有解时有一解。
解三角形知识点总结及典型例题

解三角形知识点总结及典型例题三角形作为几何学的基础概念之一,是学习几何学不可或缺的部分。
在解三角形的过程中,我们需要掌握一些基本的知识点和技巧。
本文将对解三角形的相关知识点进行总结,并配以典型例题进行说明。
一、三角形的基本概念三角形由三条边和三个角组成。
根据边的长度,三角形可以分为等边三角形、等腰三角形和普通三角形。
根据角的大小,三角形可以分为钝角三角形、直角三角形和锐角三角形。
二、重要的定理1. 三角形内角和定理:三角形的内角和等于180°。
利用这个定理,我们可以求解一些已知角的三角形问题。
2. 角平分线定理:角平分线将一个角分为两个大小相等的角。
利用这个定理,我们可以求解一些已知角平分线的三角形问题。
3. 直角三角形的性质:直角三角形的两个直角边平方和等于斜边的平方。
这个定理被广泛应用于解决直角三角形的各类问题。
三、解三角形的方法1. 已知两边和夹角如果我们已知三角形的两边和夹角,我们可以利用余弦定理求解第三边的长度。
余弦定理的数学表达式如下:c² = a² + b² - 2abcosC其中,c为第三边的长度,a和b为已知边的长度,C为已知夹角的度数。
2. 已知两边和对应的角如果我们已知三角形的两边和对应的角,我们可以利用正弦定理求解第三角的长度。
正弦定理的数学表达式如下:a/sinA = b/sinB = c/sinC其中,a、b、c为三角形的边长,A、B、C为对应的角度。
3. 已知三边如果我们已知三角形的三边,我们可以利用余弦定理或正弦定理求解其中一个角的大小。
然后,再利用三角形的内角和定理求解其他角的大小。
四、典型例题1. 已知三角形ABC,AB = 8 cm,BC = 6 cm,AC = 10 cm。
求角A、角B和角C的度数。
解:根据余弦定理,cosA = (8² + 10² - 6²) / (2 × 8 × 10) = 0.6cosB = (6² + 10² - 8²) / (2 × 6 × 10) = 0.8cosC = (8² + 6² - 10²) / (2 × 8 × 6) = 0.7通过查表或使用计算器,我们可以得到:角A ≈ 53.13°,角B ≈ 36.87°,角C ≈ 90°2. 在直角三角形ABC中,∠B = 90°,AB = 5 cm,BC = 12 cm。
解三角形知识点总结及典型例题-自己总结的

C π,所以2 ] 若a 、b 、c 是、有两个交点B 、有一个交点【解析】由余弦定理得2222cos b x bc A x c ++=恒成立,所以其图像与三角形解的个数
中,分别根据下列条件解三角形,其中有两解的是【︒=30A ;︒=30B ;ABC
S
=
题型4 判断三角形形状5] 在【解析】把已知等式都化为角的等式或都化为边的等式。
2,22A B π,得2ABC 为等腰三角形或直角三角形方法二:同上可得22cos a 由正、余弦定理,即得:222222()(b c a b a +-=cos 1B ,所以0,所以
2p
海里的速度向正北方航行,乙船按固定方向匀速直线航行,当甲船位于1A 处105方向的1B 处,此时两船相距海里,当甲船航行20分钟到达2A 处时,方向的B 处,此时两船相距海里,问乙船每小时航行多少海里?解决测量问题的过程先要正确作出图形,本题应先利用S 2
A
120
12060-=,
是等边三角形,
6045-=,
22
11121122cos 45A B A B A B A B =+-
102. 小时).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
解三角形
教学目标:1.掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解
等情形;
2.三角形各种形状的判定方法;
3.三角形面积定理的应用.
重点:1.三角形面积定理的应用.
难点:1.利用正、余弦定理进行边角互换时的转化方向;
2..正、余弦定理与三角形的有关性质的综合运用.
(一)基础知识梳理:
1.解三角形的主要依据:
(1)勾股定理:在RT△ABC中,a,b,c分别是角A,B,C的对边,则
c2=_________________;
(2)三角形的内角和定理:在△ABC中,A+B+C=__________, 其中A,B,C∈
___________;
(3)三角形的面积公式:S△=________=_________=_________;
(4)正弦定理:在△ABC中,a,b,c分别是角A,B,C的对边,则
_______________________;
(5)余弦定理:在△ABC中,a,b,c分别是角A,B,C的对边,则a2=___________________,
b2=_____________ _________,
c2=________________________;
2.解三角形的主要题型:
在△ABC的六个边、角元素中,已知其中任意三个(至少有一个是边),就可以求出
其他元素。
(1)已知两角一边:用________定理求解;
(2)已知两边及一边的对角,求角:用________定理求解;
(3)已知两边及一边的对角,求第三边:用________定理求解;
(4)已知两边及其夹角,求第三边:用________定理求解;
(5)已知三边:用________定理求解;
(二)典型例题分析
例:(1)(2005北京文)在△ABC中,AC=3,∠A=45°,∠C=75°,则BC的长为 .
(2)(2008陕西文) ABC△的内角A,B,C的对边分别为a,b,c,若
26120cbB,,
,则a .
(3)在△ABC中,7:5:3c:b:a,则△ABC的最大角是_________。
基础训练(一):
1.ΔABC中, a=2 , b=23, ∠A=30°,则∠B等于( )
A.60° B.60°或120° C.30°或150° D.120°
2.符合下列条件的三角形有且只有一个的是( )
A.a=1,b=2 ,c=3 B.a=1,b=2 ,∠A=30°
C.a=1,b=2,∠A=100° D.b=c=1, ∠B=45°
2
3.在△ABC中,abbca222,则角C为 ( )
(A)o30 (B)o60 (C)o120 (D)o45或o135
4.(2006江苏)在△ABC中,已知BC=12,A=60°,B=45°,则AC=
5.(2006全国Ⅱ卷理)已知△ABC的三个内角A、B、C成等差数列,且AB=1,BC=4,则
边BC上的中线AD的长为 .
高考链接
1.(2007重庆理)在ABC中,,75,45,300CAAB则BC =( )
A.33 B.2 C.2 D.33
2.(2006山东文、理)在△ABC中,角A、B、C的对边分别为a、b、c,A=3,a=3,b=1,则
c=( )
(A)1 (B)2 (C)3—1 (D)3
3.(2006全国Ⅰ卷文、理)ABC的内角A、B、C的对边分别为a、b、c,若a、b、c成
等比数列,且2ca,则cosB( )
A.14 B.34 C.24 D.23
4.(2005北京春招文、理)在ABC中,已知CBAsincossin2,那么ABC一定是
( )
A.直角三角形 B.等腰三角形 C.等腰直角三角形 D.正三角形
5.(2005春招上海)在△ABC中,若CcBbAacoscoscos,则△ABC是( )
(A)直角三角形. (B)等边三角形. (C)钝角三角形. (D)等腰直角三角形.
6.(2005江苏)ABC中,3A,BC=3,则ABC的周长为( )
A.33sin34B B.36sin34B
C.33sin6B D.36sin6B